1
|
Knox RV. Worldwide perspective for swine production and reproduction for the next 20 years. Theriogenology 2025; 234:24-33. [PMID: 39631253 DOI: 10.1016/j.theriogenology.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Over numerous years, breeding herds have faced challenges to sustainability with poor profitability, impact of disease, export market instability, limited labor, and increasing environmental and animal welfare regulations. Many of these scenarios are expected to continue, but their impact lessened with adjustments in management, technology, and business. The prospects for success in the future for the pig industry in various locations are based on costs of pig production efficiency and projections for domestic and export markets. Sow farms are expected to increase in size to meet large retailer needs, while smaller farms will fill domestic regional markets. The risk of PRRS in breeding herds and loss of pigs and infertility will continue to be a major concern for producers. Changes in sow housing will likely continue with designs that meet welfare requirements and allow for practical management of the breeding herd. Trends for selection and increase in litter size will continue but will include measures for birthweight and survival, and traits for heat stress and disease resistance. Changes in boar semen production and AI procedures are unlikely since fertility measures are very high. But advances in technology for identifying fertile and time of ovulation, or procedures that aid in selection of sperm or induction of ovulation, could facilitate reduction in the number of sperm used to produce a litter of pigs.
Collapse
Affiliation(s)
- Robert V Knox
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
2
|
Sugrue VJ, Prescott M, Glendining KA, Bond DM, Horvath S, Anderson GM, Garratt M, Campbell RE, Hore TA. The androgen clock is an epigenetic predictor of long-term male hormone exposure. Proc Natl Acad Sci U S A 2025; 122:e2420087121. [PMID: 39805019 DOI: 10.1073/pnas.2420087121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Aging is a complex process characterized by biological decline and a wide range of molecular alterations to cells, including changes to DNA methylation. In this study, we used a male-specific epigenetic marker of aging to build an epigenetic predictor that measures long-term androgen exposure in sheep and mice (median absolute error of 4.3 and 1.4 mo, respectively). We term this predictor the androgen clock and show its "tick" is mediated by the androgen receptor and can be accelerated beyond that in normal male mice by supplementing females with dihydrotestosterone. Conversely, the removal of androgens by castration in sheep completely halted the androgen clock. In addition to potential applications in medicine and agriculture, we predict the androgen clock will prove a useful model to understand the mechanisms and processes of age-associated DNA methylation change because it can be precisely enhanced and halted using small molecule manipulation with few additional effects on the cell.
Collapse
Affiliation(s)
- Victoria J Sugrue
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Melanie Prescott
- Department of Physiology, University of Otago, Dunedin 9016, New Zealand
| | - Kelly A Glendining
- Department of Physiology, University of Otago, Dunedin 9016, New Zealand
| | - Donna M Bond
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Steve Horvath
- Altos Laboratories, Cambridge Institute of Science, Cambridge CB21 6GQ, United Kingdom
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Greg M Anderson
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Michael Garratt
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Rebecca E Campbell
- Department of Physiology, University of Otago, Dunedin 9016, New Zealand
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
3
|
Lee Y, Cho Y, Jeon S, Xu Y, Lee KM, Kim HJ, Lee DW, Son J. Simultaneous analysis of residual prohibited doping substances in foods using gas chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:593-600. [PMID: 39676457 DOI: 10.1039/d4ay01606h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The continuous consumption of various foods increases the risk of unintentional exposure to residual contaminants. Thus, improving premonitoring procedures to ensure food safety is critical. Herein, a rapid and efficient assay was developed to monitor residual contaminants in food, with a focus on banned doping substances. First, 73 doping compounds, including anabolic agents that can be ingested from food were selected, after which a gas chromatography-tandem mass spectrometry (GC-MS/MS) method was developed for their simultaneous screening. Based on the GC-MS/MS-determined food-matrix characteristics and types, a sample-preparation module was developed to optimize the sample-preparation method. Thereafter, the developed analytical method was validated using representative food matrices, and the results confirmed that the developed method obtained good recoveries (80-123% (limit of quantification: 0.01-20 μg kg-1)). To monitor residual doping substances in commercially available foods, the established method was applied to the analysis of 40 food samples, including meat. Notably, endogenous hormones, such as testosterone, nandrolone, 19-norandrosterone, and 19-noretiocholanolone, were detected in the meat samples, although they did not exceed the maximum residue limits. This approach enables the assessment of potential exposure levels to food-borne endogenous hormones, thereby supporting food safety and preventing unintentional doping incidents in athletes.
Collapse
Affiliation(s)
- Yejin Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea
| | - Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Seongeun Jeon
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Yinglan Xu
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Kang Mi Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Ho Jun Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
4
|
Xu M, Lu S, Chen W, Hu L, Zhou L, Yang X. Ten-month comprehensive assessment of steroid hormones in the tributaries of Baiyun District, Guangzhou City, China: Spatiotemporal dynamics, source attribution, and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177908. [PMID: 39644644 DOI: 10.1016/j.scitotenv.2024.177908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The occurrence of steroid hormones in small river ecosystems raises environmental alarms due to their limited dilution capacity, heightened susceptibility to diverse pollution sources, and their substantial contribution to the contamination of larger river systems. Here, we investigated the occurrence of 40 steroid hormones over 10 months in 10 first-order tributaries (n = 250) of Guangzhou City, China. The observed concentrations of Σsteroid hormones ranged from 30.5 to 450 ng/L (mean: 55.6 ± 35.4 ng/L). No substantial variation in steroid hormone concentrations was observed between the flood and dry seasons, reflecting an intricate balance of dilution dynamics, agricultural runoff, and wastewater releases. Further correlation analysis underscored wastewater discharge as a consistent source of steroid hormone occurrence, with spikes coinciding with concurrent fertilizer application and rainfall intervals. Steroid hormone concentrations displayed significant spatial variations. Correlation analyses connected steroid hormone levels to nutrients in tributaries and agricultural ditch water and land usage, highlighting the joint effect of runoff and various wastewater types on steroid hormone distribution. Interestingly, steroid hormone levels displayed minimal variation along the tributaries, suggesting uniform and continuous pollution sources. Source attribution analysis revealed that 51.7 % of steroid hormones originated from untreated domestic wastewater, followed by treated wastewater, livestock wastewater, and runoff. Notably, 92.0 % of the sampling sites registered at least one steroid hormone level exceeding the risk quotient threshold of 1, indicating widespread ecological hazards. Our research emphasizes the persistent and stable nature of steroid hormone-related risks across seasons and along the tributaries, highlighting the imperative for vigilant monitoring. We further advocate for intensified surveillance efforts during pivotal periods (e.g., fertilization periods and low rainfall intervals), to better address these environmental challenges.
Collapse
Affiliation(s)
- Manxin Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China
| | - Shudong Lu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China
| | - Weisong Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China
| | - Lingshuo Hu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China
| | - Liangzhuo Zhou
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Samara EM, Al-Badwi MA, Abdoun KA, Abdelrahman MM, Okab AB, Bahadi MA, Al-Haidary AA. The interrelationship between macrominerals and heat stress in ruminants: current perspectives and future directions - a review. Vet Res Commun 2024; 49:29. [PMID: 39576402 DOI: 10.1007/s11259-024-10597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 11/24/2024]
Abstract
Macromineral imbalances in ruminants, particularly in tropical and subtropical regions, pose a significant challenge to production sustainability and profitability. Heat stress exacerbates these imbalances, negatively impacting physiological functions and productivity. This review examines the effects of heat stress on macromineral levels in ruminants and the need for supplementation under such conditions. Heat stress lowers key macrominerals (Na+, K+, Cl-, Ca + 2, Mg + 2, inorganic P) and disrupts acid-base balance due to thermoregulatory responses and reduced feed intake. Supplementing macrominerals to the diet to achieve higher dietary cation-anion difference helps mitigate heat-related morbidity and maintains ruminant health and productivity. A more practical approach, such as sustained-release macromineral boluses in the rumen, is proposed to provide more consistent benefits. Further researches are warranted to optimize supplementation strategies and fully understand macromineral nutrition for heat-stressed ruminants.
Collapse
Affiliation(s)
- Emad M Samara
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohammed A Al-Badwi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- Department of Animal Production, Ibb University, P.O. Box 70270, Ibb, Yemen
| | - Khalid A Abdoun
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mutassim M Abdelrahman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Aly B Okab
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Majdi A Bahadi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- Department of Agriculture and Food Science, Faculty of Applied Science, Seiyun University, Hadhramaut, Yemen
| | - Ahmed A Al-Haidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Mosburg M, Li Y, Helmes E, Falt TD, Trott JF, Solomon G, Hovey RC, Moeller BC. Determination of Hormonal Growth Promotants in Beef Using Liquid Chromatography-Tandem Mass Spectrometry. Drug Test Anal 2024. [PMID: 39561982 DOI: 10.1002/dta.3827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/13/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
Hormonal growth promotants (HGPs) are a class of pharmaceutical agents commonly administered to cattle in the United States to improve growth rates of the animal, alter behavior, or to improve the desired characteristics of retail cuts of meat. There is a concern that low residual concentrations of HGPs may remain in tissue after slaughter, and consumption of tissues containing these compounds may increase the risk of adverse health outcomes, including cancer. Sensitive and selective methods are necessary to assess exposure of HGPs by populations that consume meat products from animals that may have been administered HGPs. A liquid chromatography-tandem mass spectrometry method was developed and validated to detect the low-level presence of HGPs including estradiol, testosterone, estradiol benzoate, melengestrol, melengestrol acetate, progesterone, testosterone propionate, trenbolone, trenbolone acetate, and α-zearalanol in retail cuts of meat following a liquid-liquid extraction using a high pH solution with 30-50× less mass of meat required as compared to similar approaches. Good chromatographic performance and sensitivity was achieved utilizing ammonium fluoride as a mobile phase additive without the need for derivatization. Validation parameters including accuracy, precision, recovery, matrix effects, limits of detection, limits of quantitation, linear range, and stability were determined. The limits of detection ranged from 0.1 to 1.0 ng/g, depending on the compound, with adequate accuracy and precision without the need for extensive sample preparation approaches.
Collapse
Affiliation(s)
- Mary Mosburg
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Yajing Li
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Emily Helmes
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Tara D Falt
- Department of Animal Science, University of California, Davis, California, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis, California, USA
| | - Gina Solomon
- Division of Occupational, Environmental, and Climate Medicine, University of California San Francisco, San Francisco, California, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, California, USA
| | - Benjamin C Moeller
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
7
|
Estrada-Almeida AG, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Rodríguez A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J Xenobiot 2024; 14:1465-1518. [PMID: 39449423 PMCID: PMC11503348 DOI: 10.3390/jox14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances.
Collapse
Affiliation(s)
- Ana Gabriela Estrada-Almeida
- Especialidad en Gestión Integral de Residuos, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| |
Collapse
|
8
|
Shafiq M, Obinwanne Okoye C, Nazar M, Ali Khattak W, Algammal AM. Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. J Adv Res 2024:S2090-1232(24)00467-3. [PMID: 39414225 DOI: 10.1016/j.jare.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Mudasir Nazar
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
9
|
Tang Y, Shi C, Zhu Y, Yang M, Sheng K, Zhang X. Cellulose as a sustainable scaffold material in cultivated meat production. Curr Res Food Sci 2024; 9:100846. [PMID: 39328389 PMCID: PMC11426059 DOI: 10.1016/j.crfs.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The rapid progress in cultivated meat research has engendered considerable attention towards the edible scaffolding biomaterials employed in the production. Cellulose has the advantages in availability, edibility, animal-free origin, etc., which show its potential in wide fields. This review begins by presenting the fundamental physical and chemical properties of cellulose from different sources, including plant and bacterial cellulose. Subsequently, we summarize the application of cellulose especially in cultivated meat and tissue engineering. Furthermore, we explore various methods for preparing cellulose-based scaffolds for cultivated meat, encompassing five specific structural variations. In the end, associated with utilizing cellulose in cultivated meat production, we address several primary challenges surrounding to cell adhesion, scaling up, processibility and mechanical properties, and provide potential innovations. This review underscores the potential of cellulose as a versatile biomaterial in the cultivated meat industry and provides insight into addressing critical challenges for its integration.
Collapse
Affiliation(s)
- Yunan Tang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, China
| | - Chenchen Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yuyan Zhu
- Department of Food Science and Nutrition, Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food, Hong Kong Polytechnic University, Hong Kong, China
| | - Ming Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
- National Key Laboratory of Biobased Transportation Fuel Technology, your department, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Xiang T, Liu Y, Guo Y, Zhang J, Liu J, Yao L, Mao Y, Yang X, Liu J, Liu R, Jin X, Shi J, Qu G, Jiang G. Occurrence and Prioritization of Human Androgen Receptor Disruptors in Sewage Sludges Across China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10309-10321. [PMID: 38795035 DOI: 10.1021/acs.est.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
The global practice of reusing sewage sludge in agriculture and its landfill disposal reintroduces environmental contaminants, posing risks to human and ecological health. This study screened sewage sludge from 30 Chinese cities for androgen receptor (AR) disruptors, utilizing a disruptor list from the Toxicology in the 21st Century program (Tox21), and identified 25 agonists and 33 antagonists across diverse use categories. Predominantly, natural products 5α-dihydrotestosterone and thymidine emerged as agonists, whereas the industrial intermediate caprolactam was the principal antagonist. In-house bioassays for identified disruptors displayed good alignment with Tox21 potency data, validating employing Tox21 toxicity data for theoretical toxicity estimations. Potency calculations revealed 5α-dihydrotestosterone and two pharmaceuticals (17β-trenbolone and testosterone isocaproate) as the most potent AR agonists and three dyes (rhodamine 6G, Victoria blue BO, and gentian violet) as antagonists. Theoretical effect contribution evaluations prioritized 5α-dihydrotestosterone and testosterone isocaproate as high-risk AR agonists and caprolactam, rhodamine 6G, and 8-hydroxyquinoline (as a biocide and a preservative) as key antagonists. Notably, 16 agonists and 20 antagonists were newly reported in the sludge, many exhibiting significant detection frequencies, concentrations, and/or toxicities, demanding future scrutiny. Our study presents an efficient strategy for estimating environmental sample toxicity and identifying key toxicants, thereby supporting the development of appropriate sludge management strategies.
Collapse
Affiliation(s)
- Tongtong Xiang
- College of Sciences, Northeastern University, Shenyang110004, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yuxiang Mao
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environmental Studies, China University of Geosciences, Wuhan430074, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang110004, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
11
|
Ghanbarzadeh M, Ghaffarinejad A, Shahdost-Fard F. A nitrogen-doped hollow carbon nanospheres-based aptasensor for non-invasive salivary detection of progesterone. Talanta 2024; 273:125927. [PMID: 38521026 DOI: 10.1016/j.talanta.2024.125927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Developing an easy-to-use and non-invasive sensor for monitoring progesterone (P4) as a multi-functional hormone is highly demanded for point-of-care testing. In this study, an ultrasensitive electrochemical aptasensor is fabricated for monitoring P4 in human biofluids. The sensing interface was designed based on the porous nitrogen-doped hollow carbon spheres (N-HCSs). The N-HCSs covalently immobilized high-dense aptamer (Apt) sequences as the bioreceptor of P4. The electron transfer of the redox probe was hindered by incubating P4 on the aptasensor surface and forming the P4-Apt complexes. Meanwhile, the signaling was decreased under two wide linear dynamic ranges (LDRs) from 10 fM to 5.6 μM with a limit of detection (LOD) value of 3.33 fM. The aptasensor presented satisfactory selectivity in the presence of different off-target species with successful feasibility for P4 detection in some human urine and saliva samples. The aptasensor with high sensitivity, as an advantage for on-site and sensitive measurement of P4, can be considered a non-invasive tool for routine analysis of real-world clinical samples method.
Collapse
Affiliation(s)
- Mahsa Ghanbarzadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| | - Faezeh Shahdost-Fard
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| |
Collapse
|
12
|
Siddiqui SA, Adli DN, Nugraha WS, Yudhistira B, Lavrentev FV, Shityakov S, Feng X, Nagdalian A, Ibrahim SA. Social, ethical, environmental, economic and technological aspects of rabbit meat production - A critical review. Heliyon 2024; 10:e29635. [PMID: 38699749 PMCID: PMC11063435 DOI: 10.1016/j.heliyon.2024.e29635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Rabbit (RM) has become a valuable source of nutrients since the 1970s, helping to transform the European food industry into the largest RM producer in the world. However, the RM industry is experiencing a critical period of ethical imbalance. This trend, described as feed conversion ratio, impacts the environmental and financial performance of RM farms, which could lead to an increase production of industrial waste. In addition, the loss of corporate ethical responsibility and sustainable development by RM-oriented companies has further exacerbated the situation. Our objective was to summarize current trends in the RM industry and markets, highlighting possible strengths and weaknesses. This review shows current approaches in sustainable techniques in RM production processes, ethical issue, environmental and processing responsibility of RM producers, as well as social responsibilities and ethical practices of slaughterhouses and RM producers, sustainable environmental practices of slaughterhouses, technological aspects and safety of RM and social drivers in RM market. The analysis of reviewed literature revealed the potential strategies for sustainable RM production.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610-D, Quakenbrück, Germany
| | - Danung Nur Adli
- Faculty of Animal Science, Universitas Brawijaya, 65145, Malang, Indonesia
| | - Widya Satya Nugraha
- Department of Agricultural Socio-Economics, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences (MATE), 1118, Budapest, Hungary
| | - Bara Yudhistira
- Department of Food Science and Technology, Faculty of Agriculture, Sebelas Maret University, Surakarta City, 57126, Indonesia
| | - Filipp V. Lavrentev
- Infochemistry Scientific Center, ITMO University, 197101, Saint-Petersburg, Russia
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, 197101, Saint-Petersburg, Russia
| | - Xi Feng
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, CA 95192, USA
| | - Andrey Nagdalian
- Scientific Department, Saint-Petersburg State Agrarian University, 196601, Saint-Petersburg, Russia
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC, 27411, USA
| |
Collapse
|
13
|
Benedetto A, Šťastný K, Giaccio N, Marturella M, Biasibetti E, Arigoni M, Calogero R, Gili M, Pezzolato M, Tošnerová K, Hodkovicová N, Faldyna M, Puleio R, Bozzo G, Bozzetta E. RNAseq Analysis of Livers from Pigs Treated with Testosterone and Nandrolone Esters: Selection and Field Validation of Transcriptional Biomarkers. Animals (Basel) 2023; 13:3495. [PMID: 38003113 PMCID: PMC10668810 DOI: 10.3390/ani13223495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The use of anabolic-androgenic steroids (AASs) as growth promoters in farm animals is banned in the European Union, representing both an illicit practice and a risk for consumer health. However, these compounds are still illegally administered, often in the form of synthetic esters. This work aimed to characterize significant coding RNA perturbations related to the illicit administration of testosterone and nandrolone esters in fattening pigs. A total of 27 clinically healthy 90-day-old pigs were randomly assigned to test and control groups. Nine animals were treated with testosterone esters (Sustanon®) and other nine with nandrolone esters (Myodine®). At the end of the trial, liver samples were collected and analyzed using RNAseq, allowing the identification of 491 differentially expressed genes (DEGs). The transcriptional signature was further characterized by a smaller sub-cluster of 143 DEGs, from which a selection of 16 genes was made. The qPCR analysis confirmed that the identified cluster could still give good discrimination between untreated gilt and barrows compared to the relative testosterone-treated counterparts. A conclusive field survey on 67 liver samples collected from pigs of different breeds and weight categories confirmed, in agreement with testosterone residue profiles, the specificity of selected transcriptional biomarkers, showing their potential applications for screening purposes when AAS treatment is suspected, allowing to focus further investigations of competent authorities and confirmatory analysis where needed.
Collapse
Affiliation(s)
- Alessandro Benedetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (N.G.); (M.M.); (E.B.); (M.G.); (M.P.); (E.B.)
| | - Kamil Šťastný
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.Š.); (K.T.); (N.H.); (M.F.)
| | - Nunzia Giaccio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (N.G.); (M.M.); (E.B.); (M.G.); (M.P.); (E.B.)
| | - Marianna Marturella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (N.G.); (M.M.); (E.B.); (M.G.); (M.P.); (E.B.)
| | - Elena Biasibetti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (N.G.); (M.M.); (E.B.); (M.G.); (M.P.); (E.B.)
| | - Maddalena Arigoni
- Dipartimento di Biotecnologie e Scienze della Salute, Core-Lab di Bioinformatica e Genomica, Università degli Studi di Torino, 10124 Turin, Italy; (M.A.); (R.C.)
| | - Raffaele Calogero
- Dipartimento di Biotecnologie e Scienze della Salute, Core-Lab di Bioinformatica e Genomica, Università degli Studi di Torino, 10124 Turin, Italy; (M.A.); (R.C.)
| | - Marilena Gili
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (N.G.); (M.M.); (E.B.); (M.G.); (M.P.); (E.B.)
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (N.G.); (M.M.); (E.B.); (M.G.); (M.P.); (E.B.)
| | - Kristína Tošnerová
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.Š.); (K.T.); (N.H.); (M.F.)
| | - Nikola Hodkovicová
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.Š.); (K.T.); (N.H.); (M.F.)
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.Š.); (K.T.); (N.H.); (M.F.)
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy;
| | - Giancarlo Bozzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy;
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (N.G.); (M.M.); (E.B.); (M.G.); (M.P.); (E.B.)
| |
Collapse
|
14
|
Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, Chang SW, Ravindran B, Mannacharaju M, Ghotekar S, Khoo KS. Deleterious effect of gestagens from wastewater effluent on fish reproduction in aquatic environment: A review. ENVIRONMENTAL RESEARCH 2023; 236:116810. [PMID: 37532209 DOI: 10.1016/j.envres.2023.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
Collapse
Affiliation(s)
- J S Jenila
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - J Christina Oviya
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India; Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Ganesh Munusamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Balasubramani Ravindran
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Mahesh Mannacharaju
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa, 396 230, Dadra and Nagar Haveli (UT), India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
15
|
Antonopoulou D, Giantsis IA, Symeon GK, Avdi M. Association of MTNR1A and GDF9 gene allelles with the reproductive performance, response to oestrus induction treatments and prolificacy, in improved and non-improved local indigenous sheep breeds. Reprod Domest Anim 2023; 58:1532-1541. [PMID: 37668279 DOI: 10.1111/rda.14468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Sheep farming plays a crucial role for Mediterranean countries, wherefrom a plethora of dairy products is produced. Yet, numerous indigenous sheep breeds in temperate latitudes such as the Mediterranean present a serious drawback that milk production is impaired by the seasonality of reproduction. Towards the efforts for reduction of this phenomenon, the purpose of this study was to evaluate and compare different oestrus synchronization treatments, as well as to associate two genes alleles', namely the MTNR1A and the GDF9, with the response to those treatments. Three indigenous breeds were investigated (Florina, Chios and Karagouniko sheep) and inside each breed three different oestrus synchronization treatments were applied (A: intravaginal sponges, B: GNRH use and C: male effect). In group A, Florina ewes expressed oestrus at 90% in July and fecundity was 85%. Karagouniko and Chios ewes exhibited an oestrus expression of 100% with fecundity rates at 95% and 99%, respectively. In group B, Florina ewes expressed oestrus at 60% with fecundity at 57%, Karagouniko ewes expressed oestrus at 65% with fecundity at 54%, whereas Chios breed animals expressed oestrus at 87% with fecundity rate at 85%. In group C, 68% of the Florina breed expressed oestrus 20-25 days post ram induction, whereas this proportion was 84% and 94%, for Karagouniko and Chios breed, respectively. For the molecular analysis, partial segments of the two genes were sequenced and analysed, whereas alleles were scored based on the detected SNPs. All frequencies of the four detected SNPs in MTNR1A gene were statistically and significantly different in ewes that expressed oestrus in comparison with ewes that did not express oestrus in Florina and Karagouniko breeds concerning all treatments. Two SNP's were detected in GDF9 gene, G1 and FecG , from which, only the FecG mutation exhibited statistically significant difference in twins and triplets than in singles in Florina and Karagouniko breeds.
Collapse
Affiliation(s)
- Danai Antonopoulou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - George K Symeon
- Research Institute of Animal Science, HAO-Demeter, Giannitsa, Greece
| | - Melpomeni Avdi
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Anabolic Steroids in Fattening Food-Producing Animals—A Review. Animals (Basel) 2022; 12:ani12162115. [PMID: 36009705 PMCID: PMC9405261 DOI: 10.3390/ani12162115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Anabolic steroids significantly affect animal tissues and cause morphological and histological changes, which are often irreversible. This issue is currently a very hot topic, as the answers to the questions concerning the health of endangered animals and humans vary greatly from country to country. There is a need to further investigate whether the use of anabolic steroids in animal fattening threatens consumer health and to develop new tools for the detection of anabolic steroids in meat. One possibility for detection could be to observe histological changes in the tissues, which form a typical pattern of anabolic abuse. This review gathered information on the anabolic steroids most commonly used in animal fattening, the legislation governing this issue, and the main effects of anabolics on animal tissues. Abstract Anabolic steroids are chemically synthetic derivatives of the male sex hormone testosterone. They are used in medicine for their ability to support muscle growth and healing and by athletes for esthetic purposes and to increase sports performance, but another major use is in fattening animals to increase meat production. The more people there are on Earth, the greater the need for meat production and anabolic steroids accelerate the growth of animals and, most importantly, increase the amount of muscle mass. Anabolic steroids also have proven side effects that affect all organs and tissues, such as liver and kidney parenchymal damage, heart muscle degeneration, organ growth, coagulation disorders, and increased risk of muscle and tendon rupture. Anabolic steroids also have a number of harmful effects on the developing brain, such as brain atrophy and changes in gene expression with consequent changes in the neural circuits involved in cognitive functions. Behavioral changes such as aggression, irritability, anxiety and depression are related to changes in the brain. In terms of long-term toxicity, the greatest impact is on the reproductive system, i.e., testicular shrinkage and infertility. Therefore, their abuse can be considered a public health problem. In many countries around the world, such as the United States, Canada, China, Argentina, Australia, and other large meat producers, the use of steroids is permitted but in all countries of the European Union there is a strict ban on the use of anabolic steroids in fattening animals. Meat from a lot of countries must be carefully inspected and monitored for steroids before export to Europe. Gas or liquid chromatography methods in combination with mass spectrometry detectors and immunochemical methods are most often used for the analysis of these substances. These methods have been considered the most modern for decades, but can be completely ineffective if they face new synthetic steroid derivatives and want to meet meat safety requirements. The problem of last years is the application of “cocktails” of anabolic substances with very low concentrations, which are difficult to detect and are difficult to quantify using conventional detection methods. This is the reason why scientists are trying to find new methods of detection, mainly based on changes in the structure of tissues and cells and their metabolism. This review gathered this knowledge into a coherent form and its findings could help in finding such a combination of changes in tissues that would form a typical picture for evidence of anabolic misuse.
Collapse
|