1
|
Karthikeyan S, Pollock T, Walker M, Khoury C, St-Amand A. Analysis of chemical exposures in racial populations in Canada: An investigation based on the Canadian health measures survey. Int J Hyg Environ Health 2024; 260:114406. [PMID: 38852336 DOI: 10.1016/j.ijheh.2024.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Despite demonstrated disparities in environmental chemical exposures by racial identity, no Canadian study has systematically assessed the feasibility of using a nationally representative dataset to examine differences in chemical concentrations by race. We assessed the feasibility and constraints of analysing chemical exposures in racial populations, including visible minorities and populations of Indigenous identity, using biomonitoring data collected through the Canadian Health Measures Survey (CHMS). Our primary objectives were to assess the ability to 1) generate geometric means and percentiles of chemical concentrations for racial populations by age or sex, 2) statistically compare concentrations among racial populations, and 3) calculate time trends of concentrations by race. We conducted these analyses for several priority chemicals: lead, cadmium, benzene, bisphenol A (BPA), and di(2-ethylhexyl) phthalate (DEHP). Survey participants self-identified as one of the following: White, Black, East and Southeast Asian, South Asian, Middle Eastern, Latin American, First Nations, Metis, and Inuit. Analyses were conducted for individual and combined cycles of the CHMS. Using data from the latest CHMS cycle in which each chemical was measured, we observed that sample sizes were sufficient to report geometric mean concentrations for all races except Inuit. Due to privacy considerations associated with small sample sizes, the 5th and 95th percentile concentrations could not be consistently reported for all racial populations in this analysis. While we were able to statistically compare concentrations among racial populations, the analysis was constrained by the limited number of statistical degrees of freedom available in a single CHMS cycle. Both of these constraints were alleviated by combining multiple cycles of data. The analysis of time trends was less subject to privacy and statistical limitations; we were able to calculate time trends of chemical concentrations for all racial populations. Our findings provide an important baseline for follow-up investigations of descriptive and etiological analyses of environmental chemical exposures and race in the CHMS.
Collapse
Affiliation(s)
- Subramanian Karthikeyan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Mike Walker
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Cheryl Khoury
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
2
|
Cseresznye A, Hardy EM, Ait Bamai Y, Cleys P, Poma G, Malarvannan G, Scheepers PTJ, Viegas S, Martins C, Porras SP, Santonen T, Godderis L, Verdonck J, Poels K, João Silva M, Louro H, Martinsone I, Akūlova L, van Dael M, van Nieuwenhuyse A, Mahiout S, Duca RC, Covaci A. HBM4EU E-waste study: Assessing persistent organic pollutants in blood, silicone wristbands, and settled dust among E-waste recycling workers in Europe. ENVIRONMENTAL RESEARCH 2024; 250:118537. [PMID: 38408627 DOI: 10.1016/j.envres.2024.118537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 μg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.
Collapse
Affiliation(s)
- Adam Cseresznye
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie M Hardy
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg
| | - Yu Ait Bamai
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Paulien Cleys
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Susana Viegas
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Carla Martins
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Simo P Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Jelle Verdonck
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Katrien Poels
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maria João Silva
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Henriqueta Louro
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Inese Martinsone
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Lāsma Akūlova
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Maurice van Dael
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - An van Nieuwenhuyse
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Selma Mahiout
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Radu Corneliu Duca
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Li BA, Li BM, Bao Z, Li Q, Xing M, Li B. Dichlorodiphenyltrichloroethane for Malaria and Agricultural Uses and Its Impacts on Human Health. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:45. [PMID: 37730942 DOI: 10.1007/s00128-023-03789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/12/2023] [Indexed: 09/22/2023]
Abstract
Pesticides are widely used in agriculture and disease control, and dichlorodiphenyltrichloroethane (DDT) is one of the most used pesticides in human history. Besides its significant contributions in pest control in agriculture, DDT was credited as having saved millions of human lives for controlling malaria and other deadly insect-transmitted diseases. Even today, the use of DDT in some countries for malaria control cannot be replaced without endangering people who live there. The recent COVID-19 pandemic has changed our lives and reminded us of the challenges in dealing with infectious diseases, especially deadly ones including malaria. However, DDT and its metabolites are stable, persist long, are found in almost every corner of the world, and their persistent effects on humans, animals, and the environment must be seriously considered. This review will focus on the history of DDT use for agriculture and malaria control, the pathways for the spread of DDT, benefits and risks of DDT use, DDT exposure to animals, humans, and the environment, and the associated human health risks. These knowledge and findings of DDT will benefit the selection and management of pesticides worldwide.
Collapse
Affiliation(s)
- Benjamin A Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
- Morgantown High School, Morgantown, WV, USA
| | | | - Zhenghong Bao
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
| | - Qingyang Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, MB, Winnipeg, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA.
| |
Collapse
|
4
|
Li P, Xu Y, Li Z, Cheng X, Jia C, Zhang S, An J, Zhang X, Yan Y, He M. Association between polychlorinated biphenyls exposure and incident type 2 diabetes mellitus: A nested case-control study. ENVIRONMENTAL RESEARCH 2023; 228:115743. [PMID: 37001846 DOI: 10.1016/j.envres.2023.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Previous epidemiological studies indicated that the association between polychlorinated biphenyls (PCB) and type 2 diabetes mellitus (T2DM) was inconclusive. OBJECTIVE We investigated the association between PCBs exposure and incident T2DM in a nested case-control study, and further explored the relationship between PCBs and 5-year fasting blood glucose (FBG) changes. METHODS Baseline concentrations of seven indicator-PCB (PCB-28, 52, 101, 118, 138, 153, 180) were measured in 1006 pairs of incident T2DM cases and matched controls nested within the Dongfeng-Tongji cohort. Conditional logistic regression models and pre-adjusted residuals method were used to assess the associations between PCBs and incident T2DM. We further computed beta coefficients (βs) of 5-year FBG changes using multivariable generalized linear regression. RESULTS Non-dioxin-like PCBs (NDL-PCBs) were significantly associated with higher T2DM incidence after adjustment for all covariates. Significant differences were observed for extreme quartiles comparisons (Q4 vs. Q1) of PCBs except PCB-138, and the incidence of T2DM were 1- to 3-fold higher among those in the highest versus lowest PCBs quartiles. Serum NDL-PCBs were positively associated with changes in FBG (P for overall association ≤0.01). Additionally, triglycerides mediated the associations between PCBs and T2DM incidence. CONCLUSION Our findings showed positive associations of NDL-PCBs with incident T2DM and 5-year FBG changes. PCBs increased incident T2DM via lipid metabolic pathways.
Collapse
Affiliation(s)
- Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Lu F, MacPherson CW, Tremblay J, Iskandar MM, Kubow S. Anthocyanin-rich blue potato meals protect against polychlorinated biphenyl-mediated disruption of short-chain fatty acid production and gut microbiota profiles in a simulated human digestion model. Front Nutr 2023; 10:1130841. [PMID: 37324735 PMCID: PMC10266533 DOI: 10.3389/fnut.2023.1130841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Background Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants associated with a wide variety of adverse human health outcomes. PCB 126 and PCB 153 are among the most prevalent congeners associated with human exposure. Emerging studies have suggested that PCB exposure leads to lower gut microbial diversity although their effects on microbial production of health promoting short-chain fatty acids (SCFAs) has been scarcely studied. Blue potatoes are rich in anthocyanins (ACNs), which is a class of polyphenols that promote the growth of beneficial intestinal bacteria such as Bifidobacterium and Lactobacillus and increase the generation of SCFAs. A batch-culture, pH-controlled, stirred system containing human fecal microbial communities was utilized to assess whether human gut microbiota composition and SCFA production are affected by: (a) PCB 126 and PCB 153 exposure; and (b) ACN-rich digests in the presence and absence of the PCB congeners. Methods Anthocyanin-rich blue potato meals (11.03 g) were digested over 12 h with and without PCB 126 (0.5 mM) and PCB 153 (0.5 mM) using an in vitro simulated gut digestion model involving upper gastrointestinal digestion followed by metabolism by human fecal microbiota. Fecal digests were collected for analysis of gut microbial and SCFA profiles. Results Polychlorinated biphenyl-exposed fecal samples showed a significant (p < 0.05) decrease in species richness and a significantly (p < 0.05) different microbial community structure. PCB treatment was associated with an increased (p < 0.05) relative abundance of Akkermansia, Eggerthella, and Bifidobacterium and a decreased (p < 0.05) relative abundance of Veillonella, Streptococcus, and Holdemanella. ACN digests counteracted the altered abundances of Akkermansia and Bifidobacterium seen with the PCB treatment. PCB exposure was associated with a significant (p < 0.05) decrease in total SCFA and acetate concentrations. ACN digests were associated with significantly (p < 0.05) higher SCFA and acetate concentrations in the presence and absence of PCBs. Conclusion Human fecal matter exposed to PCB 126 and PCB 153 led to decreased abundance and altered gut microbiota profiles as well as lowered SCFA and acetate levels. Importantly, this study showed that prebiotic ACN-rich potatoes counteract PCB-mediated disruptions in human gut microbiota profiles and SCFA production.
Collapse
Affiliation(s)
- Fang Lu
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | | | - Julien Tremblay
- Energy, Mining and Environment, National Research Council Canada, Montreal, QC, Canada
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Stan Kubow
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
6
|
Sussman TJ, Baker BH, Wakhloo AJ, Gillet V, Abdelouahab N, Whittingstall K, Lepage JF, St-Cyr L, Boivin A, Gagnon A, Baccarelli AA, Takser L, Posner J. The relationship between persistent organic pollutants and Attention Deficit Hyperactivity Disorder phenotypes: Evidence from task-based neural activity in an observational study of a community sample of Canadian mother-child dyads. ENVIRONMENTAL RESEARCH 2022; 206:112593. [PMID: 34951987 PMCID: PMC9004716 DOI: 10.1016/j.envres.2021.112593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to persistent organic pollutants (POPs), widespread in North America, is associated with increased Attention Deficit/Hyperactivity Disorder (ADHD) symptoms and may be a modifiable risk for ADHD phenotypes. However, the effects of moderate exposure to POPs on task-based inhibitory control performance, related brain function, and ADHD-related symptoms remain unknown, limiting our ability to develop interventions targeting the neural impact of common levels of exposure. OBJECTIVES The goal of this study was to examine the association between prenatal POP exposure and inhibitory control performance, neural correlates of inhibitory control and ADHD-related symptoms. METHODS Prospective data was gathered in an observational study of Canadian mother-child dyads, with moderate exposure to POPs, including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), as part of the GESTation and the Environment (GESTE) cohort in Sherbrooke, Quebec, Canada. The sample included 87 eligible children, 46 with maternal plasma samples, functional magnetic resonance imaging (fMRI) data of Simon task performance at 9-11 years, and parental report of clinical symptoms via the Behavioral Assessment System for Children 3 (BASC-3). Simon task performance was probed via drift diffusion modeling, and parameter estimates were related to POP exposure. Simon task-based fMRI data was modeled to examine the difference in incongruent vs congruent trials in regions of interest (ROIs) identified by meta analysis. RESULTS Of the 46 participants with complete data, 29 were male, and mean age was 10.42 ± 0.55 years. Increased POP exposure was associated with reduced accuracy (e.g. PCB molar sum rate ratio = 0.95; 95% CI [0.90, 0.99]), drift rate (e.g. for PCB molar sum β = -0.42; 95% CI [-0.77, -0.07]), and task-related brain activity (e.g. in inferior frontal cortex for PCB molar sum β = -0.35; 95% CI [-0.69, -0.02]), and increased ADHD symptoms (e.g. hyperactivity PCB molar sum β = 2.35; 95%CI [0.17, 4.53]), supporting the possibility that prenatal exposure to POPs is a modifiable risk for ADHD phenotypes. DISCUSSION We showed that exposure to POPs is related to task-based changes in neural activity in brain regions important for inhibitory control, suggesting a biological mechanism underlying previously documented associations between POPs and neurobehavioral deficits found in ADHD phenotypes.
Collapse
Affiliation(s)
- Tamara J Sussman
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Brennan H Baker
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Virginie Gillet
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nadia Abdelouahab
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kevin Whittingstall
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Diagnostic Radiology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lindsay St-Cyr
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Amélie Boivin
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Anthony Gagnon
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Larissa Takser
- Departement de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Departement de Psychiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jonathan Posner
- New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Marks KJ, Northstone K, Papadopoulou E, Brantsæter AL, Haug LS, Howards PP, Smarr MM, Flanders WD, Hartman TJ. Maternal dietary patterns during pregnancy and exposure to persistent endocrine disrupting chemicals in two European birth cohorts. ENVIRONMENTAL ADVANCES 2021; 6:10.1016/j.envadv.2021.100130. [PMID: 35979229 PMCID: PMC9380587 DOI: 10.1016/j.envadv.2021.100130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Food consumption, particularly of animal-based products, is considered the most important contributor to persistent endocrine disrupting chemical (EDC) exposure. This study aims to describe the association between maternal diet during pregnancy and exposure to persistent EDCs using dietary pattern analysis. This study is based on subsamples of the Avon Longitudinal Study of Parents and Children (ALSPAC) (N=422) and the Norwegian Mother, Father, and Child Cohort Study (MoBa) (N=276) which uses data from the Medical Birth Registry of Norway (MBRN). Women in both studies completed food frequency questionnaires (FFQs) during pregnancy, from which consumption data were categorized into 38 aggregated food groups. Maternal blood samples were collected during pregnancy and concentrations of perfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) in serum/plasma were measured. Dietary patterns were identified using reduced rank regression, with blood EDC concentrations as response variables. Within ALSPAC, all patterns (PFAS, PCB, and OCP) were characterized by high consumption of meat, poultry, white fish, and biscuits. In MoBa, high consumption of sausages and burgers (representing processed meats), pasta, and chocolate bars characterized PCB and OCP dietary patterns, while high consumption of cheese characterized the PFAS pattern. Across both cohorts, PFAS patterns were characterized by high consumption of cheese, PCB patterns by high consumption of rice, and OCP patterns by poultry. Dietary patterns explained between 8 and 20% of the variation in serum EDC concentrations, with explained variance being the highest for PCBs in both cohorts. In conclusion, dietary patterns high in animal-based products appear to be associated with persistent EDC concentrations among pregnant women. Diet explains more variation in PCB concentrations than for other persistent EDC classes.
Collapse
Affiliation(s)
- Kristin J. Marks
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, Georgia 30322, United States
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United States
- Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, Tennessee 37830, United States
| | - Kate Northstone
- Department of Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom
| | - Eleni Papadopoulou
- Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222, NO-0213 Skoyen, Oslo, Norway
| | - Anne Lise Brantsæter
- Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222, NO-0213 Skoyen, Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222, NO-0213 Skoyen, Oslo, Norway
| | - Penelope P. Howards
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Melissa M. Smarr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - W. Dana Flanders
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, Georgia 30322, United States
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United States
| | - Terryl J. Hartman
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, Georgia 30322, United States
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United States
| |
Collapse
|
8
|
Vidali MS, Dailianis S, Vlastos D, Georgiadis P. PCB cause global DNA hypomethylation of human peripheral blood monocytes in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103696. [PMID: 34171487 DOI: 10.1016/j.etap.2021.103696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
We have recently reported significant associations between exposure to polychlorinated biphenyls (PCB) and alterations on genome-wide methylation of leukocyte DNA of healthy volunteers and provided evidence in support of an etiological link between the observed CpG methylation variations and chronic lymphocytic leukemia. The present study aimed to elucidate the effects of PCB in human lymphocytes' methylome in vitro. Therefore, U937 cells and human peripheral blood monocytes (PBMC) were exposed in vitro to the dioxin-like PCB-118, the non-dioxin-like PCB-153, and hexachlorobenzene (HCB) and thorough cytotoxicity, genotoxicity and global CpG methylation analyses were performed. All compounds currently tested did not show any consistent significant genotoxicity at all exposure periods and concentrations used. On the contrary, extensive dose-dependent hypomethylation was observed, even at low concentrations, in stimulated PBMC treated with PCB-118 and PCB-153 as well as a small but statistically significant hypomethylation in HCB-treated stimulated cells.
Collapse
Affiliation(s)
- Maria-Sofia Vidali
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas.Constantinou Av, GR-11635, Athens, Greece; Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | - Dimitris Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100, Agrinio, Greece
| | - Panagiotis Georgiadis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas.Constantinou Av, GR-11635, Athens, Greece.
| |
Collapse
|
9
|
Jeon HL, Hong S, Choi K, Lee C, Yoo J. First nationwide exposure profile of major persistent organic pollutants among Korean adults and their determinants: Korean National Environmental Health Survey Cycle 3 (2015-2017). Int J Hyg Environ Health 2021; 236:113779. [PMID: 34119853 DOI: 10.1016/j.ijheh.2021.113779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
Since 2009, Korea has measured the exposure levels of major environmental chemicals and heavy metals among representative adult populations through the Korean National Environmental Health Survey (KoNEHS). However, exposure to persistent organic pollutants (POPs) has never been assessed. This study reports the serum concentrations of twenty-four POPs and their influencing factors for Korean adults (n = 1295) who participated in the KoNEHS Cycle 3 (2015-2017). The POPs included seven organochlorine pesticides (OCPs), eleven polychlorinated biphenyls (PCBs), and six polybrominated diphenyl ethers (PBDEs). Among them, three OCPs (i.e., hexachlorobenzene (HCB), p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE)) and five PCBs (i.e., PCB52, PCB118, PCB138, PCB153, and PCB180) were detected in over 60% of the samples. PBDEs were not detected at a detection frequency of 60% or above. The most frequently detected POPs were p,p'-DDE (99.8%, geometric mean of 128.47 ng/g lipid), followed by PCB180 (98.8%, 8.49 ng/g lipid), PCB153 (98.8%, 13.14 ng/g lipid), HCB (96.2%, 67.08 ng/g lipid), PCB138 (95.2%, 8.84 ng/g lipid), PCB118 (89.6%, 2.66 ng/g lipid), p,p'-DDT (80.5%, 6.68 ng/g lipid), and PCB52 (71.2%, 1.57 ng/g lipid). The concentrations of most POPs were lower than or similar to concentrations reported in national-scale biomonitoring surveys. The only exception was HCB, whose concentration was up to seven-fold higher than the concentration reported by the Canadian Health Measures Survey. Excluding HCB and PCB52, most POPs showed increasing serum levels among older adults, adults with higher body mass index, adults living in coastal areas, and more frequent fish consumption. Relatively higher POP concentrations were observed in menopausal women. This study provides the first data on POP exposure levels among the representative adult population in Korea, and the results highlight the need to integrate POPs in the national biomonitoring program.
Collapse
Affiliation(s)
- Hye Li Jeon
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Sooyeon Hong
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Chulwoo Lee
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Jiyoung Yoo
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea.
| |
Collapse
|
10
|
Johnson CL, Jazan E, Kong SW, Pennell KD. A two-step gas chromatography-tandem mass spectrometry method for measurement of multiple environmental pollutants in human plasma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3266-3279. [PMID: 32914305 PMCID: PMC7790997 DOI: 10.1007/s11356-020-10702-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Individuals are exposed to a wide variety of chemicals over their lifetime, yet current understanding of mixture toxicology is still limited. We present a two-step analytical method using a gas chromatograph-triple quadrupole mass spectrometer that requires less than 1 mL of sample. The method is applied to 183 plasma samples from a study population of children with autism spectrum disorder, their parents, and unrelated neurotypical children. We selected 156 environmental chemical compounds and ruled out chemicals with detection rates less than 20% of our study cohort (n = 61), as well as ones not amenable to the selected extraction and analytical methods (n = 34). The targeted method then focused on remaining chemicals (n = 61) plus 8 additional polychlorinated biphenyls (PCBs). Persistent pollutants, such as p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and PCB congeners 118 and 180, were detected at high frequencies and several previously unreported chemicals, including 2,4,6-trichlorophenol, isosafrole, and hexachlorobutadiene, were frequently detected in our study cohort. This work highlights the benefits of employing a multi-step analytical method in exposure studies and demonstrates the efficacy of such methods for reporting novel information on previously unstudied pollutant exposures.
Collapse
Affiliation(s)
- Caitlin L Johnson
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, 02155, USA
| | - Elisa Jazan
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, 02155, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Kurt D Pennell
- School of Engineering, Brown University, Box D, 184 Hope Street, Providence, RI, 02912, USA.
| |
Collapse
|
11
|
Jugan J, Lind PM, Salihovic S, Stubleski J, Kärrman A, Lind L, La Merrill MA. The associations between p,p'-DDE levels and plasma levels of lipoproteins and their subclasses in an elderly population determined by analysis of lipoprotein content. Lipids Health Dis 2020; 19:249. [PMID: 33287856 PMCID: PMC7722417 DOI: 10.1186/s12944-020-01417-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/09/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lipoproteins at aberrant levels are known to play a role in cardiovascular disease. The metabolite of the insecticide dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), physically associates with lipids and accumulates in adipose tissue. Little is known about which lipoproteins associate with p,p'-DDE. An association between p,p'-DDE exposure and altered levels of circulating lipids was assessed in a large human cohort using a detailed analysis of lipoprotein content. METHODS Plasma samples were collected from the subset of 75-year old Swedes in the Prospective Investigation of the Vasculature of Uppsala Seniors (PIVUS) cohort who were not prescribed lipid lowering medication (n = 571). p,p'-DDE concentrations in plasma were measured using high-throughput solid phase extraction and gas chromatography-high resolution mass spectrometry. Analysis of plasma lipoprotein content was performed with nuclear magnetic resonance spectroscopy. RESULTS Detectable levels of p,p'-DDE were found in the plasma samples of all subjects. Elevated p,p'-DDE levels were associated with increased concentrations of lipoproteins of all diameters, with the exception of high density lipoprotein (HDL) of diameters between 14.3 nm-10.9 nm. Of the lipoprotein constituents, triglycerides were most uniformly associated with elevated p,p'-DDE across lipoproteins. p,p'-DDE was furthermore associated with apolipoprotein B, but not apolipoprotein A1. CONCLUSIONS The positive associations observed between each lipoprotein class and elevated p,p'-DDE support previous data suggesting that p,p'-DDE interacts with lipoproteins within plasma. It is speculated that both physio-chemical and biological mechanisms may explain why p,p'-DDE does not uniformly associate with lipids across lipoproteins.
Collapse
Affiliation(s)
- Juliann Jugan
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Samira Salihovic
- School of Medical Sciences, Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden.,MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Anna Kärrman
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Wnuk A, Rzemieniec J, Przepiórska K, Wesołowska J, Wójtowicz AK, Kajta M. Autophagy-related neurotoxicity is mediated via AHR and CAR in mouse neurons exposed to DDE. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140599. [PMID: 32721735 DOI: 10.1016/j.scitotenv.2020.140599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
DDE (dichlorodiphenyldichloroethylene) is an environmental metabolite of the pesticide DDT, which is still present in the environment, and its insecticidal properties are used to fight malaria and the Zika virus disease. We showed for the first time that the neurotoxic effects of DDE involve autophagy, as demonstrated by elevated levels of Becn1, Map1lc3a/MAP1LC3A, Map1lc3b, and Nup62/NUP62 and an increase in autophagosome formation. The suggestion that the aryl hydrocarbon receptor (AHR) and the constitutive androstane receptor (CAR) are involved in the neurotoxic effect of DDE was supported by increases in the mRNA and protein expression of these receptors, as detected by qPCR, ELISA, immunofluorescence labeling and confocal microscopy. Selective antagonists of the receptors, including alpha-naphthoflavone, CH223191, and CINPA 1, inhibited p,p'-DDE- and o,p'-DDE-induced LDH release and caspase-3 activity, while specific siRNAs (Ahr and Car siRNA) reduced the levels of p,p'-DDE- and o,p'-DDE-induced autophagosome formation. Although the neurotoxic effects of DDE were isomer independent, the mechanisms of p,p'- and o,p'-DDE were isomer specific. Therefore, we identified previously unknown mechanisms of the neurotoxic actions of DDE that, in addition to inducing apoptosis, stimulate autophagy in mouse neocortical cultures and induce AHR and CAR signaling.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland
| | - Joanna Rzemieniec
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland
| | - Karolina Przepiórska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland
| | - Julita Wesołowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory for In vivo and In Vitro Imaging, Smetna street 12, 31-343 Krakow, Poland
| | - Anna Katarzyna Wójtowicz
- University of Agriculture, Faculty of Animal Sciences, Department of Nutrition, Animal Biotechnology and Fisheries, Adama Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Małgorzata Kajta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland.
| |
Collapse
|