1
|
Zou J, Liu Y, Han Q, Tian Y, Shen F, Kang L, Feng L, Ma J, Zhang L, Du Z. Importance of Chain Length in Propagation Reaction on •OH Formation during Ozonation of Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18811-18824. [PMID: 37428486 DOI: 10.1021/acs.est.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
During the ozonation of wastewater, hydroxyl radicals (•OH) induced by the reactions of ozone (O3) with effluent organic matters (EfOMs) play an essential role in degrading ozone-refractory micropollutants. The •OH yield provides the absolute •OH formation during ozonation. However, the conventional "tert-Butanol (t-BuOH) assay" cannot accurately determine the •OH yield since the propagation reactions are inhibited, and there have been few studies on •OH production induced by EfOM fractions during ozonation. Alternatively, a "competitive method", which added trace amounts of the •OH probe compound to compete with the water matrix and took initiation reactions and propagation reactions into account, was used to determine the actual •OH yields (Φ) compared with that obtained by the "t-BuOH assay" (φ). The Φ were significantly higher than φ, indicating that the propagation reactions played important roles in •OH formation. The chain propagation reactions facilitation of EfOMs and fractions can be expressed by the chain length (n). The study found significant differences in Φ for EfOMs and fractions, precisely because they have different n. The actual •OH yield can be calculated by n and φ as Φ = φ (1 + n)/(nφ + 1), which can be used to accurately predict the removal of micropollutants during ozonation of wastewater.
Collapse
Affiliation(s)
- Jinru Zou
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qi Han
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yajun Tian
- College of Environment, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Fangfang Shen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Longfei Kang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Du
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Chen GQ, Wu YH, Fang PS, Bai Y, Chen Z, Xu YQ, Wang YH, Tong X, Luo LW, Wang HB, Zhang ZW, Ikuno N, Hu HY. Performance of different pretreatment methods on alleviating reverse osmosis membrane fouling caused by soluble microbial products. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Rajesh Banu J, Poornima Devi T, Yukesh Kannah R, Kavitha S, Kim SH, Muñoz R, Kumar G. A review on energy and cost effective phase separated pretreatment of biosolids. WATER RESEARCH 2021; 198:117169. [PMID: 33962241 DOI: 10.1016/j.watres.2021.117169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Extracellular Polymeric Substances (EPS) existent in anaerobic sludge proves to be a barrier for sludge liquefaction and biomass lysis efficiency. Hence EPS deaggregation heightens the surface area for the subsequent pretreatment thereby uplifting the sludge disintegration and biomethanation rate. This review documents the role of EPS and its components which inhibits sludge hydrolysis and also the various phase separated pretreatment methods available with its disintegration mechanism to enhance the biomass lysis and methane production rate. It also illustrates the effects of phase separated pretreatment on the sludge disintegration rate which embodies two phases-floc disruption and cell lysis accompanied by their computation through biomethane potential assay and fermentation analysis comprehensively. Additionally, energy balance study and cost analysis requisite for successful implementation of a proposed phase separated pretreatment on a pilot scale level and their challenges are also reviewed. Overall this paper documents the potency of phase separated pretreatment for full scale approach.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudy, Thiruvarur, India
| | - T Poornima Devi
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Raul Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
4
|
Hou Y, Liu M, Tan X, Hou S, Yang P. Study on COD and nitrogen removal efficiency of domestic sewage by hybrid carrier biofilm reactor. RSC Adv 2021; 11:27322-27332. [PMID: 35480673 PMCID: PMC9037812 DOI: 10.1039/d1ra03286k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
A moving bed biofilm reactor (MBBR) is a kind of commonly used biological sewage treatment process. A carrier, the core of MBBR, could directly affect the treatment efficiency of MBBR. In this experiment, a hybrid carrier composed of an MBBR carrier and fluidized bed porous carrier was innovatively utilized to treat low-concentration simulated domestic sewage through an MBBR reactor to investigate the effects of different hydraulic retention times (HRT) and different carrier dose ratios on the reactor performance. The results indicated that when the volume ratio of the carrier dosage was 5% : 20% when the reactor HRT was 5 h, the removal rates of ammonia nitrogen, total nitrogen (TN) and chemical oxygen demand (CODCr) were optimal, which were 96.5%, 60.9% and 91.5%, respectively. The ammonia nitrogen, total nitrogen and CODCr concentrations of the effluent were 1.04 mg L−1, 12.20 mg L−1 and 29.02 mg L−1, respectively. Furthermore, the total biomass concentration in the hybrid carrier biofilm reactor (HCBR) was 3790.35 mg L−1, which also reached the highest value. As the experiment progressed, the concentrations of protein, polysaccharide and soluble microbial products (SMP) were reduced to 7.68 mg L−1, 11.10 mg L−1 and 18.08 mg L−1, respectively. This was basically consistent with the results of the three-dimensional fluorescence spectrum. The results showed that the combined-carrier biofilm reactor could reduce the volumetric filling rate, improving the removal capability of organic matter and the denitrification efficiency. This study provided technical support for the composite carrier biofilm wastewater treatment technology, and also had a good prospect of application. A combined-carrier biofilm reactor could reduce the volumetric filling rate, improving the removal capability of organic matter and the denitrification efficiency.![]()
Collapse
Affiliation(s)
- Yuqiu Hou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Mei Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiao Tan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Siyu Hou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Zhang Q, Zhang X, Bai YH, Xia WJ, Ni SK, Wu QY, Fan NS, Huang BC, Jin RC. Exogenous extracellular polymeric substances as protective agents for the preservation of anammox granules. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141464. [PMID: 32795803 DOI: 10.1016/j.scitotenv.2020.141464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/17/2020] [Accepted: 08/01/2020] [Indexed: 05/14/2023]
Abstract
The preservation of anammox granules is of great significance for the rapid start-up of the anammox process and improvement of performance stability. Therefore, it is necessary to explore an economical and stable preservation strategy. Exogenous extracellular polymeric substances (EPS) were used as protective agents for the preservation of anammox granules in this study. In brief, EPS from anammox sludge (A-EPS) and denitrifying sludge (D-EPS) were added to preserve anammox sludge at 4 °C and room temperature (15-20 °C). The results showed that A-EPS addition at 4 °C was the optimal condition for the preservation of anammox granules. After 90 days of preservation, the specific anammox activity (SAA) of the anammox granules remained at 92.7 ± 2.2 mg N g-1 VSS day-1 (remaining ratio of 33.4%), while that of the sludge with D-EPS addition at the same temperature was only 77.1 ± 3.2 mg N g-1 VSS day-1 (remaining ratio of 27.8%). The nitrogen removal efficiency of the experimental group with D-EPS at room temperature was 85.9%, and that of the A-EPS group reached 90.6% under the same temperature conditions. The abundance of the functional genes hzsA, hdh and nirS of the sludge (4 °C; A-EPS addition) after recovery were 138.5%, 317.1%, and 375.9%, respectively, of those of sludge from the D-EPS-added group at the same temperature. RDA revealed the contribution of proteins to the preservation process. Overall, this study provides an economical and robust strategy for the preservation of anammox granules.
Collapse
Affiliation(s)
- Quan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xian Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Hui Bai
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wen-Jing Xia
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shao-Kai Ni
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qing-Yuan Wu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Bao-Cheng Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Maqbool T, Cho J, Hur J. Importance of nutrient availability for soluble microbial products formation during a famine period of activated sludge: Evidence from multiple analyses. J Environ Sci (China) 2019; 84:112-121. [PMID: 31284902 DOI: 10.1016/j.jes.2019.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Much remains unknown about compositional variations in soluble microbial products (SMP) with the shift of the substrate condition from a feast to a famine phase in biological treatment systems. This study demonstrated that the formation of SMP could be suppressed by up to 75% during the famine phase with the addition of essential nutrients. In contrast, presence of electron acceptor did not play any significant role during the stress condition, showing the similar amounts of SMP (r = 0.98, p < 0.05) formation between the bioreactors supplied with air and N2. The SMP formed in the famine phase was more bio-refractory in the famine versus the feast phase with a linear correlation shown between the production and their aromatic structures in the composition (R2 > 0.95). The fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) revealed the presence of four different fluorescent components, including two protein-like (C1 and C4), fulvic-like (C2), and humic-like (C3) components, in the SMP and bEPS formed at different conditions. Both C1 and C4 showed increasing trends (R2 > 0.95) with the length of starvation in the bioreactors without essential nutrients. Nutrient availability was found to be a key factor to quench the production of large-sized biopolymers. This study provides a wealth of information on operation conditions of activated sludge treatment systems to minimize large sized SMP molecules (particularly proteins), which typically exert many environmental concerns to effluent organic matter quality.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
7
|
Gao L, Minakata D, Wei Z, Spinney R, Dionysiou DD, Tang CJ, Chai L, Xiao R. Mechanistic Study on the Role of Soluble Microbial Products in Sulfate Radical-Mediated Degradation of Pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:342-353. [PMID: 30500178 DOI: 10.1021/acs.est.8b05129] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The role of soluble microbial products (SMP), the most important component of effluent organic matter from municipal wastewater treatment plants, in sulfate radical (SO4•-)-based advanced oxidation technologies (AOTs) remains substantially unclear. In this study, we first utilized a suite of macro- and microanalytical techniques to characterize the SMP from a membrane bioreactor for its fundamental molecular, spectroscopic, and reactivity properties. The degradation kinetics of three representative pharmaceuticals (i.e., naproxen, gemfibrozil, and sulfadiazine) in the presence of SMP was significantly reduced as compared to in its absence. Possible mechanisms for the interference by SMP in degrading these target compounds (TCs) were investigated. The low percentage of bound TCs to SMP ruled out the cage effect. The measurement of steady-state 1O2 concentration indicated that formation of 1O2 upon UV irradiation on SMP was not primarily responsible for the degradation of TCs. However, the comparative and quenching results reveal that SMP absorbs UV light acting as an inner filter toward the TCs, and meanwhile scavenges SO4•- with a high second-order rate constant of 2.48 × 108 MC-1 s-1.
Collapse
Affiliation(s)
- Lingwei Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment , Central South University , Changsha , 410083 , China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution , Changsha , 410083 , China
| | - Daisuke Minakata
- Department of Civil and Environmental Engineering , Michigan Technological University , Houghton , Michigan 49931 , United States
| | - Zongsu Wei
- Department of Civil Engineering , Auburn University , Auburn , Alabama 36849 , United States
| | - Richard Spinney
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Chong-Jian Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment , Central South University , Changsha , 410083 , China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution , Changsha , 410083 , China
| | - Liyuan Chai
- Institute of Environmental Engineering, School of Metallurgy and Environment , Central South University , Changsha , 410083 , China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution , Changsha , 410083 , China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment , Central South University , Changsha , 410083 , China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution , Changsha , 410083 , China
| |
Collapse
|
8
|
Chang YR, Lee YJ, Lee DJ. Membrane fouling during water or wastewater treatments: Current research updated. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2017.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Shi Y, Huang J, Zeng G, Gu Y, Chen Y, Hu Y, Tang B, Zhou J, Yang Y, Shi L. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. CHEMOSPHERE 2017; 180:396-411. [PMID: 28419953 DOI: 10.1016/j.chemosphere.2017.04.042] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Extracellular polymeric substances (EPS) are present both outside of the cells and in the interior of microbial aggregates, and account for a main component in microbial aggregates. EPS can influence the properties and functions of microbial aggregates in biological wastewater treatment systems, and specifically EPS are involved in biofilm formation and stability, sludge behaviors as well as sequencing batch reactors (SBRs) granulation whereas they are also responsible for membrane fouling in membrane bioreactors (MBRs). EPS exhibit dual roles in biological wastewater treatments, and hence the control of available EPS can be expected to lead to changes in microbial aggregate properties, thereby improving system performance. In this review, current updated knowledge with regard to EPS basics including their formation mechanisms, important properties, key component functions as well as sub-fraction differentiation is given. EPS roles in biological wastewater treatments are also briefly summarized. Special emphasis is laid on EPS controlling strategies which would have the great potential in promoting microbial aggregates performance and in alleviating membrane fouling, including limitation strategies (inhibition of quorum sensing (QS) systems, regulation of environmental conditions, enzymatic degradation of key components, energy uncoupling etc.) and elevation strategies (enhancement of QS systems, addition of exogenous agents etc.). Those strategies have been confirmed to be feasible and promising to enhance system performance, and they would be a research niche that deserves further study.
Collapse
Affiliation(s)
- Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yi Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Bi Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jianxin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Ying Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
10
|
Amaral MCS, Moravia WG, Lange LC. Characterization of residual organic compounds of aerobic degradation of landfill leachate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:665-672. [PMID: 28328279 DOI: 10.1080/10934529.2017.1297146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The purpose of this article is to characterize and compare the residual COD of raw landfill leachate and its low and high molecular weight fractions before and after aerobic degradation process. The low and high molecular weight fractions (<10 kDa and >10 kDa, respectively) were obtained by the use of an ultrafiltration cell. Samples of the fractions with molecular weights 10 kDa, as well as the raw leachate, were characterized in terms of COD, protein, carbohydrate and lipid concentration and by biodegradability test. The compound identification of all samples was carried out using gas chromatography coupled with mass spectrometry (GC/MS). The results show that the landfill leachate studied is constituted of approximately 60% of compounds with molecular weight <10 kDa. Approximately 80% of the compounds identified in the leachate had been degraded. This is an indication that most of the compounds that constitute the significant fraction of residual COD correspond to intermediate products and products of condensation of affluent compounds or had been generated during the degradation (SMP). Similar compounds were identified in all effluents of the degradation assay, suggesting the presence of SMP. These compounds, predominantly aliphatic and esters, are characterized by high molecular weight and probable refractory nature.
Collapse
Affiliation(s)
- Míriam C S Amaral
- a Department of Sanitary and Environmental Engineering , Federal University of Minas Gerais , Belo Horizonte , Brazil
| | - Wagner G Moravia
- b Department of Environmental Science and Technology , Federal Center of Technological Education of Minas Gerais , Belo Horizonte , Brazil
| | - Liséte C Lange
- a Department of Sanitary and Environmental Engineering , Federal University of Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
11
|
Kunacheva C, Stuckey DC. Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: a review. WATER RESEARCH 2014; 61:1-18. [PMID: 24878622 DOI: 10.1016/j.watres.2014.04.044] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
Effluents from biological processes contain a wide range of complex organic compounds, including soluble microbial products (SMP) and extracellular polymers (ECP), released during bacteria metabolism in mixed culture in bioreactors. It is important to clearly identify the primary components of SMPs and ECPs in order to understand the fundamental mechanisms of biological activity that create these compounds, and how to reduce these compounds in the effluent. In addition, these compounds constitute the main foulants in membrane bioreactors which are being used more widely around the world. A review on the extraction of ECP, characterization, and identification of SMPs and ECPs is presented, and we summarize up-to-date pretreatments and analytical methods for SMPs. Most researchers have focused more on the overall properties of SMPs and ECPs such as their concentrations, molecular weight distribution, aromaticity, hydrophobic and hydrophilic properties, biodegradability, and toxicity characteristics. Many studies on the identification of effluent SMPs show that most of these compounds were not present in the influent, such as humic acids, polysaccharides, proteins, nucleic acids, organic acids, amino acids, exocellular enzymes, structural components of cells and products of energy metabolism. A few groups of researchers have been working on the identification of compounds in SMPs using advanced analytical techniques such as GC-MS, LC-IT-TOF-MS and MALDI-TOF-MS. However, there is still considerably more work needed to be done analytically to fully understand the chemical characteristics of SMPs and ECPs.
Collapse
Affiliation(s)
- Chinagarn Kunacheva
- Advanced Environmental Biotechnology Center, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore.
| | - David C Stuckey
- Advanced Environmental Biotechnology Center, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
12
|
Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.05.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Villain M, Clouzot L, Guibaud G, Marrot B. Impact of oxygen cut off and starvation conditions on biological activity and physico-chemical properties of activated sludge. ENVIRONMENTAL TECHNOLOGY 2013; 34:901-910. [PMID: 23837341 DOI: 10.1080/09593330.2012.722689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Physico-chemical and biological parameters were monitored both throughout different oxygen cut off and starvation (OCS) times (6 h-72 h) and after the restoration of normal operational conditions. Sludge apparent viscosity and soluble extracellular polymeric substances (EPS) characteristics were measured to determine the activated sludge (AS) properties. Oxygen transfer, biological activity with specific oxygen uptake rate (SOUR) measurements during endogenous/exogenous conditions (without any external substrate/with external substrate consumption) and chemical oxygen demand (COD) removal were measured to assess the AS performances. During the different stress times, AS deflocculated as a decrease of apparent viscosity was observed and microorganisms biodegraded the released EPS to survive. After aeration return, and under endogenous conditions, size exclusion chromatographic fingerprints of soluble EPS were modified and macromolecules probably of type humic-like substances appeared in significant quantities. These new macromolecules presumably acted as biosurfactants. Consequently, the liquid surface tension, as well as the oxygen transfer rate (OTR), decreased. Under exogenous conditions, high biological activity (SOUR = 11.8 +/- 2.1 mg(O2 x g(MLVSS)(-1) x h(-1)) compensated the decrease of oxygen transfer. Finally, AS biomass maintained a constant COD degradation rate (15.7 +/- 1.9 mg(O2) x g(MLVSS)(-1) x h(-1)) before and after the disturbances for all times tested. This work demonstrates that AS microorganisms can counteract concomitant oxygen and nutrients shortage when the duration of such a condition does not exceed 72 h. Dissociation of endogenous/exogenous conditions appears to offer an ideal laboratory model to study EPS and biomass activity effects on oxygen transfer.
Collapse
Affiliation(s)
- Maud Villain
- Aix-Marseille Université, CNRS, Aix en Provence, France
| | | | | | | |
Collapse
|
14
|
Bourven I, Simon S, Guibaud G. Influence of extraction method on size exclusion chromatography fingerprints of EPS from wastewater sludges. ENVIRONMENTAL TECHNOLOGY 2013; 34:321-332. [PMID: 23530346 DOI: 10.1080/09593330.2012.692722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Extracellular polymeric substances (EPS) were separated using two serial-linked size exclusion chromatography (SEC) columns to obtain detailed fingerprints. The chromatographic profile results were influenced by the nature of biological sludge (activated sludges, anaerobic granules, anaerobic flocculated sludges). Furthermore, our results highlight that EPS fingerprints are also highly dependent on the extraction method. If physical extractions modify only the relative absorbance of the chromatographic peaks, heating during extraction induces significant modifications of the fingerprints, probably owing to better organic matter extraction efficiency as well as an increase in hydrolysis for some compounds but not for EPS extracted from anaerobic granular sludges. This confirms that thermal treatment is a proper method to extract EPS from anaerobic granular sludges. The use of chemical extraction results in major changes on the EPS fingerprints. This work demonstrates that some chromatographic peaks are due to residues from the chemical reagent (such as EDTA, glutaraldehyde) which can modify or form complexes with some EPS macromolecules. As a result, due to its sensitivity to sludge origin and/or extraction procedure, SEC appears to be a suitable tool for an accurate qualitative EPS characterization.
Collapse
Affiliation(s)
- I Bourven
- Université de Limoges, Groupement de Recherche Eau Sol Environnement (EA 4330), Faculté des Sciences et Techniques, 123 Av. Albert Thomas, 87 060 Limoges, France
| | | | | |
Collapse
|
15
|
Chen H, Zhou S, Li T. Impact of extracellular polymeric substances on the settlement ability of aerobic granular sludge. ENVIRONMENTAL TECHNOLOGY 2010; 31:1601-1612. [PMID: 21275256 DOI: 10.1080/09593330.2010.482146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Instability of aerobic granular sludge (AGS), which is mainly caused by filamentous outgrowth, is a bottleneck in applying this technology to treat wastewater. In order to reduce the effect of filamentous outgrowth on settlement ability of AGS, the role of the distribution of extracellular polymeric substances (EPS) in settlement ability was investigated in this study. Chemical oxygen demand (COD) of influent increased gradually from 1000 mg L(-1) to 2000 mg L(-1) to 4000 mg L(-1) as organic loading rate (OLR) changed from 2 to 4 to 8 kg COD m(-3) d(-1) in the synthetic influent. The relationship between settlement ability and EPS was investigated. The sharp increase in loosely bound EPS (LB-EPS) content reduced the settlement ability, whereas the highest content of tightly bound EPS (TB-EPS) was observed in the sludge with best settlement ability. The TB-EPS plays an important role in maintaining the matrix structure of AGS. Abundance of LB-EPS did not favour the settlement ability of AGS. These results would provide useful information for improvement of stability of AGS.
Collapse
Affiliation(s)
- Huan Chen
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055 Shenzhen, China
| | | | | |
Collapse
|
16
|
Meng F, Liao B, Liang S, Yang F, Zhang H, Song L. Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs). J Memb Sci 2010. [DOI: 10.1016/j.memsci.2010.06.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Yu GH, Lee DJ, He PJ, Shao LM, Lai JY. Fouling Layer with Fractionated Extracellular Polymeric Substances of Activated Sludge. SEP SCI TECHNOL 2010. [DOI: 10.1080/01496391003666213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|