1
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
2
|
Takuissu GR, Kenmoe S, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Ndzie Ondigui JL, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko’o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Martella V, Veneri C, Mancini P, Ferraro GB, Iaconelli M, Suffredini E, La Rosa G. Assessing the Prevalence of Astroviruses in Water Environments: A Systematic Review and Meta-analysis. ACS ES&T WATER 2023; 3:3782-3789. [PMID: 38094915 PMCID: PMC10714392 DOI: 10.1021/acsestwater.3c00415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2024]
Abstract
Astroviruses (AstVs) are a major cause of gastroenteritis, especially in children. They can be transmitted through various pathways, including environmental contamination via water matrices. This study aimed to investigate the prevalence of AstV in different types of water, such as untreated and treated wastewater, surface water (e.g., rivers, lakes, and seawater), groundwater, drinking water, and other water matrices (e.g., irrigation water, gray water, reservoir water, floodwater, and pig slaughterhouse effluents). The meta-analysis included 80 articles, and the overall prevalence of AstV in water matrices was 36.6% [95% confidence interval (CI) of 29.6-44.0]. The highest prevalence was found in untreated wastewater at 56.8% (95% CI of 41.5-71.5), followed by treated wastewater at 48.5% (95% CI of 30.6-66.5), surface water at 28.6% (95% CI of 21.1-36.7), other matrices at 9.8% (95% CI of 0.7-25.3), drinking water at 3.3% (95% CI of 0.2-8.7), and groundwater at 0.5% (95% CI of 0.0-3.4). The most frequent AstVs detected in water environments were human AstVs, but canine and feline AstVs were also detected. Our findings highlight the importance of water as a potential route for AstV transmission, even in high-income countries. Effective water surveillance and treatment measures are necessary to minimize AstV environmental circulation and human infection through water.
Collapse
Affiliation(s)
- Guy Roussel Takuissu
- Centre
for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | - Sebastien Kenmoe
- Department
of Microbiology and Parasitology, University
of Buea, Buea 00237, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical
Research Centre, Institute of Medical Research
and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological
Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala 00237, Cameroon
| | - Donatien Serge Mbaga
- Department
of Microbiology, The University of Yaounde
I, Yaounde 00237, Cameroon
| | - Arnol Bowo-Ngandji
- Department
of Microbiology, The University of Yaounde
I, Yaounde 00237, Cameroon
| | | | - Raoul Kenfack-Momo
- Department
of Biochemistry, The University of Yaounde
I, Yaounde 00237, Cameroon
| | | | | | | | | | - Ginette Irma Kame-Ngasse
- Medical
Research Centre, Institute of Medical Research
and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | | | - Vito Martella
- Department
of Veterinary Medicine, University of Bari
Aldo Moro, 70010 Valenzano, Italy
| | - Carolina Veneri
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Pamela Mancini
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Giusy Bonanno Ferraro
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Marcello Iaconelli
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Elisabetta Suffredini
- Department
of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Giuseppina La Rosa
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| |
Collapse
|
3
|
Abid I, Blanco A, Al-Otaibi N, Guix S, Costafreda MI, Pintó RM, Bosch A. Dynamic and Seasonal Distribution of Enteric Viruses in Surface and Well Water in Riyadh (Saudi Arabia). Pathogens 2023; 12:1405. [PMID: 38133289 PMCID: PMC10747075 DOI: 10.3390/pathogens12121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Enteric viruses are the major cause of gastroenteritis and enteric hepatitis worldwide, but in some areas like Saudi Arabia, little is known about their presence in water sources. The available information from clinical samples is not enough to figure out their actual prevalence. The aim of this study was to gather information for the first time in Saudi Arabia on the presence of the Norovirus (NoV) genogroup GI and GII, hepatitis A virus (HAV), and hepatitis E virus (HEV) in water. For this purpose, thirteen monthly samples were collected from Lake Wadi Hanifa and surrounding wells from December 2014 to November 2015. Viruses were detected and quantified using real-time RT-qPCR. Despite HEV findings being anecdotic, our results highlight interesting behaviors of the other viruses. There was a higher prevalence of noroviruses in Wadi Hanifa samples than in well water samples (46.43% vs. 12.5% of NoV GI; 66.67% vs. 8.33% of NoV GII). On the contrary, similar levels of HAV positivity were observed (40.48% in surface water vs. 43.06% in well water). Also, a strong influence of flooding events on HAV and NoV GI occurrence was observed in both surface and well water samples, with NoV GII apparently not affected.
Collapse
Affiliation(s)
- Islem Abid
- Center of Excellence in Biotechnology Research, College of Applied Medical Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Albert Blanco
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Nawal Al-Otaibi
- Department of Botany and Microbiology, Science College, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Maria I. Costafreda
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Rosa M. Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| |
Collapse
|
4
|
Wu H, Juel MAI, Eytcheson S, Aw TG, Munir M, Molina M. Temporal and spatial relationships of CrAssphage and enteric viral and bacterial pathogens in wastewater in North Carolina. WATER RESEARCH 2023; 239:120008. [PMID: 37192571 PMCID: PMC10896230 DOI: 10.1016/j.watres.2023.120008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
Enteric disease remains one of the most common concerns for public health, particularly when it results from human exposure to surface and recreational waters contaminated with wastewater. Characterizing the temporal and spatial variation of enteric pathogens prevalent in wastewater is critical to develop approaches to mitigate their distribution in the environment. In this study, we aim to characterize pathogen variability and test the applicability of the human-associated wastewater indicator crAssphage as an indicator of enteric viral and bacterial pathogens. We conducted weekly samplings for 14 months from four wastewater treatment plants in North Carolina, USA. Untreated wastewater samples were processed using hollow fiber ultrafiltration, followed by secondary concentration methods. Adenovirus, norovirus, enterovirus, Salmonella, Shiga toxin 2 (stx2), Campylobacter, and crAssphage were measured by quantitative polymerase chain reaction (qPCR) and reverse transcriptase (rt)-qPCR. Our results revealed significant correlations between crAssphage and human adenovirus, enterovirus, norovirus, Salmonella, and Campylobacter (p<0.01). Pathogens and crAssphage concentrations in untreated wastewater showed distinct seasonal patterns, with peak concentrations of crAssphage and viral pathogens in fall and winter, while bacterial pathogens showed peaked concentrations in either winter (Campylobacter), fall (Salmonella), or summer (stx2). This study enhances the understanding of crAssphage as an alternative molecular indicator for both bacterial and viral pathogens. The findings of this study can also inform microbial modeling efforts for the prediction of the impact of wastewater pathogens on surface waters due to increased flooding events and wastewater overflows associated with climate change.
Collapse
Affiliation(s)
- Huiyun Wu
- U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, 27709, USA; Oak Ridge Institute for Science and Education, PO Box 117, Oak Ridge, Tennessee 37831 USA; Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
| | - Md Ariful Islam Juel
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Stephanie Eytcheson
- Oak Ridge Institute for Science and Education, PO Box 117, Oak Ridge, Tennessee 37831 USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
| | - Mariya Munir
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Marirosa Molina
- U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, 27709, USA.
| |
Collapse
|
5
|
Olivares Moreno CA, Altintas Z. Bioselective PES Membranes Based on Chitosan Functionalization and Virus-Imprinted NanoMIPs for Highly Efficient Separation of Human Pathogenic Viruses from Water. MEMBRANES 2022; 12:1117. [PMID: 36363672 PMCID: PMC9694008 DOI: 10.3390/membranes12111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Waterborne viruses are a public health concern due to relatively small infection doses. Particularly, adenoviruses (AdVs) are more resistant than RNA viruses to water purification treatments in terms of ultraviolet (UV) irradiation, pH, and chlorination tolerance. Moreover, AdVs are one of the most predominant waterborne viruses. Membrane separations have proven superior removal capabilities of waterborne pathogens over other separation methods. However, virus removal at ultratrace levels is still a significant challenge for current membrane technology. This study successfully addressed this challenge by developing a bioselective polyethersulfone (PES) membrane by a joint strategy involving chitosan hydrophilic surface modification and the immobilization of adenovirus-specific molecularly imprinted nanoparticles (nanoMIPs). The topological and chemical changes taking place on the membrane surface were characterized by using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Furthermore, hydrophilicity and membrane performance were investigated in terms of swelling behavior, permeation flux, and surface fouling studies. The membrane efficacy was evaluated by filtration experiments, where the virus concentration of the loading solution before filtration and the permeates after filtration was quantified. The novel bioselective membrane showed excellent virus removal capabilities by separating 99.99% of the viruses from the water samples.
Collapse
Affiliation(s)
- Carmen Andreina Olivares Moreno
- Institute of Chemistry, Faculty of Maths and Natural Sciences, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Maths and Natural Sciences, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| |
Collapse
|
6
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
7
|
Ahmed W, Bivins A, Simpson SL, Smith WJM, Metcalfe S, McMinn B, Symonds EM, Korajkic A. Comparative analysis of rapid concentration methods for the recovery of SARS-CoV-2 and quantification of human enteric viruses and a sewage-associated marker gene in untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149386. [PMID: 34388890 PMCID: PMC8325557 DOI: 10.1016/j.scitotenv.2021.149386] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/18/2023]
Abstract
To support public-health-related disease surveillance and monitoring, it is crucial to concentrate both enveloped and non-enveloped viruses from domestic wastewater. To date, most concentration methods were developed for non-enveloped viruses, and limited studies have directly compared the recovery efficiency of both types of viruses. In this study, the effectiveness of two different concentration methods (Concentrating pipette (CP) method and an adsorption-extraction (AE) method amended with MgCl2) were evaluated for untreated wastewater matrices using three different viruses (SARS-CoV-2 (seeded), human adenovirus 40/41 (HAdV 40/41), and enterovirus (EV)) and a wastewater-associated bacterial marker gene targeting Lachnospiraceae (Lachno3). For SARS-CoV-2, the estimated mean recovery efficiencies were significantly greater by as much as 5.46 times, using the CP method than the AE method amended with MgCl2. SARS-CoV-2 RNA recovery was greater for samples with higher titer seeds regardless of the method, and the estimated mean recovery efficiencies using the CP method were 25.1 ± 11% across ten WWTPs when wastewater samples were seeded with 5 × 104 gene copies (GC) of SARS-CoV-2. Meanwhile, the AE method yielded significantly greater concentrations of indigenous HAdV 40/41 and Lachno3 from wastewater compared to the CP method. Finally, no significant differences in indigenous EV concentrations were identified in comparing the AE and CP methods. These data indicate that the most effective concentration method varies by microbial analyte and that the priorities of the surveillance or monitoring program should be considered when choosing the concentration method.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | | | - Wendy J M Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Brian McMinn
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Erin M Symonds
- College of Marine Science, University of South Florida, 140 7th Ave South, St. Petersburg, FL 33701, USA
| | - Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| |
Collapse
|
8
|
Kiulia NM, Gonzalez R, Thompson H, Aw TG, Rose JB. Quantification and Trends of Rotavirus and Enterovirus in Untreated Sewage Using Reverse Transcription Droplet Digital PCR. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:154-169. [PMID: 33591485 DOI: 10.1007/s12560-020-09455-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The quantification and trends in concentrations for naturally occurring rotaviruses (RV) and enteroviruses (EV) in untreated sewage in various wastewater systems have not often been compared. There is now greater interest in monitoring the infections in the community including live vaccine efficacy by evaluating untreated sewage. The goals of this study were to 1) survey the concentrations of naturally occurring RV and EV in untreated sewage using a reverse transcription-droplet digital polymerase chain reaction (RT-ddPCR) and 2) investigate the use of a new adsorption elution (bag-mediated filtration system (BMFS) using ViroCap filters) against more traditional polyethylene glycol (PEG) precipitation for virus concentration. Sewage samples were collected from lagoons in Kenya and Michigan (MI), the United States (USA) and from wastewater treatment plants (WWTPs) in the USA. RVs were detected at geometric mean concentrations in various locations, California (CA) 1.31 × 105 genome copies/L (gc/L), Kenya (KE) 2.71 × 104 gc/L and Virginia (VA) 1.48 × 105 gc/L, and EVs geometric means were 3.72 × 106 gc/L (CA), 1.18 × 104 gc/L (Kenya), and 6.18 × 103 gc/L (VA). The mean RV concentrations using BMFS-ViroCap in split samples compared to PEG precipitation methods demonstrated that the levels were only 9% (#s BMFS/PEG) in the Michigan lagoons which was significantly different (p < 0.01). This suggests that RV concentrations in Kenya are around 1.69 × 106 gc/L. Overall, there was no difference in concentrations for the other sampling locations across the methods of virus recovery (i.e., PEG precipitation and HA filters) using one-way ANOVA (F = 1.7, p = 0.2739) or Tukey-Kramer pairwise comparisons (p > 0.05). This study provides useful data on RV and EV concentrations in untreated sewage in Kenya and the USA. It also highlights on the usefulness of the RT-ddPCR for absolute quantification of RV and EV in sewage samples. The BMFS using ViroCap filters while less efficient compared to the more traditional PEG precipitation method was able to recover RVs and EVs in untreated sewage and may be useful in poor resource settings while underestimating viruses by 1 to 1.5 logs.
Collapse
Affiliation(s)
- Nicholas M Kiulia
- The Water Quality, Environmental and Molecular Microbiology Laboratory, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
- Enteric Pathogens and Water Research Laboratory, Institute of Primate Research, P.O. Box 24481-00502, Karen, Nairobi, Kenya.
| | - Raul Gonzalez
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA, 23455, USA
| | - Hannah Thompson
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA, 23455, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| | - Joan B Rose
- The Water Quality, Environmental and Molecular Microbiology Laboratory, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Ahmed W, Bivins A, Bertsch PM, Bibby K, Gyawali P, Sherchan SP, Simpson SL, Thomas KV, Verhagen R, Kitajima M, Mueller JF, Korajkic A. Intraday variability of indicator and pathogenic viruses in 1-h and 24-h composite wastewater samples: Implications for wastewater-based epidemiology. ENVIRONMENTAL RESEARCH 2021; 193:110531. [PMID: 33249042 PMCID: PMC8267967 DOI: 10.1016/j.envres.2020.110531] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 05/06/2023]
Abstract
We monitored the concentration of indicator viruses crAssphage and pepper mild mottle virus (PMMoV) and human pathogen adenovirus (HAdV) in influent from a wastewater treatment plant in Brisbane, Australia in 1-h and 24-h composite samples. Over three days of sampling, the mean concentration of crAssphage gene copies (GC)/mL in 24-h composite samples did not differ significantly (p = 0.72-0.92), while for PMMoV GC/mL (p value range: 0.0002-0.0321) and HAdV GC/mL (p value range: 0.0028-0.0068) significant differences in concentrations were observed on one day of sampling compared to the other two. For all three viruses, the variation observed in 1-h composite samples was greater than the variation observed in 24-h composite samples. For crAssphage, in 54.1% of 1-h composite samples, the concentration was less than that observed in 24-h composite samples; whereas for PMMoV and HAdV the concentration was less in 79.2 and 70.9% of 1-h composite samples, respectively, compared to the relevant 24-h composite samples. Similarly, the concentration of crAssphage in 1-h compared to 24-h composite samples did not differ (p = 0.1082) while the concentrations of PMMoV (p < 0.0001) and HAdV (p < 0.0001) in 1-h composite samples were significantly different from 24-h composite samples. These results suggest that 24-h composite samples offer increased analytical sensitivity and decreased variability compared to 1-h composite samples when monitoring wastewater, especially for pathogenic viruses with low infection rates within a community. Thus, for wastewater-based epidemiology applications, 24-h composite samples are less likely to produce false negative results and erroneous public health information.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD, 4102, Australia.
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN, 46656, USA
| | - Paul M Bertsch
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD, 4102, Australia
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN, 46656, USA
| | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA
| | | | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4103, Australia
| | - Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4103, Australia
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-0032, Japan
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4103, Australia
| | - Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH, 45268, USA
| |
Collapse
|
10
|
Siddique A, Shahzad A, Lawler J, Mahmoud KA, Lee DS, Ali N, Bilal M, Rasool K. Unprecedented environmental and energy impacts and challenges of COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2021; 193:110443. [PMID: 33171120 PMCID: PMC7648503 DOI: 10.1016/j.envres.2020.110443] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 05/18/2023]
Abstract
The rapid transmission tendency, severity, and wide geographical spread of newly emerged novel coronavirus (SARS-CoV-2) in different environmental matrices, including water, air, and soil, has posed severe health, environmental, energy, and economic challenges worldwide. Despite the severe health effects, unprecedented improvements in air quality in many countries due to emergency measures, and public behavior changes have been reported. SARS-CoV-2 has been detected in air and sewage samples in several studies across the globe. The use of wastewater-based epidemiology (WBE) could be a valuable method to monitor the outbreak of COVID-19, which requires fast and reliable methods for virus detection in sewage. However, water treatment companies face many pressures due to potential for aerosolization, PPE shortages, and changed usage patterns. In addition, the unprecedented impact of the COVID-19 outbreak on the worldwide economy especially the energy sector, and its impact on our ecosystem required instant responses. This article discusses the recent developments and challenges faced in water, air, and energy resources, including renewables and non-renewables as the significant and interrelated components of the ecosystem. Furthermore, some recommendations have been directed, which may serve as a guideline to the scientists, legislators, and other stakeholders. A future roadmap has been proposed to overcome the tragic effects of COVID-19 and developing a sustainable environmental system to minimize the impact of such infectious outbreaks in the future.
Collapse
Affiliation(s)
- Azhar Siddique
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Asif Shahzad
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jenny Lawler
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| |
Collapse
|
11
|
Bhatt A, Arora P, Prajapati SK. Occurrence, fates and potential treatment approaches for removal of viruses from wastewater: A review with emphasis on SARS-CoV-2. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104429. [PMID: 32895629 PMCID: PMC7467108 DOI: 10.1016/j.jece.2020.104429] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 05/03/2023]
Abstract
The world is combating the emergence of Coronavirus disease 2019 (COVID-19) caused by novel coronavirus; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Further, due to the presence of SARS-CoV-2 in sewage and stool samples, its transmission through water routes cannot be neglected. Thus, the efficient treatment of wastewater is a matter of utmost importance. The conventional wastewater treatment processes demonstrate a wide variability in absolute removal of viruses from wastewater, thereby posing a severe threat to human health and environment. The fate of SARS-CoV-2 in the wastewater treatment plants and its removal during various treatment stages remains unexplored and demands immediate attention; particularly, where treated effluent is utilised as reclaimed water. Consequently, understanding the prevalence of pathogenic viruses in untreated/treated waters and their removal techniques has become the topical issue of the scientific community. The key objective of the present study is to provide an insight into the distribution of viruses in wastewater, as well as the prevalence of SARS-CoV-2, and its possible transmission by the faecal-oral route. The review also gives a detailed account of the major waterborne and non-waterborne viruses, and environmental factors governing the survival of viruses. Furthermore, a comprehensive description of the potential methods (physical, chemical, and biological) for removal of viruses from wastewater has been presented. The present study also intends to analyse the research trends in microalgae-mediated virus removal and, inactivation. The review also addresses the UN SDG 'Clean Water and Sanitation' as it is aimed at providing pathogenically safe water for recycling purposes.
Collapse
Key Words
- ASP, Activated Sludge Process
- COVID-19
- COVID-19, Coronavirus Disease 2019
- DUV-LED, Deep Ultraviolet Light-Emitting Diode
- E.coli, Escherichia coli
- EPS, Exopolysaccharide
- LRV, Log Reduction Value
- MBR, Membrane Bioreactor
- MERS-CoV, Middle East Respiratory Syndrome Coronavirus
- MLSS, Mixed Liquor Suspended Solids
- Microalgaee
- PMR, Photocatalytic Membrane Reactor
- Phycoremediationn
- RH, Relative Humidity
- SARS-CoV, Severe Acute Respiratory Syndrome Coronavirus
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SBBGR, Sequencing Batch Biofilter Granular Reactor
- SEM, Scanning Electron Microscopy
- SSF, Slow Sand Filtration
- UASB, Upflow Anaerobic Sludge Blanket
- UN SDG, United Nations Sustainable Development Goal
- UV, Ultraviolet
- WHO, World Health Organisation
- WWTP, Wastewater Treatment Plant
- Waterbornee
- dsDNA, Double stranded Deoxyribonucleic Acid
- dsRNA, Double stranded Ribonucleic acid
- ssRNA, Single stranded Ribonucleic Acid
Collapse
Affiliation(s)
- Ankita Bhatt
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pratham Arora
- Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
12
|
Abstract
The immense global burden of infectious disease outbreaks and the need to establish prediction and prevention systems have been recognized by the World Health Organization (WHO), the National Institutes of Health (NIH), the United States Agency of International Development (USAID), the Bill and Melinda Gates Foundation, and the international scientific community. Despite multiple efforts, this infectious burden is still increasing. For example, it has been reported that between 1.5 and 12 million people die each year from waterborne diseases and diarrheal diseases are listed within the top 15 leading causes of death worldwide. Rapid population growth, climate change, natural disasters, immigration, globalization, and the corresponding sanitation and waste management challenges are expected to intensify the problem in the years to come.
Collapse
|
13
|
Goh SG, Saeidi N, Gu X, Vergara GGR, Liang L, Fang H, Kitajima M, Kushmaro A, Gin KYH. Occurrence of microbial indicators, pathogenic bacteria and viruses in tropical surface waters subject to contrasting land use. WATER RESEARCH 2019; 150:200-215. [PMID: 30528917 PMCID: PMC7112093 DOI: 10.1016/j.watres.2018.11.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 05/21/2023]
Abstract
Fecal indicator bacteria, such as Escherichia coli (E.coli) and Enterococcus, have been widely used to indicate the presence of pathogens. However, the suitability of fecal indicator bacteria to represent health risks is still being challenged, particularly in tropical aquatic environments. The objective of this study is to understand the occurrence and prevalence of indicators and pathogens in areas with contrasting land use, as well as to identify the major correlations between indicators, pathogens and environmental parameters. The spatial and temporal variation of indicators and pathogens was studied to examine the distribution patterns for areas with different land use, and the impact of seasonal changes on microbial populations. A total of 234 water samples were sampled for two years from reservoirs and their tributaries, and tested for fecal indicator bacteria, coliphages, human specific markers, pathogenic bacteria and viruses. The prevalence of indicators and pathogens in reservoirs were generally low, while relatively high concentrations were observed in tributaries to varying degrees. Of the enteric viruses, norovirus GII was among the most prevalent and had the highest concentration. Although strong correlations were found between indicators, only relatively weak correlations were found between indicators and pathogens. The results in this study showed that none of the bacteria/phage indicators were universal predictors for pathogens. Inclusion of the alternative indicators, Methanobrevibacter smithii, Bacteroides and human polyomaviruses (HPyVs) to monitoring programs could help to determine whether the fecal source was human. The microbial distribution patterns allow the classification of sampling sites to different clusters and thus, help to identify sites which have poor water quality. This approach will be useful for water quality management to pinpoint factors that influence water quality and help to prioritize sites for restoration of water quality.
Collapse
Affiliation(s)
- Shin Giek Goh
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Nazanin Saeidi
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Xiaoqiong Gu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | | | - Liang Liang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Haoming Fang
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ariel Kushmaro
- School of Material Science and Engineering, Nanyang Technological University, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore.
| |
Collapse
|
14
|
Korajkic A, McMinn BR, Harwood VJ. Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2842. [PMID: 30551597 PMCID: PMC6313479 DOI: 10.3390/ijerph15122842] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Fecal pollution of recreational waters can cause scenic blight and pose a threat to public health, resulting in beach advisories and closures. Fecal indicator bacteria (total and fecal coliforms, Escherichia coli, and enterococci), and alternative indicators of fecal pollution (Clostridium perfringens and bacteriophages) are routinely used in the assessment of sanitary quality of recreational waters. However, fecal indicator bacteria (FIB), and alternative indicators are found in the gastrointestinal tract of humans, and many other animals and therefore are considered general indicators of fecal pollution. As such, there is room for improvement in terms of their use for informing risk assessment and remediation strategies. Microbial source tracking (MST) genetic markers are closely associated with animal hosts and are used to identify fecal pollution sources. In this review, we examine 73 papers generated over 40 years that reported the relationship between at least one indicator and one pathogen group or species. Nearly half of the reports did not include statistical analysis, while the remainder were almost equally split between those that observed statistically significant relationships and those that did not. Statistical significance was reported less frequently in marine and brackish waters compared to freshwater, and the number of statistically significant relationships was considerably higher in freshwater (p < 0.0001). Overall, significant relationships were more commonly reported between FIB and pathogenic bacteria or protozoa, compared to pathogenic viruses (p: 0.0022⁻0.0005), and this was more pronounced in freshwater compared to marine. Statistically significant relationships were typically noted following wet weather events and at sites known to be impacted by recent fecal pollution. Among the studies that reported frequency of detection, FIB were detected most consistently, followed by alternative indicators. MST markers and the three pathogen groups were detected least frequently. This trend was mirrored by reported concentrations for each group of organisms (FIB > alternative indicators > MST markers > pathogens). Thus, while FIB, alternative indicators, and MST markers continue to be suitable indicators of fecal pollution, their relationship with waterborne pathogens, particularly viruses, is tenuous at best and influenced by many different factors such as frequency of detection, variable shedding rates, differential fate and transport characteristics, as well as a broad range of site-specific factors such as the potential for the presence of a complex mixture of multiple sources of fecal contamination and pathogens.
Collapse
Affiliation(s)
- Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Brian R McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave, SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
15
|
Marie V, Lin J. Microbial Indicators and Environmental Relationships in the Umhlangane River, Durban, South Africa. Open Life Sci 2018; 13:385-395. [PMID: 33817107 PMCID: PMC7874719 DOI: 10.1515/biol-2018-0047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/18/2018] [Indexed: 11/15/2022] Open
Abstract
The use of rivers for recreational and domestic practices makes it imperative to scrutinize the water quality circulating within surrounding communities. The complexity of biological, physical and chemical constituents in water is constantly evolving. This study evaluated various microbial and physico-chemical parameters in a polluted river system over a 12-month period. Apart from an increase in chemical pollutants, elevated levels of E. coli, total (TC) and faecal (FC) coliforms, and Shigella species could be attributed to faecal contamination entering the catchment. Canonical correspondence analysis revealed a strong relationship between FC, TC and temperature whereas moderate interactions was seen between total dissolved solids, electrical conductivity, TC and FC populations. Furthermore, close relationships between the bacterial and phage communities were also observed. The complex interactions of these physico-chemical and microbial indicators could be due to anthropogenic activities, changing climatic conditions and the excreta of infected and non-infected individuals entering the river. Assessing the complexity of aquatic ecosystems can aid in the development of novel, customizable, inexpensive water purification tools.
Collapse
Affiliation(s)
- Veronna Marie
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville), Private Bag X54001, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu- Natal (Westville), Private Bag X54001, Durban 4000, Republic of South Africa
| |
Collapse
|
16
|
Marie V, Lin J. Viruses in the environment - presence and diversity of bacteriophage and enteric virus populations in the Umhlangane River, Durban, South Africa. JOURNAL OF WATER AND HEALTH 2017; 15:966-981. [PMID: 29215360 DOI: 10.2166/wh.2017.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to the continued persistence of waterborne viral-associated infections, the presence of enteric viruses is a concern. Notwithstanding the health implications, viral diversity and abundance is an indicator of water quality declination in the environment. The aim of this study was to evaluate the presence of viruses (bacteriophage and enteric viruses) in a highly polluted, anthropogenic-influenced river system over a 6-month period at five sampling points. Cytopathic-based tissue culture assays revealed that the isolated viruses were infectious when tested on Hep-G2, HEK293 and Vero cells. While transmission electron microscopy (TEM) revealed that the majority of the viruses were bacteriophages, a number of presumptive enteric virus families were visualized, some of which include Picornaviridae, Adenoviridae, Polyomaviridae and Reoviridae. Finally, primer specific nested polymerase chain reaction (nested-PCR)/reverse transcription-polymerase chain reaction (RT-PCR) coupled with BLAST analysis identified human adenovirus, polyomavirus and hepatitis A and C virus genomes in river water samples. Taken together, the complexity of both bacteriophage and enteric virus populations in the river has potential health implications. Finally, a systematic integrated risk assessment and management plan to identify and minimize sources of faecal contamination is the most effective way of ensuring water safety and should be established in all future guidelines.
Collapse
Affiliation(s)
- Veronna Marie
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville), Private Bag X54001, Durban, South Africa E-mail:
| | - Johnson Lin
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville), Private Bag X54001, Durban, South Africa E-mail:
| |
Collapse
|
17
|
La Rosa G, Sanseverino I, Della Libera S, Iaconelli M, Ferrero V, Barra Caracciolo A, Lettieri T. The impact of anthropogenic pressure on the virological quality of water from the Tiber River, Italy. Lett Appl Microbiol 2017; 65:298-305. [DOI: 10.1111/lam.12774] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022]
Affiliation(s)
- G. La Rosa
- Department of Environment and Health; Istituto Superiore di Sanità; Rome Italy
| | - I. Sanseverino
- European Commission; DG Joint Research Centre; Directorate Sustainable Resources; Ispra Italy
| | - S. Della Libera
- Department of Environment and Health; Istituto Superiore di Sanità; Rome Italy
| | - M. Iaconelli
- Department of Environment and Health; Istituto Superiore di Sanità; Rome Italy
| | | | | | - T. Lettieri
- European Commission; DG Joint Research Centre; Directorate Sustainable Resources; Ispra Italy
| |
Collapse
|
18
|
CRENAME, A Molecular Microbiology Method Enabling Multiparametric Assessment of Potable/Drinking Water. Methods Mol Biol 2017. [PMID: 28540705 DOI: 10.1007/978-1-4939-7060-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The microbial assessment of potable/drinking water is done to ensure that the resource is free of fecal contamination indicators or waterborne pathogens. Culture-based methods for verifying the microbial safety are limited in the sense that a standard volume of water is generally tested for only one indicator (family) or pathogen.In this work, we describe a membrane filtration-based molecular microbiology method, CRENAME (Concentration Recovery Extraction of Nucleic Acids and Molecular Enrichment), exploiting molecular enrichment by whole genome amplification (WGA) to yield, in less than 4 h, a nucleic acid preparation which can be repetitively tested by real-time PCR for example, to provide multiparametric presence/absence tests (1 colony forming unit or microbial particle per standard volume of 100-1000 mL) for bacterial or protozoan parasite cells or particles susceptible to contaminate potable/drinking water.
Collapse
|
19
|
Fauvel B, Gantzer C, Cauchie HM, Ogorzaly L. In Situ Dynamics of F-Specific RNA Bacteriophages in a Small River: New Way to Assess Viral Propagation in Water Quality Studies. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:89-102. [PMID: 27771874 PMCID: PMC5309317 DOI: 10.1007/s12560-016-9266-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/30/2016] [Indexed: 05/24/2023]
Abstract
The occurrence and propagation of enteric viruses in rivers constitute a major public health issue. However, little information is available on the in situ transport and spread of viruses in surface water. In this study, an original in situ experimental approach using the residence time of the river water mass was developed to accurately follow the propagation of F-specific RNA bacteriophages (FRNAPHs) along a 3-km studied river. Surface water and sediment of 9 sampling campaigns were collected and analyzed using both infectivity and RT-qPCR assays. In parallel, some physico-chemical variables such as flow rate, water temperature, conductivity and total suspended solids were measured to investigate the impact of environmental conditions on phage propagation. For campaigns with low flow rate and high temperature, the results highlight a decrease of infectious phage concentration along the river, which was successfully modelled according to a first-order negative exponential decay. The monitoring of infectious FRNAPHs belonging mainly to the genogroup II was confirmed with direct phage genotyping and total phage particle quantification. Reported k decay coefficients according to exponential models allowed for the determination of the actual in situ distance and time necessary for removing 90 % of infectious phage particles. This present work provides a new way to assess the true in situ viral propagation along a small river. These findings can be highly useful in water quality and risk assessment studies to determine the viral contamination spread from a point contamination source to the nearest recreational areas.
Collapse
Affiliation(s)
- Blandine Fauvel
- Department of Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, 4422, Belvaux, Luxembourg
- Laboratoire de Chimie, Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Faculté de Pharmacie, Université de Lorraine, 5 rue Albert Lebrun, Nancy, 54000, France
- CNRS, LCPME, UMR 7564, Nancy, 54000, France
| | - Christophe Gantzer
- Laboratoire de Chimie, Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Faculté de Pharmacie, Université de Lorraine, 5 rue Albert Lebrun, Nancy, 54000, France
- CNRS, LCPME, UMR 7564, Nancy, 54000, France
| | - Henry-Michel Cauchie
- Department of Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, 4422, Belvaux, Luxembourg
| | - Leslie Ogorzaly
- Department of Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, 4422, Belvaux, Luxembourg.
| |
Collapse
|
20
|
Iaconelli M, Muscillo M, Della Libera S, Fratini M, Meucci L, De Ceglia M, Giacosa D, La Rosa G. One-year Surveillance of Human Enteric Viruses in Raw and Treated Wastewaters, Downstream River Waters, and Drinking Waters. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:79-88. [PMID: 27682315 DOI: 10.1007/s12560-016-9263-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/23/2016] [Indexed: 05/22/2023]
Abstract
Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.
Collapse
Affiliation(s)
- M Iaconelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - M Muscillo
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - S Della Libera
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - M Fratini
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Meucci
- Centro Ricerche SMAT, Società Metropolitana Acque Torino, Turin, Italy
| | - M De Ceglia
- Centro Ricerche SMAT, Società Metropolitana Acque Torino, Turin, Italy
| | - D Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino, Turin, Italy
| | - G La Rosa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
21
|
Presencia de virus entéricos en muestras de agua para el consumo humano en Colombia: desafíos de los sistemas de abastecimiento. BIOMEDICA 2016; 36:169-78. [DOI: 10.7705/biomedica.v36i0.2987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 03/29/2016] [Indexed: 11/21/2022]
Abstract
<p><strong>Introducción.</strong> El agua de consumo humano puede ser vehículo de transmisión de agentes patógenos. La detección de virus entéricos en estas muestras de agua es esencial para establecer las acciones adecuadas de control y prevención de las enfermedades asociadas.<br /><strong>Objetivo.</strong> Analizar los resultados del diagnóstico de virus entéricos en muestras de agua para el consumo humano recibidas en el Instituto Nacional de Salud y establecer su asociación con los datos sobre la calidad del agua en los municipios de Colombia.<br /><strong>Materiales y métodos.</strong> Se hizo un análisis descriptivo retrospectivo de los resultados obtenidos en la detección de rotavirus, enterovirus, virus de la hepatitis A y adenovirus, en muestras de agua recibidas para estudios complementarios en la investigación de brotes de hepatitis entérica, de enfermedad diarreica aguda y de enfermedades transmitidas por alimentos. Dicha información se correlacionó con los datos de la vigilancia de la calidad del agua municipal determinada según el índice de riesgo de la calidad del agua (IRCA).<br /><strong>Resultados.</strong> Se procesaron 288 muestras de 102 municipios de Colombia, de las cuales el 50,7 % fue positivo para algún virus: 26,73 %, para el virus de la hepatitis A; 20,48 %, para enterovirus y rotavirus, y 18,05 % para adenovirus. Se detectaron virus en 48,26 % de las muestras de agua no tratada y en 45,83 % de las de agua tratada. El IRCA no mostró correlación con la presencia de virus.<br /><strong>Conclusiones.</strong> La presencia de virus en el agua representa un riesgo para la salud pública. La prevención de la transmisión de virus por medio del agua requiere políticas para fortalecer los sistemas de suministro y para mejorar la vigilancia epidemiológica.</p>
Collapse
|
22
|
Dular M, Griessler-Bulc T, Gutierrez-Aguirre I, Heath E, Kosjek T, Krivograd Klemenčič A, Oder M, Petkovšek M, Rački N, Ravnikar M, Šarc A, Širok B, Zupanc M, Žitnik M, Kompare B. Use of hydrodynamic cavitation in (waste)water treatment. ULTRASONICS SONOCHEMISTRY 2016; 29:577-88. [PMID: 26515938 DOI: 10.1016/j.ultsonch.2015.10.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 05/07/2023]
Abstract
The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning.
Collapse
Affiliation(s)
- Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
| | - Tjaša Griessler-Bulc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; Faculty of Civil and Geodetic Engineering, University of Ljubljana, Hajdrihova 28, 1000 Ljubljana, Slovenia
| | | | - Ester Heath
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Tina Kosjek
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Krivograd Klemenčič
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; Faculty of Civil and Geodetic Engineering, University of Ljubljana, Hajdrihova 28, 1000 Ljubljana, Slovenia
| | - Martina Oder
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Martin Petkovšek
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Nejc Rački
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Maja Ravnikar
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Šarc
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Brane Širok
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Mojca Zupanc
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Miha Žitnik
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Boris Kompare
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Hajdrihova 28, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Biosensors for waterborne viruses: Detection and removal. Biochimie 2015; 115:144-54. [DOI: 10.1016/j.biochi.2015.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/14/2015] [Indexed: 01/20/2023]
|
24
|
Symonds EM, Breitbart M. Affordable Enteric Virus Detection Techniques Are Needed to Support Changing Paradigms in Water Quality Management. CLEAN : SOIL, AIR, WATER 2015; 43:8-12. [PMID: 32313585 PMCID: PMC7162330 DOI: 10.1002/clen.201400235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 03/24/2014] [Accepted: 06/04/2014] [Indexed: 05/04/2023]
Abstract
In light of water quality monitoring paradigms shifting to a more holistic approach, it is essential that environmental microbiologists embrace new methodological developments in clinical virology to create rapid, laboratory-free methods for the identification of wastewater pollution. It is widely accepted that routine monitoring of fecal indicator bacteria (FIB) does not adequately reflect human health risks associated with fecal pollution, especially risks posed by viruses. Enteric viruses are typically more resistant to wastewater treatment and persist longer in the environment than FIB. Furthermore, enteric viruses often have extremely low infectious doses. Currently, the incorporation of sanitary surveys, short-term monitoring of reference pathogens, exploratory quantitative microbial risk assessments, and predictive ecological models is being championed as the preferred approach to water management. In addition to improved virus concentration methods, simple, point-of-use tests for enteric viruses and/or improved viral indicators are needed to complement this emerging paradigm and ensure microbial safety worldwide.
Collapse
Affiliation(s)
- Erin M Symonds
- University of South Florida College of Marine Science St. Petersburg FL USA
| | - Mya Breitbart
- University of South Florida College of Marine Science St. Petersburg FL USA
| |
Collapse
|
25
|
Rotavirus genotypes in sewage treatment plants and in children hospitalized with acute diarrhea in Italy in 2010 and 2011. Appl Environ Microbiol 2014; 81:241-9. [PMID: 25344240 DOI: 10.1128/aem.02695-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the molecular surveillance network RotaNet-Italy provides useful nationwide data on rotaviruses causing severe acute gastroenteritis in children in Italy, scarce information is available on rotavirus circulation in the general Italian population, including adults with mild or asymptomatic infection. We investigated the genotypes of rotaviruses present in urban wastewaters and compared them with those of viral strains from clinical pediatric cases. During 2010 and 2011, 285 sewage samples from 4 Italian cities were tested by reverse transcription-PCRs (RT-PCRs) specific for rotavirus VP7 and VP4 genes. Rotavirus was detected in 172 (60.4%) samples, 26 of which contained multiple rotavirus G (VP7 gene) genotypes, for a total of 198 G types. Thirty-two samples also contained multiple P (VP4 gene) genotypes, yielding 204 P types in 172 samples. Genotype G1 accounted for 65.6% of rotaviruses typed, followed by genotypes G2 (20.2%), G9 (7.6%), G4 (4.6%), G6 (1.0%), G3 (0.5%), and G26 (0.5%). VP4 genotype P[8] accounted for 75.0% of strains, genotype P[4] accounted for 23.0% of strains, and the uncommon genotypes P[6], P[9], P[14], and P[19] accounted for 2.0% of strains altogether. These rotavirus genotypes were also found in pediatric patients hospitalized in the same areas and years but in different proportions. Specifically, genotypes G2, G9, and P[4] were more prevalent in sewage samples than among samples from patients, which suggests either a larger circulation of the latter strains through the general population not requiring medical care or their greater survival in wastewaters. A high level of nucleotide identity in the G1, G2, and G6 VP7 sequences was observed between strains from the environment and those from patients.
Collapse
|
26
|
Ayukekbong JA, Fobisong C, Lindh M, Nkuo-Akenji T, Bergström T, Norder H. Molecular analysis of enterovirus in Cameroon by partial 5′UTR-VP4 gene sequencing reveals a high genetic diversity and frequency of infections. J Med Virol 2014; 86:2092-101. [DOI: 10.1002/jmv.23926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- James Ayukepi Ayukekbong
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Cajetan Fobisong
- Section For Clinical Research; Redeem Biomedical System; Douala Cameroon
| | - Magnus Lindh
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Theresia Nkuo-Akenji
- Department of Life Science; Faculty of Science; University of Buea; Buea Cameroon
| | - Tomas Bergström
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Helene Norder
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|