1
|
Ko DK, Lee H, Kim DI, Park YM, Kang N. Transcranial direct current stimulation improves heart rate variability: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111072. [PMID: 38925337 DOI: 10.1016/j.pnpbp.2024.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Heart rate variability (HRV) is a useful tool for evaluating cardiovascular autonomic nervous system (ANS) functions. This systematic review and meta-analysis examined the potential effects of transcranial direct current stimulation (tDCS) protocols on HRV parameters. METHODS This study acquired 97 comparisons from 24 qualified studies for data synthesis. Using standardized mean difference (SMD), individual and overall effect sizes were estimated to show differences in HRV variables between active tDCS and sham stimulation conditions. More positive effect size values indicated that active tDCS caused greater increases in HRV than sham stimulation. Furthermore, moderator variable analyses were performed to determine whether changes in HRV variables differed depending on (a) task types (physical stress versus psychological stress versus resting condition), (b) targeted brain regions, (c) stimulation polarity, (d) characteristics of participants, and (e) specific HRV variables. Finally, we used meta-regression analyses to determine whether different tDCS parameters (i.e., the number of tDCS sessions, stimulation duration, and density) were associated with changes in HRV patterns. RESULTS The random-effects model meta-analysis showed that tDCS protocols significantly improved HRV variables (SMD = 0.400; P < 0.001). Moreover, for increasing HRV during the physical stress task (SMD = 1.352; P = 0.001), anodal stimulation on the M1 was effective, while combined polarity stimulation on the PFC improved HRV during the psychological stress task (SMD = 0.550; P < 0.001) and resting condition (SMD = 0.192; P = 0.012). Additional moderator variables and meta-regression analyses failed to show that tDCS protocols had positive effects in certain conditions, such as different stimulus polarity, characteristics of participants, specific HRV variables, and tDCS parameters. CONCLUSION These findings tentatively suggest that using tDCS protocols to stimulate optimal targeted brain areas may be effective in improving HRV patterns potentially related to cardiovascular ANS functions.
Collapse
Affiliation(s)
- Do-Kyung Ko
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| | - Hajun Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| | - Dong-Il Kim
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Health & Kinesiology, Incheon National University, Incheon, South Korea.
| | - Young-Min Park
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Health & Kinesiology, Incheon National University, Incheon, South Korea.
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| |
Collapse
|
2
|
Weizman L, Sharon H, Dayan L, Espaniol J, Brill S, Nahman-Averbuch H, Hendler T, Jacob G. Oral Delta-9-Tetrahydrocannabinol (THC) Increases Parasympathetic Activity and Supraspinal Conditioned Pain Modulation in Chronic Neuropathic Pain Male Patients: A Crossover, Double-Blind, Placebo-Controlled Trial. CNS Drugs 2024; 38:375-385. [PMID: 38597988 PMCID: PMC11026292 DOI: 10.1007/s40263-024-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Disordered autonomic nervous system regulation and supraspinal pain inhibition have been repeatedly described in chronic pain. We aimed to explore the effects of δ-9-tetrahydrocannabinol (THC), an emerging treatment option, on autonomic nervous system and central pain modulation measures in patients with chronic pain. METHODS Twelve male patients with chronic radicular neuropathic pain participated in a randomized, double-blind, crossover, placebo-controlled, single-administration trial. Low/high frequency (LF/HF) heart rate variability (HRV) ratio and conditioned pain modulation (CPM) response were measured and resting-state functional magnetic resonance imaging (MRI) was performed at baseline and after sublingual administration of either 0.2 mg/kg oral THC or placebo. RESULTS THC significantly reduced the LF/HF ratio compared with placebo (interaction effect F(1,11) = 20.5; p < 0.005) and significantly improved CPM responses (interaction effect F(1,9) = 5.2; p = 0.048). The THC-induced reduction in LF/HF ratio correlated with increased functional connectivity between the rostral ventrolateral medulla and the dorsolateral prefrontal cortex [T(10) = 6.4, cluster p-FDR < 0.005]. CONCLUSIONS THC shifts the autonomic balance towards increased parasympathetic tone and improves inhibitory pain mechanisms in chronic pain. The increase in vagal tone correlates with connectivity changes in higher-order regulatory brain regions, suggesting THC exerts top-down effects. These changes may reflect a normalizing effect of THC on multiple domains of supraspinal pain dysregulation. CLINICAL TRIAL REGISTRY NUMBER NCT02560545.
Collapse
Affiliation(s)
- Libat Weizman
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Haggai Sharon
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Anesthesiology and Critical Care Medicine, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Lior Dayan
- Department of Anesthesiology and Critical Care Medicine, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Joumana Espaniol
- Department of Internal Medicine F, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Recanati Autonomic Dysfunction Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Silviu Brill
- Department of Anesthesiology and Critical Care Medicine, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hadas Nahman-Averbuch
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University Pain Center, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Talma Hendler
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Giris Jacob
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Internal Medicine F, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Recanati Autonomic Dysfunction Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.
| |
Collapse
|
3
|
Wang Y, Zhang J, Li Y, Qi S, Zhang F, Ball LJ, Duan H. Preventing prefrontal dysfunction by tDCS modulates stress-induced creativity impairment in women: an fNIRS study. Cereb Cortex 2023; 33:10528-10545. [PMID: 37585735 DOI: 10.1093/cercor/bhad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
Stress is a major external factor threatening creative activity. The study explored whether left-lateralized activation in the dorsolateral prefrontal cortex manipulated through transcranial direct current stimulation could alleviate stress-induced impairment in creativity. Functional near-infrared spectroscopy was used to explore the underlying neural mechanisms. Ninety female participants were randomly assigned to three groups that received stress induction with sham stimulation, stress induction with true stimulation (anode over the left and cathode over the right dorsolateral prefrontal cortex), and control manipulation with sham stimulation, respectively. Participants underwent the stress or control task after the transcranial direct current stimulation manipulation, and then completed the Alternative Uses Task to measure creativity. Behavioral results showed that transcranial direct current stimulation reduced stress responses in heart rate and anxiety. The functional near-infrared spectroscopy results revealed that transcranial direct current stimulation alleviated dysfunction of the prefrontal cortex under stress, as evidenced by higher activation of the dorsolateral prefrontal cortex and frontopolar cortex, as well as stronger inter-hemispheric and intra-hemispheric functional connectivity within the prefrontal cortex. Further analysis demonstrated that the cortical regulatory effect prevented creativity impairment induced by stress. The findings validated the hemispheric asymmetry hypothesis regarding stress and highlighted the potential for brain stimulation to alleviate stress-related mental disorders and enhance creativity.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Jiaqi Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Yadan Li
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Senqing Qi
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| | - Fengqing Zhang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA 19104, USA
| | - Linden J Ball
- School of Psychology & Computer Science, University of Central Lancashire, Preston PR1 2HE, UK
| | - Haijun Duan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 041000, China
| |
Collapse
|
4
|
Wang Y, Gao H, Qi M. Left dorsolateral prefrontal cortex activation can accelerate stress recovery: A repetitive transcranial stimulation study. Psychophysiology 2023; 60:e14352. [PMID: 37221649 DOI: 10.1111/psyp.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
In this study, a single high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) session was applied over the left dorsolateral prefrontal cortex (DLPFC) after a moderate-to-intense stressor to investigate whether left DLPFC stimulation could regulate cortisol concentration after stress induction. Participants were randomly divided into three groups (stress-TMS, stress, and placebo-stress). Stress was induced in both the stress-TMS and stress groups using the Trier Social Stress Test (TSST). The placebo-stress group received a placebo TSST. In the stress-TMS group, a single HF-rTMS session was applied over the left DLPFC after TSST. Cortisol was measured across the different groups, and each group's responses to the stress-related questionnaire were recorded. After TSST, both the stress-TMS and stress groups reported increased self-reported stress, state anxiety, negative affect, and cortisol concentration compared with the placebo-stress group, indicating that TSST successfully induced a stress response. Compared with the stress group, the stress-TMS group exhibited reduced cortisol levels at 0, 15, 30, and 45 min after HF-rTMS. These results suggest that left DLPFC stimulation after stress induction might accelerate the stress recovery.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Psychology, Liaoning Normal University, Dalian, China
| | - Heming Gao
- School of Psychology, Liaoning Normal University, Dalian, China
| | - Mingming Qi
- School of Psychology, Liaoning Normal University, Dalian, China
| |
Collapse
|
5
|
Lande NM, Ask TF, Sætren SS, Lugo RG, Sütterlin S. The Role of Emotion Regulation for General Self-Efficacy in Adolescents Assessed Through Both Neurophysiological and Self-Reported Measures. Psychol Res Behav Manag 2023; 16:3373-3383. [PMID: 37650113 PMCID: PMC10464900 DOI: 10.2147/prbm.s406702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Background Self-efficacy, the belief in one's ability and capacity to organize and execute actions required to achieve desired results, is associated with adolescent academic achievement and reduced risk for psychopathology. Adolescent emotion regulation represents an important component in the relationship between self-efficacy and developmental outcomes, but the underlying neurophysiological mechanisms are poorly understood. It is unclear how emotion regulation strategies, which change with experience, and emotion regulation capacity, which is largely determined by genetics, contribute to the development of self-efficacy. Aim The present study aims to explore the relationship between emotion regulation and self-efficacy in adolescents. We hypothesize that neurophysiological emotion regulation capacity moderates the relationship between emotion regulation strategies and self-efficacy. Methods The present study applied a cross-sectional design. A sample of high-school students (N = 45, nfemale = 31, age = 17-18) provided answers on the General Self-Efficacy Questionnaire and the Emotion Regulation Questionnaire. Vagal tone was used as an indicator for emotion regulation capacity. Results In the initial correlational analysis, reappraisal, but not expressive suppression nor vagal tone was associated with self-efficacy. Vagal tone was not associated with any self-report measures of emotion regulation or self-efficacy. Contrary to our hypothesis, vagal tone did not moderate the relationship between emotion regulation and self-efficacy. Conclusion This is the first study assessing the relationship between neurophysiological indicators of emotion regulation and self-efficacy. Our results do not indicate that vagal tone moderates the relationship between emotion regulation strategies and general self-efficacy. Future studies should also assess the possible influence of metacognition and interoception on relationships.
Collapse
Affiliation(s)
| | - Torvald F Ask
- Department of Health, Welfare and Organization, Østfold University College, Halden, Norway
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Sjur Skjørshammer Sætren
- Department for Child and Adolescent Research, Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
- TIPS Centre for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway
| | - Ricardo Gregorio Lugo
- Department of Health, Welfare and Organization, Østfold University College, Halden, Norway
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
- Centre for Digital Forensics and Cybersecurity, Tallinn University of Technology, Tallinn, Estonia
| | - Stefan Sütterlin
- Department of Health, Welfare and Organization, Østfold University College, Halden, Norway
- Centre for Digital Forensics and Cybersecurity, Tallinn University of Technology, Tallinn, Estonia
- Faculty of Computer Science, Albstadt-Sigmaringen University, Sigmaringen, Germany
| |
Collapse
|
6
|
Toufexis C, Macgregor M, Lewis A, Flood A. The effects of high-definition transcranial direct current stimulation on pain modulation and stress-induced hyperalgesia. Br J Pain 2023; 17:244-254. [PMID: 37342399 PMCID: PMC10278446 DOI: 10.1177/20494637221150333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Background The dorsolateral prefrontal cortex (DLPFC) has been implicated in the modulation of pain-related signals. Given this involvement, manipulation of the DLPFC through transcranial direct current stimulation (tDCS) may influence internal pain modulation and decrease pain sensitivity. Acute stress is also thought to affect pain, with increased pain sensitivity observed following the presentation of an acute stressor. Methods A total of 40 healthy adults (50% male), ranging in age from 19 to 28 years (M = 22.13, SD = 1.92), were randomly allocated to one of two stimulation conditions (active and sham). High-definition tDCS (HD-tDCS) was applied for 10 min at 2 mA, with the anode placed over the left DLPFC. Stress was induced after HD-tDCS administration using a modified version of the Trier Social Stress Test. Pain modulation and sensitivity were assessed through the conditioned pain modulation paradigm and pressure pain threshold measurements, respectively. Results Compared to sham stimulation, active stimulation produced a significant increase in pain modulation capacity. No significant change in pain sensitivity and stress-induced hyperalgesia was observed following active tDCS. Conclusion This research shows novel evidence that anodal HD-tDCS over the DLPFC significantly enhances pain modulation. However, HD-tDCS had no effect on pain sensitivity or stress-induced hyperalgesia. The observed effect on pain modulation after a single dose of HD-tDCS over the DLPFC is a novel finding that informs further research into the utility of HD-tDCS in the treatment of chronic pain by presenting the DLPFC as an alternative target site for tDCS-induced analgesia.
Collapse
Affiliation(s)
- Constantino Toufexis
- Faculty of Health, Discipline of Psychology, University of Canberra, Canberra, ACT, Australia
| | - Molly Macgregor
- Faculty of Health, Discipline of Psychology, University of Canberra, Canberra, ACT, Australia
| | - Aidan Lewis
- Faculty of Health, Discipline of Psychology, University of Canberra, Canberra, ACT, Australia
| | - Andrew Flood
- Faculty of Health, Discipline of Psychology, University of Canberra, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
7
|
Pedraz-Petrozzi B, Sardinha H, Gilles M, Deuschle M. Effects of left anodal transcranial direct current stimulation on hypothalamic-pituitary-adrenal axis activity in depression: a randomized controlled pilot trial. Sci Rep 2023; 13:5619. [PMID: 37024593 PMCID: PMC10079657 DOI: 10.1038/s41598-023-32531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
The main objective of this study was to evaluate the effect of left anodal transcranial direct current stimulation (tDCS) on hypothalamic-pituitary-adrenal axis (HPAA) activity in individuals with depression. We conducted a 3-week, randomized, triple-blind pilot trial with 47 participants (dropout rate: 14.89%) randomly assigned to either the tDCS or control group (sham stimulation). Salivary cortisol was used as an HPAA activity marker since cortisol is the effector hormone of the HPAA. The primary outcome was the effect of tDCS on the diurnal cortisol pattern (DCP and area under the curve with respect to ground -AUCg-). Secondary outcomes included tDCS effects on cortisol awakening response (CAR) and cortisol decline (CD), as well as the variation of cortisol concentrations between the initiation of tDCS and 2 weeks later. Intention-to-treat and per-protocol analyses were conducted. Our primary outcome showed an absent effect of tDCS on DCP and AUCg. Additionally, tDCS had an absent effect on CAR, CD, and cortisol concentration variation before-after stimulation. Our pilot study suggests that anodal tDCS showed an absent effect on HPAA activity in individuals with depression. More studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Bruno Pedraz-Petrozzi
- Department of Psychiatry and Psychotherapy, RG Stress, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
| | - Helena Sardinha
- Department of Psychiatry and Psychotherapy, RG Stress, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, RG Stress, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, RG Stress, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| |
Collapse
|
8
|
Vignaud P, Adam O, Palm U, Baeken C, Prieto N, Poulet E, Brunelin J. Can a single session of noninvasive brain stimulation applied over the prefrontal cortex prevent stress-induced cortisol release? Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110667. [PMID: 36273508 DOI: 10.1016/j.pnpbp.2022.110667] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION A better understanding of how the hypothalamic-pituitary-adrenal (HPA) axis can be externally regulated is of major importance, especially because hyperreactivity to stress has been proposed as a key factor in the onset and maintenance of many psychiatric conditions. Over the past decades, numerous studies have investigated whether non-invasive brain stimulation (NIBS) can regulate HPA axis reactivity in acute stress situation. As the current results did not allow us to draw clear conclusions, we decided to conduct a systematic review of the literature investigating the effect of a single NIBS session on stress-induced cortisol release. METHODS We searched MEDLINE and Web Of Science for articles indexed through December 2021. Among the 246 articles identified, 15 fulfilled our inclusion criteria with a quality estimated between 52 and 93%. RESULTS Of the different NIBS used and targeted brain regions, stimulating the left dorsolateral prefrontal cortex, with either high frequency repetitive transcranial magnetic stimulation or anodal transcranial direct current stimulation, seems to be the most appropriate for reducing cortisol release in acute stress situations. CONCLUSIONS Despite the heterogeneity of the stimulation parameters, the characteristics of participants, the modalities of cortisol collection, the timing of the NIBS session in relation to the stressor exposure, and methodological considerations, stimulating the left dorsolateral prefrontal cortex can be efficient to modulate stress-induced cortisol release.
Collapse
Affiliation(s)
- Philippe Vignaud
- Regional Centre for Psychotraumatic Disorders, Hôpital Edouard Herriot, F-69437 Lyon, France; Emergency Medical Service, Cellule D'urgences Medico-Psychologiques, Hôpital Edouard Herriot, F-69437 Lyon, France; INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France.
| | - Ondine Adam
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France.
| | - Ulrich Palm
- Dept. of Psychiatry and Psychotherapy, Munich University Hospital, Munich, Germany; Medicalpark Chiemseeblick, Bernau-Felden, Germany.
| | - Chris Baeken
- Ghent University, Dept. of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB) Department of Psychiatry (UZBrussel), Belgium; Eindhoven University of Technology, Department of ELectrical Engineering, the Netherlands.
| | - Nathalie Prieto
- Regional Centre for Psychotraumatic Disorders, Hôpital Edouard Herriot, F-69437 Lyon, France; Emergency Medical Service, Cellule D'urgences Medico-Psychologiques, Hôpital Edouard Herriot, F-69437 Lyon, France.
| | - Emmanuel Poulet
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France; Department of Psychiatric Emergency, Hôpital Edouard Herriot, F-69437 Lyon, France.
| | - Jérôme Brunelin
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France.
| |
Collapse
|
9
|
Carnevali L, Bignami E, Gambetta S, Barbetti M, Procopio M, Freyrie A, Carbognani P, Ampollini L, Sgoifo A. Cardiac autonomic and cortisol stress responses to real operations in surgeons: relationship with individual psychobiological characteristics and experience. Biopsychosoc Med 2023; 17:5. [PMID: 36810132 PMCID: PMC9942282 DOI: 10.1186/s13030-023-00266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Surgeons are exposed to high levels of intraoperative stress, which could compromise their psychological well-being in the long term. This study aimed at exploring the effects of real operations on the activity of stress response systems (i.e., cardiac autonomic function and hypothalamic-pituitary-adrenal axis) during and in the aftermath of surgery, and the moderating role of individual psychobiological characteristics and different levels of experience (senior vs expert surgeons). METHODS Heart rate, heart rate variability, and salivary cortisol measures (as indexes of cardiac autonomic and hypothalamic-pituitary-adrenal axis activity, respectively) were assessed during real operations and in the perioperative period in a sample of surgeons (n = 16). Surgeons' psychometric characteristics were collected using questionnaires. RESULTS Real operations triggered both cardiac autonomic and cortisol stress responses which were independent from surgeons' level of experience. Intraoperative stress responses did not affect cardiac autonomic activity during the following night but were associated with a blunted cortisol awakening response. Moreover, senior surgeons reported higher levels of negative affectivity and depressive symptoms than expert surgeons prior to the surgery. Lastly, the magnitude of heart rate responses to surgery positively correlated with scores on negative affectivity, depression, perceived stress, and trait anxiety scales. CONCLUSION This exploratory study allows to put forward the hypotheses that in surgeons cardiac autonomic and cortisol stress responses to real operations (i) may be associated with specific individual psychological characteristics regardless of the level of experience, (ii) and may have a longer lasting impact on hypothalamic-pituitary-adrenal axis function with potential implications for surgeons' physical and psychological well-being.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Elena Bignami
- grid.10383.390000 0004 1758 0937Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sara Gambetta
- grid.10383.390000 0004 1758 0937Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Margherita Barbetti
- grid.10383.390000 0004 1758 0937Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Matteo Procopio
- grid.10383.390000 0004 1758 0937Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Freyrie
- grid.10383.390000 0004 1758 0937Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paolo Carbognani
- grid.10383.390000 0004 1758 0937Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Ampollini
- grid.10383.390000 0004 1758 0937Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- grid.10383.390000 0004 1758 0937Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
10
|
De Wandel L, De Smet S, Pulopulos MM, Lemmens GMD, Hidalgo V, Salvador A, Vanderhasselt MA, Pruessner J, Baeken C. The effects of left dorsolateral prefrontal transcranial direct current stimulation on episodic future thinking following acute psychosocial stress. Memory 2023; 31:380-392. [PMID: 36724995 DOI: 10.1080/09658211.2022.2162083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Research on stress-related disorders and brain imaging suggests that (acute) stress might impact the capacity to mentally simulate specific episodic future events (EFT) through the effects of cortisol on brain regions supporting this cognitive function, such as the prefrontal cortices. This study aims to examine the mechanisms underlying this link, using transcranial Direct Current Stimulation (tDCS) over the left dorsolateral prefrontal cortex. METHODS 60 healthy participants were subjected to the Montreal Imaging Stress Task (MIST), followed by either active or sham tDCS. After stimulation, the EFT task was administered. Salivary cortisol was measured throughout the protocol. RESULTS Higher cortisol AUCi values were linked to less specific episodic future thoughts. Moreover, active tDCS enhanced EFT specificity irrespective of cortisol, especially in high trait ruminators. We did not observe an effect from active tDCS on cortisol AUCi, and equally there was no interaction effect between cortisol AUCi and stimulation condition predictive for EFT specificity. CONCLUSION Although we did not find evidence for the effects of tDCS on the HPA-system, our data reveal a crucial link between two critical predictors of mental health for the first time, and provide a solution to help rehabilitate EFT deficits.Trial registration: Netherlands National Trial Register identifier: ntr004..
Collapse
Affiliation(s)
- Linde De Wandel
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University Hospital, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Stefanie De Smet
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University Hospital, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Matias M Pulopulos
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.,Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
| | - Gilbert M D Lemmens
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University Hospital, Ghent, Belgium.,Department of Psychiatry, Ghent University Hospital, Ghent, Belgium
| | - Vanesa Hidalgo
- Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain.,Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Alicia Salvador
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University Hospital, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Jens Pruessner
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Chris Baeken
- Department of Head and Skin - Psychiatry and Medical Psychology, Ghent University Hospital, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.,Department of Psychiatry, University Hospital UZ Brussel, Brussels, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
11
|
Moses TE, Gray E, Mischel N, Greenwald MK. Effects of neuromodulation on cognitive and emotional responses to psychosocial stressors in healthy humans. Neurobiol Stress 2023; 22:100515. [PMID: 36691646 PMCID: PMC9860364 DOI: 10.1016/j.ynstr.2023.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Physiological and psychological stressors can exert wide-ranging effects on the human brain and behavior. Research has improved understanding of how the sympatho-adreno-medullary (SAM) and hypothalamic-pituitary-adrenocortical (HPA) axes respond to stressors and the differential responses that occur depending on stressor type. Although the physiological function of SAM and HPA responses is to promote survival and safety, exaggerated psychobiological reactivity can occur in psychiatric disorders. Exaggerated reactivity may occur more for certain types of stressors, specifically, psychosocial stressors. Understanding stressor effects and how the body regulates these responses can provide insight into ways that psychobiological reactivity can be modulated. Non-invasive neuromodulation is one way that responding to stressors may be altered; research into these interventions may provide further insights into the brain circuits that modulate stress reactivity. This review focuses on the effects of acute psychosocial stressors and how neuromodulation might be effective in altering stress reactivity. Although considerable research into stress interventions focuses on treating pathology, it is imperative to first understand these mechanisms in non-clinical populations; therefore, this review will emphasize populations with no known pathology and consider how these results may translate to those with psychiatric pathologies.
Collapse
Affiliation(s)
| | | | | | - Mark K. Greenwald
- Corresponding author. Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
| |
Collapse
|
12
|
Gu Z, Chen W, Lu Q, Dai J, Hu S, Xu K, Geng Y, Zhu Y, Xu B, Dai W, Shen Y. Anodal high-definition transcranial direct current stimulation reduces heart rate and modulates heart-rate variability in healthy young people: A randomized cross-controlled trial. Front Cardiovasc Med 2022; 9:1070157. [PMID: 36531710 PMCID: PMC9755739 DOI: 10.3389/fcvm.2022.1070157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE To investigate whether anodal high-definition transcranial current stimulation (HD-tDCS) over the left dorsolateral pre-frontal cortex (DLPFC) could modulate the heart rate (HR) and heart-rate variability (HRV) in healthy young people. METHODS Forty healthy young people were enrolled in this randomized crossover trial. The participants were randomized to receive anodal HD-tDCS (n = 20) or sham HD-tDCS (n = 20) over the left DLPFC with a washout period of 1 week. Electrocardiogram (ECG) data were continuously recorded 20 min before the stimulation, during the session (20 min), and 20 min after the session. HR and the time- and frequency-domain indices of the HRV were measured to investigate the activity of the sympathetic and parasympathetic nervous systems. RESULTS Anodal HD-tDCS over the left DLPFC induced a significant decrease in HR and a significant increase in the average of normal-to-normal intervals (AVG NN), low-frequency (LF) power, total power (TP), and LF/high-frequency (HF) ratio in comparison with the sham stimulation and the baseline. However, sham HD-tDCS over the left DLPFC had no significant effect on HR or HRV. CONCLUSIONS Anodal HD-tDCS over the left DLPFC could reduce HR and modulate the HRV in healthy young people. HD-tDCS may show some potential for acutely modulating cardiovascular function.
Collapse
Affiliation(s)
- Zhongke Gu
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Wenxiang Chen
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Jiansong Dai
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Shugang Hu
- Department of Rehabilitation, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
| | - Kai Xu
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Yao Geng
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Boqing Xu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Dai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Alkhasli I, Mottaghy FM, Binkofski F, Sakreida K. Preconditioning prefrontal connectivity using transcranial direct current stimulation and transcranial magnetic stimulation. Front Hum Neurosci 2022; 16:929917. [PMID: 36034122 PMCID: PMC9403141 DOI: 10.3389/fnhum.2022.929917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) have been shown to modulate functional connectivity. Their specific effects seem to be dependent on the pre-existing neuronal state. We aimed to precondition frontal networks using tDCS and subsequently stimulate the left dorsolateral prefrontal cortex (lDLPFC) using TMS. Thirty healthy participants underwent excitatory, inhibitory, or sham tDCS for 10 min, as well as an excitatory intermittent theta-burst (iTBS) protocol (600 pulses, 190 s, 20 × 2-s trains), applied over the lDLPFC at 90% of the individual resting motor threshold. Functional connectivity was measured in three task-free resting state fMRI sessions, immediately before and after tDCS, as well as after iTBS. Testing the whole design did not yield any significant results. Analysis of the connectivity between the stimulation site and all other brain voxels, contrasting only the interaction effect between the experimental groups (excitatory vs. inhibitory) and the repeated measure (post-tDCS vs. post-TMS), revealed significantly affected voxels bilaterally in the anterior cingulate and paracingulate gyri, the caudate nuclei, the insula and operculum cortices, as well as the Heschl’s gyrus. Post-hoc ROI-to-ROI analyses between the significant clusters and the striatum showed post-tDCS, temporo-parietal-to-striatal and temporo-parietal-to-fronto-cingulate differences between the anodal and cathodal tDCSgroup, as well as post-TMS, striatal-to-temporo-parietal differences between the anodal and cathodal groups and frontostriatal and interhemispheric temporo-parietal cathodal-sham group differences. Excitatory iTBS to a tDCS-inhibited lDLPFC thus yielded more robust functional connectivity to various areas as compared to excitatory iTBS to a tDCS-enhanced DLPFC. Even considering reduced statistical power due to low subject numbers, results demonstrate complex, whole-brain stimulation effects. They are possibly facilitated by cortical homeostatic control mechanisms and show the feasibility of using tDCS to modulate subsequent TMS effects. This proof-of-principle study might stimulate further research into the principle of preconditioning that might be useful in the development of protocols using DLPFC as a stimulation site for the treatment of depression.
Collapse
Affiliation(s)
- Isabel Alkhasli
- Section Clinical Cognitive Sciences, Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4), Jülich, Germany
- JARA—BRAIN (Translational Brain Medicine), Jülich and Aachen, Germany
| | - Ferdinand Binkofski
- Section Clinical Cognitive Sciences, Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4), Jülich, Germany
- JARA—BRAIN (Translational Brain Medicine), Jülich and Aachen, Germany
- *Correspondence: Ferdinand Binkofski
| | - Katrin Sakreida
- Department of Neurosurgery, University Hospital, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Cranial Electrotherapy Stimulation (CES) Does Not Reliably Influence Emotional, Physiological, Biochemical, or Behavioral Responses to Acute Stress. JOURNAL OF COGNITIVE ENHANCEMENT 2022. [DOI: 10.1007/s41465-022-00248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Schmaußer M, Hoffmann S, Raab M, Laborde S. The effects of noninvasive brain stimulation on heart rate and heart rate variability: A systematic review and meta-analysis. J Neurosci Res 2022; 100:1664-1694. [PMID: 35582757 DOI: 10.1002/jnr.25062] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 12/30/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are widely used to test the involvement of specific cortical regions in various domains such as cognition and emotion. Despite the capability of stimulation techniques to test causal directions, this approach has been only sparsely used to examine the cortical regulation of autonomic nervous system (ANS) functions such as heart rate (HR) and heart rate variability (HRV) and to test current models in this regard. In this preregistered (PROSPERO) systematic review and meta-analysis, we aimed to investigate, based on meta-regression, whether NIBS represents an effective method for modulating HR and HRV measures, and to evaluate whether the ANS is modulated by cortical mechanisms affected by NIBS. Here we have adhered to the PRISMA guidelines. In a series of four meta-analyses, a total of 131 effect sizes from 35 sham-controlled trials were analyzed using robust variance estimation random-effects meta-regression technique. NIBS was found to effectively modulate HR and HRV with small to medium effect sizes. Moderator analyses yielded significant differences in effects between stimulation of distinct cortical areas. Our results show that NIBS is a promising tool to investigate the cortical regulation of ANS, which may add to the existing brain imaging and animal study literature. Future research is needed to identify further factors modulating the size of effects. As many of the studies reviewed were found to be at high risk of bias, we recommend that methods to reduce potential risk of bias be used in the design and conduct of future studies.
Collapse
Affiliation(s)
| | - Sven Hoffmann
- Institute of Psychology, University of Hagen, Hagen, Germany
| | - Markus Raab
- Institute of Psychology, German Sport University, Cologne, Germany.,School of Applied Sciences, London South Bank University, London, UK
| | - Sylvain Laborde
- Institute of Psychology, German Sport University, Cologne, Germany.,UFR STAPS, EA 4260, Université de Caen Normandie, Caen, France
| |
Collapse
|
16
|
Chen X, Xu L, Li Z. Autonomic Neural Circuit and Intervention for Comorbidity Anxiety and Cardiovascular Disease. Front Physiol 2022; 13:852891. [PMID: 35574459 PMCID: PMC9092179 DOI: 10.3389/fphys.2022.852891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022] Open
Abstract
Anxiety disorder is a prevalent psychiatric disease and imposes a significant influence on cardiovascular disease (CVD). Numerous evidence support that anxiety contributes to the onset and progression of various CVDs through different physiological and behavioral mechanisms. However, the exact role of nuclei and the association between the neural circuit and anxiety disorder in CVD remains unknown. Several anxiety-related nuclei, including that of the amygdala, hippocampus, bed nucleus of stria terminalis, and medial prefrontal cortex, along with the relevant neural circuit are crucial in CVD. A strong connection between these nuclei and the autonomic nervous system has been proven. Therefore, anxiety may influence CVD through these autonomic neural circuits consisting of anxiety-related nuclei and the autonomic nervous system. Neuromodulation, which can offer targeted intervention on these nuclei, may promote the development of treatment for comorbidities of CVD and anxiety disorders. The present review focuses on the association between anxiety-relevant nuclei and CVD, as well as discusses several non-invasive neuromodulations which may treat anxiety and CVD.
Collapse
Affiliation(s)
- Xuanzhao Chen
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Li Xu
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command, Wuhan, China
| | - Zeyan Li
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
17
|
Sesa-Ashton G, Wong R, McCarthy B, Datta S, Henderson LA, Dawood T, Macefield VG. Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans. Cereb Cortex Commun 2022; 3:tgac017. [PMID: 35559424 PMCID: PMC9086585 DOI: 10.1093/texcom/tgac017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Muscle sympathetic nerve activity (MSNA) controls the diameter of arterioles in skeletalmuscle, contributing importantly to the beat-to-beat regulation of blood pressure (BP). Although brain imaging studies have shown that bursts of MSNA originate in the rostral ventrolateral medulla, other subcortical and cortical structures-including the dorsolateral prefrontal cortex (dlPFC)-contribute. Hypothesis We tested the hypothesis that MSNA and BP could be modulated by stimulating the dlPFC. Method dlPFC. In 22 individuals MSNA was recorded via microelectrodes inserted into the common peroneal nerve, together with continuous BP, electrocardiographic, and respiration.Stimulation of the right (n=22) or left dlPFC (n=10) was achieved using transcranial alternating current (tcACS; +2 to -2mA, 0.08 Hz,100 cycles), applied between the nasion and electrodes over the F3 or F4 EEG sites on the scalp. Results Sinusoidal stimulation of either dlPFC caused cyclicmodulation of MSNA, BP and heart rate, and a significant increase in BP. Conclusion We have shown, for the first time, that tcACS of the dlPFC in awake humans causes partial entrainment of MSNA, heart rate and BP, arguing for an important role of this higher-level cortical area in the control of cardiovascular function.
Collapse
Affiliation(s)
- Gianni Sesa-Ashton
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Rebecca Wong
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Brendan McCarthy
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sudipta Datta
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Human Autonomic Neurophysiology, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
18
|
Feasibility of Combining Transcranial Direct Current Stimulation and Active Fully Embodied Virtual Reality for Visual Height Intolerance: A Double-Blind Randomized Controlled Study. J Clin Med 2022; 11:jcm11020345. [PMID: 35054039 PMCID: PMC8779186 DOI: 10.3390/jcm11020345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Transcranial Direct Current Stimulation (tDCS) and Virtual Reality Exposure Therapy (VRET) are individually increasingly used in psychiatric research. OBJECTIVE/HYPOTHESIS Our study aimed to investigate the feasibility of combining tDCS and wireless 360° full immersive active and embodied VRET to reduce height-induced anxiety. METHODS We carried out a pilot randomized, double-blind, controlled study associating VRET (two 20 min sessions with a 48 h interval, during which, participants had to cross a plank at rising heights in a building in construction) with online tDCS (targeting the ventromedial prefrontal cortex) in 28 participants. The primary outcomes were the sense of presence level and the tolerability. The secondary outcomes were the anxiety level (Subjective Unit of Discomfort) and the salivary cortisol concentration. RESULTS We confirmed the feasibility of the association between tDCS and fully embodied VRET associated with a good sense of presence without noticeable adverse effects. In both groups, a significant reduction in the fear of height was observed after two sessions, with only a small effect size of add-on tDCS (0.1) according to the SUD. The variations of cortisol concentration differed in the tDCS and sham groups. CONCLUSION Our study confirmed the feasibility of the association between wireless online tDCS and active, fully embodied VRET. The optimal tDCS paradigm remains to be determined in this context to increase effect size and then adequately power future clinical studies assessing synergies between both techniques.
Collapse
|
19
|
Makovac E, Carnevali L, Medina S, Sgoifo A, Petrocchi N, Ottaviani C. Safe in my heart: resting heart rate variability longitudinally predicts emotion regulation, worry, and sense of safeness during COVID-19 lockdown. Stress 2022; 25:9-13. [PMID: 34713763 DOI: 10.1080/10253890.2021.1999408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Resting heart rate variability (HRV), a surrogate index of cardiac vagal modulation, is considered a putative biomarker of stress resilience as it reflects the ability to effectively regulate emotions in a changing environment. However, most studies are cross-sectional, precluding longitudinal inferences. The high degree of uncertainty and fear at a global level that characterizes the COVID-19 pandemic offers a unique opportunity to explore the utility of HRV measures as longitudinal predictors of stress resilience. This study examined whether resting measures of HRV prior to the COVID-19 outbreak (i.e. nearly 2 years before; Time 0) could predict emotion regulation strategies and daily affect in healthy adults during the May 2020 lockdown (Time 1). Moreover, we evaluated the association between HRV measures, emotion regulation strategies, subjective perception of COVID-19 risk, and self-reported depressive symptoms at Time 1. Higher resting HRV at Time 0 predicted a stronger engagement in more functional emotion regulation strategies, as well as of higher daily feelings of safeness and reduced daily worry at Time 1. Moreover, depressive symptoms negatively correlated with HRV and positively correlated with the subjective perception of COVID-19 risk at Time 1. Current data support the view that HRV might not only be a marker but also a precursor of resilience under stressful times.
Collapse
Affiliation(s)
- Elena Makovac
- Centre for Neuroimaging Science, Kings College London, London, UK
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sonia Medina
- Centre for Neuroimaging Science, Kings College London, London, UK
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nicola Petrocchi
- Department of Economics and Social Sciences, John Cabot University, Rome, Italy
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
20
|
Wang Y, Guo X, Wang M, Kan Y, Zhang H, Zhao H, Meilin W, Duan H. Transcranial direct current stimulation of bilateral dorsolateral prefrontal cortex eliminates creativity impairment induced by acute stress. Int J Psychophysiol 2021; 171:1-11. [PMID: 34808142 DOI: 10.1016/j.ijpsycho.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/29/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
The creativity impairment under acute stress may be closely related to the down-regulation of the prefrontal cortex function caused by stress-related neurotransmitters and hormones. In the current study, we explored whether transcranial direct current stimulation (tDCS) over bilateral dorsolateral prefrontal cortex (DLPFC) eliminated stress-induced creativity impairment and the potential mechanism from the perspective of stress response recovery. Seventy participants were randomly allocated to a group undergoing the activation of right DLPFC and the deactivation of left DLPFC (R+L-; N = 35), and a group of sham stimulation (sham; N = 35). Participants received tDCS after the stress induction, and then completed the Alternative Uses Task (AUT) and the Remote Association Task (RAT) during the stimulation. The stress response was indicated using heart rate, cortisol, and emotion changes. Results showed that R+L- stimulation facilitated the recovery of anxious state compared to sham stimulation. We also found that the decreased value of AUT scores after stress in the R+L- group was significantly lower than that in the sham group. Moreover, further analysis revealed state anxiety mediated the effect of tDCS on the flexibility component of the AUT. We concluded that bilateral tDCS over the DLPFC is efficient in alleviating stress-induced creativity impairment, which may correlate with greater recovery of state anxiety. Our findings provide causal evidence for the neurophysiological mechanisms by which stress affects creativity, as well as clinical suggestions for stress-related psychiatric disorders prevention and intervention.
Collapse
Affiliation(s)
- Yifan Wang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Xiaoyu Guo
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Mingjing Wang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Yuecui Kan
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Huan Zhang
- School of Education Science, Shanxi Normal University, Taiyuan, China
| | - Hanxuan Zhao
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Wu Meilin
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Haijun Duan
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China; Collaborative Innovation Center of Assessment toward Basic Education Quality, Beijing Normal University, Beijing, China.
| |
Collapse
|
21
|
Vanderhasselt MA, Ottaviani C. Combining top-down and bottom-up interventions targeting the vagus nerve to increase resilience. Neurosci Biobehav Rev 2021; 132:725-729. [PMID: 34801258 DOI: 10.1016/j.neubiorev.2021.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/14/2021] [Indexed: 12/27/2022]
Abstract
Chronic stress has dramatically increased over the last years and is one of the major health concerns of the 21st century. Targeted interventions are traditionally based on inducing cognitive changes and enhancing control with the aim to promote adaptive emotion regulation, ultimately enhancing stress resilience. Crucially, bodily functions have received little attention in this quest, despite increasing evidence on the impact of mind-body interactions on resilience. An exemplary model is constituted by accumulating empirical support on the vagus nerve, which enables two-way communication between heart and brain, allowing to engage in an adaptive stress response in a context-appropriate manner. Yet, research on such bidirectional communication is mainly correlational. We propose to consider resonance breathing (bottom-up approach, heart > brain), and neuromodulation (top-down approach, brain > heart) as evidence-based ways to increase vagal nerve inhibitory control and hence increase stress resilience. These promising, likely cost-effective and easily employable techniques can be used alone or in combination, harnessing neurobiological scientific advances to select treatment options with the greatest likelihood of success.
Collapse
Affiliation(s)
- Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
22
|
Allaert J, Erdogan M, Sanchez-Lopez A, Baeken C, De Raedt R, Vanderhasselt MA. Prefrontal tDCS Attenuates Self-Referential Attentional Deployment: A Mechanism Underlying Adaptive Emotional Reactivity to Social-Evaluative Threat. Front Hum Neurosci 2021; 15:700557. [PMID: 34483865 PMCID: PMC8416079 DOI: 10.3389/fnhum.2021.700557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Social-evaluative threat (SET) - a situation in which one could be negatively evaluated by others - elicits profound (psycho)physiological reactivity which, if chronically present and not adaptively regulated, has deleterious effects on mental and physical health. Decreased self-awareness and increased other-awareness are understood to be an adaptive response to SET. Attentional deployment - the process of selectively attending to certain aspects of emotional stimuli to modulate emotional reactivity - is supported by fronto-parietal and fronto-limbic networks, with the dorsolateral prefrontal cortex being a central hub. The primary aim of the current study was to investigate the effects of active (versus sham) prefrontal transcranial direct current stimulation (tDCS) on self and other-attentional deployment during the exposure to a SET context. Seventy-four female participants received active or sham tDCS and were subsequently exposed to a rigged social feedback paradigm. In this paradigm a series of social evaluations were presented together with a photograph of the supposed evaluator and a self- photograph of the participant, while gaze behavior (time to first fixation, total fixation time) and skin conductance responses (SCRs; a marker of emotional reactivity) were measured. For half of the evaluations, participants could anticipate the valence (negative or positive) of the evaluation a priori. Analyses showed that participants receiving active tDCS were (a) slower to fixate on their self-photograph, (b) spent less time fixating on their self-photograph, and (c) spent more time fixating on the evaluator photograph. During unanticipated evaluations, active tDCS was associated with less time spent fixating on the evaluation. Furthermore, among those receiving active tDCS, SCRs were attenuated as a function of slower times to fixate on the self-photograph. Taken together, these results suggest that in a context of SET, prefrontal tDCS decreases self-attention while increasing other-attention, and that attenuated self-referential attention specifically may be a neurocognitive mechanism through which tDCS reduces emotional reactivity. Moreover, the results suggest that tDCS reduces vigilance toward stimuli that possibly convey threatening information, corroborating past research in this area.
Collapse
Affiliation(s)
- Jens Allaert
- Ghent Experimental Psychiatry Lab, Department of Head and Skin, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Psychopathology and Affective Neuroscience Laboratory, Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Maide Erdogan
- Research in Developmental Disorders Lab, Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Alvaro Sanchez-Lopez
- Department of Clinical Psychology, Universidad Complutense de Madrid, Madrid, Spain
| | - Chris Baeken
- Ghent Experimental Psychiatry Lab, Department of Head and Skin, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Rudi De Raedt
- Psychopathology and Affective Neuroscience Laboratory, Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Ghent Experimental Psychiatry Lab, Department of Head and Skin, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Psychopathology and Affective Neuroscience Laboratory, Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Smits FM, Schutter DJLG, van Honk J, Geuze E. Does non-invasive brain stimulation modulate emotional stress reactivity? Soc Cogn Affect Neurosci 2021; 15:23-51. [PMID: 31993648 PMCID: PMC7171378 DOI: 10.1093/scan/nsaa011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive emotional responses to stressful events can detrimentally affect psychological functioning and mental health. Recent studies have provided evidence that non-invasive brain stimulation (NBS) targeting the prefrontal cortex (PFC) can affect the regulation of stress-related emotional responses. However, the reliability and effect sizes have not been systematically analyzed. In the present study, we reviewed and meta-analyzed the effects of repetitive transcranial magnetic (rTMS) and transcranial direct current stimulation (tDCS) over the PFC on acute emotional stress reactivity in healthy individuals. Forty sham-controlled single-session rTMS and tDCS studies were included. Separate random effects models were performed to estimate the mean effect sizes of emotional reactivity. Twelve rTMS studies together showed no evidence that rTMS over the PFC influenced emotional reactivity. Twenty-six anodal tDCS studies yielded a weak beneficial effect on stress-related emotional reactivity (Hedges’ g = −0.16, CI95% = [−0.33, 0.00]). These findings suggest that a single session of NBS is insufficient to induce reliable, clinically significant effects but also provide preliminary evidence that specific NBS methods can affect emotional reactivity. This may motivate further research into augmenting the efficacy of NBS protocols on stress-related processes.
Collapse
Affiliation(s)
- Fenne M Smits
- Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Jack van Honk
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.,Department of Psychiatry and Mental Health, University of Cape Town, Observatory, 7925, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Elbert Geuze
- Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
24
|
Mohebbian B, Najafi M, Sabahi P. The effect of transcranial direct current stimulation on sleep quality, resilience, and optimism. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Rodrigues B, Barboza CA, Moura EG, Ministro G, Ferreira-Melo SE, Castaño JB, Ruberti OM, De Amorim RFB, Moreno H. Transcranial direct current stimulation modulates autonomic nervous system and reduces ambulatory blood pressure in hypertensives. Clin Exp Hypertens 2021; 43:320-327. [PMID: 33423544 DOI: 10.1080/10641963.2021.1871916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: Transcranial direct current stimulation (tDCS) seems to positively modulate the autonomic nervous system in different clinical conditions and healthy subjects; however, its effects on hypertensive (HTN) patients are not completely known. This study aimed to evaluate the effects of a tDCS or SHAM session (20 min) on blood pressure (BP) and autonomic variables of HTN patients.Materials and Methods: Subjects (n = 13) were randomly submitted to SHAM and tDCS sessions (1 week of washout). Hemodynamic and autonomic variables were measured at baseline, during, and immediately after tDCS or SHAM stimulation (Finometer®, Beatscope). Ambulatory BP measurement (ABPM) was evaluated after the experimental period.Results: Hemodynamic variables were not changed by tDCS, except for the fall in peripheral vascular resistance (Δ = -1696.51 ± 204.65 dyn.s/cm5). After the tDCS, sympathetic modulation was decreased (-61.47%), and vagal modulation was increased (+38.09%). Such acute autonomic changes may have evoked positive results observed in 24 hs-systolic blood pressure (Δ = -8.4 ± 6.2; P = .0022) and 24hs-diastolic blood pressure (Δ = -5.4 ± 4.2; P = .0010) in tDCS subjects compared with that in SHAM.Conclusion: These findings suggest that the tDCS could promote positive acute adjustments on cardiac autonomic control and reduced values on 24-hs BP of HTN patients. More than a proof-of-concept, these results may point out to the future, where brain stimulation (tDCS) can be used to HTN syndromes, such as refractory HTN.
Collapse
Affiliation(s)
- Bruno Rodrigues
- School of Physical Education, Department of Adapted Physical Activity, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Laboratory of Cardiovascular Pharmacology & Hypertension, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Catarina A Barboza
- School of Physical Education, Department of Adapted Physical Activity, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Laboratory of Cardiovascular Pharmacology & Hypertension, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eliezer G Moura
- School of Physical Education, Department of Adapted Physical Activity, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Laboratory of Cardiovascular Pharmacology & Hypertension, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gabriela Ministro
- School of Physical Education, Department of Adapted Physical Activity, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Laboratory of Cardiovascular Pharmacology & Hypertension, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Silvia E Ferreira-Melo
- Laboratory of Cardiovascular Pharmacology & Hypertension, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Javier B Castaño
- School of Physical Education, Department of Adapted Physical Activity, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Laboratory of Cardiovascular Pharmacology & Hypertension, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Olivia M Ruberti
- Laboratory of Vascular Biology, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Heitor Moreno
- Laboratory of Cardiovascular Pharmacology & Hypertension, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
26
|
De Smet S, Baeken C, De Raedt R, Pulopulos MM, Razza LB, Van Damme S, De Witte S, Brunoni AR, Vanderhasselt MA. Effects of combined theta burst stimulation and transcranial direct current stimulation of the dorsolateral prefrontal cortex on stress. Clin Neurophysiol 2021; 132:1116-1125. [PMID: 33773176 DOI: 10.1016/j.clinph.2021.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Research suggests that the combination of different non-invasive brain stimulation techniques, such as intermittent theta-burst stimulation (iTBS) and transcranial direct current stimulation (tDCS), could enhance the effects of stimulation. Studies investigating the combination of tDCS and iTBS over the dorsolateral prefrontal cortex (DLPFC) are lacking. In this within-subjects study, we evaluated the additive effects of iTBS with tDCS on psychophysiological measures of stress. METHOD Sixty-eight healthy individuals were submitted to a bifrontaltDCS + iTBS and shamtDCS + iTBS protocol targeting the DLPFC with a one-week interval. The Maastricht Acute Stress Test was used to activate the stress system after stimulation. Stress reactivity and recovery were assessed using physiological and self-report measures. RESULTS The stressor evoked significant psychophysiological changes in both stimulation conditions. However, no evidence was found for differences between them in stress reactivity and recovery. Participants reported more pain and feelings of discomfort to the bifrontaltDCS + iTBS protocol. CONCLUSION In this study set-up, iTBS plus tDCS was not superior to iTBS in downregulating stress in healthy subjects. SIGNIFICANCE There is no evidence for an effect of combined tDCS-iTBS of the DLPFC on stress according to the parameters employed in our study. Future studies should explore other stimulation parameters, additive approaches and/or neurobiological markers.
Collapse
Affiliation(s)
- Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.
| | - Chris Baeken
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Department of Psychiatry, Brussels University Hospital, Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands.
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - Matias M Pulopulos
- Department of Psychology and Sociology, University of Zaragoza, Aragon, Spain.
| | - Lais B Razza
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Stefaan Van Damme
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - Sara De Witte
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| |
Collapse
|
27
|
Era V, Carnevali L, Thayer JF, Candidi M, Ottaviani C. Dissociating cognitive, behavioral and physiological stress-related responses through dorsolateral prefrontal cortex inhibition. Psychoneuroendocrinology 2021; 124:105070. [PMID: 33310375 DOI: 10.1016/j.psyneuen.2020.105070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
The left dorsolateral prefrontal cortex (dlPFC) has been implicated in the regulation of stress-related cognitive processes and physiological responses and is the principal target of noninvasive brain stimulation techniques applied to psychiatric conditions. However, existing studies are mostly correlational and causal evidence on the role of this region in mediating specific psychophysiological mechanisms underpinning stress-related responses are needed to make the application of such techniques more efficient. To fill this gap, this study used inhibitory continuous theta burst stimulation (cTBS) in healthy individuals to examine the extent to which activity of the left dlPFC is associated with cognitive (subjective focus on a tracking task), behavioral (reaction times and variability), and physiological responses (heart rate and its variability and cortisol level) following induction of perseverative cognition. Compared to sham and left ventral PreMotor area stimulation (as active control area), inhibition of left dlPFC determined sustained autonomic and neuroendocrine activation and increased the subjective perception of being task-focused, while not changing the behavioral and self-reported stress-related responses. Adopting a causative approach, we describe a role of left dlPFC in inhibitory control of the physiological stress-response associated to perseverative thinking.
Collapse
Affiliation(s)
- Vanessa Era
- Department of Psychology, Sapienza University of Rome, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Matteo Candidi
- Department of Psychology, Sapienza University of Rome, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
28
|
Gheorghe DA, Panouillères MTN, Walsh ND. Investigating the effects of cerebellar transcranial direct current stimulation on saccadic adaptation and cortisol response. CEREBELLUM & ATAXIAS 2021; 8:1. [PMID: 33397502 PMCID: PMC7784285 DOI: 10.1186/s40673-020-00124-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Transcranial Direct Current Stimulation (tDCS) over the prefrontal cortex has been shown to modulate subjective, neuronal and neuroendocrine responses, particularly in the context of stress processing. However, it is currently unknown whether tDCS stimulation over other brain regions, such as the cerebellum, can similarly affect the stress response. Despite increasing evidence linking the cerebellum to stress-related processing, no studies have investigated the hormonal and behavioural effects of cerebellar tDCS. METHODS This study tested the hypothesis of a cerebellar tDCS effect on mood, behaviour and cortisol. To do this we employed a single-blind, sham-controlled design to measure performance on a cerebellar-dependent saccadic adaptation task, together with changes in cortisol output and mood, during online anodal and cathodal stimulation. Forty-five participants were included in the analysis. Stimulation groups were matched on demographic variables, potential confounding factors known to affect cortisol levels, mood and a number of personality characteristics. RESULTS Results showed that tDCS polarity did not affect cortisol levels or subjective mood, but did affect behaviour. Participants receiving anodal stimulation showed an 8.4% increase in saccadic adaptation, which was significantly larger compared to the cathodal group (1.6%). CONCLUSION The stimulation effect on saccadic adaptation contributes to the current body of literature examining the mechanisms of cerebellar stimulation on associated function. We conclude that further studies are needed to understand whether and how cerebellar tDCS may module stress reactivity under challenge conditions.
Collapse
Affiliation(s)
- Delia A. Gheorghe
- School of Psychology, University of East Anglia, Norwich, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Muriel T. N. Panouillères
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- CIAMS, Université Paris-Saclay, 91405 Orsay Cedex, France
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | | |
Collapse
|
29
|
Sgoifo A, Carnevali L, Pattini E, Carandina A, Tanzi G, Del Canale C, Goi P, De Felici Del Giudice MB, De Carne B, Fornari M, Gavazzoli B, Poisa L, Manzoni D, Bollati D. Psychobiological evidence of the stress resilience fostering properties of a cosmetic routine. Stress 2021; 24:53-63. [PMID: 32241205 DOI: 10.1080/10253890.2020.1750590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Everyday life psychosocial stressors contribute to poor health and disease vulnerabilty. Means alternative to pharmacotherapy that are able to foster stress resilience are more and more under the magnifying glass of biomedical research. The aim of this study was to test stress resilience fostering properties of the self-administration of a cosmetic product enriched with essential oils. On day 0, fourty women, 25-50 years old, self-administered both the enriched cosmetic product (ECP) and a placebo one (PCP). Then, women were randomized for daily self-administration (from day 1 to 28) of either ECP (n = 20) or PCP (n = 20). On day 29, subjects underwent a psychosocial stress test (PST). Autonomic (heart rate and its variability) and neuroendocrine (salivary cortisol) parameters were assessed both on day 0 and 29. All subjects filled a number of psychological questionnaires in order to quantify anxiety, perceived stress, and mood profile, and were videorecorded during PST for non-verbal behavior evaluation. A single application of ECP produced an acute potentiation of cardiac parasympathetic modulation, which was not observed when placebo was used. Prolonged self-administration of ECP induced: (i) a dampening of the cortisol rise produced by PST, (ii) a reduction of state anxiety, (iii) a favorable change in mood profile, and (iv) a reduction of non-verbal behavior patterns that signal anxiety, motivational conflict and avoidance. In conclusion, this study suggests that the self-administration of a cosmetic cream enriched with essential oils should be considered as a stress resilience fostering strategy due to its favorable physiological, neuroendocrine and psychological effects.
Collapse
Affiliation(s)
- A Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Stress Control Lab, Italian College of Osteopathy, Parma, Italy
| | - L Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Stress Control Lab, Italian College of Osteopathy, Parma, Italy
| | - E Pattini
- Stress Control Lab, Italian College of Osteopathy, Parma, Italy
| | - A Carandina
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - P Goi
- Davines s.p.a, Parma, Italy
| | | | | | - M Fornari
- Stress Control Lab, Italian College of Osteopathy, Parma, Italy
| | | | | | | | | |
Collapse
|
30
|
Mehrsafar AH, Rosa MAS, Zadeh AM, Gazerani P. A feasibility study of application and potential effects of a single session transcranial direct current stimulation (tDCS) on competitive anxiety, mood state, salivary levels of cortisol and alpha amylase in elite athletes under a real-world competition. Physiol Behav 2020; 227:113173. [DOI: 10.1016/j.physbeh.2020.113173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023]
|
31
|
Baptista AF, Baltar A, Okano AH, Moreira A, Campos ACP, Fernandes AM, Brunoni AR, Badran BW, Tanaka C, de Andrade DC, da Silva Machado DG, Morya E, Trujillo E, Swami JK, Camprodon JA, Monte-Silva K, Sá KN, Nunes I, Goulardins JB, Bikson M, Sudbrack-Oliveira P, de Carvalho P, Duarte-Moreira RJ, Pagano RL, Shinjo SK, Zana Y. Applications of Non-invasive Neuromodulation for the Management of Disorders Related to COVID-19. Front Neurol 2020; 11:573718. [PMID: 33324324 PMCID: PMC7724108 DOI: 10.3389/fneur.2020.573718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Novel coronavirus disease (COVID-19) morbidity is not restricted to the respiratory system, but also affects the nervous system. Non-invasive neuromodulation may be useful in the treatment of the disorders associated with COVID-19. Objective: To describe the rationale and empirical basis of the use of non-invasive neuromodulation in the management of patients with COVID-10 and related disorders. Methods: We summarize COVID-19 pathophysiology with emphasis of direct neuroinvasiveness, neuroimmune response and inflammation, autonomic balance and neurological, musculoskeletal and neuropsychiatric sequela. This supports the development of a framework for advancing applications of non-invasive neuromodulation in the management COVID-19 and related disorders. Results: Non-invasive neuromodulation may manage disorders associated with COVID-19 through four pathways: (1) Direct infection mitigation through the stimulation of regions involved in the regulation of systemic anti-inflammatory responses and/or autonomic responses and prevention of neuroinflammation and recovery of respiration; (2) Amelioration of COVID-19 symptoms of musculoskeletal pain and systemic fatigue; (3) Augmenting cognitive and physical rehabilitation following critical illness; and (4) Treating outbreak-related mental distress including neurological and psychiatric disorders exacerbated by surrounding psychosocial stressors related to COVID-19. The selection of the appropriate techniques will depend on the identified target treatment pathway. Conclusion: COVID-19 infection results in a myriad of acute and chronic symptoms, both directly associated with respiratory distress (e.g., rehabilitation) or of yet-to-be-determined etiology (e.g., fatigue). Non-invasive neuromodulation is a toolbox of techniques that based on targeted pathways and empirical evidence (largely in non-COVID-19 patients) can be investigated in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Brazilian Institute of Neuroscience and Neurotechnology Centros de Pesquisa, Investigação e Difusão - Fundação de Amparo à Pesquisa do Estado de São Paulo (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
| | - Adriana Baltar
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Specialized Neuromodulation Center—Neuromod, Recife, Brazil
| | - Alexandre Hideki Okano
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Brazilian Institute of Neuroscience and Neurotechnology Centros de Pesquisa, Investigação e Difusão - Fundação de Amparo à Pesquisa do Estado de São Paulo (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
- Graduate Program in Physical Education, State University of Londrina, Londrina, Brazil
| | - Alexandre Moreira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Ana Mércia Fernandes
- Centro de Dor, LIM-62, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - André Russowsky Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil
- Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Clarice Tanaka
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
- Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Centro de Dor, LIM-62, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Edgard Morya
- Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Macaiba, Brazil
| | - Eduardo Trujillo
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | - Jaiti K. Swami
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | - Joan A. Camprodon
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katia Monte-Silva
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Applied Neuroscience Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Katia Nunes Sá
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Isadora Nunes
- Department of Physiotherapy, Pontifícia Universidade Católica de Minas Gerais, Betim, Brazil
| | - Juliana Barbosa Goulardins
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Universidade Cruzeiro do Sul (UNICSUL), São Paulo, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | | | - Priscila de Carvalho
- Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Jardim Duarte-Moreira
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | | | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Yossi Zana
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
32
|
Kim HJ, Bae S, Huh JH, Lee JW, Han DH. Hemodynamic Changes in Response to Aerobic Exercise: Near-infrared Spectroscopy Study. Int J Sports Med 2020; 42:377-385. [PMID: 33075828 DOI: 10.1055/a-1198-8465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study aimed to determine the neurophysiological mechanisms underlying the effects of aerobic exercise, which influence brain O2 consumption, on cognitive enhancement. Sixteen healthy men were asked to complete a 2-back test at rest and after moderate and high-intensity aerobic exercise. During the 2-back test, hemodynamic changes within the prefrontal cortex were assessed using high-density functional near-infrared spectroscopy. Scores of the 2-back test, regardless of the exercise intensity, were positively correlated with the hemodynamic changes within the right and left dorsolateral prefrontal cortex (DLPFC). During an 2-back test, there were differences in the hemodynamic changes within the DLPFC with moderate and high-intensity exercise conditions. In the 2-back condition, the accumulated oxyhemoglobin within the right DLPFC after moderate intensity exercise was 7.9% lower than that at baseline, while the accumulated oxyhemoglobin within the left DLPFC was 14.6% higher than that at baseline after high-intensity exercise. In response to the 2-back test, the accumulated oxygenated hemoglobin within the left DLPFC after high-intensity exercise increased more significantly than that observed after moderate intensity exercise. These results show that the right DLPFC consumes O2 more efficiently in response to moderate intensity aerobic exercise than in response to high-intensity aerobic exercise.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Korea (the Republic of)
| | - Sujin Bae
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Korea (the Republic of)
| | - Jung Hun Huh
- Department of Human Motor Behavior, Chung-Ang University, An-seong, Korea (the Republic of)
| | - Jea Woog Lee
- Department of Information & Technology in Sport, Chung-Ang University, An-seong, Korea (the Republic of)
| | - Doug Hyun Han
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Korea (the Republic of)
| |
Collapse
|
33
|
Castelo-Branco L, Fregni F. Home-Based Transcranial Direct Current Stimulation (tDCS) to Prevent and Treat Symptoms Related to Stress: A Potential Tool to Remediate the Behavioral Consequences of the COVID-19 Isolation Measures? Front Integr Neurosci 2020; 14:46. [PMID: 33071764 PMCID: PMC7530274 DOI: 10.3389/fnint.2020.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/22/2020] [Indexed: 01/15/2023] Open
Affiliation(s)
- Luis Castelo-Branco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Harvard Medical School, Boston, MA, United States
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Pulopulos MM, Schmausser M, De Smet S, Vanderhasselt MA, Baliyan S, Venero C, Baeken C, De Raedt R. The effect of HF-rTMS over the left DLPFC on stress regulation as measured by cortisol and heart rate variability. Horm Behav 2020; 124:104803. [PMID: 32526225 DOI: 10.1016/j.yhbeh.2020.104803] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
The prefrontal cortex, and especially the Dorsolateral Prefrontal Cortex (DLPFC), plays an inhibitory role in the regulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis under stressful situations. Moreover, recent evidence suggests that a sustained DLPFC activation is associated with adaptive stress regulation in anticipation of a stressful event, leading to a reduced stress-induced amygdala response, and facilitating the confrontation with the stressor. However, studies using experimental manipulation of the activity of the DLPFC before a stressor are scarce, and more research is needed to understand the specific role of this brain area in the stress-induced physiological response. This pre-registered study investigated the effect on stress regulation of a single excitatory high frequency (versus sham) repetitive transcranial magnetic stimulation (HF-rTMS) session over the left DLPFC applied before the Trier Social Stress Test in 75 healthy young women (M = 21.05, SD = 2.60). Heart rate variability (HRV) and salivary cortisol were assessed throughout the experimental protocol. The active HF-rTMS and the sham group showed a similar cognitive appraisal of the stress task. No differences in HRV were observed during both the anticipation and the actual confrontation with the stress task and therefore, our results did not reflect DLPFC-related adaptive anticipatory adjustments. Importantly, participants in the active HF-rTMS group showed a lower cortisol response to stress. The effect of left prefrontal HF-rTMS on the stress system provides further critical experimental evidence for the inhibitory role played by the DLPFC in the regulation of the HPA axis.
Collapse
Affiliation(s)
- Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium.
| | - Maximilian Schmausser
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Stefanie De Smet
- Department of Head and Skin, Ghent University, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium; Department of Head and Skin, Ghent University, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Belgium
| | - Shishir Baliyan
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Spain
| | - Chris Baeken
- Department of Head and Skin, Ghent University, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Department of Psychiatry, University Hospital Brussels (UZBrussel), Belgium; Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|