1
|
Wei J, Wang M, Guo Y, Liu Y, Dong X. Sleep structure assessed by objective measurement in patients with mild cognitive impairment: A meta-analysis. Sleep Med 2024; 113:397-405. [PMID: 38134714 DOI: 10.1016/j.sleep.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES A meta-analysis was used to explore the characteristic changes in objective sleep structure of patients with mild cognitive impairment (MCI) compared with cognitively healthy older adults. MATERIALS AND METHODS PubMed, EMBAS, Cochrane Library, Scopus, and Web of Science were searched until November 2023. A literature quality evaluation was performed according to the Newcastle-Ottawa Scale, and a meta-analysis was performed by RevMan 5.3 software. RESULTS Fifteen studies with 771 participants were finally included. Compared with normal control groups, patients with MCI had a decreased total sleep time by 34.44 min, reduction in sleep efficiency by 7.96 %, increased waking after sleep onset by 19.61 min, and increased sleep latency by 6.97 min. Ten included studies showed that the patients with MCI had increased N1 sleep by 2.72 % and decreased N3 sleep by 0.78 %; however, there was no significant difference between the MCI and control groups in percentage of N2 sleep. Moreover, Twelve included studies reported the MCI groups had shorter REM sleep of 2.69 %. CONCLUSION Our results provide evidence of abnormal sleep architecture in patients with MCI. As a "plastic state," abnormal sleep architecture may be a promising therapeutic target for slowing cognitive decline and dementia prevention.
Collapse
Affiliation(s)
- Jianing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Min Wang
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanli Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanjin Liu
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaofang Dong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
2
|
Richter M, Cross ZR, Bornkessel-Schlesewsky I. Individual differences in information processing during sleep and wake predict sleep-based memory consolidation of complex rules. Neurobiol Learn Mem 2023; 205:107842. [PMID: 37848075 DOI: 10.1016/j.nlm.2023.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/03/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Memory is critical for many cognitive functions, from remembering facts, to learning complex environmental rules. While memory encoding occurs during wake, memory consolidation is associated with sleep-related neural activity. Further, research suggests that individual differences in alpha frequency during wake (∼7 - 13 Hz) modulate memory processes, with higher individual alpha frequency (IAF) associated with greater memory performance. However, the relationship between wake-related EEG individual differences, such as IAF, and sleep-related neural correlates of memory consolidation has been largely unexplored, particularly in a complex rule-based memory context. Here, we aimed to investigate whether wake-derived IAF and sleep neurophysiology interact to influence rule learning in a sample of 35 healthy adults (16 males; mean age = 25.4, range: 18 - 40). Participants learned rules of a modified miniature language prior to either 8hrs of sleep or wake, after which they were tested on their knowledge of the rules in a grammaticality judgement task. Results indicate that sleep neurophysiology and wake-derived IAF do not interact but modulate memory for complex linguistic rules separately. Phase-amplitude coupling between slow oscillations and spindles during non-rapid eye-movement (NREM) sleep also promoted memory for rules that were analogous to the canonical English word order. As an exploratory analysis, we found that rapid eye-movement (REM) sleep theta power at posterior regions interacts with IAF to predict rule learning and proportion of time in REM sleep predicts rule learning differentially depending on grammatical rule type. Taken together, the current study provides behavioural and electrophysiological evidence for a complex role of NREM and REM sleep neurophysiology and wake-derived IAF in the consolidation of rule-based information.
Collapse
Affiliation(s)
- Madison Richter
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia; College of Nursing and Health Sciences, Flinders University, Adelaide, Australia.
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia; Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, United States
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| |
Collapse
|
3
|
Monari S, Guillot de Suduiraut I, Grosse J, Zanoletti O, Walker SE, Mesquita M, Wood TC, Cash D, Astori S, Sandi C. Blunted Glucocorticoid Responsiveness to Stress Causes Behavioral and Biological Alterations That Lead to Posttraumatic Stress Disorder Vulnerability. Biol Psychiatry 2023:S0006-3223(23)01590-1. [PMID: 37743003 DOI: 10.1016/j.biopsych.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Understanding why only a subset of trauma-exposed individuals develop posttraumatic stress disorder is critical for advancing clinical strategies. A few behavioral (deficits in fear extinction) and biological (blunted glucocorticoid levels, small hippocampal size, and rapid-eye-movement sleep [REMS] disturbances) traits have been identified as potential vulnerability factors. However, whether and to what extent these traits are interrelated and whether one of them could causally engender the others are not known. METHODS In a genetically selected rat model of reduced corticosterone responsiveness to stress, we explored posttraumatic stress disorder-related biobehavioral traits using ex vivo magnetic resonance imaging, cued fear conditioning, and polysomnographic recordings combined with in vivo photometric measurements. RESULTS We showed that genetic selection for blunted glucocorticoid responsiveness led to a correlated multitrait response, including impaired fear extinction (observed in males but not in females), small hippocampal volume, and REMS disturbances, supporting their interrelatedness. Fear extinction deficits and concomitant disruptions in REMS could be normalized through postextinction corticosterone administration, causally implicating glucocorticoid deficiency in two core posttraumatic stress disorder-related risk factors and manifestations. Furthermore, reduced REMS was accompanied by higher norepinephrine levels in the hippocampal dentate gyrus that were also reversed by postextinction corticosterone treatment. CONCLUSIONS Our results indicate a predominant role for glucocorticoid deficiency over the contribution of reduced hippocampal volume in engendering both REMS alterations and associated deficits in fear extinction consolidation, and they causally implicate blunted glucocorticoids in sustaining neurophysiological disturbances that lead to fear extinction deficits.
Collapse
Affiliation(s)
- Silvia Monari
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sophie E Walker
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michel Mesquita
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Cohen H, Ephraim‐Oluwanuga OT, Akintunde OT, Gureje O, Matar MA, Todder D, Zohar J. The potential beneficial effect of sleep deprivation following traumatic events to preventing PTSD: Review of current insight regarding sleep, memory, and trauma resonating with ancient rituals-Àìsùn Oku (African) and Tsuya (Japanese). Neuropsychopharmacol Rep 2023; 43:2-11. [PMID: 36622038 PMCID: PMC10009425 DOI: 10.1002/npr2.12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sleep figures in numerous ancient texts, for example, Epic of Gilgamesh, and has been a focus for countless mystical and philosophical texts. Even in the present century, sleep remains one of the most complex behaviors whose function still remains to be further explored. Current hypotheses suggest that among other functions, sleep contributes to memory processes. Memory is a core topic of study in post-traumatic stress disorder (PTSD) and other stress-related phenomena. It is widely accepted that sleep plays a major role in the consolidation of newly encoded hippocampus-dependent memories to pre-existing knowledge networks. Conversely, sleep deprivation disrupts consolidation and impairs memory retrieval. Along this line, sleep deprivation following a potentially traumatic event may interfere with the consolidation of event-related memories and, thereby, may reduce long-term post-traumatic stress-related symptoms. This review consolidates clinical and animal studies on the relationships between sleep, sleep deprivation, memory processes, and trauma exposure while introducing new contemporary insights into an ancient African tribal ritual (Àìsùn Oku) and Japanese ceremony ritual (Tsuya). We propose that these findings, focusing specifically on the effects of sleep deprivation in the immediate aftermath of traumatic events, may be explored as a possible therapeutic measure. Along with a summary of the field questions on whether sleep is performed "to remember" or "to forget" we lay the rationale for using sleep deprivation as a clinical tool. A tool that may partially prevent the long-term persistence of these traumatic events' memory and thereby, at least partly, attenuating the development of PTSD.
Collapse
Affiliation(s)
- Hagit Cohen
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | | | - Orunmuyi T. Akintunde
- Department of Nuclear Medicine, College of MedicineUniversity of IbadanIbadanNigeria
| | - Oye Gureje
- Department of PsychiatryCollege of Health Sciences University of AbujaAbujaNigeria
| | - Michael A. Matar
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Doron Todder
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Joseph Zohar
- Post‐Trauma Center, Sheba Medical CenterTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
5
|
Effects of intra-hippocampal corticosterone and sleep on consolidation of memories of aversive experience in rats. Neurobiol Learn Mem 2023; 198:107721. [PMID: 36610686 DOI: 10.1016/j.nlm.2023.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 12/06/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Formation and consolidation of memories for highly stressful (traumatic) events is a complex process that involves interplay between multiple memory systems and has implications for etiology and treatment of stress- and trauma-related disorders. Here we study effects of sleep/wake states and high intra-hippocampal corticosterone on consolidation of aversive contextual memories, as well as consolidation of association between auditory unpaired phasic background cues and fear response in rats. Animals were implanted with EEG and EMG electrodes for sleep assessment and cannulas for intra-hippocampal corticosterone application. They were familiarized to a "safe box" and then trained in a fear conditioning paradigm in a distinct "shock box" with a prominent unpaired phasic background auditory cue. Immediately after conditioning, animals received bilateral intra-hippocampal saline (1 μl) or corticosterone (10 ng in 1 μl) injection and were either allowed to sleep or were kept awake for a following two-hour consolidation period. Memory tests 24 h later revealed that the saline-injected animals that slept during consolidation had significantly stronger fear responses in the shock box compared to the safe box as well as increased fear response in response to the auditory cue. Lack of sleep during the consolidation period in saline injected animals led to generalization of the fear response to the safe context, while association between auditory cue and fear response was preserved. High intra-hippocampal corticosterone levels during memory consolidation led to generalization of fear response to the safe context, regardless of sleep/wake state, while enhancement of response to auditory cue was not observed. Our results show how manipulation of conditions during consolidation can lead to greatly variable memories for an aversive episode with distinct behavioral outcomes. Observed overgeneralization of fear to safe context and altered fear response to background phasic cue has implications for understanding etiology of pathological memory alternations in stress-related conditions e.g., in posttraumatic stress disorder in humans.
Collapse
|
6
|
Guo Y, Xu Q, Dutt N, Kehoe P, Qu A. Longitudinal changes in objective sleep parameters during pregnancy. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057231190952. [PMID: 37650368 PMCID: PMC10475261 DOI: 10.1177/17455057231190952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Sleep disturbances are associated with adverse perinatal outcomes. Thus, it is necessary to understand the continuous patterns of sleep during pregnancy and how moderators such as maternal age and pre-pregnancy body mass index impact sleep. OBJECTIVE This study aimed to examine the continuous changes in sleep parameters objectively (i.e. sleep stages, total sleep time, and awake time) in pregnant women and to describe the impact of maternal age and/or pre-pregnancy body mass index as moderators of these objective sleep parameters. DESIGN This was a longitudinal observational design. METHODS Seventeen women with a singleton pregnancy participated in this study. Mixed model repeated measures were used to describe weekly patterns, while aggregated changes describe these three pregnancy periods (10-19, 20-29, and 30-39 gestational weeks). RESULTS For the weekly patterns, we found significantly decreased deep (1.26 ± 0.18 min/week, p < 0.001), light (0.72 ± 0.37 min/week, p = 0.05), and total sleep time (1.56 ± 0.47 min/week, p < 0.001) as well as increased awake time (1.32 ± 0.34 min/week, p < 0.001). For the aggregated changes, we found similar patterns to weekly changes. Women (⩾30 years) had an even greater decrease in deep sleep (1.50 ± 0.22 min/week, p < 0.001) than those younger (0.84 ± 0.29 min/week, p = 0.04). Women who were both overweight/obese and ⩾30 years experienced an increase in rapid eye movement sleep (0.84 ± 0.31 min/week, p = 0.008), but those of normal weight (<30 years) did not. CONCLUSION This study appears to be the first to describe continuous changes in sleep parameters during pregnancy at home. Our study provides preliminary evidence that sleep parameters could be potential non-invasive physiological markers predicting perinatal outcomes.
Collapse
Affiliation(s)
- Yuqing Guo
- Sue & Bill Gross School of Nursing, University of California, Irvine, Irvine, CA, USA
| | - Qi Xu
- Department of Statistics, Donald Bren School of Information & Computer Sciences, University of California, Irvine, Irvine, CA, USA
| | - Nikil Dutt
- Donald Bren School of Information & Computer Sciences, University of California, Irvine, Irvine, CA, USA
| | - Priscilla Kehoe
- Sue & Bill Gross School of Nursing, University of California, Irvine, Irvine, CA, USA
| | - Annie Qu
- Department of Statistics, Donald Bren School of Information & Computer Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Meyhöfer S, Dembinski K, Schultes B, Born J, Wilms B, Lehnert H, Hallschmid M, Meyhöfer SM. Sleep deprivation prevents counterregulatory adaptation to recurrent hypoglycaemia. Diabetologia 2022; 65:1212-1221. [PMID: 35445819 PMCID: PMC9174142 DOI: 10.1007/s00125-022-05702-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Attenuated counterregulation after recurrent hypoglycaemia is a major complication of diabetes treatment. As there is previous evidence for the relevance of sleep in metabolic control, we assessed the acute contribution of sleep to the counterregulatory adaptation to recurrent hypoglycaemia. METHODS Within a balanced crossover design, 15 healthy, normal-weight male participants aged 18-35 years underwent three hyperinsulinaemic-hypoglycaemic clamps with a glucose nadir of 2.5 mmol/l, under two experimental conditions, sleep and sleep deprivation. Participants were exposed to two hypoglycaemic episodes, followed by a third hypoglycaemic clamp after one night of regular 8 h sleep vs sleep deprivation. The counterregulatory response of relevant hormones (glucagon, growth hormone [GH], ACTH, cortisol, adrenaline [epinephrine] and noradrenaline [norepinephrine]) was measured, and autonomic and neuroglycopenic symptoms were assessed. RESULTS Sleep deprivation compared with sleep dampened the adaptation to recurrent hypoglycaemia for adrenaline (p=0.004), and this pattern also emerged in an overall analysis including adrenaline, GH and glucagon (p=0.064). After regular sleep, the counterregulatory responses of adrenaline (p=0.005), GH (p=0.029) and glucagon (p=0.009) were attenuated during the 3rd clamp compared with the 1st clamp, but were preserved after sleep deprivation (all p>0.225). Neuroglycopenic and autonomic symptoms during the 3rd clamp compared with the 1st clamp were likewise reduced after sleep (p=0.005 and p=0.019, respectively). In sleep deprivation, neuroglycopenic symptoms increased (p=0.014) and autonomic symptoms were unchanged (p=0.859). CONCLUSIONS/INTERPRETATION The counterregulatory adaptation to recurrent hypoglycaemia is compromised by sleep deprivation between hypoglycaemic episodes, indicating that sleep is essential for the formation of a neurometabolic memory, and may be a potential target of interventions to treat hypoglycaemia unawareness syndrome.
Collapse
Affiliation(s)
- Svenja Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany.
| | - Katharina Dembinski
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Bernd Schultes
- Metabolic Center St Gallen, FriendlyDocs Ltd, St Gallen, Switzerland
| | - Jan Born
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Deparment of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Britta Wilms
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Manfred Hallschmid
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Deparment of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
8
|
Wang D, Tang Y, Chen Y, Zhang S, Ma D, Luo Y, Li S, Su X, Wang X, Liu C, Zhang N. The effect of non-benzodiazepine sedative hypnotics on CPAP adherence in patients with OSA: a systematic review and meta-analysis. Sleep 2021; 44:6189107. [PMID: 33769549 DOI: 10.1093/sleep/zsab077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
STUDY OBJECTIVES This meta-analysis aimed to explore the effect of non-benzodiazepine sedative hypnotics (NBSH) on continuous positive airway pressure (CPAP) adherence in patients with obstructive sleep apnea (OSA). METHODS We conducted a systematic search through PubMed, Medline, the Cochrane Library, EMBASE, Scopus and ClinicalTrials (all searched from inception to 15 August 2020). Publications were limited to articles, clinical conferences and letters, including randomized controlled trials and retrospective studies. We used a random-effects model to calculate the odds ratio (OR) and mean difference (MD) with corresponding confidence interval (CI). Subgroup analyses were conducted to analyze the sources of heterogeneity. RESULTS Eight studies fulfilled the inclusion and exclusion criteria for patients newly diagnosed with obstructive sleep apnea. Overall, the use of NBSH was associated with increased use of CPAP per night (MD = 0.62 h; 95% CI = 0.26-0.98) and use for more nights (MD = 12.08%; 95% CI = 5.27-18.88). When a study seriously affecting heterogeneity was removed, more patients adhered well with CPAP use (pooled OR = 2.48; 95% CI = 1.75-3.52) with good adherence defined as CPAP use for>4 h/night on>70% of nights. Among prescribed NBSHs, eszopiclone showed the most significant effect on CPAP adherence. CONCLUSION CPAP adherence may increase in OSA patients treated with non-benzodiazepine sedative hypnotics especially eszopiclone. The effect of zolpidem and zaleplon on CPAP adherence requires further investigation by larger scale, randomized, controlled trials.
Collapse
Affiliation(s)
- Donghao Wang
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongkang Tang
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanghang Chen
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sun Zhang
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Danjie Ma
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yateng Luo
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiwei Li
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofen Su
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinni Wang
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunli Liu
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nuofu Zhang
- Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Lo EBL, Laferriere LJC, Stewart MR, Milanovic M, Kinney M, Bowie CR, Dringenberg HC. Does Napping Enhance the Consolidation of Clinically Relevant Information? A Comparison of Individuals with Low and Elevated Depressive Symptoms. Nat Sci Sleep 2021; 13:141-152. [PMID: 33603524 PMCID: PMC7882434 DOI: 10.2147/nss.s297872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Sleep, both overnight and daytime naps, can facilitate the consolidation of declarative memories in healthy humans. However, it is unclear whether such beneficial effects of sleep occur in special populations, such as individuals with elevated neuropsychiatric symptoms, and if they apply to clinically relevant material that may have personal significance to those populations. METHODS We examined memory retention over a 60-minute interval of wakefulness or nap opportunity in participants with low or elevated scores (≤13 and ≥21, respectively) on the Beck Depression Inventory-II (BDI-II). Memory for depression-related information was assessed by (a) free-recall of a video depicting a personal experience narrative of the impact of depression on cognition and workplace performance; and (b) a paired-associates task linking depression-related cognitive symptoms to appropriate coping strategies. RESULTS The results showed no overall difference in recall between the nap and waking condition. However, across the full sample of participants, there were significant positive correlations between total sleep time and paired associates recall, and slow wave sleep (SWS) percentage and story free recall performance. Unexpectedly, participants with elevated BDI-II scores exhibited better free-recall performance compared to those with low scores. CONCLUSION These results suggest that sleep, specifically SWS, may stabilize memories for clinically relevant information in populations with low and elevated depressive symptoms. The superior recall in participants with elevated-BDI scores may be related to the personal significance and stronger encoding of depression-related information. These observations raise the possibility that mnemonic deficits in depressed patients may be, at least in part, related to the type of information used to assess memory performance.
Collapse
Affiliation(s)
- Edwyn B L Lo
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | | | - Matthew R Stewart
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Melissa Milanovic
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Melinda Kinney
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Christopher R Bowie
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Hans C Dringenberg
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
10
|
The neuroprotective effect of osthole against chronic sleep deprivation (CSD)-induced memory impairment in rats. Life Sci 2020; 263:118524. [PMID: 33011218 DOI: 10.1016/j.lfs.2020.118524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 02/02/2023]
Abstract
AIM Sleep deprivation (SD) is a frequent health problem in modern society. Osthole (Ost), a natural coumarin, has antioxidant and neuroprotective properties. This study examined the functions of Ost in chronic sleep deprivation (CSD)-induced memory deficits in rats. MAIN METHODS The CSD rat model was constructed by applying Sleep Interruption Apparatus (SIA). The protective effect of Ost on memory ability of CSD rats was evaluated through behavioral tests. Modafinil (MOD) was a positive control for investigating the mechanisms underlying the actions of Ost. The oxidative stress changes in the cortex and hippocampus of the rats, histological changes in CA1 region in the hippocampus and the protein expressions of neural plasticity markers were measured. The hippocampal neurons were isolated from rats for evaluating the neuroprotective effects of Ost on glutamate-induced neuron injury in vitro. KEY FINDINGS Ost administration significantly enhanced the cognitive performance of CSD rats in the open field test, object location recognition experiment, novel object recognition experiment, and Morris water maze test. Ost could effectively normalize the levels/activities of the antioxidant enzyme system in the cortex and hippocampus. Moreover, Ost administration reversed CSD-induced abnormal state of CA1 neurocytes and the down-regulated expressions of plasticity-related genes in vivo and in vitro. Additionally, Ost also notably up-regulated the expressions of Nrf2 and HO-1 previously down-regulated in CA1 neurocytes of CSD rats and in vitro. SIGNIFICANCE Our findings showed that Ost alleviated CSD-induced cognitive deficits, and the activation of the Nrf2/HO-1 pathway might be involved in the neuroprotective action of Ost.
Collapse
|
11
|
Iannella G, Magliulo G, Maniaci A, Meccariello G, Cocuzza S, Cammaroto G, Gobbi R, Sgarzani R, Firinu E, Corso RM, Pace A, Gulotta G, Visconti IC, Di Luca M, Pelucchi S, Bianchi G, Melegatti M, Abita P, Solito C, La Mantia I, Grillo C, Vicini C. Olfactory function in patients with obstructive sleep apnea: a meta-analysis study. Eur Arch Otorhinolaryngol 2020; 278:883-891. [PMID: 32914257 DOI: 10.1007/s00405-020-06316-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE This meta-analysis study was designed to analyze the olfactory function in obstructive sleep apnea patients (OSA). METHODS A comprehensive review of the English language literature regarding OSA patients and olfactory function/dysfunction was performed. The papers assessing olfactory dysfunction with Sniffin' Sticks test were taken into consideration. RESULTS A total of 420 OSA patients were judged eligible for the study. The average TDI score was found to be 24.3 ± 5.6. The olfactory identification (OD), the olfactory discrimination (OD), and the olfactory threshold (OT) average values were calculated resulting 9.9 ± 2.1, 9.8 ± 1.5, and 5.3 ± 2, respectively. There were 161 healthy control subjects in this meta-analysis. The average TDI of the control group was 30.7 ± 6.0 showing a statistical difference with the group of OSA patients (p = 0.03). A linear correlation between Apnea-Hypopnea Index (AHI) increase and TDI decrease (R2 = 0.1, p = 0.05) was detected. Finally, the average values of TDI of 151 patients classified as mild-moderate OSA and 159 patients considered as severe OSA were calculated. The difference between these two groups resulted not statistically significant (p = 0.3). CONCLUSION The comparison between OSA patients and healthy subjects using Sniffin' Sticks test showed lower values of the various olfactory parameters. Although a linear correlation between AHI increase and olfactory dysfunction was observed, no statistical difference between mild-moderate and severe OSA patients in terms of the severity of olfactory dysfunction could be proved.
Collapse
Affiliation(s)
- Giannicola Iannella
- Otolaryngology, Head-Neck and Oral Surgery Unit, Department of Head-Neck Surgery, Morgagni Pierantoni Hospital, Via Carlo Forlanini, 34, 47121, Forlì, Italy. .,Department of 'Organi di Senso', University "Sapienza", Viale dell'Università, 33, 00185, Rome, Italy.
| | - Giuseppe Magliulo
- Department of 'Organi di Senso', University "Sapienza", Viale dell'Università, 33, 00185, Rome, Italy
| | - Antonino Maniaci
- ENT Section, Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia, 78, 95125, Catania, Italy
| | - Giuseppe Meccariello
- Otolaryngology, Head-Neck and Oral Surgery Unit, Department of Head-Neck Surgery, Morgagni Pierantoni Hospital, Via Carlo Forlanini, 34, 47121, Forlì, Italy
| | - Salvatore Cocuzza
- ENT Section, Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia, 78, 95125, Catania, Italy
| | - Giovanni Cammaroto
- Otolaryngology, Head-Neck and Oral Surgery Unit, Department of Head-Neck Surgery, Morgagni Pierantoni Hospital, Via Carlo Forlanini, 34, 47121, Forlì, Italy
| | - Riccardo Gobbi
- Otolaryngology, Head-Neck and Oral Surgery Unit, Department of Head-Neck Surgery, Morgagni Pierantoni Hospital, Via Carlo Forlanini, 34, 47121, Forlì, Italy
| | - Rossella Sgarzani
- Department of Emergency, Burn Center, Bufalini Hospital, Azienda USL Della Romagna, viale Giovanni Ghirotti, 286, 47521, Cesena, Italy
| | - Elisabetta Firinu
- Otolaryngology, Head-Neck and Oral Surgery Unit, Department of Head-Neck Surgery, Morgagni Pierantoni Hospital, Via Carlo Forlanini, 34, 47121, Forlì, Italy
| | - Ruggero Massimo Corso
- Intensive Care Unit, Morgagni-Pierantoni Hospital, AUSL of Romagna, Via Carlo Forlanini, 34, 47121, Forlì, Italy
| | - Annalisa Pace
- Department of 'Organi di Senso', University "Sapienza", Viale dell'Università, 33, 00185, Rome, Italy
| | - Giampiero Gulotta
- Department of 'Organi di Senso', University "Sapienza", Viale dell'Università, 33, 00185, Rome, Italy
| | - Irene Claudia Visconti
- Department of 'Organi di Senso', University "Sapienza", Viale dell'Università, 33, 00185, Rome, Italy
| | - Milena Di Luca
- ENT Section, Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia, 78, 95125, Catania, Italy
| | - Stefano Pelucchi
- Department ENT and Audiology, University of Ferrara, Via Savonarola, 9, 44121, Ferrara, Italy
| | - Giulia Bianchi
- Department ENT and Audiology, University of Ferrara, Via Savonarola, 9, 44121, Ferrara, Italy
| | - Michela Melegatti
- Department ENT and Audiology, University of Ferrara, Via Savonarola, 9, 44121, Ferrara, Italy
| | - Pietro Abita
- Unit of Otorhinolaryngology, Department of Adult and Development Age Human Pathology "Gaetano Barresi", University of Messina, Messina, Italy
| | - Carmen Solito
- Department of 'Organi di Senso', University "Sapienza", Viale dell'Università, 33, 00185, Rome, Italy
| | - Ignazio La Mantia
- ENT Section, Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia, 78, 95125, Catania, Italy
| | - Calogero Grillo
- ENT Section, Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia, 78, 95125, Catania, Italy
| | - Claudio Vicini
- Department of 'Organi di Senso', University "Sapienza", Viale dell'Università, 33, 00185, Rome, Italy.,Department ENT and Audiology, University of Ferrara, Via Savonarola, 9, 44121, Ferrara, Italy
| |
Collapse
|
12
|
Muehlroth BE, Rasch B, Werkle-Bergner M. Episodic memory consolidation during sleep in healthy aging. Sleep Med Rev 2020; 52:101304. [DOI: 10.1016/j.smrv.2020.101304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 11/29/2022]
|
13
|
Rezaie M, Nasehi M, Vaseghi S, Mohammadi-Mahdiabadi-Hasani MH, Zarrindast MR, Nasiri Khalili MA. The protective effect of alpha lipoic acid (ALA) on social interaction memory, but not passive avoidance in sleep-deprived rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2081-2091. [PMID: 32583046 DOI: 10.1007/s00210-020-01916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Sleep is involved in maintaining energy, regulating heat, and recovering tissues. Furthermore, proper cognitive functions need sufficient sleep. Many studies have revealed the impairment effect of sleep deprivation (SD) on cognitive functions including learning and memory. Alpha lipoic acid (ALA) is a potent free radical scavenger, biological antioxidant, and neuroprotective agent. Furthermore, ALA improves learning and memory performance, decreases oxidative stress, and enhances antioxidant biomarkers. In this study, we aimed to investigate the effect of ALA on social interaction and passive avoidance memories in sleep-deprived rats. Total sleep deprivation (TSD) apparatus was used to induce SD (for 24 h). Three-chamber paradigm test and shuttle box apparatus were used to evaluate social interaction and passive avoidance memory, respectively. Rats' locomotor apparatus was used to assess locomotion. ALA was administered intraperitoneally at doses of 17 and 35 mg/kg for 3 consecutive days. The results showed SD impaired both types of memories. ALA at the dose of 35 mg/kg restored social interaction memory in sleep-deprived rats; while, at the dose of 17 mg/kg attenuated impairment effect of SD. Moreover, ALA at the dose of 35 mg/kg impaired passive avoidance memory in sham-SD rats and at both doses did not rescue passive avoidance memory in sleep-deprived rats. In conclusion, ALA showed impairment effect on passive avoidance memory, while improved social interaction memory in sleep-deprived rats.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Nasiri Khalili
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
14
|
Alzoubi KH, Al-Jamal FF, Mahasneh AF. Cerebrolysin prevents sleep deprivation induced memory impairment and oxidative stress. Physiol Behav 2020; 217:112823. [DOI: 10.1016/j.physbeh.2020.112823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
|
15
|
Rahman MA, Aribisala BS, Ullah I, Omer H. Association between scripture memorization and brain atrophy using magnetic resonance imaging. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Alzoubi KH, Al Mosabih HS, Mahasneh AF. The protective effect of edaravone on memory impairment induced by chronic sleep deprivation. Psychiatry Res 2019; 281:112577. [PMID: 31586841 DOI: 10.1016/j.psychres.2019.112577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 01/08/2023]
Abstract
Sleep plays a critical role in body health maintenance, whereas sleep deprivation (SD) negatively affects cognitive function. Cognitive defects mainly memory impairment resulting from sleep deprivation were related to an increase in the level of oxidative stress in the body, including the brain hippocampus region. Edaravone is a potent free radical scavenger having antioxidant effect. In the current study, edaravone's ability to prevent SD induced cognitive impairment was tested in rats. Animals were sleep deprived 8 h/day for 4 weeks. Concurrently, edaravone was administrated intraperitoneally for four weeks. Animals performance during cognitive testing was evaluated to display if edaravone has a role in the prevention of sleep deprivation induced memory impairment. Additionally, the role of antioxidant biomarkers glutathione peroxidase (GPx), catalase, glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG in this effect was investigated. The results showed that SD impaired both short- and long- term memories, and chronic edaravone administration prevented such effect. Additionally, edaravone prevented decreases in hippocampal GPx, catalase, GSH/GSSG ratio and normalized increases in GSSG levels, which were impaired by SD model. In conclusion, current result showed a protective effect of edaravone administration against SD induction that could be related to edaravone's ability to normalizing mechanisms related to oxidative balance.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Heba S Al Mosabih
- Department of Applied Biology, Jordan University of Science and Technology, Irbid, Jordan
| | - Amjad F Mahasneh
- Department of Applied Biology, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
17
|
Alzoubi KH, Mayyas F, Abu Zamzam HI. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sci 2019; 227:1-7. [PMID: 30998938 DOI: 10.1016/j.lfs.2019.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Abstract
AIMS The current study aims to evaluate the possible protective effect of omega-3 fatty acids on memory impairment induced by sleep-deprivation in rats. MATERIALS AND METHODS Animals were chronically sleep deprived using the modified multiple platform model (8 h/day for 8 weeks). Omega-3 fatty acids were administered as fish oil via oral gavage at a daily dose of 100 mg omega-3 PUFA/100 g BWT. The spatial learning and memory were evaluated using the radial arm water maze (RAWM). Additionally, the following oxidative stress biomarkers were measured in the hippocampus: glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS). KEY FINDINGS Animals in the SD group committed significantly more errors in both short- and long- term memory tests of the RAWM compared to other groups. On the other hand, animals that were sleep deprived and treated with omega-3 fatty acids committed similar number of errors compared to the control group. This indicates that SD impaired both short- and long- term memories, and that chronic omega-3 fatty acids administration prevented these effects. Omega-3 fatty acids also prevented the decreases in hippocampal GPx, catalase and GSH/GSSG ratio and normalized the increases in GSSG levels, which were impaired by SD model. No changes were observed on hippocampal TBARS levels, or activity of SOD among experimental groups. SIGNIFICANCE In conclusion, a protective effect of omega-3 fatty acids administration has been observed against chronic SD-induced memory impairment probably via improving hippocampus antioxidant effects.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Fadia Mayyas
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Hamza I Abu Zamzam
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
18
|
Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front Psychiatry 2019; 10:1003. [PMID: 32047446 PMCID: PMC6997541 DOI: 10.3389/fpsyt.2019.01003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The dramatic fluctuations in energy demands by the rhythmic succession of night and day on our planet has prompted a geophysical evolutionary need for biological temporal organization across phylogeny. The intrinsic circadian timing system (CS) represents a highly conserved and sophisticated internal "clock," adjusted to the 24-h rotation period of the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from gene expression to behavior. The human CS is tightly and bidirectionally interconnected to the stress system (SS). Both systems are fundamental for survival and regulate each other's activity in order to prepare the organism for the anticipated cyclic challenges. Thereby, the understanding of the temporal relationship between stressors and stress responses is critical for the comprehension of the molecular basis of physiology and pathogenesis of disease. A critical loss of the harmonious timed order at different organizational levels may affect the fundamental properties of neuroendocrine, immune, and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms with increased stress sensitivity and vulnerability. In this review, following an overview of the functional components of the SS and CS, we present their multilevel interactions and discuss how traumatic stress can alter the interplay between the two systems. Circadian dysregulation after traumatic stress exposure may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of trauma through maladaptive stress regulation. Understanding the mechanisms susceptible to circadian dysregulation and their role in stress-related disorders could provide new insights into disease mechanisms, advancing psychochronobiological treatment possibilities and preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilios P Bozikas
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P Chrousos
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
19
|
Sazma MA, Shields GS, Yonelinas AP. The effects of post-encoding stress and glucocorticoids on episodic memory in humans and rodents. Brain Cogn 2018; 133:12-23. [PMID: 31178013 DOI: 10.1016/j.bandc.2018.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/13/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023]
Abstract
It is now well established that acute stress shortly after encoding (i.e., post-encoding stress) can benefit episodic memory. In the current paper, we briefly review the human literature examining the effects of post-encoding stress on episodic memory, and we relate that literature to studies of post-encoding manipulations of cortisol in humans, as well as studies of post-encoding stress and administration of corticosterone on analogous memory tasks in rodents. An examination of the literature reveals several important gaps in our understanding of stress and memory. For example, although the human literature shows that post-encoding stress generally improves memory, these effects are not observed if stress occurs in a different context from learning. Moreover, the rodent literature shows that post-encoding stress generally impairs memory instead of improving it, and these effects depend on whether the animal is habituated to the learning context prior to encoding. Although many aspects of the results support a cellular consolidation account of post-encoding stress, we present possible modifications, such as a network reset, to better account for the data. We also suggest that it is important to incorporate ideas of contextual binding in order to understanding the effects of post-encoding stress and glucocorticoids on memory.
Collapse
Affiliation(s)
- Matthew A Sazma
- Department of Psychology, University of California, Davis, CA 95618, USA.
| | - Grant S Shields
- Department of Psychology, University of California, Davis, CA 95618, USA
| | - Andrew P Yonelinas
- Department of Psychology, University of California, Davis, CA 95618, USA; Center for Mind and Brain, University of California, Davis, CA 95618, USA
| |
Collapse
|
20
|
Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Prog Neurobiol 2017; 156:164-188. [DOI: 10.1016/j.pneurobio.2017.05.004] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
|
21
|
Boyce R, Williams S, Adamantidis A. REM sleep and memory. Curr Opin Neurobiol 2017; 44:167-177. [DOI: 10.1016/j.conb.2017.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/01/2017] [Indexed: 01/26/2023]
|
22
|
Alzoubi KH, Malkawi BS, Khabour OF, El-Elimat T, Alali FQ. Arbutus andrachne L. Reverses Sleep Deprivation-Induced Memory Impairments in Rats. Mol Neurobiol 2017; 55:1150-1156. [PMID: 28101814 DOI: 10.1007/s12035-017-0387-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/04/2017] [Indexed: 01/06/2023]
Abstract
Sleep deprivation (SD) is associated with cognitive deficits. It was found to affect the hippocampus region of the brain by impairing memory formation. This impairment is suggested to be caused by elevation in oxidative stress in the body, including the brain during SD. It was hypothesized that the methanolic extract of the fruits of Arbutus andrachne L. (Ericaceae) will prevent chronic SD-induced impairment of hippocampal memory via its antioxidative properties. The methanolic extract of the fruits of A. andrachne was evaluated for its beneficial properties to reverse SD-induced cognitive impairment in rats. Animals were sleep deprived for 8 weeks using a multiple platform model. The extract was administered i.p. at three doses (50, 200, and 500 mg/kg). Behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM). In addition, the hippocampus was dissected to analyze the following oxidative stress markers: glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, glutathione peroxidase (GPx), and catalase. Chronic SD impaired short- and long-term memories (P < 0.05). Treatment of animals with A. andrachne fruit extract at all doses prevented long-term memory impairment induced by SD while such treatment prevented short-term memory impairment only at 200 and 500 mg/kg dose levels. Moreover, A. andrachne fruit extract normalized the reduction in the hippocampus GSH/GSSG ratio and activity of GPx, and catalase (P < 0.05) induced by chronic sleep deprivation. Chronic sleep deprivation impaired both short- and long-term memory formation, while methanolic extract of A. andrachne fruits reversed this impairment, probably through normalizing oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Bayan S Malkawi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Feras Q Alali
- College of Pharmacy, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
23
|
Asken BM, Sullan MJ, Snyder AR, Houck ZM, Bryant VE, Hizel LP, McLaren ME, Dede DE, Jaffee MS, DeKosky ST, Bauer RM. Factors Influencing Clinical Correlates of Chronic Traumatic Encephalopathy (CTE): a Review. Neuropsychol Rev 2016; 26:340-363. [PMID: 27561662 PMCID: PMC5507554 DOI: 10.1007/s11065-016-9327-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neuropathologically defined disease reportedly linked to a history of repetitive brain trauma. As such, retired collision sport athletes are likely at heightened risk for developing CTE. Researchers have described distinct pathological features of CTE as well a wide range of clinical symptom presentations, recently termed traumatic encephalopathy syndrome (TES). These clinical symptoms are highly variable, non-specific to individuals described as having CTE pathology in case reports, and are often associated with many other factors. This review describes the cognitive, emotional, and behavioral changes associated with 1) developmental and demographic factors, 2) neurodevelopmental disorders, 3) normal aging, 4) adjusting to retirement, 5) drug and alcohol abuse, 6) surgeries and anesthesia, and 7) sleep difficulties, as well as the relationship between these factors and risk for developing dementia-related neurodegenerative disease. We discuss why some professional athletes may be particularly susceptible to many of these effects and the importance of choosing appropriate controls groups when designing research protocols. We conclude that these factors should be considered as modifiers predominantly of the clinical outcomes associated with repetitive brain trauma within a broader biopsychosocial framework when interpreting and attributing symptom development, though also note potential effects on neuropathological outcomes. Importantly, this could have significant treatment implications for improving quality of life.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Molly J Sullan
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Aliyah R Snyder
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Zachary M Houck
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Vaughn E Bryant
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Loren P Hizel
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Molly E McLaren
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Duane E Dede
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Michael S Jaffee
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Russell M Bauer
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Agorastos A, Linthorst ACE. Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J Pineal Res 2016; 61:3-26. [PMID: 27061919 DOI: 10.1111/jpi.12330] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Loss of circadian rhythmicity fundamentally affects the neuroendocrine, immune, and autonomic system, similar to chronic stress and may play a central role in the development of stress-related disorders. Recent articles have focused on the role of sleep and circadian disruption in the pathophysiology of posttraumatic stress disorder (PTSD), suggesting that chronodisruption plays a causal role in PTSD development. Direct and indirect human and animal PTSD research suggests circadian system-linked neuroendocrine, immune, metabolic and autonomic dysregulation, linking circadian misalignment to PTSD pathophysiology. Recent experimental findings also support a specific role of the fundamental synchronizing pineal hormone melatonin in mechanisms of sleep, cognition and memory, metabolism, pain, neuroimmunomodulation, stress endocrinology and physiology, circadian gene expression, oxidative stress and epigenetics, all processes affected in PTSD. In the current paper, we review available literature underpinning a potentially beneficiary role of an add-on melatonergic treatment in PTSD pathophysiology and PTSD-related symptoms. The literature is presented as a narrative review, providing an overview on the most important and clinically relevant publications. We conclude that adjuvant melatonergic treatment could provide a potentially promising treatment strategy in the management of PTSD and especially PTSD-related syndromes and comorbidities. Rigorous preclinical and clinical studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry and Psychotherapy, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid C E Linthorst
- Faculty of Health Sciences, Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
25
|
Cortisol disrupts the neural correlates of extinction recall. Neuroimage 2016; 133:233-243. [DOI: 10.1016/j.neuroimage.2016.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/16/2022] Open
|
26
|
Boosting Slow Oscillatory Activity Using tDCS during Early Nocturnal Slow Wave Sleep Does Not Improve Memory Consolidation in Healthy Older Adults. Brain Stimul 2016; 9:730-739. [PMID: 27247261 DOI: 10.1016/j.brs.2016.04.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated an enhancement of hippocampal-dependent declarative memory consolidation, associated slow wave sleep (SWS) and slow wave activity (SWA) after weak slow oscillatory stimulation (so-tDCS) during early non-rapid eye movement sleep (NREM) in young adults. Recent studies in older individuals could not confirm these findings. However, it remained unclear if this difference was due to variations in study protocol or to the age group under study. OBJECTIVE/HYPOTHESIS Here, we asked if so-tDCS promotes neurophysiological events and associated sleep-dependent memory in the visuo-spatial domain in older adults, using a stimulation protocol that closely resembled the one employed in young adults. METHODS In a randomized, placebo-controlled single-blind (participant) crossover study so-tDCS (0.75 Hz; max. current density 0.522 mA/cm(2)) vs. sham stimulation was applied over the frontal cortex of 21 healthy older subjects. Impact of stimulation on frequency band activity (linear mixed models), two declarative and one procedural memory tasks (repeated measures ANOVA) and percentage of sleep stages (comparison of means) was assessed. RESULTS so-tDCS, as compared to sham, increased SWA and spindle activity immediately following stimulation, accompanied by significantly impaired visuo-spatial memory consolidation. Furthermore, verbal and procedural memory remained unchanged, while percentage of NREM sleep stage 4 was decreased over the entire night (uncorrected). CONCLUSION so-tDCS increased SWA and spindle activity in older adults, events previously associated with stimulation-induced improved consolidation of declarative memories in young subjects. However, consolidation of visuo-spatial (primary outcome) and verbal memories was not beneficially modulated, possibly due to decline in SWS over the entire night that may have prevented and even reversed immediate beneficial effects of so-tDCS on SWA.
Collapse
|
27
|
A Critical Review of Neurobiological Factors Involved in the Interactions Between Chronic Pain, Depression, and Sleep Disruption. Clin J Pain 2016; 32:327-36. [DOI: 10.1097/ajp.0000000000000260] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Hodyl NA, Schneider L, Vallence AM, Clow A, Ridding MC, Pitcher JB. The cortisol awakening response is associated with performance of a serial sequence reaction time task. Int J Psychophysiol 2015; 100:12-8. [PMID: 26721740 DOI: 10.1016/j.ijpsycho.2015.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 11/20/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022]
Abstract
There is emerging evidence of a relationship between the cortisol awakening response (CAR) and the neural mechanisms underlying learning and memory. The aim of this study was to determine whether the CAR is associated with acquisition, retention and overnight consolidation or improvement of a serial sequence reaction time task. Salivary samples were collected at 0, 15, 30 and 45 min after awakening in 39 healthy adults on 2 consecutive days. The serial sequence reaction time task was repeated each afternoon. Participants completed the perceived stress scale and provided salivary samples prior to testing for cortisol assessment. While the magnitude of the CAR (Z score) was not associated with either baseline performance or the timed improvement during task acquisition of the serial sequence task, a positive correlation was observed with reaction times during the stable performance phase on day 1 (r=0.373, p=0.019). Residuals derived from the relationship between baseline and stable phase reaction times on day 1 were used as a surrogate for the degree of learning: these residuals were also correlated with the CAR mean increase on day 1 (r=0.357, p=0.048). Task performance on day 2 was not associated with the CAR obtained on this same day. No association was observed between the perceived stress score, cortisol at testing or task performance. These data indicate that a smaller CAR in healthy adults is associated with a greater degree of learning and faster performance of a serial sequence reaction time task. These results support recognition of the CAR as an important factor contributing to cognitive performance throughout the day.
Collapse
Affiliation(s)
- Nicolette A Hodyl
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia; Neonatal Medicine, Women's and Children's Hospital, Adelaide, SA, Australia.
| | - Luke Schneider
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Ann-Maree Vallence
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Angela Clow
- Department of Psychology, University of Westminster, London, UK
| | - Michael C Ridding
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Julia B Pitcher
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
29
|
Rimmele U, Tambini A. Sleep, Sleep Alterations, Stress--Combined Effects on Memory? Sleep 2015; 38:1835-6. [PMID: 26564139 DOI: 10.5665/sleep.5214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 11/03/2022] Open
Affiliation(s)
- Ulrike Rimmele
- Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Arielle Tambini
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA
| |
Collapse
|
30
|
Westermann J, Lange T, Textor J, Born J. System Consolidation During Sleep – A Common Principle Underlying Psychological and Immunological Memory Formation. Trends Neurosci 2015; 38:585-597. [DOI: 10.1016/j.tins.2015.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
|
31
|
|
32
|
Wagner U, Handke L, Walter H. The relationship between trait empathy and memory formation for social vs. non-social information. BMC Psychol 2015; 3:2. [PMID: 25685356 PMCID: PMC4322958 DOI: 10.1186/s40359-015-0058-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/02/2015] [Indexed: 02/02/2023] Open
Abstract
Background To navigate successfully through their complex social environment, humans need both empathic and mnemonic skills. Little is known on how these two types of psychological abilities relate to each other in humans. Although initial clinical findings suggest a positive association, systematic investigations in healthy subject samples have not yet been performed. Differentiating cognitive and affective aspects of empathy, we assumed that cognitive empathy would be positively associated with general memory performance, while affective empathy, due to enhanced other-related emotional reactions, would be related to a relative memory advantage for information of social as compared to non-social relevance. Methods We investigated in young healthy participants the relationship between dispositional cognitive and affective empathy, as measured by Davis’ Interpersonal Reactivity Index (Journal of Personality and Social Psychology, 44, 113–126, 1983), and memory formation for stimuli (numbers presented in a lottery choice task) that could be encoded in either a social (other-related) or a non-social (self-related) way within the task. Results Cognitive empathy, specifically perspective taking, correlated with overall memory performance (regardless of encoding condition), while affective empathy, specifically empathic personal distress, predicted differential memory for socially vs. non-socially encoded information. Conclusion Both cognitive and affective empathy are associated with memory formation, but in different ways, depending on the social nature of the memory content. These results open new and so far widely neglected avenues of psychological research on the relationship between social and cognitive skills.
Collapse
Affiliation(s)
- Ullrich Wagner
- Department of Psychology, University of Münster, Fliednerstr. 21, 48149 Münster, Germany ; Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Lisa Handke
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
33
|
Tesler N, Latshang TD, Lo Cascio CM, Stadelmann K, Stoewhas AC, Kohler M, Bloch KE, Achermann P, Huber R. Ascent to moderate altitude impairs overnight memory improvements. Physiol Behav 2015; 139:121-6. [DOI: 10.1016/j.physbeh.2014.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 11/15/2022]
|
34
|
The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol Learn Mem 2015; 122:110-21. [PMID: 25638277 DOI: 10.1016/j.nlm.2015.01.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 01/01/2023]
Abstract
Over the years, rapid eye movement (REM) sleep has been associated with general memory consolidation, specific consolidation of perceptual, procedural, emotional and fear memories, brain maturation and preparation of waking consciousness. More recently, some of these associations (e.g., general and procedural memory consolidation) have been shown to be unlikely, while others (e.g., brain maturation and consciousness) remain inconclusive. In this review, we argue that both behavioral and neurophysiological evidence supports a role of REM sleep for amygdala-related memory processing: the amygdala-hippocampus-medial prefrontal cortex network involved in emotional processing, fear memory and valence consolidation shows strongest activity during REM sleep, in contrast to the hippocampus-medial prefrontal cortex only network which is more active during non-REM sleep. However, more research is needed to fully understand the mechanisms.
Collapse
|
35
|
Bergman NJ. Proposal for mechanisms of protection of supine sleep against sudden infant death syndrome: an integrated mechanism review. Pediatr Res 2015; 77:10-9. [PMID: 25268147 DOI: 10.1038/pr.2014.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Supine sleep decreases sudden infant death syndrome (SIDS) incidence, however the mechanisms for this are unclear. The triple risk model for SIDS requires that one or more underlying abnormalities of breathing or autonomic control are present; these are rare, but brainstem defects are found in most SIDS cases. Supine sleep increases sympathetic nervous system tone, and level of state organization, and may therefore act as a stressor. This is evidenced by physiological arousal, and by delayed neurodevelopment in supine compared to prone sleepers. It is argued here that prone sleep position is the biological normative standard in healthy infants, supporting autonomic regulation. During rapid eye movement (REM) sleep (and other circumstances), a parasympathetic-mediated adverse autonomic event (AAE) may be spontaneously triggered. In healthy infants, gasping initiates autoresuscitation and recovery. HYPOTHESIS The underlying vulnerability to SIDS is specific to autoresuscitation from an AAE, the initial serotonin-dependent gasp is commonly compromised. Serotonin metabolism defects also influence sleep architecture, increasing the likelihood of AAE. The mechanism whereby supine sleep decreases SIDS may therefore be a stressor effect, disturbing sleep architecture to decrease REM and AAEs, and increasing sympathetic tone, which may prevent and counteract the purely parasympathetic-mediated AAE, thereby decreasing the risk of SIDS.
Collapse
Affiliation(s)
- Nils J Bergman
- Department of Human Biology, University of Cape Town, Western Cape, South Africa
| |
Collapse
|
36
|
Kolbe I, Dumbell R, Oster H. Circadian Clocks and the Interaction between Stress Axis and Adipose Function. Int J Endocrinol 2015; 2015:693204. [PMID: 26000016 PMCID: PMC4426660 DOI: 10.1155/2015/693204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 01/21/2023] Open
Abstract
Many physiological processes and most endocrine functions show fluctuations over the course of the day. These so-called circadian rhythms are governed by an endogenous network of cellular clocks and serve as an adaptation to daily and, thus, predictable changes in the organism's environment. Circadian clocks have been described in several tissues of the stress axis and in adipose cells where they regulate the rhythmic and stimulated release of stress hormones, such as glucocorticoids, and various adipokine factors. Recent work suggests that both adipose and stress axis clock systems reciprocally influence each other and adrenal-adipose rhythms may be key players in the development and therapy of metabolic disorders. In this review, we summarize our current understanding of adrenal and adipose tissue rhythms and clocks and how they might interact to regulate energy homoeostasis and stress responses under physiological conditions. Potential chronotherapeutic strategies for the treatment of metabolic and stress disorders are discussed.
Collapse
Affiliation(s)
- Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
| | - Rebecca Dumbell
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
- *Henrik Oster:
| |
Collapse
|
37
|
Deppermann S, Storchak H, Fallgatter A, Ehlis AC. Stress-induced neuroplasticity: (Mal)adaptation to adverse life events in patients with PTSD – A critical overview. Neuroscience 2014; 283:166-77. [DOI: 10.1016/j.neuroscience.2014.08.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
|
38
|
Leliavski A, Dumbell R, Ott V, Oster H. Adrenal Clocks and the Role of Adrenal Hormones in the Regulation of Circadian Physiology. J Biol Rhythms 2014; 30:20-34. [DOI: 10.1177/0748730414553971] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders.
Collapse
Affiliation(s)
- Alexei Leliavski
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Rebecca Dumbell
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Volker Ott
- Institute of Neuroendocrinology, University of Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| |
Collapse
|
39
|
Gemignani A, Piarulli A, Menicucci D, Laurino M, Rota G, Mastorci F, Gushin V, Shevchenko O, Garbella E, Pingitore A, Sebastiani L, Bergamasco M, L'Abbate A, Allegrini P, Bedini R. How stressful are 105days of isolation? Sleep EEG patterns and tonic cortisol in healthy volunteers simulating manned flight to Mars. Int J Psychophysiol 2014; 93:211-9. [DOI: 10.1016/j.ijpsycho.2014.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/05/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
|
40
|
Sampath D, Sabitha KR, Hegde P, Jayakrishnan HR, Kutty BM, Chattarji S, Rangarajan G, Laxmi TR. A study on fear memory retrieval and REM sleep in maternal separation and isolation stressed rats. Behav Brain Res 2014; 273:144-54. [PMID: 25084041 DOI: 10.1016/j.bbr.2014.07.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6h daily/3d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus-amygdala-cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions.
Collapse
Affiliation(s)
- Dayalan Sampath
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - K R Sabitha
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Preethi Hegde
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - H R Jayakrishnan
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Bindu M Kutty
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Sumantra Chattarji
- National Center for Biological Sciences (NCBS), GKVK Campus, Bangalore 560065, India
| | | | - T R Laxmi
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India.
| |
Collapse
|
41
|
Barnes DC, Wilson DA. Sleep and olfactory cortical plasticity. Front Behav Neurosci 2014; 8:134. [PMID: 24795585 PMCID: PMC4001050 DOI: 10.3389/fnbeh.2014.00134] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022] Open
Abstract
In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer's disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.
Collapse
Affiliation(s)
- Dylan C. Barnes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric ResearchOrangeburg, NY, USA
- Behavioral and Cognitive Neuroscience Program, City University of New YorkNew York, NY, USA
- Department of Biology, University of OklahomaNorman, OK, USA
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric ResearchOrangeburg, NY, USA
- Behavioral and Cognitive Neuroscience Program, City University of New YorkNew York, NY, USA
- Department of Biology, University of OklahomaNorman, OK, USA
- Department of Child and Adolescent Psychiatry, New York University Langone School of MedicineNew York, NY, USA
| |
Collapse
|
42
|
Selective REM-Sleep Deprivation Does Not Diminish Emotional Memory Consolidation in Young Healthy Subjects. PLoS One 2014; 9:e89849. [PMID: 24587073 PMCID: PMC3937423 DOI: 10.1371/journal.pone.0089849] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/27/2014] [Indexed: 12/05/2022] Open
Abstract
Sleep enhances memory consolidation and it has been hypothesized that rapid eye movement (REM) sleep in particular facilitates the consolidation of emotional memory. The aim of this study was to investigate this hypothesis using selective REM-sleep deprivation. We used a recognition memory task in which participants were shown negative and neutral pictures. Participants (N = 29 healthy medical students) were separated into two groups (undisturbed sleep and selective REM-sleep deprived). Both groups also worked on the memory task in a wake condition. Recognition accuracy was significantly better for negative than for neutral stimuli and better after the sleep than the wake condition. There was, however, no difference in the recognition accuracy (neutral and emotional) between the groups. In summary, our data suggest that REM-sleep deprivation was successful and that the resulting reduction of REM-sleep had no influence on memory consolidation whatsoever.
Collapse
|
43
|
Yantsevich AV, Dichenko YV, Mackenzie F, Mukha DV, Baranovsky AV, Gilep AA, Usanov SA, Strushkevich NV. Human steroid and oxysterol 7α-hydroxylase CYP7B1: substrate specificity, azole binding and misfolding of clinically relevant mutants. FEBS J 2014; 281:1700-13. [PMID: 24491228 DOI: 10.1111/febs.12733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 11/28/2022]
Abstract
Oxysterols and neurosteroids are important signaling molecules produced by monooxygenases of the cytochrome P450 family that realize their effect through nuclear receptors. CYP7B1 catalyzes the 6- or 7-hydroxylation of both steroids and oxysterols and thus is involved in the metabolism of neurosteroids and bile acid synthesis, respectively. The dual physiological role of CYP7B1 is evidenced from different diseases, liver failure and progressive neuropathy, caused by enzyme malfunction. Here we present biochemical characterization of CYP7B1 at the molecular level to understand substrate specificity and susceptibility to azole drugs. Based on our experiments with purified enzyme, the requirements for CYP7B1 hydroxylation of steroid molecules are as follows: C5 hydrogen in the α-configuration (or double bond at C5), a polar group at C17, a hydroxyl group at C3, and the absence of the hydroxyl group at C20-C24 in the C27-sterol side chain. 21-hydroxy-pregnenolone was identified as a new substrate, and overall low activity toward pregnanes could be related to the increased potency of 7-hydroxy derivatives produced by CYP7B1. Metabolic conversion (deactivation) of oxysterols by CYP7B1 in a reconstituted system proceeds via two sequential hydroxylations. Two mutations that are found in patients with diseases, Gly57Arg and Phe216Ser, result in apo-P450 (devoid of heme) protein formation. Our CYP7B1 homology model provides a rationale for understanding clinical mutations and relatively broad substrate specificity for steroid hydroxylase.
Collapse
|
44
|
Beyeler A, Eckhardt CA, Tye KM. Deciphering Memory Function with Optogenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:341-90. [DOI: 10.1016/b978-0-12-420170-5.00012-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Bennion KA, Mickley Steinmetz KR, Kensinger EA, Payne JD. Sleep and cortisol interact to support memory consolidation. ACTA ACUST UNITED AC 2013; 25:646-57. [PMID: 24072888 DOI: 10.1093/cercor/bht255] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Separate lines of research have demonstrated that rises in cortisol can benefit memory consolidation, as can the occurrence of sleep soon after encoding. For the first time, we demonstrate that pre-learning cortisol interacts with sleep to benefit memory consolidation, particularly for negative arousing items. Resting cortisol levels during encoding were positively correlated with subsequent memory, but only following a period of sleep. There was no such relation following a period of wakefulness. Using eye tracking, we further reveal that for negative stimuli, this facilitative effect may arise because cortisol strengthens the relationship between looking time at encoding and subsequent memory. We suggest that elevated cortisol may "tag" attended information as important to remember at the time of encoding, thus enabling sleep-based processes to optimally consolidate salient information in a selective manner. Neuroimaging data suggest that this optimized consolidation leads to a refinement of the neural processes recruited for successful retrieval of negative stimuli, with the retrieval of items attended in the presence of elevated cortisol and consolidated over a night of sleep associated with activity in the amygdala and vmPFC.
Collapse
Affiliation(s)
- Kelly A Bennion
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA
| | - Katherine R Mickley Steinmetz
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA Wofford College, R. Milliken Science Center 231D, Spartanburg, SC 29303, USA
| | | | - Jessica D Payne
- Department of Psychology, The University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
46
|
Aceto P, Lai C, Perilli V, Dello Russo C, Federico B, Navarra P, Proietti R, Sollazzi L. Stress-related biomarkers of dream recall and implicit memory under anaesthesia. Anaesthesia 2013; 68:1141-7. [PMID: 23952901 DOI: 10.1111/anae.12386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2013] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate whether auditory presentation of a story during general anaesthesia might influence stress hormone changes and thus affecting dream recall and/or implicit memory. One hundred and ten patients were randomly assigned either to hear a recording of a story through headphones or to have routine care with no auditory recording while undergoing laparoscopic cholecystectomy. Anaesthesia was standardised. Blood samples for cortisol and prolactin assays were collected 20 min before anaesthesia and 5 min after pneumoperitoneum. Dream recall and explicit/implicit memory were investigated upon awakening from anaesthesia and approximately 24 h after the end of the operation. Auditory presentation was associated with lower intra-operative serum prolactin concentration compared with control (p = 0.0006). Twenty-seven patients with recall of dreaming showed higher intra-operative prolactin (p = 0.004) and lower cortisol (p = 0.03) concentrations compared with those without dream recall. The knowledge of this interaction might be useful in the quest to ensure postoperative amnesia.
Collapse
Affiliation(s)
- P Aceto
- Department of Anaesthesiology and Intensive Care, A. Gemelli Hospital, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Haimov I, Shatil E. Cognitive training improves sleep quality and cognitive function among older adults with insomnia. PLoS One 2013; 8:e61390. [PMID: 23577218 PMCID: PMC3618113 DOI: 10.1371/journal.pone.0061390] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/28/2013] [Indexed: 11/24/2022] Open
Abstract
Study Objectives To investigate the effect of an eight-week, home-based, personalized, computerized cognitive training program on sleep quality and cognitive performance among older adults with insomnia. Design Participants (n = 51) were randomly allocated to a cognitive training group (n = 34) or to an active control group (n = 17). The participants in the cognitive training group completed an eight-week, home-based, personalized, computerized cognitive training program, while the participants in the active control group completed an eight-week, home-based program involving computerized tasks that do not engage high-level cognitive functioning. Before and after training, all participants' sleep was monitored for one week by an actigraph and their cognitive performance was evaluated. Setting Community setting: residential sleep/performance testing facility. Participants Fifty-one older adults with insomnia (aged 65–85). Interventions Eight weeks of computerized cognitive training for older adults with insomnia. Results Mixed models for repeated measures analysis showed between-group improvements for the cognitive training group on both sleep quality (sleep onset latency and sleep efficiency) and cognitive performance (avoiding distractions, working memory, visual memory, general memory and naming). Hierarchical linear regressions analysis in the cognitive training group indicated that improved visual scanning is associated with earlier advent of sleep, while improved naming is associated with the reduction in wake after sleep onset and with the reduction in number of awakenings. Likewise the results indicate that improved “avoiding distractions” is associated with an increase in the duration of sleep. Moreover, the results indicate that in the active control group cognitive decline observed in working memory is associated with an increase in the time required to fall asleep. Conclusions New learning is instrumental in promoting initiation and maintenance of sleep in older adults with insomnia. Lasting and personalized cognitive training is particularly indicated to generate the type of learning necessary for combined cognitive and sleep enhancements in this population. Trial Registration ClinicalTrials.gov NCT00901641
Collapse
Affiliation(s)
- Iris Haimov
- Department of Psychology and the Center for Psychobiological Research, Yezreel Academic College, Emek Yezreel, Israel.
| | | |
Collapse
|
48
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
49
|
Tantawy AO, Tallawy HNE, Farghaly HR, Farghaly WM, Hussein AS. Impact of nocturnal sleep deprivation on declarative memory retrieval in students at an orphanage: a psychoneuroradiological study. Neuropsychiatr Dis Treat 2013; 9:403-8. [PMID: 23569380 PMCID: PMC3616140 DOI: 10.2147/ndt.s38905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND METHODS This study investigated the effects of sleep deprivation on total and partial (early and late) declarative memory and activation in the areas of the brain involved in these activities. The study included two experiments. Experiment 1 included 40 male residents of an orphanage aged 16-19 years, who were divided into four groups (n = 10 each) and subjected to total sleep deprivation, normal sleep, early-night sleep deprivation, or late-night sleep deprivation. Experiment 2 included eight students from the same institution who were divided into the same four groups (n = 2) as in experiment 1. Declarative memory was tested using lists of associated word pairs in both experiments, and activation of the relevant brain regions was measured before and after retrieval by single-photon emission computed tomography for subjects in experiment 2 only. RESULTS Students subjected to normal sleep had significantly higher scores for declarative memory retrieval than those subjected to total sleep deprivation (P = 0.002), early-night sleep deprivation (P = 0.005), or late-night sleep deprivation (P = 0.02). The left temporal lobe showed the highest rate of activity during memory retrieval after normal sleep, whereas the frontal, parietal, and right temporal lobes were more active after sleep deprivation. CONCLUSION Both slow wave sleep and rapid eye movement sleep play an active role in consolidation of declarative memory, which in turn allows memory traces to be actively reprocessed and strengthened during sleep, leading to improved performance in memory recall.
Collapse
Affiliation(s)
- Ahmed O Tantawy
- Educational Psychology Department, Faculty of Education, Assiut, Arab Republic of Egypt
| | | | | | | | | |
Collapse
|
50
|
Inostroza M, Binder S, Born J. Sleep-dependency of episodic-like memory consolidation in rats. Behav Brain Res 2013; 237:15-22. [DOI: 10.1016/j.bbr.2012.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
|