1
|
Hafner L, Walsh L. Application of multi-method-multi-model inference to radiation related solid cancer excess risks models for astronaut risk assessment. Z Med Phys 2024; 34:83-91. [PMID: 37429805 PMCID: PMC10919967 DOI: 10.1016/j.zemedi.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
The impact of including model-averaged excess radiation risks (ER) into a measure of radiation attributed decrease of survival (RADS) for the outcome all solid cancer incidence and the impact on the uncertainties is demonstrated. It is shown that RADS applying weighted model averaged ER based on AIC weights result in smaller risk estimates with narrower 95% CI than RADS using ER based on BIC weights. Further a multi-method-multi-model inference approach is introduced that allows calculating one general RADS estimate providing a weighted average risk estimate for a lunar and a Mars mission. For males the general RADS estimate is found to be 0.42% (95% CI: 0.38%; 0.45%) and for females 0.67% (95% CI: 0.59%; 0.75%) for a lunar mission and 2.45% (95% CI: 2.23%; 2.67%) for males and 3.91% (95% CI: 3.44%; 4.39%) for females for a Mars mission considering an age at exposure of 40 years and an attained age of 65 years. It is recommended to include these types of uncertainties and to include model-averaged excess risks in astronaut risk assessment.
Collapse
Affiliation(s)
- Luana Hafner
- Swiss Federal Nuclear Safety Inspectorate ENSI, Industriestrasse 19, 5201 Brugg, Switzerland.
| | - Linda Walsh
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
2
|
Hamada N. Noncancer Effects of Ionizing Radiation Exposure on the Eye, the Circulatory System and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat Res 2023; 200:188-216. [PMID: 37410098 DOI: 10.1667/rade-23-00030.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
For radiation protection purposes, noncancer effects with a threshold-type dose-response relationship have been classified as tissue reactions (formerly called nonstochastic or deterministic effects), and equivalent dose limits aim to prevent occurrence of such tissue reactions. Accumulating evidence demonstrates increased risks for several late occurring noncancer effects at doses and dose rates much lower than previously considered. In 2011, the International Commission on Radiological Protection (ICRP) issued a statement on tissue reactions to recommend a threshold of 0.5 Gy to the lens of the eye for cataracts and to the heart and brain for diseases of the circulatory system (DCS), independent of dose rate. Literature published thereafter continues to provide updated knowledge. Increased risks for cataracts below 0.5 Gy have been reported in several cohorts (e.g., including in those receiving protracted or chronic exposures). A dose threshold for cataracts is less evident with longer follow-up, with limited evidence available for risk of cataract removal surgery. There is emerging evidence for risk of normal-tension glaucoma and diabetic retinopathy, but the long-held tenet that the lens represents among the most radiosensitive tissues in the eye and in the body seems to remain unchanged. For DCS, increased risks have been reported in various cohorts, but the existence or otherwise of a dose threshold is unclear. The level of risk is less uncertain at lower dose and lower dose rate, with the possibility that risk per unit dose is greater at lower doses and dose rates. Target organs and tissues for DCS are also unknown, but may include heart, large blood vessels and kidneys. Identification of potential factors (e.g., sex, age, lifestyle factors, coexposures, comorbidities, genetics and epigenetics) that may modify radiation risk of cataracts and DCS would be important. Other noncancer effects on the radar include neurological effects (e.g., Parkinson's disease, Alzheimer's disease and dementia) of which elevated risk has increasingly been reported. These late occurring noncancer effects tend to deviate from the definition of tissue reactions, necessitating more scientific developments to reconsider the radiation effect classification system and risk management. This paper gives an overview of historical developments made in ICRP prior to the 2011 statement and an update on relevant developments made since the 2011 ICRP statement.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
3
|
Laurier D, Billarand Y, Klokov D, Leuraud K. The scientific basis for the use of the linear no-threshold (LNT) model at low doses and dose rates in radiological protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2023; 43:024003. [PMID: 37339605 DOI: 10.1088/1361-6498/acdfd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The linear no-threshold (LNT) model was introduced into the radiological protection system about 60 years ago, but this model and its use in radiation protection are still debated today. This article presents an overview of results on effects of exposure to low linear-energy-transfer radiation in radiobiology and epidemiology accumulated over the last decade and discusses their impact on the use of the LNT model in the assessment of radiation-related cancer risks at low doses. The knowledge acquired over the past 10 years, both in radiobiology and epidemiology, has reinforced scientific knowledge about cancer risks at low doses. In radiobiology, although certain mechanisms do not support linearity, the early stages of carcinogenesis comprised of mutational events, which are assumed to play a key role in carcinogenesis, show linear responses to doses from as low as 10 mGy. The impact of non-mutational mechanisms on the risk of radiation-related cancer at low doses is currently difficult to assess. In epidemiology, the results show excess cancer risks at dose levels of 100 mGy or less. While some recent results indicate non-linear dose relationships for some cancers, overall, the LNT model does not substantially overestimate the risks at low doses. Recent results, in radiobiology or in epidemiology, suggest that a dose threshold, if any, could not be greater than a few tens of mGy. The scientific knowledge currently available does not contradict the use of the LNT model for the assessment of radiation-related cancer risks within the radiological protection system, and no other dose-risk relationship seems more appropriate for radiological protection purposes.
Collapse
Affiliation(s)
- Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Yann Billarand
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Dmitry Klokov
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Klervi Leuraud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. Radiation dose rate effects: what is new and what is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:507-543. [PMID: 36241855 PMCID: PMC9630203 DOI: 10.1007/s00411-022-00996-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.
Collapse
Affiliation(s)
- Donna Lowe
- UK Health Security Agency, CRCE Chilton, Didcot, OX11 0RQ, Oxfordshire, UK
| | - Laurence Roy
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Maria Antonella Tabocchini
- Istituto Nazionale i Fisica Nucleare, Sezione i Roma, Rome, Italy
- Istituto Superiore Di Sanità, Rome, Italy
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University School of Medicine, Chicago, IL, USA.
| | - Dominique Laurier
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
5
|
Beck TR. Study on the radiation detriment. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021532. [PMID: 35705060 DOI: 10.1088/1361-6498/ac7915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Cancer incidence risks, lifetime effects and radiation detriments are determined for the whole population and various subpopulations as a result of acute and chronic exposure to low-LET radiation, taking into account the risk models, procedures and representative populations provided by ICRP. The results are given for solid cancers in different organs, as well as for soft tissue cancer in bone marrow. For most cancer sites a good agreement is obtained between the results of this study and the values published by the ICRP. The agreement with ICRP values is better for the whole population than for the working age population, where the results are systematically elevated. For chronic exposure, the years of life lost per radiation-induced cancer incidence are generally higher. In particular, this results in a radiation detriment for the whole population that is 30% higher than for acute exposure. The study reveals that risk quantities show a pronounced age dependence. The highest radiation risks are attributed to young persons; the lowest to persons in advanced ages. The total detriment imposed on people in different ages varies by a factor of about 30. The average values provided by the ICRP mask these variations and considerably underestimate radiation risks in childhood and adolescence. This also concerns the determination of the effective dose for persons in these age groups. Unlike the ICRP, which provides different nominal detriments for the whole population and the working age population, the results of this study do not support the use of different detriments for these populations.
Collapse
Affiliation(s)
- Thomas R Beck
- Federal Office for Radiation Protection, Berlin, Germany
| |
Collapse
|
6
|
Ban N, Cléro E, Vaillant L, Zhang W, Hamada N, Preston D, Laurier D. Radiation detriment calculation methodology: summary of ICRP Publication 152. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:023001. [PMID: 35417894 DOI: 10.1088/1361-6498/ac670d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Radiation detriment is a concept to quantify the burden of stochastic effects from exposure of the human population to low-dose and/or low-dose-rate ionising radiation. As part of a thorough review of the system of radiological protection, the International Commission on Radiological Protection (ICRP) has compiled a report on radiation detriment calculation methodology as Publication 152. It provides a historical review of the detriment calculation with details of the procedure used in ICRP Publication 103. A selected sensitivity analysis was conducted to identify the parameters and calculation conditions that can be major sources of variation and uncertainty. It has demonstrated that sex, age at exposure, dose and dose-rate effectiveness factor, dose assumption in the lifetime risk calculation, and lethality fraction have a substantial impact on the calculated values of radiation detriment. Discussions are also made on the issues to be addressed and possible ways for improvement toward the revision of general recommendations. These include update of the reference population data and cancer severity parameters, revision of cancer risk models, and better handling of the variation with sex and age. Finally, emphasis is placed on transparency and traceability of the calculation, along with the need to improve the way of expressing and communicating the detriment.
Collapse
Affiliation(s)
| | - Enora Cléro
- Health and Environmental Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Ludovic Vaillant
- Centre d'etude sur l'Evaluation de la Protection dans le domaine Nucleaire (CEPN), Fontenay-aux-Roses, France
| | - Wei Zhang
- Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Oxon, United Kingdom
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Dale Preston
- Hirosoft International Corporation, Eureka, CA, United States of America
| | - Dominique Laurier
- Health and Environmental Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
7
|
Nekolla EA, Brix G, Griebel J. Lung Cancer Screening with Low-Dose CT: Radiation Risk and Benefit-Risk Assessment for Different Screening Scenarios. Diagnostics (Basel) 2022; 12:diagnostics12020364. [PMID: 35204455 PMCID: PMC8870982 DOI: 10.3390/diagnostics12020364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 01/04/2023] Open
Abstract
Lung cancer is a severe disease that affects predominantly smokers and represents a leading cause of cancer death in Europe. Recent meta-analyses of randomized controlled trials (RCTs) have yielded that low-dose computed tomography (LDCT) screening can significantly reduce lung cancer mortality in heavy smokers or ex-smokers by about 20% compared to a control group of persons who did not receive LDCT. This benefit must be weighed against adverse health effects associated with LDCT lung screening, in particular radiation risks. For this purpose, representative organ doses were determined for a volume CT dose index of 1 mGy that can be achieved on modern devices. Using these values, radiation risks were estimated for different screening scenarios by means of sex-, organ-, and age-dependent radio-epidemiologic models. In particular, the approach was adjusted to a Western European population. For an annual LDCT screening of (ex-)smokers aged between 50 and 75 years, the estimated radiation-related lifetime attributable risk to develop cancer is below 0.25% for women and about 0.1% for men. Assuming a mortality reduction of about 20% and taking only radiation risks into account, this screening scenario results in a benefit–risk ratio of about 10 for women and about 25 for men. These benefit–risk ratio estimates are based on the results of RCTs of the highest evidence level. To ensure that the benefit outweighs the radiation risk even in standard healthcare, strict conditions and requirements must be established for the entire screening process to achieve a quality level at least as high as that of the considered RCTs.
Collapse
|
8
|
Sasaki M, Ogino H, Hattori T. Quantitative evaluation of conservatism in the concept of committed dose from internal exposure for radiation workers. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:1328-1343. [PMID: 34038890 DOI: 10.1088/1361-6498/ac057f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
For compliance with dose limits, the International Commission on Radiological Protection (ICRP) recommends that the committed dose be assigned to the year in which radionuclide intake occurred in the case of internal exposure. For radiation workers, the committed dose is evaluated over the 50 year period following the intake, which is a rounded value for the working-life expectancy of a young person entering the workforce. In this study, we develop an approach to the quantitative evaluation of the conservatism in the concept of the committed dose from internal exposure for radiation workers from the viewpoint of radiological risk. Actual annual doses due to an intake of radionuclides for strontium-90 (90Sr), caesium-137 (137Cs), and plutonium-239 (239Pu) were simulated. Risks of fatal cancer, i.e. unconditional death probability rates, were calculated in accordance with the risk estimation method in ICRP Publication 60. It was found that the conservatism ranged from 1.1 to 1.6 for90Sr, 1.0 to 1.6 for137Cs, and 1.6 to 2.2 for239Pu. The importance of understanding the extent of this conservatism and the uncertainty for practical radiological protection are also discussed.
Collapse
Affiliation(s)
- Michiya Sasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado kita, Komae-shi, Tokyo 201-8511, Japan
| | - Haruyuki Ogino
- Nuclear Regulation Authority, 1-9-9 Roppongi, Minato-ku, Tokyo 106-8450, Japan
| | - Takatoshi Hattori
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado kita, Komae-shi, Tokyo 201-8511, Japan
| |
Collapse
|
9
|
Cléro E, Bisson M, Nathalie V, Blanchardon E, Thybaud E, Billarand Y. Cancer risk from chronic exposures to chemicals and radiation: a comparison of the toxicological reference value with the radiation detriment. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:531-547. [PMID: 34487227 DOI: 10.1007/s00411-021-00938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
This article aims at comparing reference methods for the assessment of cancer risk from exposure to genotoxic carcinogen chemical substances and to ionizing radiation. For chemicals, cancer potency is expressed as a toxicological reference value (TRV) based on the most sensitive type of cancer generally observed in animal experiments of oral or inhalation exposure. A dose-response curve is established by modelling experimental data adjusted to apply to human exposure. This leads to a point of departure from which the TRV is derived as the slope of a linear extrapolation to zero dose. Human lifetime cancer risk can then be assessed as the product of dose by TRV and it is generally considered to be tolerable in a 10-6-10-4 range for the public in a normal situation. Radiation exposure is assessed as an effective dose corresponding to a weighted average of energy deposition in body organs. Cancer risk models were derived from the epidemiological follow-up of atomic bombing survivors. Considering a linear-no-threshold dose-risk relationship and average baseline risks, lifetime nominal risk coefficients were established for 13 types of cancers. Those are adjusted according to the severity of each cancer type and combined into an overall indicator denominated radiation detriment. Exposure to radiation is subject to dose limits proscribing unacceptable health detriment. The differences between chemical and radiological cancer risk assessments are discussed and concern data sources, extrapolation to low doses, definition of dose, considered health effects and level of conservatism. These differences should not be an insuperable impediment to the comparison of TRVs with radiation risk, thus opportunities exist to bring closer the two types of risk assessment.
Collapse
Affiliation(s)
- Enora Cléro
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), BP 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Michèle Bisson
- Chronic Risks Division, French National Institute for Industrial Environment and Risks (INERIS), Parc technologique Alata - BP 2, 60550 , Verneuil-en-Halatte, France
| | - Velly Nathalie
- Chronic Risks Division, French National Institute for Industrial Environment and Risks (INERIS), Parc technologique Alata - BP 2, 60550 , Verneuil-en-Halatte, France
| | - Eric Blanchardon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), BP 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Eric Thybaud
- Chronic Risks Division, French National Institute for Industrial Environment and Risks (INERIS), Parc technologique Alata - BP 2, 60550 , Verneuil-en-Halatte, France
| | - Yann Billarand
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), BP 17, 92262, Fontenay-aux-Roses Cedex, France.
| |
Collapse
|
10
|
Laurier D, Rühm W, Paquet F, Applegate K, Cool D, Clement C. Areas of research to support the system of radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:519-530. [PMID: 34657188 PMCID: PMC8522113 DOI: 10.1007/s00411-021-00947-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 05/07/2023]
Abstract
This document presents the ICRP's updated vision on "Areas of Research to Support the System of Radiological Protection", which have been previously published in 2017. It aims to complement the research priorities promoted by other relevant international organisations, with the specificity of placing them in the perspective of the evolution of the System of Radiological Protection. This document contributes to the process launched by ICRP to review and revise the System of Radiological Protection that will update the 2007 General Recommendations in ICRP Publication 103.
Collapse
Affiliation(s)
- D Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - W Rühm
- Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| | - F Paquet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, France
| | - K Applegate
- University of Kentucky College of Medicine, Lexington, KY, USA
| | - D Cool
- International Commission on Radiological Protection (ICRP) Vice-Chair, Charlotte, NC, USA
| | - C Clement
- International Commission on Radiological Protection (ICRP), Ottawa, ON, Canada
| |
Collapse
|
11
|
Kadowaki Y, Hamada N, Kai M, Furukawa K. Evaluation of the lifetime brain/central nervous system cancer risk associated with childhood head CT scanning in Japan. Int J Cancer 2021; 148:2429-2439. [PMID: 33320957 DOI: 10.1002/ijc.33436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
The use of computed tomography (CT) scanning has increased worldwide over the decades, and Japan is one of the leading countries in annual frequency of diagnostic CT. Although benefits of CT scan are undisputable, concerns have been raised about potential health effects of ionizing radiation exposure from CT, particularly among children who are likely more susceptible to radiation than adults. Our study aims to evaluate the cumulated lifetime risk of the brain/central nervous system (CNS) cancer due to head CT examinations performed on Japanese children at age 0 to 10 years in 2012, 2015 and 2018. The frequency and dose distribution of head CT examinations were estimated based on information from recent national statistics and nationwide surveys. The lifetime risk attributable to exposure was calculated by applying risk models based on the study of Japanese atomic-bomb survivors. In contrast to the overall increasing trend, the frequency of childhood CT, especially at age < 5, was decreasing, reflecting a growing awareness for efforts to reduce childhood CT exposure over the past decade. In 2018, 138 532 head CT examinations were performed at age 0 to 10, which would consequently induce a lifetime excess of 22 cases (1 per 6300 scans) of brain/CNS cancers, accounting for 5% of the total cases. More excess cases were estimated among men than among women, and excess cases could emerge at relatively young ages. These results would have useful implications as scientific basis for future large-scale epidemiological studies and also as quantitative evidence to justify the benefits of CT vs risks in Japan.
Collapse
Affiliation(s)
- Yuko Kadowaki
- Graduate School of Medicine, Kurume University, Fukuoka, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Michiaki Kai
- Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita, Japan
| | | |
Collapse
|
12
|
Arruda GV, Dos Santos Weber RR, Bruno AC, Pavoni JF. Reply to: regarding: 'the risk of induced cancer and ischemic heart disease following low dose lung irradiation for COVID-19: estimation based on a virtual case'. Int J Radiat Biol 2021; 97:315-316. [PMID: 33332179 DOI: 10.1080/09553002.2021.1865745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gustavo Viani Arruda
- Department of Radiotherapy, Ribeirão Preto Medical School Hospital and Clinics, University of São Paulo, São Paulo, Brazil
| | - Raissa Renata Dos Santos Weber
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alexandre Colello Bruno
- Department of Radiotherapy, Ribeirão Preto Medical School Hospital and Clinics, University of São Paulo, São Paulo, Brazil
| | - Juliana Fernandes Pavoni
- Department of Radiotherapy, Ribeirão Preto Medical School Hospital and Clinics, University of São Paulo, São Paulo, Brazil.,Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Arruda GV, Weber RRDS, Bruno AC, Pavoni JF. The risk of induced cancer and ischemic heart disease following low dose lung irradiation for COVID-19: estimation based on a virtual case. Int J Radiat Biol 2020; 97:120-125. [PMID: 33164596 PMCID: PMC7682378 DOI: 10.1080/09553002.2021.1846818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Recently, low dose radiotherapy delivered to the whole lung has been proposed as treatment for the pneumonia due to COVID-19. Although there is biological plausibility for its use, the evidence supporting its effectiveness is scarce, and the risks associated with it may be significant. Thus, based on a virtual case simulation, we estimated the risks of radiation-induced cancer (RIC) and cardiac disease. Methods Lifetime attributable risks (LAR) of RIC were calculated for the lung, liver, esophagus, and breast of female patients. The cardiovascular risk of exposure-induced death (REID) due to ischemic heart disease was also calculated. The doses received by the organs involved in the treatment were obtained from a simulation of conformal radiotherapy (RT) treatment, delivering a dose of 0.5 Gy–1.5 Gy to the lungs. We considered a LAR and REID <1% as acceptable, 1–2% cautionary, and >2% unacceptable. Results The lung was at the highest risk for RIC (absolute LAR below 5200 cases/100,000 and 2250 cases/100,000 for women and men, respectively). For women, the breast had the second-highest LAR, especially for young women. The liver and esophagus had LARs below 700/100,000 for both sexes, with a higher incidence of esophageal cancer in women and liver cancer in men. Regarding the LAR cutoff, we observed an unacceptable or cautionary LAR for lung cancer in all women and men <60 years with an RT dose >1 Gy. LAR for lung cancer with an RT dose of 1 Gy was cautionary for women >60 years of age and men <40 years of age. No LAR estimation was unacceptable for the RT dose ≤0.7 Gy in all groups irrespective of sex or age at exposure. Only 0.5 Gy had an acceptable REID. Conclusions A RT dose ≤0.5 Gy provides an acceptable LAR estimate (≤1%) for RIC and REID, irrespective of sex and age. The current ongoing trials should initially use doses ≤0.5 Gy to maintain the risks at an acceptable level and include only patients who fail or do not have any other treatment option.
Collapse
Affiliation(s)
- Gustavo Viani Arruda
- Radiotherapy Department, Ribeirão Preto Medical School Hospital and Clinics, University of São Paulo, São Paulo, Brazil
| | - Raissa Renata Dos Santos Weber
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alexandre Colello Bruno
- Radiotherapy Department, Ribeirão Preto Medical School Hospital and Clinics, University of São Paulo, São Paulo, Brazil
| | - Juliana Fernandes Pavoni
- Radiotherapy Department, Ribeirão Preto Medical School Hospital and Clinics, University of São Paulo, São Paulo, Brazil.,Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Little MP, Pawel D, Misumi M, Hamada N, Cullings HM, Wakeford R, Ozasa K. Lifetime Mortality Risk from Cancer and Circulatory Disease Predicted from the Japanese Atomic Bomb Survivor Life Span Study Data Taking Account of Dose Measurement Error. Radiat Res 2020; 194:259-276. [PMID: 32942303 PMCID: PMC7646983 DOI: 10.1667/rr15571.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/24/2020] [Indexed: 11/03/2022]
Abstract
Dosimetric measurement error is known to potentially bias the magnitude of the dose response, and can also affect the shape of dose response. In this report, generalized relative and absolute rate models are fitted to the latest Japanese atomic bomb survivor solid cancer, leukemia and circulatory disease mortality data (followed from 1950 through 2003), with the latest (DS02R1) dosimetry, using Bayesian techniques to adjust for errors in dose estimates and assessing other model uncertainties. Linear-quadratic models are fitted and used to assess lifetime mortality risks for contemporary UK, USA, French, Russian, Japanese and Chinese populations. For a test dose of 0.1 Gy absorbed dose weighted by neutron relative biological effectiveness, solid cancer, leukemia and circulatory disease mortality risks for a UK population using a generalized linear-quadratic relative rate model were estimated to be 3.88% Gy-1 [95% Bayesian credible interval (BCI): 1.17, 6.97], 0.35% Gy-1 (95% BCI: -0.03, 0.78) and 2.24% Gy-1 (95% BCI: -0.17, 13.76), respectively. Using a generalized absolute rate linear-quadratic model at 0.1 Gy, the lifetime risks for these three end points were estimated to be 3.56% Gy-1 (95% BCI: 0.54, 6.78), 0.41% Gy-1 (95% BCI: 0.01, 0.86) and 1.56% Gy-1 (95% BCI: -1.10, 7.21), respectively. There was substantial evidence of curvature for solid cancer (in particular, the group of solid cancers excluding lung, breast and stomach cancers) and leukemia, so that for solid cancer and leukemia, estimates of excess risk per unit dose were nearly doubled by increasing the dose from 0.01 to 1.0 Gy, with most of the increase occurring in the interval from 0.1 to 1.0 Gy. For circulatory disease, the dose-response curvature was inverse, so that risk per unit dose was nearly halved by going from 0.01 t o 1.0 Gy weighted absorbed dose, although there were substantial uncertainties. In general, there were higher radiation risks for females compared to males. This was true for solid cancer and circulatory disease overall, as well as for lung, breast, stomach and the group of other solid cancers, and was the case whether relative or absolute rate projection models were employed; however, for leukemia this pattern was reversed. Risk estimates varied somewhat between populations, with lower cancer risks in aggregate for China and Russia, but higher circulatory disease risks for Russia, particularly using the relative rate model. There was more pronounced variation for certain cancer sites and certain types of projection models, so that breast cancer risk was markedly lower in China and Japan using a relative rate model, but the opposite was the case for stomach cancer. There was less variation between countries using the absolute rate models for stomach cancer and breast cancer, but this was not the case for lung cancer and the group of other solid cancers, or for circulatory disease.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland 20892-9778
| | - David Pawel
- Office of Air and Radiation, Environmental Protection Agency, Washington, DC 20004
| | | | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo 201-8511, Japan
| | | | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| |
Collapse
|
15
|
Breckow J. Do we really need the "detriment" for radiation protection? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:343-348. [PMID: 32583291 PMCID: PMC7368864 DOI: 10.1007/s00411-020-00861-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 05/23/2023]
Abstract
The purpose of the ICRP detriment concept is to enable a quantitative comparison of stochastic radiation damage for the various organs. For this purpose, the organ-specific nominal risk coefficients are weighted with a function that is intended to express the amount of damage or, respectively, the severity of a disease. This function incorporates a variety of variables that do not depend on radiation parameters, but on characteristics of the disease itself. The question is raised as to whether the rather subtle way of defining the amount of damage is necessary for radiation protection purposes and whether a much simpler relationship can serve for this purpose as well or even better.
Collapse
Affiliation(s)
- Joachim Breckow
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, THM, Giessen, Germany.
| |
Collapse
|
16
|
Salomaa S, Bouffler SD, Atkinson MJ, Cardis E, Hamada N. Is there any supportive evidence for low dose radiotherapy for COVID-19 pneumonia? Int J Radiat Biol 2020; 96:1228-1235. [DOI: 10.1080/09553002.2020.1786609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- STUK-Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Simon D. Bouffler
- Public Health England Centre for Radiation, Chemical and Environmental Hazards, Didcot, UK
| | - Michael J. Atkinson
- Institute of Radiation Biology, Helmholtz-Center Munich, National Research Centre for Health and Environment, Neuherberg, Germany
| | - Elisabeth Cardis
- Campus Mar, Barcelona Biomedical Research Park (PRBB), Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Japan
| |
Collapse
|