1
|
Zheng S, Deng R, Huang G, Ou Z, Shen Z. Screening the active ingredients of plants via molecular docking technology and evaluating their ability to reduce skin photoaging. Biogerontology 2024; 25:1115-1143. [PMID: 39312047 DOI: 10.1007/s10522-024-10125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 10/18/2024]
Abstract
The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.
Collapse
Affiliation(s)
- Shiqian Zheng
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Rongrong Deng
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Gengjiu Huang
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Zhiwen Ou
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Zhibin Shen
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China.
| |
Collapse
|
2
|
Sun JM, Liu YX, Liu YD, Ho CK, Tsai YT, Wen DS, Huang L, Zheng DN, Gao Y, Zhang YF, Yu L. Salvianolic acid B protects against UVB-induced skin aging via activation of NRF2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155676. [PMID: 38820663 DOI: 10.1016/j.phymed.2024.155676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Prolonged exposure to sun radiation may result in harmful skin photoaging. Therefore, discovering novel anti-photoaging treatment modalities is critical. An active component isolated from Salvia miltiorrhiza (SM), Salvianolic acid B (Sal-B), is a robust antioxidant and anti-inflammatory agent. This investigation aimed to discover the therapeutic impact and pathways of salvianolic acid B for UVB-induced skin photoaging, an area that remains unexplored. METHODS We conducted in vitro experiments on human dermal fibroblasts (HDFs) exposed to UVB radiation, assessing cellular senescence, superoxide dismutase (SOD) activity, cell viability, proliferation, migration, levels of reactive oxygen species (ROS), and mitochondrial health. The potential mechanism of Sal-B was analyzed using RNA sequencing, with further validation through Western blotting, PCR, and nuclear factor erythroid 2-related factor 2 (NRF2) silencing methods. In vivo, a model of skin photoaging induced by UVB in nude mice was employed. The collagen fiber levels were assessed utilizing hematoxylin and eosin (H&E), Masson, and Sirus red staining. Additionally, NRF2 and related gene and protein expression levels were identified utilizing PCR and Western blotting. RESULTS Sal-B was found to significantly counteract photoaging in UVB-exposed skin fibroblasts, reducing aging-related decline in fibroblast proliferation and an increase in apoptosis. It was observed that Sal-B aids in protecting mitochondria from excessive ROS production by promoting NRF2 nuclear translocation. NRF2 knockdown experiments established its necessity for Sal-B's anti-photoaging effects. The in vivo studies also verified Sal-B's anti-photoaging efficacy, surpassing that of tretinoin (Retino-A). These outcomes offer novel insights into the contribution of Sal-B in developing clinical treatment modalities for UVB-induced photodamage in skin fibroblasts. CONCLUSION In this investigation, we identified the Sal-B protective impact on the senescence of dermal fibroblasts and skin photoaging induced by radiation of UVB. The outcomes suggest Sal-B as a potential modulator of the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Jia-Ming Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Yu-Xin Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Yang-Dan Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Chia-Kang Ho
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Yi-Tung Tsai
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Dong-Sheng Wen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Lu Huang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Dan-Ning Zheng
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Ya Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China.
| | - Yi-Fan Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China.
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China.
| |
Collapse
|
3
|
Sánchez-Suárez J, Villamil L, Coy-Barrera E, Díaz L. Photoprotection-related properties of a raw extract from Gordonia hongkongensis EUFUS-Z928: A culturable rare actinomycete associated with the Caribbean octocoral Eunicea fusca. Sci Prog 2024; 107:368504241272454. [PMID: 39119690 PMCID: PMC11311175 DOI: 10.1177/00368504241272454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
UV filters in current sunscreen formulations can have negative effects on human health, such as endocrine disruption and allergic reactions, as well as on the environment, including bioaccumulation and coral health toxicity. As a result, there is a need to find alternative compounds that serve as safer and more ecofriendly active ingredients. This study successfully isolated actinomycetes from the octocoral Eunicea fusca and assessed their potential as producers of photoprotective compounds. The use of bio-based chemical agents, particularly natural products, has been a highly effective strategy for discovering bioactive compounds, especially in marine invertebrates and their associated microbiota. Eighteen bacterial isolates were obtained and subsequently employed to prepare raw methanolic extracts from seven-day submerged cultures in Zobell marine broth. The resulting extracts were screened for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity and characterized by total phenolic and flavonoid content measurements. After screening, the Gordonia hongkongensis EUFUS-Z928-derived raw extract exhibited the best antioxidant profile, i.e. DPPH and ABTS radical scavenging of 4.93 and 6.00 µmol Trolox per gram of extract, respectively, and selected for further photoprotection-related analysis. Thus, this extract demonstrated a UV-absorbing capacity of 46.33% of the in vitro sun protection factor calculated for 30 µg/mL oxybenzone but did not exhibit any cytotoxicity on human dermal fibroblasts (HDFa cell line) at concentrations up to 500 µg/mL. The liquid chromatography-mass spectrometry chemical characterization of this extract showed compounds with structural features associated with free radical scavenging and UV absorption (i.e. photoprotection-related activities). These findings highlighted the potential of the microbiota associated with E. fusca and confirmed the feasibility of exploiting its metabolites for photoprotection-related purposes.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía, Colombia
- Ecology and Biogeography Research Group, Department of Biology, School of Basic Sciences, Universidad de Pamplona, Pamplona, Colombia
| | - Luisa Villamil
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Luis Díaz
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
4
|
Bianchetti G, Bottoni P, Tringali G, Maulucci G, Tabolacci E, Clementi ME. The polyphenolic compound punicalagin protects skin fibroblasts from UVA radiation oxidative damage. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100186. [PMID: 38846010 PMCID: PMC11153882 DOI: 10.1016/j.crphar.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Polyphenols are a class of natural compounds that act as antioxidants, neutralising harmful free radicals that would damage cells and increase the risk of diseases such as cancer, diabetes and heart disease. They also reduce inflammation, which is thought to be at the root of many chronic diseases. We are investigating the photoprotective effects of punicalagin, a type of polyphenolic compound mainly found in pomegranates, against UVA-induced damage in human skin fibroblasts. Punicalagin increases cell viability and reduces the high levels of ROS generated by photooxidative stress through its ability to modulate the Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 pathway results in an increase in reduced glutathione, NADH, and subsequently protects mitochondrial respiratory capacity. Integrating molecular and imaging approaches, our results demonstrate a potential cytoprotective effect of punicalagin against UVA-induced skin damage through an anti-apoptotic mechanism.
Collapse
Affiliation(s)
- Giada Bianchetti
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Patrizia Bottoni
- Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Giuseppe Tringali
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Giuseppe Maulucci
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Elisabetta Tabolacci
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
5
|
Görlitz M, Justen L, Rochette PJ, Buonanno M, Welch D, Kleiman NJ, Eadie E, Kaidzu S, Bradshaw WJ, Javorsky E, Cridland N, Galor A, Guttmann M, Meinke MC, Schleusener J, Jensen P, Söderberg P, Yamano N, Nishigori C, O'Mahoney P, Manstein D, Croft R, Cole C, de Gruijl FR, Forbes PD, Trokel S, Marshall J, Brenner DJ, Sliney D, Esvelt K. Assessing the safety of new germicidal far-UVC technologies. Photochem Photobiol 2024; 100:501-520. [PMID: 37929787 DOI: 10.1111/php.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023]
Abstract
The COVID-19 pandemic underscored the crucial importance of enhanced indoor air quality control measures to mitigate the spread of respiratory pathogens. Far-UVC is a type of germicidal ultraviolet technology, with wavelengths between 200 and 235 nm, that has emerged as a highly promising approach for indoor air disinfection. Due to its enhanced safety compared to conventional 254 nm upper-room germicidal systems, far-UVC allows for whole-room direct exposure of occupied spaces, potentially offering greater efficacy, since the total room air is constantly treated. While current evidence supports using far-UVC systems within existing guidelines, understanding the upper safety limit is critical to maximizing its effectiveness, particularly for the acute phase of a pandemic or epidemic when greater protection may be needed. This review article summarizes the substantial present knowledge on far-UVC safety regarding skin and eye exposure and highlights research priorities to discern the maximum exposure levels that avoid adverse effects. We advocate for comprehensive safety studies that explore potential mechanisms of harm, generate action spectra for crucial biological effects and conduct high-dose, long-term exposure trials. Such rigorous scientific investigation will be key to determining safe and effective levels for far-UVC deployment in indoor environments, contributing significantly to future pandemic preparedness and response.
Collapse
Affiliation(s)
- Maximilian Görlitz
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| | - Lennart Justen
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice Quebec, Quebec City, Quebec, Canada
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Medical Center, New York City, New York, USA
| | - David Welch
- Center for Radiological Research, Columbia University Medical Center, New York City, New York, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Ewan Eadie
- Photobiology Unit, Ninewells Hospital, Dundee, UK
| | - Sachiko Kaidzu
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - William J Bradshaw
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| | - Emilia Javorsky
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
- Future of Life Institute, Cambridge, Massachusetts, USA
| | - Nigel Cridland
- Radiation, Chemicals and Environment Directorate, UK Health Security Agency, Didcot, UK
| | - Anat Galor
- Miami Veterans Affairs Medical Center, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| | | | - Martina C Meinke
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Schleusener
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Jensen
- Final Approach Inc., Port Orange, Florida, USA
| | - Per Söderberg
- Ophthalmology, Department of Surgical Sciences, Uppsala Universitet, Uppsala, Sweden
| | - Nozomi Yamano
- Division of Dermatology, Department of Internal Related, Kobe University, Kobe, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University, Kobe, Japan
- Japanese Red Cross Hyogo Blood Center, Kobe, Japan
| | - Paul O'Mahoney
- Optical Radiation Effects, UK Health Security Agency, Chilton, UK
| | - Dieter Manstein
- Department of Dermatology, Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rodney Croft
- International Commission on Non-Ionizing Radiation Protection (ICNIRP), Chair, Wollongong, New South Wales, Australia
- University of Wollongong, Wollongong, New South Wales, Australia
| | - Curtis Cole
- Sun & Skin Consulting LLC, New Holland, Pennsylvania, USA
| | - Frank R de Gruijl
- Department of Dermatology, Universiteit Leiden, Leiden, South Holland, The Netherlands
| | | | - Stephen Trokel
- Department of Ophthalmology, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA
| | - John Marshall
- Institute of Ophthalmology, University College London, London, UK
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York City, New York, USA
| | - David Sliney
- IES Photobiology Committee, Chair, Fallston, Maryland, USA
- Consulting Medical Physicist, Fallston, Maryland, USA
| | - Kevin Esvelt
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Effects associated with exposure to the emerging contaminant octyl-methoxycinnamate (a UV-B filter) in the aquatic environment: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:55-72. [PMID: 38146151 DOI: 10.1080/10937404.2023.2296897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Given the increasing concern surrounding ultraviolet (UV) radiation-induced skin damage, there has been a rise in demand for UV filters. Currently, UV-filters are considered emerging contaminants. The extensive production and use of UV filters have led to their widespread release into the aquatic environment. Thus, there is growing concern that UV filters may bioaccumulate and exhibit persistent properties within the environment, raising several safety health concerns. Octyl-methoxycinnamate (OMC) is extensively employed as a UV-B filter in the cosmetic industry. While initially designed to mitigate the adverse photobiological effects attributed to UV radiation, the safety of OMC has been questioned with some studies reporting toxic effects on environment. The aim of this review to provide an overview of the scientific information regarding the most widely used organic UV-filter (OMC), and its effects on biodiversity and aquatic environment.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
7
|
Htut NW, Onkoksoong T, Saelim M, Kueanjinda P, Sampattavanich S, Panich U. Live-cell imaging Unveils stimulus-specific dynamics of Nrf2 activation in UV-exposed melanoma cells: Implications for antioxidant compound screening. Free Radic Biol Med 2024; 211:1-11. [PMID: 38092271 DOI: 10.1016/j.freeradbiomed.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
The transcription factor Nuclear factor e2-related factor 2 (Nrf2) is pivotal in orchestrating cellular antioxidant defense mechanisms, particularly in skin cells exposed to ultraviolet (UV) radiation and electrophilic phytochemicals. To comprehensively investigate Nrf2's role in maintaining cellular redox equilibrium following UV-induced stress, we engineered a novel Nrf2 fusion-based reporter system for real-time, live-cell quantification of Nrf2 activity in human melanoma cells. Utilizing live quantitative imaging, we dissected the kinetic profiles of Nrf2 activation in response to an array of stimuli, including UVA and UVB radiation, as well as a broad spectrum of phytochemicals including ferulic acid, gallic acid, hispidulin, p-coumaric acid, quercetin, resveratrol, tannic acid, and vanillic acid as well as well-known Nrf2 inducers, tert-butylhydroquinone (tBHQ) and sulforaphane (SFN). Intriguingly, we observed distinct dynamical patterns of Nrf2 activity contingent on the specific stimuli applied. Sustained activation of Nrf2 was empirically correlated with the increased antioxidant response element (ARE) activity. Our findings demonstrate the nuanced impact of different phenolic compounds on Nrf2 activity and the utility of our Nrf2-CTΔ16-YFP reporter in characterizing the dynamics of Nrf2 translocation in response to diverse stimuli. In summary, our innovative reporter system not only revealed compounds capable of modulating UVA-induced Nrf2 activity but also showcased its utility as a robust tool for future antioxidant compound screening efforts.
Collapse
Affiliation(s)
- Nilar Win Htut
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; University of Medicine 2, Yangon, Khaymar Thi Rd, Yangon, Myanmar
| | - Tasanee Onkoksoong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Malinee Saelim
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-mediated Diseases, Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somponnat Sampattavanich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
8
|
Biernacki M, Conde T, Stasiewicz A, Surażyński A, Domingues MR, Domingues P, Skrzydlewska E. Restorative Effect of Microalgae Nannochloropsis oceanica Lipid Extract on Phospholipid Metabolism in Keratinocytes Exposed to UVB Radiation. Int J Mol Sci 2023; 24:14323. [PMID: 37762626 PMCID: PMC10532178 DOI: 10.3390/ijms241814323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Ultraviolet B (UVB) radiation induces oxidative stress in skin cells, generating reactive oxygen species (ROS) and perturbing enzyme-mediated metabolism. This disruption is evidenced with elevated concentrations of metabolites that play important roles in the modulation of redox homeostasis and inflammatory responses. Thus, this research sought to determine the impacts of the lipid extract derived from the Nannochloropsis oceanica microalgae on phospholipid metabolic processes in keratinocytes subjected to UVB exposure. UVB-irradiated keratinocytes were treated with the microalgae extract. Subsequently, analyses were performed on cell lysates to ascertain the levels of phospholipid/free fatty acids (GC-FID), lipid peroxidation byproducts (GC-MS), and endocannabinoids/eicosanoids (LC-MS), as well as to measure the enzymatic activities linked with phospholipid metabolism, receptor expression, and total antioxidant status (spectrophotometric methods). The extract from N. oceanica microalgae, by diminishing the activities of enzymes involved in the synthesis of endocannabinoids and eicosanoids (PLA2/COX1/2/LOX), augmented the concentrations of anti-inflammatory and antioxidant polyunsaturated fatty acids (PUFAs), namely DHA and EPA. These concentrations are typically diminished due to UVB irradiation. As a consequence, there was a marked reduction in the levels of pro-inflammatory arachidonic acid (AA) and associated pro-inflammatory eicosanoids and endocannabinoids, as well as the expression of CB1/TRPV1 receptors. The microalgal extract also mitigated the increase in lipid peroxidation byproducts, specifically MDA in non-irradiated samples and 10-F4t-NeuroP in both control and post-UVB exposure. These findings indicate that the lipid extract derived from N. oceanica, by mitigating the deleterious impacts of UVB radiation on keratinocyte phospholipids, assumed a pivotal role in reinstating intracellular metabolic equilibrium.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| |
Collapse
|
9
|
Montero P, Villarroel MJ, Roger I, Morell A, Milara J, Cortijo J. Obacunone Photoprotective Effects against Solar-Simulated Radiation-Induced Molecular Modifications in Primary Keratinocytes and Full-Thickness Human Skin. Int J Mol Sci 2023; 24:11484. [PMID: 37511243 PMCID: PMC10380981 DOI: 10.3390/ijms241411484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Solar radiation can cause damage to the skin, leading to various adverse effects such as sunburn, reactive oxygen species production, inflammation, DNA damage, and photoaging. To study the potential of photoprotective agents, full-thickness skin models are increasingly being used as in vitro tools. One promising approach to photoprotection involves targeting the redox-sensitive transcription factor Nrf2, which is responsible for regulating various cellular defense mechanisms, including the antioxidant response, inflammatory signaling, and DNA repair. Obacunone, a natural triterpenoid, has been identified as a potent Nrf2 agonist. The present study aims to evaluate the relevance of full-thickness (FT) skin models in photoprotection studies and to explore the potential photoprotective effects of obacunone on those models and in human keratinocytes. Phenion® full-thickness skin models and keratinocytes were incubated with increasing concentrations of obacunone and irradiated with solar-simulated radiation (SSR). Various photodamage markers were evaluated, including histological integrity, oxidative stress, apoptosis, inflammation, photoaging-related dermal markers, and photocarcinogenesis markers. Increasing doses of SSR were found to modulate various biomarkers related to sun damage in the FT skin models. However, obacunone attenuated cytotoxicity, inflammation, oxidative stress, sunburn reaction, photoaging, and photocarcinogenesis in both keratinocytes and full thickness skin models exposed to SSR. These results suggest that obacunone may have potential as a photoprotective agent for preventing the harmful effects of solar radiation on the skin.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 46185 Valencia, Spain
| | - Maria José Villarroel
- Department of Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, 46010 Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 46185 Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| | - Anselm Morell
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 50005 Hradec Králové, Czech Republic
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium, 46014 Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Wolosik K, Chalecka M, Palka J, Surazynski A. Protective Effect of Amaranthus cruentus L. Seed Oil on UVA-Radiation-Induced Apoptosis in Human Skin Fibroblasts. Int J Mol Sci 2023; 24:10795. [PMID: 37445970 DOI: 10.3390/ijms241310795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Since the exposure of fibroblasts to prolonged UVA radiation induces oxidative stress and apoptosis, there is a need for effective skin protection compounds with cytoprotective and antioxidant properties. One of their sources is Amaranthus cruentus L. seed oil (AmO), which is rich in unsaturated fatty acids, squalene, vitamin E derivatives and phytosterols. The aim of this study was to evaluate whether AmO evokes a protective effect on the apoptosis induced by UVA radiation in human skin fibroblasts. UVA radiation at an applied dose of 10 J/cm2 caused a significant reduction in the survival of human skin fibroblasts and directed them into the apoptosis pathway. Increased expression of p53, caspase-3, caspase-9 and PARP proteins in UVA-treated fibroblasts suggests the intrinsic mechanism of apoptosis. Application of the oil at 0.1% and 0.15% concentrations to UVA-treated cells decreased the expression of these proteins, which was accompanied by increased cell survival. Similarly, the UVA-dependent decrease in the expression of p-Akt and mTOR proteins was restored under the effect of the studied oil. The molecular mechanism of this phenomenon was related to the stimulation of antioxidant processes through the activation of Nrf2. This suggests that AmO stimulated the antioxidant system in fibroblasts, preventing the effects of UVA-induced oxidative stress, which may lead to pharmaceutical and cosmetological applications as a sun-protective substance.
Collapse
Affiliation(s)
- Katarzyna Wolosik
- Independent Cosmetology Laboratory, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Magda Chalecka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
11
|
Becker AL, Indra AK. Oxidative Stress in Melanoma: Beneficial Antioxidant and Pro-Oxidant Therapeutic Strategies. Cancers (Basel) 2023; 15:cancers15113038. [PMID: 37297001 DOI: 10.3390/cancers15113038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Cutaneous melanoma ranks as the fifth most common cancer in the United States and represents one of the deadliest forms of skin cancer. While recent advances in systemic targeted therapies and immunotherapies have positively impacted melanoma survival, the survival rate of stage IV melanoma remains at a meager 32%. Unfortunately, tumor resistance can impede the effectiveness of these treatments. Oxidative stress is a pivotal player in all stages of melanoma progression, with a somewhat paradoxical function that promotes tumor initiation but hinders vertical growth and metastasis in later disease. As melanoma progresses, it employs adaptive mechanisms to lessen oxidative stress in the tumor environment. Redox metabolic rewiring has been implicated in acquired resistance to BRAF/MEK inhibitors. A promising approach to enhance the response to therapy involves boosting intracellular ROS production using active biomolecules or targeting enzymes that regulate oxidative stress. The complex interplay between oxidative stress, redox homeostasis, and melanomagenesis can also be leveraged in a preventive context. The purpose of this review is to provide an overview of oxidative stress in melanoma, and how the antioxidant system may be manipulated in a therapeutic context for improved efficacy and survival.
Collapse
Affiliation(s)
- Alyssa L Becker
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University (OSU), Corvallis, OR 97331, USA
- John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University (OSU), Corvallis, OR 97331, USA
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Department of Biochemistry and Biophysics, Oregon State University (OSU), Corvallis, OR 97331, USA
- Linus Pauling Science Center, Oregon State University (OSU), Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| |
Collapse
|
12
|
Linowiecka K, Slominski AT, Reiter RJ, Böhm M, Steinbrink K, Paus R, Kleszczyński K. Melatonin: A Potential Regulator of DNA Methylation. Antioxidants (Basel) 2023; 12:1155. [PMID: 37371885 PMCID: PMC10295183 DOI: 10.3390/antiox12061155] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The pineal gland-derived indoleamine hormone, melatonin, regulates multiple cellular processes, ranging from chronobiology, proliferation, apoptosis, and oxidative damage to pigmentation, immune regulation, and mitochondrial metabolism. While melatonin is best known as a master regulator of the circadian rhythm, previous studies also have revealed connections between circadian cycle disruption and genomic instability, including epigenetic changes in the pattern of DNA methylation. For example, melatonin secretion is associated with differential circadian gene methylation in night shift workers and the regulation of genomic methylation during embryonic development, and there is accumulating evidence that melatonin can modify DNA methylation. Since the latter one impacts cancer initiation, and also, non-malignant diseases development, and that targeting DNA methylation has become a novel intervention target in clinical therapy, this review discusses the potential role of melatonin as an under-investigated candidate epigenetic regulator, namely by modulating DNA methylation via changes in mRNA and the protein expression of DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins. Furthermore, since melatonin may impact changes in the DNA methylation pattern, the authors of the review suggest its possible use in combination therapy with epigenetic drugs as a new anticancer strategy.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| |
Collapse
|
13
|
Abstract
The need for clinical remedies to the multiple age-related deficiencies in skin function brought on by extrinsic and intrinsic causes is increased by these demographic changes. Reactive oxygen species (ROS), mitochondrial deoxyribonucleic acid (mtDNA) mutations, telomere shortening, as well as other factors, contribute to the aging of the skin. In this overview, the issue of human skin aging is introduced, along with several pathways and the protective effects of ferulic acid in light of current patents. The complex antioxidant effect of ferulic acid depends on the "sweeping" away of free radicals as well as the suppression of the synthesis of ROS or nitrogen. Furthermore, Cu (II) or Fe protonated metal ions are chelated by this acid (II). Ferulic acid is a free radical scavenger as well as an enzyme inhibitor, increasing the activity of enzymes that scavenge free radicals while decreasing the activity of enzymes that speed up the creation of free radicals. AMPK signalling, which can regulate cellular homeostasis, stress tolerance, cell survival and proliferation, cell death, and autophagy, has recently been linked to aging and lifespan. Therefore, Caenorhabditis elegans (C. elegans) and rodents had longer life-spans due to specific AMPK activation. By inhibiting the TGF-β/Smad signalling pathway, UV irradiation can reduce the production of procollagen. Glycation changes the skin's physical characteristics, making it less elastic and stiffer. . Excessive free radicals simultaneously trigger the nuclear factor kappa B (NF- κB) signalling pathway, increasing TNF levels and matrix metalloproteinase production (MMPs).
Collapse
Affiliation(s)
- Deepa Neopane
- Department of Pharmacy, Integral University, Lucknow, India
| | | | - Aditya Singh
- Department of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
14
|
Tabolacci E, Tringali G, Nobile V, Duca S, Pizzoferrato M, Bottoni P, Maria Elisabetta C. Rutin Protects Fibroblasts from UVA Radiation through Stimulation of Nrf2 Pathway. Antioxidants (Basel) 2023; 12:antiox12040820. [PMID: 37107196 PMCID: PMC10135198 DOI: 10.3390/antiox12040820] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
This study explores the photoprotective effects of rutin, a bioflavonoid found in some vegetables and fruits, against UVA-induced damage in human skin fibroblasts. Our results show that rutin increases cell viability and reduces the high levels of ROS generated by photo-oxidative stress (1 and 2 h of UVA exposure). These effects are related to rutin’s ability to modulate the Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 signaling pathway results in an increase in reduced glutathione and Bcl2/Bax ratio, and the subsequent protection of mitochondrial respiratory capacity. These results demonstrate how rutin may play a potentially cytoprotective role against UVA-induced skin damage through a purely antiapoptotic mechanism.
Collapse
|
15
|
Gubitosa J, Rizzi V, Fini P, Fanelli F, Sibillano T, Corriero N, Cosma P. Chitosan/snail slime films as multifunctional platforms for potential biomedical and cosmetic applications: physical and chemical characterization. J Mater Chem B 2023; 11:2638-2649. [PMID: 36629337 DOI: 10.1039/d2tb02119f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the pollution problem, the use of more sustainable materials with a reduced environmental impact, spanning across biocompatible and biodegradable polymers, is growing worldwide in many different fields, particularly when referring to applications in Life Sciences. Accordingly, with the aim of developing multifunctional materials for potential cosmetic/biomedical purposes, this work reports the physical and chemical characterization of chitosan-based films blended with snail slime, exhibiting antioxidant and sunscreen features. A suitable formulation for preparing free-standing chitosan platforms, mixing low molecular weight chitosan, lactic acid, glycerol, and snail slime into an appropriate ratio, is thus described. The results obtained by morphological analysis and ATR-FTIR spectroscopy, XRD, swelling analysis (also when varying pH, ionic strength, and temperature), and WVTR measurements evidence a uniform distribution of snail slime inside the chitosan network, forming more compacted structures. At first, the UV-Vis analysis is used to investigate the theoretical Sun Protection Factor, finding that these innovative platforms can be used for preventing sunburn. Then, the antioxidant features are investigated using the ABTS assay, displaying a snail slime-mediated and dose-dependent boosted activity.
Collapse
Affiliation(s)
- Jennifer Gubitosa
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy.
| | - Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy.
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Fiorenza Fanelli
- Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia (CNR-NANOTEC) c/o Dipartimento di Chimica, Università degli Studi "Aldo Moro", Via Orabona, 4, 70126 Bari, Italy
| | - Teresa Sibillano
- Consiglio Nazionale delle Ricerche CNR-IC, UOS Bari, Via Amendola, 122/O 70126 Bari, Italy
| | - Nicola Corriero
- Consiglio Nazionale delle Ricerche CNR-IC, UOS Bari, Via Amendola, 122/O 70126 Bari, Italy
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
16
|
Melo CPB, Saito P, Martinez RM, Staurengo-Ferrari L, Pinto IC, Rodrigues CCA, Badaro-Garcia S, Vignoli JA, Baracat MM, Bussmann AJC, Georgetti SR, Verri WA, Casagrande R. Aspirin-Triggered Resolvin D1 (AT-RvD1) Protects Mouse Skin against UVB-Induced Inflammation and Oxidative Stress. Molecules 2023; 28:molecules28052417. [PMID: 36903662 PMCID: PMC10005614 DOI: 10.3390/molecules28052417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.
Collapse
Affiliation(s)
- Cristina P. B. Melo
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Priscila Saito
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Renata M. Martinez
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Immunology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ingrid C. Pinto
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Camilla C. A. Rodrigues
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Stephanie Badaro-Garcia
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marcela M. Baracat
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Allan J. C. Bussmann
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| |
Collapse
|
17
|
Malakoutikhah Z, Mohajeri Z, Dana N, Haghjooy Javanmard S. The dual role of Nrf2 in melanoma: a systematic review. BMC Mol Cell Biol 2023; 24:5. [PMID: 36747120 PMCID: PMC9900951 DOI: 10.1186/s12860-023-00466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Melanoma is the most lethal type of skin cancer that originates from the malignant transformation of melanocytes. Although novel treatments have improved patient survival in melanoma, the overall prognosis remains poor. To improve current therapies and patients outcome, it is necessary to identify the influential elements in the development and progression of melanoma.Due to UV exposure and melanin synthesis, the melanocytic lineage seems to have a higher rate of ROS (reactive oxygen species) formation. Melanoma has been linked to an increased oxidative state, and all facets of melanoma pathophysiology rely on redox biology. Several redox-modulating pathways have arisen to resist oxidative stress. One of which, the Nrf2 (nuclear factor erythroid 2-related factor 2), has been recognized as a master regulator of cellular response to oxidative or electrophilic challenges. The activation of Nrf2 signaling causes a wide range of antioxidant and detoxification enzyme genes to be expressed. As a result, this transcription factor has lately received a lot of interest as a possible cancer treatment target.On the other hand, Nrf2 has been found to have a variety of activities in addition to its antioxidant abilities, constant Nrf2 activation in malignant cells may accelerate metastasis and chemoresistance. Hence, based on the cell type and context, Nrf2 has different roles in either preventing or promoting cancer. In this study, we aimed to systematically review all the studies discussing the function of Nrf2 in melanoma and the factors determining its alteration.
Collapse
Affiliation(s)
- Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Mohajeri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Borgia F, Li Pomi F, Vaccaro M, Alessandrello C, Papa V, Gangemi S. Oxidative Stress and Phototherapy in Atopic Dermatitis: Mechanisms, Role, and Future Perspectives. Biomolecules 2022; 12:1904. [PMID: 36551332 PMCID: PMC9775940 DOI: 10.3390/biom12121904] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease in which the overproduction of reactive oxygen species plays a pivotal role in the pathogenesis and persistence of inflammatory lesions. Phototherapy represents one of the most used therapeutic options, with benefits in the clinical picture. Studies have demonstrated the immunomodulatory effect of phototherapy and its role in reducing molecule hallmarks of oxidative stress. In this review, we report the data present in literature dealing with the main signaling molecular pathways involved in oxidative stress after phototherapy to target atopic dermatitis-affected cells. Since oxidative stress plays a pivotal role in the pathogenesis of atopic dermatitis and its flare-up, new research lines could be opened to study new drugs that act on this mechanism, perhaps in concert with phototherapy.
Collapse
Affiliation(s)
- Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Clara Alessandrello
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
19
|
Cohen D, Portugal-Cohen M, Oron M, Frusic-Zlotkin M, Soroka Y, Ma'or Z, Amar D, Kohen R. Cutaneous Nrf2-Keap1 pathway modulation by environmental factors: The Dead Sea area as a test case. Biofactors 2022; 49:428-437. [PMID: 36522798 DOI: 10.1002/biof.1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
The skin is constantly exposed to exogenous environmental stressors and has to cope with excessive oxidative stress and tissue damage. However, exposure to moderate environmental stressors may be beneficial for the cutaneous tissue and assist in protecting against oxidative damage via the enhanced activation of the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathway. Such moderate stressors can be found in various locations around the globe. In this manuscript, we chose to focus on the Dead Sea (DS) area as a test case to study the effect of moderate stressors on the cutaneous tissue because of the unique combinations of moderate stressors in this area. The exceptional location of the DS at an altitude of -438 meters below sea level (the lowest place on earth) is responsible for its rare accumulation of moderate stressors such as high-water salinity, high atmospheric pressure, and unique solar radiation. In this manuscript, we hypothesized that the unique solar radiation in the DS area generates moderate oxidative stress in the skin leading to the induction of intracellular electrophiles, which in turn can activate the protecting Nrf2-Keap1 pathway. We showed that exposure of human skin organ culture from the same donor to solar radiation at the DS resulted in significant activation of the Nrf2-Keap1 pathway, induction of phase II enzymes, and lower apoptotic activity compared to a nearby location at a higher altitude (Jerusalem +700 m). This remarkable effect of activating the Nrf2 protecting pathway and the importance and characteristics of the solar irradiation at the DS is discussed.
Collapse
Affiliation(s)
- Dror Cohen
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Skin Research Institute, The Dead Sea & Arava Science Center, Masada, Israel
| | | | - Miriam Oron
- Miriam Oron Mingelgrin Consulting, Jerusalem, Israel
| | - Marina Frusic-Zlotkin
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoram Soroka
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ze'evi Ma'or
- The Dead Sea Hub department, Fosun Jinmei (Shanghai) Cosmetics Co., Ltd, Shanghai, China
| | - Dalit Amar
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Kohen
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Targeting deregulated oxidative stress in skin inflammatory diseases: An update on clinical importance. Biomed Pharmacother 2022; 154:113601. [PMID: 36049315 DOI: 10.1016/j.biopha.2022.113601] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022] Open
|
21
|
Curcumin Improves Keratinocyte Proliferation, Inflammation, and Oxidative Stress through Mediating the SPAG5/FOXM1 Axis in an In Vitro Model of Actinic Dermatitis by Ultraviolet. DISEASE MARKERS 2022; 2022:5085183. [PMID: 36118675 PMCID: PMC9481376 DOI: 10.1155/2022/5085183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
Background Chronic actinic dermatitis (CAD) is an abnormally proliferating photoallergic skin disease. Dysregulated inflammation and oxidative stress are the immediate factors in the abnormal proliferation of keratinocytes. This study aimed to investigate the effect of curcumin on the aberrant proliferation of keratinocytes in an in vitro (actinic dermatitis) AD model and the possible molecular mechanisms. Methods The keratinocytes were irradiated with ultraviolet (UV) to construct an in vitro AD model and then processed with different concentrations of curcumin. Cell viability, oxidative stress markers (SOD, GSH-PX, and MDA), activated oxygen species (ROS), and inflammation markers (IL-1β, IL-6, IL-18, and TNFα) were determined, respectively. Western blot was applied to assay the profiles of apoptosis-related proteins (Bax, Bcl-xL, Caspase3, Caspase8, and Caspase9), oxidative stress proteins (Keap1, Nrf2, HO-1, COX2, and iNOS), and inflammatory proteins (NF-κB, MMP1, and MMP9) and SPAG5/FOXM1. Functionally, SPAG5 or FOXM1 overexpression and knockdown models were constructed in keratinocytes to characterize their influence on UV irradiation-mediated keratinocyte dysfunction. Results Curcumin weakened UV-mediated inflammation, proliferation, and oxidative stress and impaired apoptosis in keratinocytes. UV boosted SPAG5/FOXM1 expression in cells, while curcumin concentration-dependently retarded SPAG5/FOXM1 expression. Overexpression of SPAG5/FOXM1 fostered UV-mediated inflammation, proliferation, oxidative stress, and intensified apoptosis, whereas curcumin mostly reversed the SPAG5/FOXM1-mediated effects. In addition, knocking down SPAG5/FOXM1 ameliorated UV-mediated keratinocyte dysfunction, whereas curcumin failed to exert further protective effects in cells with knockdown of SPAG5/FOXM1. Conclusion Curcumin modulated proliferation, inflammation, oxidative stress, and apoptosis of keratinocytes by restraining the SPAG5/FOXM1 axis.
Collapse
|
22
|
Kahremany S, Hofmann L, Gruzman A, Dinkova-Kostova AT, Cohen G. NRF2 in dermatological disorders: Pharmacological activation for protection against cutaneous photodamage and photodermatosis. Free Radic Biol Med 2022; 188:262-276. [PMID: 35753587 PMCID: PMC9350913 DOI: 10.1016/j.freeradbiomed.2022.06.238] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023]
Abstract
The skin barrier and its endogenous protective mechanisms cope daily with exogenous stressors, of which ultraviolet radiation (UVR) poses an imminent danger. Although the skin is able to reduce the potential damage, there is a need for comprehensive strategies for protection. This is particularly important when developing pharmacological approaches to protect against photocarcinogenesis. Activation of NRF2 has the potential to provide comprehensive and long-lasting protection due to the upregulation of numerous cytoprotective downstream effector proteins that can counteract the damaging effects of UVR. This is also applicable to photodermatosis conditions that exacerbate the damage caused by UVR. This review describes the alterations caused by UVR in normal skin and photosensitive disorders, and provides evidence to support the development of NRF2 activators as pharmacological treatments. Key natural and synthetic activators with photoprotective properties are summarized. Lastly, the gap in knowledge in research associated with photodermatosis conditions is highlighted.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben-Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel.
| |
Collapse
|
23
|
Farris PK, Valacchi G. Ultraviolet Light Protection: Is It Really Enough? Antioxidants (Basel) 2022; 11:1484. [PMID: 36009203 PMCID: PMC9405175 DOI: 10.3390/antiox11081484] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Our current understanding of the pathogenesis of skin aging includes the role of ultraviolet light, visible light, infrared, pollution, cigarette smoke and other environmental exposures. The mechanism of action common to these exposures is the disruption of the cellular redox balance by the directly or indirectly increased formation of reactive oxygen species that overwhelm the intrinsic antioxidant defense system, resulting in an oxidative stress condition. Altered redox homeostasis triggers downstream pathways that contribute to tissue oxinflammation (cross-talk between inflammation and altered redox status) and accelerate skin aging. In addition, both ultraviolet light and pollution increase intracellular free iron that catalyzes reactive oxygen species generation via the Fenton reaction. This disruption of iron homeostasis within the cell further promotes oxidative stress and contributes to extrinsic skin aging. More recent studies have demonstrated that iron chelators can be used topically and can enhance the benefits of topically applied antioxidants. Thus, an updated, more comprehensive approach to environmental or atmospheric aging protection should include sun protective measures, broad spectrum sunscreens, antioxidants, chelating agents, and DNA repair enzymes.
Collapse
Affiliation(s)
- Patricia K. Farris
- Department of Dermatology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| |
Collapse
|
24
|
Lee JH, Park J, Shin DW. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022; 27:molecules27144351. [PMID: 35889225 PMCID: PMC9322955 DOI: 10.3390/molecules27144351] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Skin is the largest organ in the body comprised of three different layers including the epidermis, dermis, and hypodermis. The dermis is mainly composed of dermal fibroblasts and extracellular matrix (ECM), such as collagen and elastin, which are strongly related to skin elasticity and firmness. Skin is continuously exposed to different kinds of environmental stimuli. For example, ultraviolet (UV) radiation, air pollutants, or smoking aggravates skin aging. These external stimuli accelerate the aging process by reactive oxygen species (ROS)-mediated signaling pathways and even cause aging-related diseases. Skin aging is characterized by elasticity loss, wrinkle formation, a reduced dermal-epidermal junction, and delayed wound healing. Thus, many studies have shown that natural polyphenol compounds can delay the aging process by regulating age-related signaling pathways in aged dermal fibroblasts. This review first highlights the relationship between aging and its related molecular mechanisms. Then, we discuss the function and underlying mechanism of various polyphenols for improving skin aging. This study may provide essential insights for developing functional cosmetics and future clinical applications.
Collapse
Affiliation(s)
- Joo Hwa Lee
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea;
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
- Correspondence: ; Tel.: +82-43-840-3693
| |
Collapse
|
25
|
Chaiprasongsuk A, Panich U. Role of Phytochemicals in Skin Photoprotection via Regulation of Nrf2. Front Pharmacol 2022; 13:823881. [PMID: 35645796 PMCID: PMC9133606 DOI: 10.3389/fphar.2022.823881] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Ethnopharmacological studies have become increasingly valuable in the development of botanical products and their bioactive phytochemicals as novel and effective preventive and therapeutic strategies for various diseases including skin photoaging and photodamage-related skin problems including abnormal pigmentation and inflammation. Exploring the roles of phytochemicals in mitigating ultraviolet radiation (UVR)-induced skin damage is thus of importance to offer insights into medicinal and ethnopharmacological potential for development of novel and effective photoprotective agents. UVR plays a role in the skin premature aging (or photoaging) or impaired skin integrity and function through triggering various biological responses of skin cells including apoptosis, oxidative stress, DNA damage and inflammation. In addition, melanin produced by epidermal melanocytes play a protective role against UVR-induced skin damage and therefore hyperpigmentation mediated by UV irradiation could reflect a sign of defensive response of the skin to stress. However, alteration in melanin synthesis may be implicated in skin damage, particularly in individuals with fair skin. Oxidative stress induced by UVR contributes to the process of skin aging and inflammation through the activation of related signaling pathways such as the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), the nuclear factor kappa B (NF-κB) and the signal transducer and activator of transcription (STAT) in epidermal keratinocytes and dermal fibroblasts. ROS formation induced by UVR also plays a role in regulation of melanogenesis in melanocytes via modulating MAPK, PI3K/Akt and the melanocortin 1 receptor (MC1R)-microphthalmia-associated transcription factor (MITF) signaling cascades. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defenses can affect the major signaling pathways involved in regulation of photoaging, inflammation associated with skin barrier dysfunction and melanogenesis. This review thus highlights the roles of phytochemicals potentially acting as Nrf2 inducers in improving photoaging, inflammation and hyperpigmentation via regulation of cellular homeostasis involved in skin integrity and function. Taken together, understanding the role of phytochemicals targeting Nrf2 in photoprotection could provide an insight into potential development of natural products as a promising strategy to delay skin photoaging and improve skin conditions.
Collapse
Affiliation(s)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Uraiwan Panich,
| |
Collapse
|
26
|
Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front Oncol 2022; 12:860508. [PMID: 35359383 PMCID: PMC8960963 DOI: 10.3389/fonc.2022.860508] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid (CA) is found abundantly in fruits, vegetables, tea, coffee, oils, and more. CA and its derivatives have been used for many centuries due to their natural healing and medicinal properties. CA possesses various biological and pharmacological activities, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. The potential therapeutic effects of CA are mediated via repression and inhibition of transcription and growth factors. CA possesses potential anticancer and neuroprotective effects in human cell cultures and animal models. However, the biomolecular interactions and pathways of CA have been described highlighting the target binding proteins and signaling molecules. The current review focuses on CA's chemical, physical, and pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. We further described CA's characteristics and therapeutic potential and its future directions.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Bangalore, India
| |
Collapse
|
27
|
Rajnochová Svobodová A, Ryšavá A, Čížková K, Roubalová L, Ulrichová J, Vrba J, Zálešák B, Vostálová J. Effect of the flavonoids quercetin and taxifolin on UVA-induced damage to human primary skin keratinocytes and fibroblasts. Photochem Photobiol Sci 2021; 21:59-75. [PMID: 34837635 DOI: 10.1007/s43630-021-00140-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/10/2021] [Indexed: 01/29/2023]
Abstract
The ultraviolet (UV) part of solar radiation can permanently affect skin tissue. UVA photons represent the most abundant UV component and stimulate the formation of intracellular reactive oxygen species (ROS), leading to oxidative damage to various biomolecules. Several plant-derived polyphenols are known as effective photoprotective agents. This study evaluated the potential of quercetin (QE) and its structurally related flavonoid taxifolin (TA) to reduce UVA-caused damage to human primary dermal fibroblasts (NHDF) and epidermal keratinocytes (NHEK) obtained from identical donors. Cells pre-treated with QE or TA (1 h) were then exposed to UVA light using a solar simulator. Both flavonoids effectively prevented oxidative damage, such as ROS generation, glutathione depletion, single-strand breaks formation and caspase-3 activation in NHDF. These protective effects were accompanied by stimulation of Nrf2 nuclear translocation, found in non-irradiated and irradiated NHDF and NHEK, and expression of antioxidant proteins, such as heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and catalase. For most parameters, QE was more potent than TA. On the other hand, TA demonstrated protection within the whole concentration range, while QE lost its protective ability at the highest concentration tested (75 μM), suggesting its pro-oxidative potential. In summary, QE and TA demonstrated UVA-protective properties in NHEK and NHDF obtained from identical donors. However, due to the in vitro phototoxic potential of QE, published elsewhere and discussed herein, further studies are needed to evaluate QE safety in dermatological application for humans as well as to confirm our results on human skin ex vivo and in clinical trials.
Collapse
Affiliation(s)
- Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Kateřina Čížková
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77900, Olomouc, Czech Republic
| | - Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Bohumil Zálešák
- Department of Plastic and Aesthetic Surgery, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic.
| |
Collapse
|