1
|
Knoch S, Whiteside MA, Madden JR, Rose PE, Fawcett TW. Hot-headed peckers: thermographic changes during aggression among juvenile pheasants ( Phasianus colchicus). Philos Trans R Soc Lond B Biol Sci 2022; 377:20200442. [PMID: 35000453 PMCID: PMC8743885 DOI: 10.1098/rstb.2020.0442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
In group-living vertebrates, dominance status often covaries with physiological measurements (e.g. glucocorticoid levels), but it is unclear how dominance is linked to dynamic changes in physiological state over a shorter, behavioural timescale. In this observational study, we recorded spontaneous aggression among captive juvenile pheasants (Phasianus colchicus) alongside infrared thermographic measurements of their external temperature, a non-invasive technique previously used to examine stress responses in non-social contexts, where peripheral blood is redirected towards the body core. We found low but highly significant repeatability in maximum head temperature, suggesting individually consistent thermal profiles, and some indication of lower head temperatures in more active behavioural states (e.g. walking compared to resting). These individual differences were partly associated with sex, females being cooler on average than males, but unrelated to body size. During pairwise aggressive encounters, we observed a non-monotonic temperature change, with head temperature dropping rapidly immediately prior to an attack and increasing rapidly afterwards, before returning to baseline levels. This nonlinear pattern was similar for birds in aggressor and recipient roles, but aggressors were slightly hotter on average. Our findings show that aggressive interactions induce rapid temperature changes in dominants and subordinates alike, and highlight infrared thermography as a promising tool for investigating the physiological basis of pecking orders in galliforms. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Sophia Knoch
- Centre for Research in Animal Behaviour (CRAB), Washington Singer Laboratories, University of Exeter, Exeter EX4 4QG, UK
- Institute of Psychology, University of Freiburg, Engelbergerstr. 41, 79085 Freiburg, Germany
| | - Mark A. Whiteside
- Centre for Research in Animal Behaviour (CRAB), Washington Singer Laboratories, University of Exeter, Exeter EX4 4QG, UK
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Joah R. Madden
- Centre for Research in Animal Behaviour (CRAB), Washington Singer Laboratories, University of Exeter, Exeter EX4 4QG, UK
| | - Paul E. Rose
- Centre for Research in Animal Behaviour (CRAB), Washington Singer Laboratories, University of Exeter, Exeter EX4 4QG, UK
| | - Tim W. Fawcett
- Centre for Research in Animal Behaviour (CRAB), Washington Singer Laboratories, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
2
|
Brouillard C, Carrive P, Sévoz-Couche C. Social defeat: Vagal reduction and vulnerability to ventricular arrhythmias. Neurobiol Stress 2020; 13:100245. [PMID: 33344701 PMCID: PMC7739042 DOI: 10.1016/j.ynstr.2020.100245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, a sub-population of defeated anesthetized rats (Dlow) was characterized by persistent low blood levels of brain-derived neurotrophic factor (BDNF) at day 29 and autonomic alteration at day 30 after social challenge, while the other population (Dhigh) was similar to non-defeated (ND) animals. The aims of this study were to determine the time-course of autonomic dysfunction in awake animals, and whether Dhigh and/or Dlow were vulnerable to cardiac events. Defeated animals were exposed to four daily episodes of social defeats from day 1 to day 4. At day 30, anesthetized Dlow displayed decreased experimental and spontaneous reflex responses reflecting lower parasympathetic efficiency. In addition, Dlow but not Dhigh were characterized by left ventricular hypertrophy at day 30. Telemetric recordings revealed that Dlow had increased low frequency-to-high frequency ratio (LF/HF) and diastolic (DBP) and systolic (SBP) blood pressure, associated with decreased HF and spontaneous baroreflex responses (BRS) from day 3 to day 29. LF/HF, DBP and SBP recovered at day 5, and HF and BRS recovered at day 15 in Dhigh. Ventricular premature beats (VPBs) occurred in Dlow and Dhigh animals from day 5. Time course of VBP fluctuations in Dhigh mirrored that of HF and BRS, but not that of LF/HF, DBP and SBP. These results suggest that a psychosocial stress associated to low serum BDNF levels can lead to vulnerability to persistent autonomic dysfunction, cardiac hypertrophy and ventricular ectopic beats. The parasympathetic recovery seen in Dhigh may provide protection against cardiac events in this population.
Collapse
Affiliation(s)
- Charly Brouillard
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| | - Pascal Carrive
- Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Caroline Sévoz-Couche
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| |
Collapse
|
3
|
Pope BS, Wood SK. Advances in understanding mechanisms and therapeutic targets to treat comorbid depression and cardiovascular disease. Neurosci Biobehav Rev 2020; 116:337-349. [PMID: 32598982 DOI: 10.1016/j.neubiorev.2020.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Chronic or repeated social stress exposure often precipitates the onset of depression and cardiovascular disease (CVD). Despite a clear clinical association between CVD and depression, the pathophysiology underlying these comorbid conditions is unclear. Chronic exposure to social stress can lead to immune system dysregulation, mitochondrial dysfunction, and vagal withdrawal. Further, regular physical exercise is well-known to exert cardioprotective effects, and accumulating evidence demonstrates the antidepressant effect of exercise. This review explores the contribution of inflammation, mitochondrial dysfunction, and vagal withdrawal to stress-induced depression and CVD. Evidence for therapeutic benefits of exercise, anti-inflammatory therapies, and vagus nerve stimulation are also reviewed. Benefits of targeted therapeutics of mitochondrial agents, anti-inflammatory therapies, and vagus nerve stimulation are discussed. Importantly, the ability of exercise to impact each of these factors is also reviewed. The current findings described here implicate a new direction for research, targeting the shared mechanisms underlying comorbid depression-CVD. This will guide the development of novel therapeutic strategies for the prevention and treatment of these stress-related pathologies, particularly within treatment-resistant populations.
Collapse
Affiliation(s)
- Brittany S Pope
- Department of Exercise Science, University of South Carolina Arnold School of Public Health, Columbia, SC, 20208, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, United States; William Jennings Bryan Dorn Veterans Administration Medical Center, Columbia, SC, 29209, United States.
| |
Collapse
|
4
|
Abstract
There is a bidirectional relationship between affective disorders and cardiovascular abnormalities, often described as a downward spiral, whereas major depressive disorders (MDD, and anxiety disorders) significantly increase the risk of developing cardiovascular diseases (CVD); CVD are also associated with increased risk of developing MDD (and anxiety disorders). Moreover, the prognosis and progression of CVD is significantly worsened in the presence of MDD. Heart rate variability (HRV) has often been suggested as a potential mediator in this comorbidity. In this review, we discuss HRV alterations in MDD. However, we mainly focus on the direct relationship between HRV alterations and psychiatric symptoms, rather than its relationship with CVD, as this has been reviewed elsewhere. After a general introduction to HRV and how it can be measured, we review how HRV is altered in MDD. We subsequently describe how antidepressant drugs affect HRV, showing that some classes (such as tricyclics) generally worsen HRV, whereas others (most notably selective serotonin reuptake inhibitors) have a more positive influence. We also review the effects of several other treatments, with a special focus on vagal nerve stimulation, finishing with some further considerations and recommendation for further research, both in humans and animals.
Collapse
|
5
|
Möller C, van Dijk RM, Wolf F, Keck M, Schönhoff K, Bierling V, Potschka H. Impact of repeated kindled seizures on heart rate rhythms, heart rate variability, and locomotor activity in rats. Epilepsy Behav 2019; 92:36-44. [PMID: 30611006 DOI: 10.1016/j.yebeh.2018.11.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/18/2023]
Abstract
Although an impact of epilepsy on circadian rhythmicity is well-recognized, there are profound gaps in our understanding of the influence of seizures on diurnal rhythms. The effect on activity levels and heart rate is of particular interest as it might contribute to the disease burden. The kindling model with telemetric transmitter implants provides excellent opportunities to study the consequences of focal and generalized seizures under standardized conditions. Data from kindled rats with generalized seizures revealed an increase in activity and heart rate during the resting phase. Total and short-term heart rate variabilities were not affected by electrode implantation or seizure induction. Ictal alterations in heart rate associated with generalized seizures were characterized by a biphasic bradycardia with an immediate drop of heart rate followed by a transient normalization and a second more steady decrease. In conclusion, the findings demonstrate that once daily generalized seizures can exert significant effects on heart rate rhythms. Respective alterations in patients would be of relevance for patient counselling and therapeutic management. Occurrence of biphasic bradycardia associated with seizure induction suggests that the kindling model is suitable to study the consequences and the prevention of ictal bradycardia, which may pose patients at risk for sudden unexpected death.
Collapse
Affiliation(s)
- Christina Möller
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Fabio Wolf
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Michael Keck
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Bierling
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
6
|
Social modulation of drug use and drug addiction. Neuropharmacology 2019; 159:107545. [PMID: 30807753 DOI: 10.1016/j.neuropharm.2019.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
This review aims to demonstrate how social science and behavioral neurosciences have highlighted the influence of social interactions on drug use in animal models. In neurosciences, the effect of global social context that are distal from drug use has been widely studied. For human and other social animals such as monkeys and rodents, positive social interactions are rewarding, can overcome drug reward and, in all, protect from drug use. In contrast, as other types of stress, negative social experiences facilitate the development and maintenance of drug abuse. However, interest recently emerged in the effect of so-called "proximal" social factors, that is, social interactions during drug-taking. These recent studies have characterized the role of the drug considered, the sharing of drug experience and the familiarity of the peer which interaction are made with. We also examine the few studies regarding the sensorial mediator of social behaviors and critically review the neural mediation of social factors on drug use. However, despite considerable characterization of the factors modulating distal influences, the mechanisms for proximal influences on drug use remain largely unknown. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|
7
|
Acute restraint stress modifies the heart rate biorhythm in the poststress period. Sci Rep 2019; 9:1794. [PMID: 30742021 PMCID: PMC6370754 DOI: 10.1038/s41598-019-38523-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/28/2018] [Indexed: 11/13/2022] Open
Abstract
We studied the changes in the heart and the activity biorhythms in mice exposed to acute (one 120-minute session) and repeated (7 two-hour sessions) restraint stress in 129J1/CF1 mice (WT) and in mice without M2 muscarinic receptors (M2KO) during the prestress period, during stress (STR) and for five days after the last stress session (POST). There were changes in the mesor (a midline based on the distribution of values across the circadian cycles; decreased in M2KO by 6% over all POST), day means (inactive period of diurnal rhythm in mice; higher in M2KO and further increased on STR and on the second to the fifth POST) and night means (active period; lower by 13% in M2KO and remained decreased in STR and in POST). The total area under the curve was decreased both in the WT and M2KO on STR and in all POST. Repeated stress caused changes over all days of STR, but the initial values were restored in POST. The average night values were decreased, and the day means were increased by 16% over all STR in M2KO. The day means decreased by 14% in the 4 POST in WT. The activity biorhythm parameters were almost unchanged. We show here that stress can specifically affect heart biorhythm in M2KO mice, especially when the stress is acute. This implies the role of M2 muscarinic receptor in stress response.
Collapse
|
8
|
Benini R, Oliveira LA, Gomes-de-Souza L, Crestani CC. Habituation of the cardiovascular responses to restraint stress in male rats: influence of length, frequency and number of aversive sessions. Stress 2019; 22:151-161. [PMID: 30632936 DOI: 10.1080/10253890.2018.1532992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Habituation of cardiovascular responses upon repeated exposure to stress is controversial. Hence, we hypothesized that habituation of cardiovascular stress responses is influenced by length, frequency, and number of stress sessions in male Wistar rats. Blood pressure and heart rate were recorded via femoral artery catheterization and the tail cutaneous temperature was evaluated using a thermal imager. We observed a faster return of heart rate to baseline values during the post-stress period of the 10th daily session in rats subjected to either 60 (n = 8) or 120 min (n = 7), but not 30 min (n = 7), of restraint. Daily sessions of 120 min also decreased blood pressure during the recovery of the 10th session. The faster return of heart rate to baseline values during the post-stress period at the 10th session in rats exposed to daily 60 min sessions (n = 9) was not identified at the 5th (n = 9) and 20th (n = 9) sessions. Regarding frequency, the tachycardia during the 10th session was enhanced in rats subjected to 60 min of restraint presented every other day (n = 9) and decreased in rats subjected to a protocol of five daily sessions followed by two resting days (n = 9). Thirty-minute sessions of restraint presented twice a day (n = 9) and a protocol of three daily sessions followed by a resting day (n = 9) did not affect the restraint-evoked cardiovascular responses at the 10th session. These results provide evidence of habituation of the cardiovascular responses upon repeated exposure to restraint stress, which is dependent on length, frequency, and number of trials. Lay summary Cardiovascular responses decrease upon repeated exposure to restraint stress. The decrease in cardiovascular stress responses is observed as a faster return to basal values during the post-stress period. The cardiovascular stress response decrease (habituation to stress) is dependent on the length, frequency, and number of stress sessions.
Collapse
Affiliation(s)
- Ricardo Benini
- a a Laboratory of Pharmacology, School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , SP, Brazil
- b b Joint UFSCar-UNESP Graduate Program in Physiological Sciences , São Carlos , SP, Brazil
| | - Leandro A Oliveira
- a a Laboratory of Pharmacology, School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , SP, Brazil
- b b Joint UFSCar-UNESP Graduate Program in Physiological Sciences , São Carlos , SP, Brazil
| | - Lucas Gomes-de-Souza
- a a Laboratory of Pharmacology, School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , SP, Brazil
- b b Joint UFSCar-UNESP Graduate Program in Physiological Sciences , São Carlos , SP, Brazil
| | - Carlos C Crestani
- a a Laboratory of Pharmacology, School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , SP, Brazil
- b b Joint UFSCar-UNESP Graduate Program in Physiological Sciences , São Carlos , SP, Brazil
| |
Collapse
|
9
|
Shimamoto A. Social Defeat Stress, Sex, and Addiction-Like Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:271-313. [PMID: 30193707 DOI: 10.1016/bs.irn.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Social confrontation is a form of social interaction in animals where two conspecific individuals confront each other in dispute over territory, during the formation of hierarchies, and during breeding seasons. Typically, a social confrontation involves a prevailing individual and a yielding individual. The prevailing individual often exhibits aggressive postures and launches attacks, whereas the yielding individual often adopts postures of defeat. The yielding or defeated animals experience a phenomenon known as social defeat stress, in which they show exaggerated stress as well as autonomic and endocrine responses that cause impairment of both the brain and body. In laboratory settings, one can reliably generate social defeat stress by allowing a naïve (or already defeated) animal to intrude into a home cage in which its resident has already established a territory or is nursing. This resident-intruder paradigm has been widely used in both males and females to study mechanisms in the brain that underlie the stress responses. Stress has profound effects on drug reward for cocaine, methamphetamine, alcohol, and opioids. Particularly, previous experiences with social defeat can exaggerate subsequent addiction-like behaviors. The extent of these addiction-like behaviors depends on the intensity, duration, frequency, and intermittency of the confrontation episodes. This chapter describes four types of social defeat stress: acute, repeated, intermittent, and chronic. Specifically, it focuses on social defeat stress models used in laboratories to study individual, sex, and animal strain differences in addiction-like behaviors.
Collapse
Affiliation(s)
- Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
10
|
Falls N, Singh D, Anwar F, Verma A, Kumar V. Amelioration of neurodegeneration and cognitive impairment by Lemon oil in experimental model of Stressed mice. Biomed Pharmacother 2018; 106:575-583. [PMID: 29990845 DOI: 10.1016/j.biopha.2018.06.160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/18/2022] Open
Abstract
Citrous lemon (Rutaceae) an Indian folk medicine has been used for the treatment of various pathological diseases viz., diabetes, cardiovascular, inflammation, hepatobiliary dysfunction and neurodegenerative disorder. Can lemon oil altered the memory of unstressed and stressed mice, a basic question for which the present work was put on trial. The present investigation was intended to assess the impact of Lemon oil on memory of unstressed and Stressed Swiss young Albino mice. Lemon oil (50 and 100 mg/kg o.r.) and donepezil (10 mg/kg) were guided for three weeks to different groups of stressed and unstressed mice. The nootropic movement was assessed utilizing elevated plus maze and Hebbs Williams Maze. Cerebrum acetylcholinesterase (AChE), plasmacorticosterone, decreased glutathione, lipid per oxidation alongside superoxide dismutase and catalase was surveyed as marker for disease. Histopathology was performed for estimation of drug effects. Acute immobilized stress was induce, lemon oil (100 mg/kg) and donepezil together indicated memory enhancing movement both in stressed and unstressed mice. Lemon oil significantly (p < 0.001) altered and lowered brain AChE activity both in stressed and unstressed mice. Scopolamine induced amnesia was also significantly altered and reversed both in stressed and unstressed mice by lemon oil at a dose of 50 and 100 mg/kg. Lemon oil (50 and 100 mg/kg) was further able to control the corticosterone level in plasma for stressed mice. Lemon oil significantly (p < 0.001) elevated the level of catalase, superoxide dismutase and reduced glutathione levels both in stressed and unstressed animals with respect to controlled group along with TBARS both in stressed and unstressed compared with control group. Hence it can be concluded that memory enhancing activity might be related to reduction in AChE and TBARS activity and by elevated GSH, SOD and catalase through decrease in raised plasma corticosterone levels.
Collapse
Affiliation(s)
- Neha Falls
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Deepika Singh
- Department of Pharmaceutical Science, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amita Verma
- Bio-organic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India.
| |
Collapse
|
11
|
Sex differences in autonomic response and situational appraisal of a competitive situation in young adults. Biol Psychol 2017; 126:61-70. [DOI: 10.1016/j.biopsycho.2017.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 11/23/2022]
|
12
|
Wood CS, Valentino RJ, Wood SK. Individual differences in the locus coeruleus-norepinephrine system: Relevance to stress-induced cardiovascular vulnerability. Physiol Behav 2016; 172:40-48. [PMID: 27423323 DOI: 10.1016/j.physbeh.2016.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/03/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Repeated exposure to psychosocial stress is a robust sympathomimetic stressor and as such has adverse effects on cardiovascular health. While the neurocircuitry involved remains unclear, the physiological and anatomical characteristics of the locus coeruleus (LC)-norepinephrine (NE) system suggest that it is poised to contribute to stress-induced cardiovascular vulnerability. A major theme throughout is to review studies that shed light on the role that the LC may play in individual differences in vulnerability to social stress-induced cardiovascular dysfunction. Recent findings are discussed that support a unique plasticity in afferent regulation of the LC, resulting in either excitatory or inhibitory input to the LC during establishment of different stress coping strategies. This contrasting regulation of the LC by either afferent regulation, or distinct differences in stress-induced neuroinflammation would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The goal of this review is to highlight recent developments in the interplay between the LC-NE and cardiovascular systems during repeated stress in an effort to advance therapeutic treatments for the development of stress-induced cardiovascular vulnerability.
Collapse
Affiliation(s)
- Christopher S Wood
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4399, United States
| | - Susan K Wood
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| |
Collapse
|
13
|
Crestani CC. Emotional Stress and Cardiovascular Complications in Animal Models: A Review of the Influence of Stress Type. Front Physiol 2016; 7:251. [PMID: 27445843 PMCID: PMC4919347 DOI: 10.3389/fphys.2016.00251] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/09/2016] [Indexed: 01/22/2023] Open
Abstract
Emotional stress has been recognized as a modifiable risk factor for cardiovascular diseases. The impact of stress on physiological and psychological processes is determined by characteristics of the stress stimulus. For example, distinct responses are induced by acute vs. chronic aversive stimuli. Additionally, the magnitude of stress responses has been reported to be inversely related to the degree of predictability of the aversive stimulus. Therefore, the purpose of the present review was to discuss experimental research in animal models describing the influence of stressor stimulus characteristics, such as chronicity and predictability, in cardiovascular dysfunctions induced by emotional stress. Regarding chronicity, the importance of cardiovascular and autonomic adjustments during acute stress sessions and cardiovascular consequences of frequent stress response activation during repeated exposure to aversive threats (i.e., chronic stress) is discussed. Evidence of the cardiovascular and autonomic changes induced by chronic stressors involving daily exposure to the same stressor (predictable) vs. different stressors (unpredictable) is reviewed and discussed in terms of the impact of predictability in cardiovascular dysfunctions induced by stress.
Collapse
Affiliation(s)
- Carlos C Crestani
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista Araraquara, Brasil
| |
Collapse
|
14
|
Wood SK, Valentino RJ. The brain norepinephrine system, stress and cardiovascular vulnerability. Neurosci Biobehav Rev 2016; 74:393-400. [PMID: 27131968 DOI: 10.1016/j.neubiorev.2016.04.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
Abstract
Chronic exposure to psychosocial stress has adverse effects on cardiovascular health, however the stress-sensitive neurocircuitry involved remains to be elucidated. The anatomical and physiological characteristics of the locus coeruleus (LC)-norepinephrine (NE) system position it to contribute to stress-induced cardiovascular disease. This review focuses on cardiovascular dysfunction produced by social stress and a major theme highlighted is that differences in coping strategy determine individual differences in social stress-induced cardiovascular vulnerability. The establishment of different coping strategies and cardiovascular vulnerability during repeated social stress has recently been shown to parallel a unique plasticity in LC afferent regulation, resulting in either excitatory or inhibitory input to the LC. This contrasting regulation of the LC would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The advances described suggest new directions for developing treatments and/or strategies for decreasing stress-induced cardiovascular vulnerability.
Collapse
Affiliation(s)
- Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4399, United States
| |
Collapse
|
15
|
Sévoz-Couche C, Brouillard C. Key role of 5-HT 3 receptors in the nucleus tractus solitarii in cardiovagal stress reactivity. Neurosci Biobehav Rev 2016; 74:423-432. [PMID: 27131969 DOI: 10.1016/j.neubiorev.2016.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023]
Abstract
Serotonin plays a modulatory role in central control of the autonomic nervous system (ANS). The nucleus tractus solitarii (NTS) in the medulla is an area of viscerosomatic integration innervated by both central and peripheral serotonergic fibers. Influences from different origins therefore trigger the release of serotonin into the NTS and exert multiple influences on the ANS. This major influence on the ANS is also mediated by activation of several receptors in the NTS. In particular, the NTS is the central zone with the highest density of serotonin3 (5-HT3) receptors. In this review, we present evidence that 5-HT3 receptors in the NTS play a key role in one of the crucial homeostatic responses to acute and chronic stress: inhibitory modulation of the parasympathetic component of the ANS. The possible functional interactions of 5-HT3 receptors with GABAA and NK1 receptors in the NTS are also discussed.
Collapse
Affiliation(s)
- Caroline Sévoz-Couche
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.
| | - Charly Brouillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
16
|
Defeat stress in rodents: From behavior to molecules. Neurosci Biobehav Rev 2015; 59:111-40. [DOI: 10.1016/j.neubiorev.2015.10.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
|
17
|
Waters RP, Rivalan M, Bangasser DA, Deussing JM, Ising M, Wood SK, Holsboer F, Summers CH. Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci Biobehav Rev 2015; 58:63-78. [PMID: 26271720 DOI: 10.1016/j.neubiorev.2015.07.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/24/2015] [Accepted: 07/24/2015] [Indexed: 01/05/2023]
Abstract
Major depressive disorder (MDD) is a devastating disease affecting over 300 million people worldwide, and costing an estimated 380 billion Euros in lost productivity and health care in the European Union alone. Although a wealth of research has been directed toward understanding and treating MDD, still no therapy has proved to be consistently and reliably effective in interrupting the symptoms of this disease. Recent clinical and preclinical studies, using genetic screening and transgenic rodents, respectively, suggest a major role of the CRF1 gene, and the central expression of CRF1 receptor protein in determining an individual's risk of developing MDD. This gene is widely expressed in brain tissue, and regulates an organism's immediate and long-term responses to social and environmental stressors, which are primary contributors to MDD. This review presents the current state of knowledge on CRF physiology, and how it may influence the occurrence of symptoms associated with MDD. Additionally, this review presents findings from multiple laboratories that were presented as part of a symposium on this topic at the annual 2014 meeting of the International Behavioral Neuroscience Society (IBNS). The ideas and data presented in this review demonstrate the great progress that has been made over the past few decades in our understanding of MDD, and provide a pathway forward toward developing novel treatments and detection methods for this disorder.
Collapse
Affiliation(s)
| | | | | | - J M Deussing
- Max Planck Institute of Psychiatry, Munich, Germany
| | - M Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - S K Wood
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - F Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany; HMNC GmbH, Munich, Germany
| | - Cliff H Summers
- University of South Dakota, Vermillion, SD, USA; Sanford School of Medicine, Vermillion, SD, USA.
| |
Collapse
|
18
|
Abstract
Depression is one of the most disabling medical conditions in the world today, yet its etiologies remain unclear and current treatments are not wholly effective. Animal models are a powerful tool to investigate possible causes and treatments for human diseases. We describe an animal model of social defeat as a possible model for human depression. We discuss the paradigm, behavioral correlates to depression, and potential underlying neurobiological mechanisms with an eye toward possible future therapies.
Collapse
|
19
|
Bartlang MS, Oster H, Helfrich-Förster C. Repeated Psychosocial Stress at Night Affects the Circadian Activity Rhythm of Male Mice. J Biol Rhythms 2015; 30:228-41. [DOI: 10.1177/0748730415576192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have recently shown that molecular rhythms in the murine suprachiasmatic nucleus (SCN) are affected by repeated social defeat (SD) during the dark/active phase (social defeat dark [SDD]), while repeated SD during the light/inactive phase (social defeat light [SDL]) had no influence on PERIOD2::LUCIFERASE explant rhythms in the SCN. Here we assessed the effects of the same stress paradigm by in vivo biotelemetry on 2 output rhythms of the circadian clock (i.e., activity and core body temperature) in wild-type (WT) and clock-deficient Period (Per)1/2 double -mutant mice during and following repeated SDL and SDD. In general, stress had more pronounced effects on activity compared to body temperature rhythms. Throughout the SD procedure, activity and body temperature were markedly increased during the 2 h of stressor exposure at zeitgeber time (ZT) 1 to ZT3 (SDL mice) and ZT13 to ZT15 (SDD mice), which was compensated by decreased activity during the remaining dark phase (SDL and SDD mice) and light phase (SDL mice) in both genotypes. Considerable differences in the activity between SDL and SDD mice were seen in the poststress period. SDD mice exhibited a reduced first activity bout at ZT13, delayed activity onset, and, consequently, a more narrow activity bandwidth compared with single-housed control (SHC) and SDL mice. Given that this effect was absent in Per1/2 mutant SDD mice and persisted under constant darkness conditions in SDD WT mice, it suggests an involvement of the endogenous clock. Taken together, the present findings demonstrate that SDD has long-lasting consequences for the functional output of the biological clock that, at least in part, appear to depend on the clock genes Per1 and Per2.
Collapse
Affiliation(s)
- Manuela S. Bartlang
- University of Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg, Germany
| | - Henrik Oster
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| | - Charlotte Helfrich-Förster
- University of Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg, Germany
| |
Collapse
|
20
|
Beery AK, Kaufer D. Stress, social behavior, and resilience: insights from rodents. Neurobiol Stress 2015; 1:116-127. [PMID: 25562050 PMCID: PMC4281833 DOI: 10.1016/j.ynstr.2014.10.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022] Open
Abstract
The neurobiology of stress and the neurobiology of social behavior are deeply intertwined. The social environment interacts with stress on almost every front: social interactions can be potent stressors; they can buffer the response to an external stressor; and social behavior often changes in response to stressful life experience. This review explores mechanistic and behavioral links between stress, anxiety, resilience, and social behavior in rodents, with particular attention to different social contexts. We consider variation between several different rodent species and make connections to research on humans and non-human primates.
Collapse
Affiliation(s)
- Annaliese K. Beery
- Department of Psychology, Department of Biology, Neuroscience Program, Smith College, Northampton, MA, USA
| | - Daniela Kaufer
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
21
|
Wood SK. Cardiac autonomic imbalance by social stress in rodents: understanding putative biomarkers. Front Psychol 2014; 5:950. [PMID: 25206349 PMCID: PMC4143725 DOI: 10.3389/fpsyg.2014.00950] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/10/2014] [Indexed: 12/17/2022] Open
Abstract
Exposure to stress or traumatic events can lead to the development of depression and anxiety disorders. In addition to the debilitating consequences on mental health, patients with psychiatric disorders also suffer from autonomic imbalance, making them susceptible to a variety of medical disorders. Emerging evidence utilizing spectral analysis of heart rate variability (HRV), a reliable non-invasive measure of cardiovascular autonomic regulation, indicates that patients with depression and various anxiety disorders (i.e., panic, social, generalized anxiety disorders, and post traumatic stress disorder) are characterized by decreased HRV. Social stressors in rodents are ethologically relevant experimental stressors that recapitulate many of the dysfunctional behavioral and physiological changes that occur in psychological disorders. In this review, evidence from clinical studies and preclinical stress models identify putative biomarkers capable of precipitating the comorbidity between disorders of the mind and autonomic dysfunction. Specifically, the role of corticotropin releasing factor, neuropeptide Y and inflammation are investigated. The impetus for this review is to highlight stress-related biomarkers that may prove critical in the development of autonomic imbalance in stress -related psychiatric disorders.
Collapse
Affiliation(s)
- Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina Columbia, SC, USA
| |
Collapse
|
22
|
Abstract
BACKGROUND Psychological stress and physical activity (PA) are believed to be reciprocally related; however, most research examining the relationship between these constructs is devoted to the study of exercise and/or PA as an instrument to mitigate distress. OBJECTIVE The aim of this paper was to review the literature investigating the influence of stress on indicators of PA and exercise. METHODS A systematic search of Web of Science, PubMed, and SPORTDiscus was employed to find all relevant studies focusing on human participants. Search terms included "stress", "exercise", and "physical activity". A rating scale (0-9) modified for this study was utilized to assess the quality of all studies with multiple time points. RESULTS The literature search found 168 studies that examined the influence of stress on PA. Studies varied widely in their theoretical orientation and included perceived stress, distress, life events, job strain, role strain, and work-family conflict but not lifetime cumulative adversity. To more clearly address the question, prospective studies (n = 55) were considered for further review, the majority of which indicated that psychological stress predicts less PA (behavioral inhibition) and/or exercise or more sedentary behavior (76.4 %). Both objective (i.e., life events) and subjective (i.e., distress) measures of stress related to reduced PA. Prospective studies investigating the effects of objective markers of stress nearly all agreed (six of seven studies) that stress has a negative effect on PA. This was true for research examining (a) PA at periods of objectively varying levels of stress (i.e., final examinations vs. a control time point) and (b) chronically stressed populations (e.g., caregivers, parents of children with a cancer diagnosis) that were less likely to be active than controls over time. Studies examining older adults (>50 years), cohorts with both men and women, and larger sample sizes (n > 100) were more likely to show an inverse association. 85.7 % of higher-quality prospective research (≥ 7 on a 9-point scale) showed the same trend. Interestingly, some prospective studies (18.2 %) report evidence that PA was positively impacted by stress (behavioral activation). This should not be surprising as some individuals utilize exercise to cope with stress. Several other factors may moderate stress and PA relationships, such as stages of change for exercise. Habitually active individuals exercise more in the face of stress, and those in beginning stages exercise less. Consequently, stress may have a differential impact on exercise adoption, maintenance, and relapse. Preliminary evidence suggests that combining stress management programming with exercise interventions may allay stress-related reductions in PA, though rigorous testing of these techniques has yet to be produced. CONCLUSIONS Overall, the majority of the literature finds that the experience of stress impairs efforts to be physically active. Future work should center on the development of a theory explaining the mechanisms underlying the multifarious influences of stress on PA behaviors.
Collapse
Affiliation(s)
- Matthew A Stults-Kolehmainen
- Department of Psychiatry, Yale Stress Center, Yale University School of Medicine, 2 Church Street South, Suite 209, New Haven, CT, 06519, USA,
| | | |
Collapse
|
23
|
Sévoz-Couche C, Brouillard C, Camus F, Laude D, De Boer SF, Becker C, Benoliel JJ. Involvement of the dorsomedial hypothalamus and the nucleus tractus solitarii in chronic cardiovascular changes associated with anxiety in rats. J Physiol 2013; 591:1871-87. [PMID: 23297312 DOI: 10.1113/jphysiol.2012.247791] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Anxiety disorders in humans reduce both the heart rate variability (HRV) and the sensitivity of the cardiac baroreflex (BRS). Both may contribute to sudden death. To elucidate the mechanisms underlying these alterations, male rats were subjected to social defeat sessions on four consecutive days. Five days later, the rats were found to be in an anxiety-like state. At this time point, we analysed HRV and BRS in the defeated rats, with or without treatment with the anxiolytic chlordiazepoxide (CDZ). HRV was reduced after social defeat, due to changes in the autonomic balance favouring the sympathetic over the parasympathetic component. Spontaneous and pharmacological baroreflex gains were also reduced. CDZ abolished anxiety-like symptoms as well as HRV and BRS alterations. Inhibition of the dorsomedial hypothalamus (DMH) with muscimol reversed all cardiovascular alterations, whereas blockade of the nucleus tractus solitarii (NTS) 5-HT3 receptor by the local or systemic administration of granisetron restored only baroreflex gains and the parasympathetic component of HRV. In conclusion, repeated social defeat in the rat lead to an anxiety-like state that was associated with lasting reduction in HRV and baroreflex gains. The DMH and the NTS were responsible for these chronic cardiovascular alterations. These regions may therefore constitute new therapeutic targets for reducing cardiac dysfunction and fibrillation in anxiety disorders.
Collapse
Affiliation(s)
- Caroline Sévoz-Couche
- CR-ICM, UPMC/INSERM, UMR-S 975, CNRS UMR 7225, Faculté de médecine UPMC, Site Pitie-Salpêtrière, Paris F-75013, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Bartlang MS, Neumann ID, Slattery DA, Uschold-Schmidt N, Kraus D, Helfrich-Förster C, Reber SO. Time matters: pathological effects of repeated psychosocial stress during the active, but not inactive, phase of male mice. J Endocrinol 2012; 215:425-37. [PMID: 23001029 DOI: 10.1530/joe-12-0267] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent findings in rats indicated that the physiological consequences of repeated restraint stress are dependent on the time of day of stressor exposure. To investigate whether this is also true for clinically more relevant psychosocial stressors and whether repeated stressor exposure during the light phase or dark phase is more detrimental for an organism, we exposed male C57BL/6 mice to social defeat (SD) across 19 days either in the light phase between Zeitgeber time (ZT)1 and ZT3 (SDL mice) or in the dark phase between ZT13 and ZT15 (SDD mice). While SDL mice showed a prolonged increase in adrenal weight and an attenuated adrenal responsiveness to ACTH in vitro after stressor termination, SDD mice showed reduced dark phase home-cage activity on observation days 7, 14, and 20, flattening of the diurnal corticosterone rhythm, lack of social preference, and higher in vitro IFNγ secretion from mesenteric lymph node cells on day 20/21. Furthermore, the colitis-aggravating effect of SD was more pronounced in SDD than SDL mice following dextran sulfate sodium treatment. In conclusion, the present findings demonstrate that repeated SD effects on behavior, physiology, and immunology strongly depend on the time of day of stressor exposure. Whereas physiological parameters were more affected by SD during the light/inactive phase of mice, behavioral and immunological parameters were more affected by SD during the dark phase. Our results imply that repeated daily SD exposure has a more negative outcome when applied during the dark/active phase. By contrast, the minor physiological changes seen in SDL mice might represent beneficial adaptations preventing the formation of those maladaptive consequences.
Collapse
Affiliation(s)
- Manuela S Bartlang
- Department of Neurobiology and Genetics, University of Würzburg, 97074 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Depressive and cardiovascular disease comorbidity in a rat model of social stress: a putative role for corticotropin-releasing factor. Psychopharmacology (Berl) 2012; 222:325-36. [PMID: 22322324 PMCID: PMC3613282 DOI: 10.1007/s00213-012-2648-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
RATIONALE Depression is associated with medical comorbidities, particularly cardiovascular disease. However, mechanisms linking depression and cardiovascular disease remain unclear. OBJECTIVES This study investigated whether the rat resident-intruder model of social stress would elicit behavioral dysfunctions and autonomic changes characteristic of psychiatric/cardiovascular comorbidity. Furthermore, the efficacy of the corticotropin-releasing factor-1 (CRF(1)) receptor antagonist, NBI-30775 (NBI), or the tricyclic antidepressant, desipramine (DMI), to prevent social stress-induced behavioral, neuroendocrine, and cardiovascular changes were evaluated. METHODS Adult male rats were exposed to resident-intruder stress (seven consecutive days) and systemically administered NBI (10 mg/kg/7 days), DMI (10 mg/kg/14 days), or vehicle. The efficacy of NBI and DMI to alter the behavioral and neuroendocrine responses to social stress was assessed. Furthermore, their effects on stress-induced forced swim behavior (FST), bladder and adrenal weight, and heart rate variability (HRV) were examined. RESULTS NBI, but not DMI, increased time spent in an upright, defensive posture and the latency to submit to the resident. Additionally, only NBI reduced social stress-induced adrenocorticotropic hormone and corticosterone release. Social stress increased FST immobility, caused bladder and adrenal hypertrophy, and decreased HRV. Both NBI and DMI blocked stress-induced increases in immobility during the FST. However, only NBI inhibited social stress-induced adrenal and bladder hypertrophy and decreases in heart rate variability. CONCLUSIONS Rat resident-intruder stress paradigm models aspects of psychiatric/medical comorbidity. Furthermore, the CRF system may contribute to both the behavioral response during social stress and its behavioral and autonomic consequences, offering insight into potential therapy to treat these comorbid conditions.
Collapse
|
26
|
Social defeat and isolation induce clear signs of a depression-like state, but modest cardiac alterations in wild-type rats. Physiol Behav 2012; 106:142-50. [DOI: 10.1016/j.physbeh.2012.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/18/2012] [Accepted: 01/30/2012] [Indexed: 12/11/2022]
|
27
|
Kohlhause S, Hoffmann K, Schlumbohm C, Fuchs E, Flügge G. Nocturnal hyperthermia induced by social stress in male tree shrews: Relation to low testosterone and effects of age. Physiol Behav 2011; 104:786-95. [DOI: 10.1016/j.physbeh.2011.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/31/2023]
|
28
|
Yee N, Plaßmann K, Fuchs E. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats. Physiol Behav 2011; 104:408-16. [DOI: 10.1016/j.physbeh.2011.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/14/2011] [Accepted: 04/24/2011] [Indexed: 01/25/2023]
|
29
|
Drouet JB, Michel V, Peinnequin A, Alonso A, Fidier N, Maury R, Buguet A, Cespuglio R, Canini F. Metyrapone blunts stress-induced hyperthermia and increased locomotor activity independently of glucocorticoids and neurosteroids. Psychoneuroendocrinology 2010; 35:1299-310. [PMID: 20338692 DOI: 10.1016/j.psyneuen.2010.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
Metyrapone, a cytochrome P(450) inhibitor used to inhibit corticosterone synthesis, triggers biological markers of stress and also reduces stress-induced anxiety-like behaviors. To address these controversial effects, 6 separate investigations were carried out. In a first set of investigations, abdominal temperature (T(abd)), spontaneous locomotor activity (A(S)) and electroencephalogram (EEG) were recorded in freely moving rats treated with either saline or 150 mg kg(-1) metyrapone. An increase in T(abd) and A(S) occurred in saline rats, while, metyrapone rats exhibited an immediate decrease, both variables returning to basal values 5h later. Concomitantly, the EEG spectral power increased in the gamma and beta 2 bands and decreased in the alpha frequency band, and the EMG spectral power increased. This finding suggests that metyrapone depressed stress-induced physiological response while arousing the animal. In a second step, restraint stress was applied 5h after injection. Metyrapone significantly blunted the stress-induced T(abd) and A(S) rise, without affecting the brain c-fos mRNA increase. Corticosterone (5 and 40 mg kg(-1)) injected concomitantly to metyrapone failed to reverse the observed metyrapone-induced effects in T(abd) and A(S). Finasteride (50 mg kg(-1)), which blocks neurosteroid production, was also unable to block these effects. In conclusion, metyrapone acutely reduced stress-induced physiological response in freely behaving rats independently from glucocorticoids and neurosteroids.
Collapse
Affiliation(s)
- Jean-Baptiste Drouet
- Département des environnements opérationnels, Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), La Tronche, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Repeated social defeat stress induces chronic hyperthermia in rats. Physiol Behav 2010; 101:124-31. [DOI: 10.1016/j.physbeh.2010.04.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/16/2010] [Accepted: 04/25/2010] [Indexed: 11/20/2022]
|
31
|
Canini F, Brahimi S, Drouet JB, Michel V, Alonso A, Buguet A, Cespuglio R. Metyrapone decreases locomotion acutely. Neurosci Lett 2009; 457:41-4. [PMID: 19429158 DOI: 10.1016/j.neulet.2009.03.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/24/2009] [Accepted: 03/29/2009] [Indexed: 11/28/2022]
Abstract
Metyrapone is a glucocorticoid synthesis inhibitor known to induce a stress-like biological syndrome, but also to limit stress-related behaviours. Since stress is usually associated to an increased locomotion, the aim of the study was to determine whether metyrapone will increase, decrease or respect locomotion. Forty rats were placed in infrared actimeters to study spontaneous locomotion before and after injecting 150 mg kg(-1) of either metyrapone (n=20) or saline (n=20). Two hours after injection, half of each treatment group animals were tested in an open field to study test-evoked locomotion. Stress-induced analgesia was quantified using plantar test just before blood sampling. Immediately after injection, metyrapone decreased drastically horizontal and vertical locomotion. During the open field test, metyrapone-treated rats remained less active with slower movement execution than saline-treated rats. Metyrapone did not modify plantar test performances but blunted stress-induced corticosterone and ACTH increases. Mechanisms by which metyrapone induced these effects on locomotion are further discussed.
Collapse
Affiliation(s)
- Frédéric Canini
- Pôle Neurophysiologie du stress, Département des Facteurs humains, CRSSA, 24 avenue du maquis du Grésivaudan, La Tronche Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Long-term effects of prenatal stress: Changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev 2009; 33:191-203. [DOI: 10.1016/j.neubiorev.2008.08.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/21/2008] [Accepted: 08/01/2008] [Indexed: 02/06/2023]
|
33
|
Barnum CJ, Blandino P, Deak T. Adaptation in the corticosterone and hyperthermic responses to stress following repeated stressor exposure. J Neuroendocrinol 2007; 19:632-42. [PMID: 17620105 DOI: 10.1111/j.1365-2826.2007.01571.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that repeated daily exposure to the same (homotypic) stressor results in habituation of the corticosterone (CORT) response. Others have found that the stress response to a more ethologically relevant stressor, social defeat, does not habituate and, in some cases, sensitisation has been observed. Similar observations have been noted when core temperature is examined. Although habituation and/or sensitisation have been reported during stressor exposure, little is known about the development of an anticipatory fever in response to daily stressor exposure. The aim of the present study was to compare systematically commonly used laboratory stressors (i.e. restraint, cage confinement and social defeat) using a common set of procedures and analyses. Specifically, we examined: (i) the development of an anticipatory fever to repeated (5 days) homotypic stressor exposure; (ii) the adaptation of the fever response during stressor exposure; and (iii) the resolution of the fever response to stressors presented at the same time each day. For comparison, adaptation of the CORT response was also examined to assess the degree to which habituation to repeated stressor exposure may represent a more general response observed across diverse physiological measures. Habituation was observed after restraint and cage confinement, but not observed in either the CORT or hyperthermic responses to repeated social defeat. Furthermore, no anticipatory fever response was observed with repeated exposure to restraint, cage confinement, or social defeat. These data suggest that habituation to repeated stressor exposure may not occur with all homotypic stressor paradigms. In addition, rats do not appear to entrain an anticipatory fever response to a stressor presented at the same time each day, at least not within 5-6 days of repeated exposure.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Behavior, Animal/physiology
- Confined Spaces
- Corticosterone/blood
- Dominance-Subordination
- Fever/etiology
- Habituation, Psychophysiologic
- Male
- Motor Activity
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Restraint, Physical
- Stress, Physiological/blood
- Stress, Physiological/complications
- Stress, Physiological/physiopathology
- Stress, Physiological/psychology
Collapse
Affiliation(s)
- C J Barnum
- Behavioural Neuroscience Program, Department of Psychology, State University of New York, Binghamton, NY 13902-6000, USA
| | | | | |
Collapse
|
34
|
Esquifino AI, Cano P, Jiménez-Ortega V, Fernández-Mateos P, Cardinali DP. Neuroendocrine-immune correlates of circadian physiology: studies in experimental models of arthritis, ethanol feeding, aging, social isolation, and calorie restriction. Endocrine 2007; 32:1-19. [PMID: 17992597 DOI: 10.1007/s12020-007-9009-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
Abstract
Virtually all neuroendocrine and immunological variables investigated in animals and humans display biological periodicity. Circadian rhythmicity is revealed for every hormone in circulation as well as for circulating immune cells, lymphocyte metabolism and transformability, cytokines, receptors, and adhesion molecules. Clock genes, notably the three Period (Per1/Per2/Per3) genes and two Cryptochrome (Cry1/Cry2) genes, are present in immune and endocrine cells and are expressed in a circadian manner in human cells. This review discusses the circadian disruption of hormone release and immune-related mechanisms in several animal models in which circulating cytokines are modified including rat adjuvant arthritis, social isolation in rats and rabbits and alcoholism, the aging process and calorie restriction in rats. In every case the experimental manipulation used perturbed the temporal organization by affecting the shape and amplitude of a rhythm or by modifying the intrinsic oscillatory mechanism itself.
Collapse
Affiliation(s)
- Ana I Esquifino
- Departamento de Bioquimica y Biologia Molecular III, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain.
| | | | | | | | | |
Collapse
|
35
|
Razzoli M, Carboni L, Guidi A, Gerrard P, Arban R. Social defeat-induced contextual conditioning differentially imprints behavioral and adrenal reactivity: a time-course study in the rat. Physiol Behav 2007; 92:734-40. [PMID: 17707870 DOI: 10.1016/j.physbeh.2007.05.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/22/2007] [Accepted: 05/22/2007] [Indexed: 11/16/2022]
Abstract
The present experiments were based on the rat resident-intruder paradigm and aimed at better understanding the long-term conditioning properties of this social stress model. Intruders were exposed to aggressive conspecifics residents. During 3 daily encounters, intruders were either defeated or threatened by residents, providing the defeated-threatened (DT) and threatened-threatened (TT) groups respectively, or exposed to a novel empty cage (EC). The effect of such exposures was assessed in 3 separate experiments 8, 14, or 21 days following the last session on both behavior and hypothalamus-pituitary-adrenal (HPA) axis parameters. A specific and persistent behavioral conditioning due to social defeat but also to the sole social threat experience was observed as defensive behaviors and anxiety-like behaviors were observed respectively in DT and TT rats, highlighting a lack of habituation for the conditioning properties of this social stressor. On the other hand, at the earlier time points examined a less specific activation of the HPA axis parameters was found, starting to show habituation at day 21 in EC but not in DT or TT rats. These data give further support to the lasting effects of this social stress model, bestowing a special emphasis upon the impact of its psychological component and upon the relevance of its development and maintenance over time.
Collapse
Affiliation(s)
- Maria Razzoli
- Behavioural Neuroscience, Department of Biology, Psychiatry CEDD GlaxoSmithKline Research Centre, via Alessandro Fleming 4, 37135 Verona, Italy.
| | | | | | | | | |
Collapse
|
36
|
Bartolomucci A. Social stress, immune functions and disease in rodents. Front Neuroendocrinol 2007; 28:28-49. [PMID: 17379284 DOI: 10.1016/j.yfrne.2007.02.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/22/2006] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
The link between social factors, stress and health has been the focus of many interdisciplinary studies mostly because: (i) animals, including humans, often live in societies; (ii) positive and negative social relationships affect disease and well being; (iii) physiological alterations, which parallel social interactions also modulate immune and neuroendocrine functions. This review will focus on studies conducted on laboratory and wild rodents where social factors such as dyadic interactions, individual housing and differential group housing were investigated. The results obtained allow one to conclude that social factors in rodents are causally linked with immune disorders/disease susceptibility. In particular, lower lymphocyte proliferation and antigen-specific-IgG, granulocytosis and lymphopenia, as well as higher tumor induction and progression, are reliably associated with negative social events. Finally, due to the increasing utilization of social stress-based animal models the reliability of the concept of "social stress" and its evolutionary context are re-evaluated.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Evolutionary and Functional Biology, University of Parma, V.le G.P. Usberti 11A, 43100 Parma, Italy.
| |
Collapse
|
37
|
Razzoli M, Roncari E, Guidi A, Carboni L, Arban R, Gerrard P, Bacchi F. Conditioning properties of social subordination in rats: behavioral and biochemical correlates of anxiety. Horm Behav 2006; 50:245-51. [PMID: 16631758 DOI: 10.1016/j.yhbeh.2006.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 03/15/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
To develop a socially based model of anxiety, the contextual fear conditioning properties of social defeat were examined in rats. Social threat consisted of exposing intruders to aggressive residents in resident home cage, separated by a partition. During 3 daily encounters, intruders were either defeated or threatened by residents, providing the defeated-threatened (DT) and threatened-threatened (TT) groups respectively. On Day 4, both DT and TT animals were subjected to a social threat only. Additional animals received a 4-day exposure to a novel empty cage (EC group). Further DT, TT, and EC rats were confronted to a different context on Day 4. DT rats exhibited a robust and context-specific anxiety-like response, characterized by significant behavioral and biochemical alterations. DT rats showed increased risk assessment and decreased exploration compared to TT and EC rats that in turn were not different towards each other. DT and TT rats exhibited increased ACTH levels, while only DT rats showed enhanced corticosterone and decreased testosterone levels compared to EC. These differences were context-specific since they were absent confronting animals to a different context and since they were not long lasting. Overall, these data demonstrate the induction of an anxiety-like state in rats through a context conditioning process based upon social factors. The social basis of this paradigm offers good face validity with anxiety disorders, which in humans are mainly related to social factors and associated with HPA axis deregulations. The present procedure may provide a useful experimental model to further investigate the neurobiological mechanisms underlying anxiety-related disorders.
Collapse
Affiliation(s)
- Maria Razzoli
- Behavioural Neuroscience Department, GlaxoSmithKline S.p.A, Psychiatry CEDD, Via Alessandro Fleming 4, 37135 Verona, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Cano P, Cardinali DP, Fernández P, Reyes Toso CF, Esquifino AI. 24-hour rhythms of splenic mitogenic responses, lymphocyte subset populations and interferon γ release after calorie restriction or social isolation of rats. BIOL RHYTHM RES 2006. [DOI: 10.1080/09291010600690851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Alvarez MP, Jiménez V, Cano P, Rebollar P, Cardinali DP, Esquifino AI. Circadian rhythms of prolactin secretion in neonatal female rabbits after acute separation from their mothers. Gen Comp Endocrinol 2006; 146:257-64. [PMID: 16426607 DOI: 10.1016/j.ygcen.2005.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 11/18/2005] [Accepted: 11/30/2005] [Indexed: 11/29/2022]
Abstract
Newborn rabbits (Oryctolagus cuniculus) are only nursed for 3-5 min every 24 h and show a circadian increase in activity in anticipation of nursing. The objective of this study was to determine, in neonatal female rabbits after acute separation from the doe for 48 h, the changes in 24-h rhythms of plasma prolactin and median eminence and anterior pituitary concentration of dopamine (DA) and serotonin (5HT). In addition, median eminence concentration of the excitatory amino acid transmitters glutamate (GLU) and aspartate (ASP) and of the inhibitory amino acid transmitters gamma-aminobutyric acid (GABA) and taurine (TAU) was measured. A significant 21% increase of circulating prolactin occurred in isolated pups. In controls pups, plasma prolactin levels showed two peaks, during the first half of the light phase and at the beginning of the scotophase, respectively. In the isolated pups, a phase advance of about 4 h occurred for the two prolactin peaks. Hemicircadian changes of median eminence DA were found in controls, whereas a single daily peak (at 17:00 h) was found in the separated pups. Plasma prolactin and median eminence DA correlated significantly and inversely in the control group only. Pituitary DA content exhibited a single peak in controls and a hemicircadian pattern in isolated pups. Plasma prolactin and pituitary DA correlated significantly in isolated pups only 00000. Pup isolation decreased median eminence 5HT levels, augmented pituitary 5HT levels and disrupted their 24 h rhythmicity. Circulating prolactin correlated inversely with median eminence 5HT and directly with adenohypophysial 5HT only in controls. Isolation of pups generally modified the 24 h pattern of median eminence excitatory and inhibitory amino acid content by causing a prominent decrease at the beginning of the light phase. The results indicate that circadian rhythmicity of prolactin secretory mechanisms in female rabbit pups is significantly affected by pup's isolation from the doe.
Collapse
Affiliation(s)
- M P Alvarez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Perelló M, Chacon F, Cardinali DP, Esquifino AI, Spinedi E. Effect of social isolation on 24-h pattern of stress hormones and leptin in rats. Life Sci 2006; 78:1857-62. [PMID: 16289237 DOI: 10.1016/j.lfs.2005.08.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 08/19/2005] [Indexed: 12/01/2022]
Abstract
This work analyzes the effect of social isolation of growing male rats on 24-h changes of plasma prolactin, growth hormone, ACTH and leptin, and on plasma and adrenal corticosterone concentrations. At 35 days of life, rats were either individually caged or kept in groups (6-8 animals per cage) under a 12:12 h light/dark schedule (lights on at 08:00 h). A significant arrest of body weight gain regardless of unchanged daily food intake was found in isolated rats after 2 weeks of isolation. On the 4th week, rats were killed at 6 time intervals during a 24-h cycle, beginning at 09:00 h. In isolated rats the 24-h pattern of all parameters tested became distorted, as assessed by Cosinor analysis. When analyzed as a main factor in a factorial analysis of variance, isolation decreased plasma prolactin and growth hormone, increased plasma leptin and corticosterone while decreased adrenal corticosterone. Plasma corticosterone levels correlated significantly with plasma ACTH and with adrenal corticosterone levels in group-caged rats only. These changes can be attributed to an effect of mild stress on the endogenous clock that modulates the circadian hormone release.
Collapse
Affiliation(s)
- Mario Perelló
- Neuroendocrine Unit, Multidisciplinary Institute on Cell Biology (CONICET-CICPBA), La Plata, Argentina
| | | | | | | | | |
Collapse
|
41
|
Bhatnagar S, Vining C, Iyer V, Kinni V. Changes in hypothalamic-pituitary-adrenal function, body temperature, body weight and food intake with repeated social stress exposure in rats. J Neuroendocrinol 2006; 18:13-24. [PMID: 16451216 DOI: 10.1111/j.1365-2826.2005.01375.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
These present studies aimed to compare changes in hypothalamic-pituitary-adrenal (HPA) activity and body temperature in response to acute social defeat, to repeated social stress and to novel restraint after repeated stress, as well as to assess effects on metabolic parameters by measuring body weight gain and food and water intake. We found that social defeat produced a marked increase in both adrenocorticotrophic hormone and corticosterone compared to placement in a novel cage. Similarly, body temperature was also increased during social defeat and during 30 min of recovery from defeat. We then examined the effects of 6 days of repeated social stress and observed minimal HPA responses to repeated social stress compared to control rats. These neuroendocrine responses were contrasted by robust increases in body temperature during stress and during recovery from stress during 6 days of repeated stress. However, in response to novel restraint, repeatedly stressed rats displayed facilitated body temperature responses compared to controls, similar to our previous findings with HPA activity. Food intake was increased during the light period during which defeat took place, but later intake during the dark period was not affected. Repeated stress decreased body weight gain in the dark period but food intake was increased overall during the 6 days of repeated stress in the light period. As a result, repeated stress increased cumulative food intake during the light period in the stressed rats but these relatively small increases in food intake were unable to prevent the diminished total weight gain in repeatedly stressed rats. Overall, the results demonstrate that, although acute social defeat has similar effects on temperature and HPA activity, repeated exposure to social stress has divergent effects on HPA activity compared to body temperature and that dampened weight gain produced by repeated social stress cannot be fully explained by changes in food intake.
Collapse
Affiliation(s)
- S Bhatnagar
- Department of Anaesthesiology, Abranson Building Ste. 402, Children's Hospital of Philadelphia, 34th & Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
42
|
Cano P, Jiménez-Ortega V, P Álvarez M, Alvariño M, Cardinali DP, Esquifino AI. Effect of rabbit doe-litter separation on 24-hour changes of luteinizing hormone, follicle stimulating hormone and prolactin release in female and male suckling pups. Reprod Biol Endocrinol 2005; 3:50. [PMID: 16188031 PMCID: PMC1253533 DOI: 10.1186/1477-7827-3-50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 09/27/2005] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The daily pattern of nursing of the rabbit pup by the doe is the most important event in the day for the newborn and is neatly anticipated by them. Such anticipation presumably needs a close correlation with changes in hormones that will allow the pups to develop an appropriate behavior. Although a number of circadian functions have been examined in newborn rabbits, there is no information on 24-h pattern of gonadotropin release or on possible sex-related differences in gonadotropin or prolactin (PRL) release of pups. This study examined the 24-h changes of plasma luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) in 11 days old suckling female and male rabbits left with the mother or after short-term (i.e., 48 h) doe-litter separation. METHODS Animals were kept under controlled light-dark cycles (16 h-8 h; lights on at 08:00 h). On day 9 post partum, groups of 6-7 female or male rabbit pups were separated from their mothers starting at 6 different time intervals in the 24 h cycle. Pups were killed 48 h after separation. At each time interval groups of male or female pups that stayed with the mother were killed as controls. Plasma, LH, FSH and PRL levels were measured by specific radioimmunoassays. RESULTS In pups kept with their mother plasma FSH and LH maxima occurred at the first and second part of the light phase (at 13:00 and 17:00-21:00 h, respectively) (females) or as two peaks for each of the hormones (at 13:00 and 01:00 h) (males). PRL release was similar in female and male rabbit pups kept with their mother, showing a 24-h pattern with two peaks, at 13:00 and 01:00 h, respectively. Mean 24-h values of gonadotropins and PRL did not differ between sexes. Isolation of pups for 48 h augmented circulating gonadotropin and PRL levels and distorted hormone 24-h pattern to a similar extent in both sexes. CONCLUSION Significant sex differences in 24-h changes in LH and FSH, but not in PRL, release occurred in rabbit pups kept with the doe. Separation of newborn pups from their mother augmented circulating gonadotropin and PRL levels and disrupted 24-h rhythmicity of gonadotropin and PRL release similarly in both sexes. The effect of pups' isolation can be attributed either to a modification of the circadian pacemaker or to a masking effect on some of its output overt rhythms.
Collapse
Affiliation(s)
- Pilar Cano
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Vanesa Jiménez-Ortega
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Maria P Álvarez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Mario Alvariño
- Departamento de Producción Animal, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Spain
| | - Daniel P Cardinali
- Departamento de Fisiología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Ana I Esquifino
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| |
Collapse
|
43
|
Buwalda B, Kole MHP, Veenema AH, Huininga M, de Boer SF, Korte SM, Koolhaas JM. Long-term effects of social stress on brain and behavior: a focus on hippocampal functioning. Neurosci Biobehav Rev 2004; 29:83-97. [PMID: 15652257 DOI: 10.1016/j.neubiorev.2004.05.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/25/2004] [Indexed: 11/24/2022]
Abstract
In order to study mechanisms involved in the etiology of human affective disorders, there is an abundant use of various animal models. Next to genetic factors that predispose for psychopathologies, environmental stress is playing an important role in the etiology of these mental diseases. Since the majority of stress stimuli in humans that lead to psychopathology are of social nature, the study of consequences of social stress in experimental animal models is very valuable. The present review focuses on one of these models that uses the resident-intruder paradigm. In particular the long-lasting effects of social defeat in rats will be evaluated. Data from our laboratory on the consequences of social defeat on emotional behavior, stress responsivity and serotonergic functionality are presented. Furthermore, we will go into detail on hippocampal functioning in socially stressed rats. Very recent results show that there is a differential effect of a brief double social defeat and repetitive social defeat stress on dendritic remodeling in hippocampal CA3 neurons and that this has repercussions on hippocampal LTP and LTD. Both the structural and electrophysiological changes of principal neurons in the hippocampal formation after defeat are discussed as to their relationship with the maintenance in cognitive performance that was observed in socially stressed rats. The results are indicative of a large dynamic range in the adaptive plasticity of the brain, allowing the animals to adapt behaviorally to the previously occurred stressful situation with the progression of time.
Collapse
Affiliation(s)
- Bauke Buwalda
- Department of Animal physiology, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
44
|
Esquifino AI, Alvarez MP, Cano P, Chacon F, Reyes Toso CF, Cardinali DP. 24-hour pattern of circulating prolactin and growth hormone levels and submaxillary lymph node immune responses in growing male rats subjected to social isolation. Endocrine 2004; 25:41-8. [PMID: 15545705 DOI: 10.1385/endo:25:1:41] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/13/2004] [Accepted: 09/17/2004] [Indexed: 01/30/2023]
Abstract
To assess the effect of social isolation of growing rats on 24-h rhythmicity of circulating prolactin and growth hormone (GH) levels and submaxillary lymph node immune responses, male Wistar rats were either individually caged or kept in groups (4-5 animals per cage) for 30 d starting on d 35 of life. Plasma prolactin and GH levels, and submaxillary lymph node lymphocyte subset populations, interferon (IFN)-gamma release and mitogenic responses to concanavalin A (Con A) and lipopolysaccharide (LPS) were determined at six time intervals during the 24 h span. Social isolation brought about changes in mean values and 24-h pattern of plasma prolactin and GH levels and lymph node immune responses. After isolation, prolactin and GH mean values decreased, and lymph node T, B, non T-non B, CD8+, and CD4+-CD8+ cells augmented, whereas lymph node CD4+/CD8+ ratio, IFN-gamma release and mitogenic responses decreased. Social isolation resulted in disruption of 24 h rhythmicity of every immune parameter tested. CD4+/CD8+ ratio, IFN-gamma release and Concanavalin A (Con A) and lipopolysaccharide (LPS) responses correlated significantly with plasma prolactin or GH levels while T/B ratio correlated with plasma prolactin levels only. B, non T-non B, and CD4+-CD8+ cells correlated negatively with plasma prolactin. Modifications in mean value and 24-h rhythmicity of plasma prolactin and GH levels are presumably involved in the effect of social isolation on immune responsiveness.
Collapse
Affiliation(s)
- Ana I Esquifino
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Pardon MC, Kendall DA, Pérez-Diaz F, Duxon MS, Marsden CA. Repeated sensory contact with aggressive mice rapidly leads to an anticipatory increase in core body temperature and physical activity that precedes the onset of aversive responding. Eur J Neurosci 2004; 20:1033-50. [PMID: 15305872 DOI: 10.1111/j.1460-9568.2004.03549.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study investigated whether the 'psychological threat' induced by sensory contact with an aggressive conspecific would be a sufficient factor in inducing behavioural and physiological disturbances. Repeated sensory contact with an aggressive mouse (social threat) in a partitioned cage was compared with repeated exposure to a novel partitioned cage in male NMRI mice. We first examined parameters of stress responsiveness (body weight, plasma corticosterone levels, frequency of self-grooming and defecation). The temperature and physical activity responses to stress were also recorded during and after the 4 weeks of stress using radiotelemetry. Finally, cognitivo-emotional performance was assessed after acute stress and 2 and 4 weeks of stress by measuring decision making, sequential alternation performance and behaviour in the elevated T-maze. Social threat had a greater impact than novel cage exposure on most parameters of stress responsiveness, although mice did not habituate to either stressor. Social threat rapidly led to an anticipatory rise in core body temperature and physical activity before the scheduled stress sessions. Such anticipation developed within the first week and persisted for 9 days after ending the stress procedure. Some memory impairment in the sequential alternation test was found in stressed mice, independent of the stressor. After 4 weeks of stress, inhibitory avoidance in the elevated T-maze was enhanced in socially stressed mice and reduced in novel cage mice. The sustained anticipation of stress in the social threat group preceded aversive responding. It remains to be established whether anticipation contributes to the development of aversive responses.
Collapse
Affiliation(s)
- Marie-Christine Pardon
- Institute of Neuroscience, University of Nottingham Medical School, School of Biomedical Sciences, Queen's Medical Centre, Nottingham NG9 2UH, UK.
| | | | | | | | | |
Collapse
|
46
|
Penka LL, Bond TLY, Heinrichs SC. Non-specific effect of fear conditioning and specific effect of social defeat on social recognition memory performance in female rats. Stress 2004; 7:63-72. [PMID: 15204034 DOI: 10.1080/10253890410001677231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The so called "emotion learning" literature describes the ability of distressing and aversive unconditioned stimuli to classically condition a learned avoidance response. In order to investigate the impact of experience with noxious stimuli in one conditioning context on learning and memory performance in a separate, non-aversively motivated task, juvenile recognition ability was examined in adult female rats exposed previously to one of two environmental stressors. In particular, experimental adult rats were either socially defeated by exposure to an aggressive conspecific rat or fear conditioned using single or multiple pairings with footshock prior to performance of the social recognition task. Experiment 1 established that repeated exposure to a single juvenile resulted in social memory formation reflected in decreased social investigation from the first to the second exposure. Experiment 2 documented that both single and multiple pairings of an environment with footshock produced robust freezing behavior (90-95% suppression of activity). In addition, fear conditioning produced a non-specific 5-60% increase in social investigation time in both single and multiple-pairing fear conditioned groups which confounded the ability of the social recognition measure to assess effects of fear conditioning on learning and memory performance per se. In contrast, Experiment 3 documented that when social recognition memory performance was impaired to 85% of control levels by imposition of a 2 h delay, exposure to a social defeat stressor reinstated optimal social recognition memory performance. These findings suggest that the after effects of fear conditioning include non-specific alteration of social investigation whereas exposure to conspecific aggression enhances subsequent social recognition memory.
Collapse
Affiliation(s)
- Luchele-Ly Penka
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
47
|
Esquifino AI, Chacón F, Jimenez V, Reyes Toso CF, Cardinali DP. d24-hour changes in circulating prolactin, follicle-stimulating hormone, luteinizing hormone and testosterone in male rats subjected to social isolation. J Circadian Rhythms 2004; 2:1. [PMID: 14977425 PMCID: PMC373458 DOI: 10.1186/1740-3391-2-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 02/20/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: This work analyzes the effect of social isolation (a mild stressor) on the 24-h variation of pituitary-testicular function in young Wistar rats, assessed by measuring circulating levels of prolactin, FSH, LH and testosterone. METHODS: Animals were either individually caged or kept in groups (4-5 animals per cage) under a 12:12 h light-dark cycle (lights on at 0800 h) for 30 days starting on day 35 of life. Rats were killed at 4-h intervals during a 24-h cycle, beginning at 0900 h. RESULTS: Isolation brought about a decrease in prolactin, LH and testosterone secretion and an increase of FSH secretion. In isolated rats the 24-h secretory pattern of prolactin and testosterone became modified, i.e., the maximum in prolactin seen in control animals at the beginning of the activity span was no longer detected, whereas the maximum in circulating testosterone taking place at 1700 h in controls was phase-delayed to 2100 h in isolated rats. CONCLUSION: Social isolation affects the 24-h variation of pituitary-testicular function in young rats. Secretion of prolactin, LH and testosterone decreases, and secretion of FSH increases, in isolated rats. The maximum in prolactin seen in group-caged rats at the beginning of the activity span is not observed in isolated rats. The maximum in circulating testosterone taking place at the second part of the rest span in controls is phase-delayed to the light-dark transition in isolated rats.
Collapse
Affiliation(s)
- Ana I Esquifino
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Fernando Chacón
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Vanessa Jimenez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Carlos F Reyes Toso
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel P Cardinali
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Costoli T, Bartolomucci A, Graiani G, Stilli D, Laviola G, Sgoifo A. Effects of chronic psychosocial stress on cardiac autonomic responsiveness and myocardial structure in mice. Am J Physiol Heart Circ Physiol 2004; 286:H2133-40. [PMID: 14962836 DOI: 10.1152/ajpheart.00869.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repeated single exposures to social stressors induce robust shifts of cardiac sympathovagal balance toward sympathetic dominance both during and after each agonistic interaction. However, little evidence is available regarding possible persistent pathophysiological changes due to chronic social challenge. In this study, male CD-1 mice (n = 14) were implanted with a radiotelemetry system for electrocardiographic recordings. We assessed the effects of chronic psychosocial stress (15-day sensory contact with a dominant animal and daily 5-min defeat episodes) on 1) sympathovagal responsiveness to each defeat episode, as measured via time-domain indexes of heart rate variability (R-R interval, standard deviation of R-R interval, and root mean square of successive R-R interval differences), 2) circadian rhythmicity of heart rate across the chronic challenge (night phase, day phase, and rhythm amplitude values), and 3) amount of myocardial structural damage (volume fraction, density, and extension of fibrosis). This study indicated that there was habituation of acute cardiac autonomic responsiveness, i.e., the shift of sympathovagal balance toward sympathetic dominance was significantly reduced across repeated defeat episodes. Moreover, animals exhibited significant changes in heart rate rhythmicity, i.e., increments in day and night values and reductions in the rhythm amplitude, but these were limited to the first 5 days of chronic psychosocial stress. The volume fraction of fibrosis was sixfold larger than in control animals, because of the appearance of many microscopic scarrings. In summary, although mice appeared to adapt to chronic psychosocial stress in terms of acute cardiovascular responsiveness and heart rate rhythmicity, structural alterations occurred at the myocardial level.
Collapse
Affiliation(s)
- Tania Costoli
- Dipartimento di Biologia Evolutiva e Funzionale, Università di Parma, Parco Area delle Scienze 11A, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Pohorecky LA, Blakley GG, Kubovcakova L, Krizanova O, Patterson-Buckendahl P, Kvetnansky R. Social hierarchy affects gene expression for catecholamine biosynthetic enzymes in rat adrenal glands. Neuroendocrinology 2004; 80:42-51. [PMID: 15345906 DOI: 10.1159/000080664] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 06/16/2004] [Indexed: 11/19/2022]
Abstract
Social stressors, like other stressors, are powerful activators of the sympathoadrenomedullary system. Differential housing (single vs. group) and social defeat of rats is known to alter the activity of catecholamine-synthesizing enzymes in the medulla. The present studies examined the effect of 70 days of triad (3 rats per large cage) and individual housing of male rats on adrenal mRNA levels of tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT) and on TH protein levels. Behavioral ratings carried out at the triad formation indicated that dominant rats exhibited mostly offensive aggressive behaviors. By contrast, subordinate rats expressed primarily defensive behaviors, while the subdominant rats displayed intermediate levels of these behaviors. Overall, compared with single housing, triad housing resulted in lower gene expression for TH, DBH and PNMT and lower TH protein in the adrenals. Within triads, gene expression for these enzymes and TH protein concentration were higher in subordinate compared with dominant and subdominant rats. The dominant rats tended to have the lowest gene expression of these enzymes. These data indicate that in rodents, individual housing and a subject's social rank have a differential impact on the regulation of catecholamine biosynthesis already during the process of gene expression of catecholamine biosynthetic enzymes in the adrenals.
Collapse
Affiliation(s)
- Larissa A Pohorecky
- Center of Alcohol Studies, Rutgers University, Piscataway, NJ 08855-8001, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Bartolomucci A, Palanza P, Costoli T, Savani E, Laviola G, Parmigiani S, Sgoifo A. Chronic psychosocial stress persistently alters autonomic function and physical activity in mice. Physiol Behav 2003; 80:57-67. [PMID: 14568308 DOI: 10.1016/s0031-9384(03)00209-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated heart rate (HR), temperature (T), and physical activity (Act) (by means of radiotelemetry) in male mice subjected to chronic psychosocial stress. Resident/intruder dyads lived in sensory contact for 15 days with the possibility to physically interact daily during the light phase for a maximum of 15 min. Intruders becoming dominants (InD) or subordinates (InS) were investigated here. The aims were to investigate; if a daily aggressive interaction would result in adaptation of autonomic responses; the effects of the social stress on daily rhythmicity and the way these effects change over time; whether acute and long-term autonomic changes do correlate; to compare dominants and subordinates. InD and InS showed a strong autonomic activation during the interactions, with moderate (InS) or no (InD) habituation over time. On the long term, InD showed tachycardia and marked hyperthermia but normal physical activity, while InS showed tachycardia, slight hyperthermia, and depressed physical activity. No correlation emerged between the acute and the long-term autonomic responses. These results highlight the existence of a sustained autonomic activation under chronic stress, which was also affected by mice social status.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Dipartimento di Biologia Evolutiva e Funzionale, Università di Parma, Parco area delle Scienze 11A, 43100, Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|