1
|
Huzayyin AAS, Ibrahim MK, Hassanein NMA, Ahmed HMS. Vitamin D3 and zinc supplements augment the antimanic efficacy of lithium and olanzapine treatments in an animal model of mania. Nutr Neurosci 2024:1-14. [PMID: 38635860 DOI: 10.1080/1028415x.2024.2338344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Objective: Bipolar disorder (BD) is a challenging psychiatric disorder and a complex disease. The associated reduction in serum vitamin D3 (VitD3) levels in BD patients and the contribution of zinc (Zn) to the treatment, along with the severe side effects of lithium (Li) treatment, were encouraging to assess the efficacy of different correlated combinations of therapeutic/nutraceutical treatments such as olanzapine (Oln), VitD3, and Zn against Li. Methods: Mania was induced in C57BL/6 mice by administering methylphenidate (MPH) for 14 consecutive days. On the 8th day of MPH injection, different treatment regimens were administered, Li, Oln, VitD3/Zn, VitD3/Zn/Oln, VitD3 + Zn + Oln + Li50mg/kg (C50), and VitD3 + Zn + Oln + Li100mg/kg (C100). Both VitD3 (850 IU/kg) and Zn (180 mg/kg) were supplied with food for 2 weeks before starting the induction of mania, which continued until the end of MPH administration. Behavioral, brain oxidative stress, thyroid hormones, VitD3, Zn, GsK-3β, and Bcl2 levels, as well as brain histopathological alterations, were assessed. Results: Manic mice exhibited alterations in all tested parameters, and the histopathological examination of the cortex and hippocampus confirmed these results. The VitD3/Zn/Oln, C50, and C100 treatment regimens reversed most of the behavioral and pathophysiological alterations; however, the C50 treatment regimen was the most efficient. Conclusions: This study emphasizes the importance of combining different antimanic medications like Li and Oln with nutraceutical supplements to increase their antimanic efficacy, reduce their adverse effects, and, ideally, improve the BD patient's quality of life.
Collapse
Affiliation(s)
- Aya A S Huzayyin
- Central Administration of Drug Control, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Michael K Ibrahim
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Nahed M A Hassanein
- Developmental Pharmacology and Acute Toxicity Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Helmy M S Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy-Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Wang B, Fang T, Chen H. Zinc and Central Nervous System Disorders. Nutrients 2023; 15:2140. [PMID: 37432243 DOI: 10.3390/nu15092140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Zinc (Zn2+) is the second most abundant necessary trace element in the human body, exerting a critical role in many physiological processes such as cellular proliferation, transcription, apoptosis, growth, immunity, and wound healing. It is an essential catalyst ion for many enzymes and transcription factors. The maintenance of Zn2+ homeostasis is essential for the central nervous system, in which Zn2+ is abundantly distributed and accumulates in presynaptic vesicles. Synaptic Zn2+ is necessary for neural transmission, playing a pivotal role in neurogenesis, cognition, memory, and learning. Emerging data suggest that disruption of Zn2+ homeostasis is associated with several central nervous system disorders including Alzheimer's disease, depression, Parkinson's disease, multiple sclerosis, schizophrenia, epilepsy, and traumatic brain injury. Here, we reviewed the correlation between Zn2+ and these central nervous system disorders. The potential mechanisms were also included. We hope that this review can provide new clues for the prevention and treatment of nervous system disorders.
Collapse
Affiliation(s)
- Bangqi Wang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Tianshu Fang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
3
|
Serum Zinc and Long-Term Prognosis after Acute Traumatic Brain Injury with Intracranial Injury: A Multicenter Prospective Study. J Clin Med 2022; 11:jcm11216496. [PMID: 36362724 PMCID: PMC9654715 DOI: 10.3390/jcm11216496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Serum zinc levels in the acute stages after traumatic brain injury (TBI) may be capable of predicting cinical and functional prognoses. This study aimed to evaluate the association between serum zinc levels and long-term survival and neurological outcomes in TBI patients with intracranial injury. This multicenter prospective cohort study enrolled adult TBI patients with intracranial injury who visited emergency departments between December 2018 and June 2020. Serum zinc levels drawn within 24 h after injury were categorized into four groups: low (<80.0 mcg/dL), low−normal (80.0−100.0 mcg/dL), high−normal (100.1−120.0 mcg/dL), and high (>120.0 mcg/dL). The study outcomes were 6-month mortality and disability (Glasgow Outcome Scale, 1−3). A multilevel multivariable logistic regression analysis was conducted to estimate associations between serum zinc and study outcomes. From the eligible TBI patients (N = 487), the median (interquartile range) serum zinc level was 112.0 mcg/dL (95.0−142.0). Six-month mortality and disability were 21.1% (103/487) and 29.6% (144/487), respectively. Compared to the high−normal zinc group, there were significant associations with 6-month mortality and disability observed in the low zinc group (aORs (95% CIs): 1.91 (1.60−2.28) and 1.95 (1.62−2.36) for the low group; 1.14 (0.67−1.94) and 1.15 (0.91−1.46) for the low−normal group; and 0.72 (0.44−1.16) and 0.88 (0.61−1.27) for the high group, respectively). Among the 122 TBI patients with diabetes mellitus, the low zinc group showed a higher incidence of 6-month mortality (aOR (95% CI): 9.13 (4.01−20.81)) compared to the high−normal zinc group. Moreover, the low and low−normal groups had higher odds for 6-month disability (aORs (95% CIs): 6.63 (3.61−12.15) for the low group and 2.37 (1.38−4.07) for the low−normal group). Serum zinc deficiency is associated with a higher incidence of 6-month mortality and disability after injury for TBI patients with intracranial injury.
Collapse
|
4
|
Neely C, Barkey R, Hernandez C, Flinn J. Prophylactic zinc supplementation modulates hippocampal ionic zinc and partially remediates neurological recovery following repetitive mild head injury in mice. Behav Brain Res 2022; 430:113918. [DOI: 10.1016/j.bbr.2022.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/31/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
|
5
|
Cereda G, Ciappolino V, Boscutti A, Cantù F, Enrico P, Oldani L, Delvecchio G, Brambilla P. Zinc as a Neuroprotective Nutrient for COVID-19-Related Neuropsychiatric Manifestations: A Literature Review. Adv Nutr 2021; 13:66-79. [PMID: 34634109 PMCID: PMC8524565 DOI: 10.1093/advances/nmab110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The outbreak of the pandemic associated with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) led researchers to find new potential treatments, including nonpharmacological molecules such as zinc (Zn2+). Specifically, the use of Zn2+ as a therapy for SARS-CoV-2 infection is based on several findings: 1) the possible role of the anti-inflammatory activity of Zn2+ on the aberrant inflammatory response triggered by COronaVIrus Disease 19 (COVID-19), 2) properties of Zn2+ in modulating the competitive balance between the host and the invading pathogens, and 3) the antiviral activity of Zn2+ on a number of pathogens, including coronaviruses. Furthermore, Zn2+ has been found to play a central role in regulating brain functioning and many disorders have been associated with Zn2+ deficiency, including neurodegenerative diseases, psychiatric disorders, and brain injuries. Within this context, we carried out a narrative review to provide an overview of the evidence relating to the effects of Zn2+ on the immune and nervous systems, and the therapeutic use of such micronutrients in both neurological and infective disorders, with the final goal of elucidating the possible use of Zn2+ as a preventive or therapeutic intervention in COVID-19. Overall, the results from the available evidence showed that, owing to its neuroprotective properties, Zn2+ supplementation could be effective not only on COVID-19-related symptoms but also on virus replication, as well as on COVID-19-related inflammation and neurological damage. However, further clinical trials evaluating the efficacy of Zn2+ as a nonpharmacological treatment of COVID-19 are required to achieve an overall improvement in outcome and prognosis.
Collapse
Affiliation(s)
- Guido Cereda
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Boscutti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Filippo Cantù
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lucio Oldani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
6
|
Li X, Chen S, Mao L, Li D, Xu C, Tian H, Mei X. Zinc Improves Functional Recovery by Regulating the Secretion of Granulocyte Colony Stimulating Factor From Microglia/Macrophages After Spinal Cord Injury. Front Mol Neurosci 2019; 12:18. [PMID: 30774583 PMCID: PMC6367229 DOI: 10.3389/fnmol.2019.00018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/17/2019] [Indexed: 01/19/2023] Open
Abstract
While zinc promotes motor function recovery after spinal cord injury (SCI), the precise mechanisms involved are not fully understood. The present study aimed to elucidate the effects of zinc and granulocyte colony stimulating factor (G-CSF) on neuronal recovery after SCI. The SCI model was established by Allen's method. Injured animals were given glucose and zinc gluconate (ZnG; 30 mg/kg) for the first time at 2 h after injury, the same dose was given for 3 days. A cytokine antibody array was used to screen changes in inflammation at the site of SCI lesion. Immunofluorescence was used to detect the distribution of cytokines. Magnetic beads were also used to isolate cells from the site of SCI lesion. We then investigated the effect of Zinc on apoptosis after SCI by Transferase UTP Nick End Labeling (TUNEL) staining and Western Blotting. Basso Mouse Scale (BMS) scores and immunofluorescence were employed to investigate neuronal apoptosis and functional recovery. We found that the administration of zinc significantly increased the expression of 19 cytokines in the SCI lesion. Of these, G-CSF was shown to be the most elevated cytokine and was secreted by microglia/macrophages (M/Ms) via the nuclear factor-kappa B (NF-κB) signaling pathway after SCI. Increased levels of G-CSF at the SCI lesion reduced the level of neuronal apoptosis after SCI, thus promoting functional recovery. Collectively, our results indicate that the administration of zinc increases the expression of G-CSF secreted by M/Ms, which then leads to reduced levels of neuronal apoptosis after SCI.
Collapse
Affiliation(s)
- Xian Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shurui Chen
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liang Mao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Daoyong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chang Xu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
7
|
Portbury SD, Sedjahtera A, Perrones K, Sgambelloni C, Zhang M, Crack PJ, Finkelstein DI, Adlard PA. Metal chaperones: a novel therapeutic strategy for brain injury? Brain Inj 2018; 33:305-312. [PMID: 30507321 DOI: 10.1080/02699052.2018.1552988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study sought to assess the potential efficacy of a novel class of metal chaperone on the outcomes in an animal model of a controlled cortical impact. This work was predicated on previous observations that this class of compound has exhibited neuroprotective potential in other models of aging and neurodegeneration. RESEARCH DESIGN The study employed a controlled cortical impact traumatic brain injury in three month old mice with subsequent behavioral and cellular assessments to determine therapeutic efficacy. METHODS Cognitive (Y-maze) and motor assessments (Rotarod and Open Field) were employed to determine behavioral end points. Histological-based methods were utilized to assess neuronal integrity, astrocytosis, and lesion volume. OUTCOMES We demonstrate here that acute post-injury treatment with PBT2 (Prana Biotechnology) is sufficient to maintain neuronal integrity (evidenced by decreased lesion area and increased numbers of neurons; decreased astrocytosis was also present) and to normalize performance in cognitive testing (Y-maze). These effects occurred within days and were maintained for the entire duration of the study (26 days post-injury). These data support the further interrogation of the utility of metal chaperones for the treatment and/or prevention of the neuroanatomical, biochemical, and behavioral deficits that occur following brain injuries of different etiologies.
Collapse
Affiliation(s)
- S D Portbury
- a The Florey Institute of Neuroscience and Mental Health, Dementia Theme , Parkville, Victoria , Australia
| | - A Sedjahtera
- a The Florey Institute of Neuroscience and Mental Health, Dementia Theme , Parkville, Victoria , Australia
| | - K Perrones
- a The Florey Institute of Neuroscience and Mental Health, Dementia Theme , Parkville, Victoria , Australia
| | - C Sgambelloni
- a The Florey Institute of Neuroscience and Mental Health, Dementia Theme , Parkville, Victoria , Australia
| | - M Zhang
- b Department of Pharmacology and Therapeutics , The University of Melbourne , Parkville, Victoria , Australia
| | - P J Crack
- b Department of Pharmacology and Therapeutics , The University of Melbourne , Parkville, Victoria , Australia
| | - D I Finkelstein
- a The Florey Institute of Neuroscience and Mental Health, Dementia Theme , Parkville, Victoria , Australia
| | - P A Adlard
- a The Florey Institute of Neuroscience and Mental Health, Dementia Theme , Parkville, Victoria , Australia.,c The University of Melbourne , Melbourne , Australia
| |
Collapse
|
8
|
Khazdouz M, Mazidi M, Ehsaei MR, Ferns G, Kengne AP, Norouzy AR. Impact of Zinc Supplementation on the Clinical Outcomes of Patients with Severe Head Trauma: A Double-Blind Randomized Clinical Trial. J Diet Suppl 2017; 15:1-10. [DOI: 10.1080/19390211.2017.1304486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maryam Khazdouz
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing
| | - Mohammad-reza Ehsaei
- Department of Neurosurgery, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton & Sussex Medical School, University of Brighton, Brighton, United Kingdom
| | - Andre Pascal Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Abdol-Reza Norouzy
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Gonkowski S, Rowniak M, Wojtkiewicz J. Zinc Transporter 3 (ZnT3) in the Enteric Nervous System of the Porcine Ileum in Physiological Conditions and during Experimental Inflammation. Int J Mol Sci 2017; 18:ijms18020338. [PMID: 28178198 PMCID: PMC5343873 DOI: 10.3390/ijms18020338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/28/2017] [Accepted: 02/03/2017] [Indexed: 01/19/2023] Open
Abstract
Zinc transporter 3 (ZnT3) is a member of the solute-linked carrier 30 (SLC 30) zinc transporter family. It is closely linked to the nervous system, where it takes part in the transport of zinc ions from the cytoplasm to the synaptic vesicles. ZnT3 has also been observed in the enteric nervous system (ENS), but its reactions in response to pathological factors remain unknown. This study, based on the triple immunofluorescence technique, describes changes in ZnT3-like immunoreactive (ZnT3-LI) enteric neurons in the porcine ileum, caused by chemically-induced inflammation. The inflammatory process led to a clear increase in the percentage of neurons immunoreactive to ZnT3 in all "kinds" of intramural enteric plexuses, i.e., myenteric (MP), outer submucous (OSP) and inner submucous (ISP) plexuses. Moreover, a wide range of other active substances was noted in ZnT3-LI neurons under physiological and pathological conditions, and changes in neurochemical characterisation of ZnT3⁺ cells in response to inflammation depended on the "kind" of enteric plexus. The obtained results show that ZnT3 is present in the ENS in a relatively numerous and diversified neuronal population, not only in physiological conditions, but also during inflammation. The reasons for the observed changes are not clear; they may be connected with the functions of zinc ions and their homeostasis disturbances in pathological processes. On the other hand, they may be due to adaptive and/or neuroprotective processes within the pathologically altered gastrointestinal tract.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, Oczapowskiego 13, University of Warmia and Mazury, 10-718 Olsztyn, Poland.
| | - Maciej Rowniak
- Department of Comparative Anatomy, Faculty of Biology, Plac Łódzki 3, University of Warmia and Mazury, 10-727 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medical Sciences, Warszawska 30, University of Warmia and Mazury, 10-082 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, 10-082 Olsztyn, Poland.
- Foundation for Nerve Cells Regeneration, Warszawska 30, 10-082 Olsztyn, Poland.
| |
Collapse
|
10
|
Tian T, Li LL, Zhang SQ, Ni H. Long-Term Effects of Ketogenic Diet on Subsequent Seizure-Induced Brain Injury During Early Adulthood: Relationship of Seizure Thresholds to Zinc Transporter-Related Gene Expressions. Biol Trace Elem Res 2016; 174:369-376. [PMID: 27147436 DOI: 10.1007/s12011-016-0730-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022]
Abstract
The divalent cation zinc is associated with cortical plasticity. However, the mechanism of zinc in the pathophysiology of cortical injury-associated neurobehavioral damage following neonatal seizures is uncertain. We have previously shown upregulated expression of ZnT-3; MT-3 in hippocampus of neonatal rats submitted to flurothyl-induced recurrent seizures, which was restored by pretreatment with ketogenic diet (KD). In this study, utilizing a novel "twist" seizure model by coupling early-life flurothyl-induced seizures with later exposure to penicillin, we further investigated the long-term effects of KD on cortical expression of zinc homeostasis-related genes in a systemic scale. Ten Sprague-Dawley rats were assigned each averagely into the non-seizure plus normal diet (NS + ND), non-seizure plus KD (NS + KD), recurrent seizures plus normal diet (RS + ND) and recurrent seizures plus KD (RS + KD) group. Recurrent seizures were induced by volatile flurothyl during P9-P21. During P23-P53, rats in NS + KD and RS + KD groups were dieted with KD. Neurological behavioral parameters of brain damage (plane righting reflex, cliff avoidance reflex, and open field test) were observed at P43. At P63, we examined seizure threshold using penicillin, then the cerebral cortex were evaluated for real-time RT-PCR and western blot study. The RS + ND group showed worse performances in neurological reflex tests and reduced latencies to myoclonic seizures induced by penicillin compared with the control, which was concomitant with altered expressions of ZnT-7, MT-1, MT-2, and ZIP7. Specifically, there was long-term elevated expression of ZIP7 in RS + ND group compared with that in NS + ND that was restored by chronic ketogenic diet (KD) treatment in RS + KD group, which was quite in parallel with the above neurobehavioral changes. Taken together, these findings indicate that the long-term altered expression of the metal transporter ZIP7 in adult cerebral cortex might correlate with neurobehavioral damage and reduced seizure threshold following recurrent neonate seizures and further highlights ZIP7 as a candidate for therapeutic target of KD for the treatment of neonatal seizure-induced long-term brain damage.
Collapse
Affiliation(s)
- Tian Tian
- Neurology Laboratory, Institute of Pediatrics, Children' Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| | - Li-Li Li
- Neurology Laboratory, Institute of Pediatrics, Children' Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| | - Shu-Qi Zhang
- Neurology Laboratory, Institute of Pediatrics, Children' Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| | - Hong Ni
- Neurology Laboratory, Institute of Pediatrics, Children' Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China.
| |
Collapse
|
11
|
Vonder Haar C, Peterson TC, Martens KM, Hoane MR. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies. Brain Res 2016; 1640:114-129. [PMID: 26723564 PMCID: PMC4870112 DOI: 10.1016/j.brainres.2015.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of the literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, Gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
12
|
Portbury SD, Yévenes LF, Adlard PA. Novel zinc-targeted therapeutic options for cognitive decline. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Zinc (Zn2+) is an essential metal in the brain, having critical roles in many proteins and cellular pathways, including synaptic plasticity and the normal functioning of long-term potentiation, the in vitro correlate of learning and memory. Importantly, several neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease, show alterations in Zn2+ metabolism that may be involved in the pathogenesis of these disorders. Therefore, the modulation of Zn2+ levels and/or distribution may prove an important target for the treatment of neurodegenerative diseases. This review aims to evaluate the current efforts directed at therapeutic Zn2+ modulation as it relates to disease-associated cognitive decline.
Collapse
Affiliation(s)
- Stuart D Portbury
- The Florey Institute of Neuroscience & Mental Health, Kenneth Myer Building, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Luz Fernanda Yévenes
- The Florey Institute of Neuroscience & Mental Health, Kenneth Myer Building, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience & Mental Health, Kenneth Myer Building, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Portbury SD, Adlard PA. Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Alzheimer’s Disease: Common Pathologies Potentiated by Altered Zinc Homeostasis. J Alzheimers Dis 2015; 46:297-311. [DOI: 10.3233/jad-143048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Scrimgeour AG, Condlin ML. Nutritional Treatment for Traumatic Brain Injury. J Neurotrauma 2014; 31:989-99. [DOI: 10.1089/neu.2013.3234] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Angus G. Scrimgeour
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Michelle L. Condlin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
15
|
Abstract
Increasing attention is being paid to nutritional and metabolic management of traumatic brain injury patients. The gross metabolic changes that occur after injury have been found to be influenced by both macronutrients, that is, dietary ratios of fat, carbohydrates, and protein, and micronutrients, for example, vitamins and minerals. Alterations in diet and nutritional strategies have been shown to decrease both morbidity and mortality after injury. Despite this knowledge, defining optimal nutritional support following traumatic brain injury continues to be an ongoing challenge.
Collapse
Affiliation(s)
- Tiffany Greco
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7039, USA
| | | |
Collapse
|
16
|
Su R, Mei X, Wang Y, Zhang L. Regulation of zinc transporter 1 expression in dorsal horn of spinal cord after acute spinal cord injury of rats by dietary zinc. Biol Trace Elem Res 2012; 149:219-26. [PMID: 22565470 DOI: 10.1007/s12011-012-9414-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/02/2012] [Indexed: 12/27/2022]
Abstract
Zinc concentrations in the dorsal horn of spinal cord are important for wound healing, neurological function, and reproduction. However, the response of the spinal cord to alterations in dietary zinc is unknown in rats after spinal cord injury (SCI). The current study explored cellular zinc levels and zinc transporter 1 (ZnT1) expression in the dorsal horn of spinal cord with different dietary zinc after SCI. A hundred and forty-four male Wistar rats were randomly divided into four groups: sham-operated group (30 mg Zn/kg), zinc-high dietary SCI model group (ZH, 180 mg Zn/kg), zinc-adequate dietary SCI model group (30 mg Zn/kg), and marginal zinc-deficient dietary SCI model group (MZD, 5 mg Zn/kg). To test the hypothesis that dietary zinc may regulate role of ZnT1 expression in dorsal horn after acute SCI, we traced ZnT1 proteins and zinc ions with immunohistochemistry, western blot, and autometallography. Zinc and ZnT1 levels of the dorsal horn in ZH significantly increased after surgery (P < 0.05), reached peak level (P < 0.05) on the seventh day, and subsequently levels of their expression began to decrease. But zinc levels and ZnT1 expression of spinal cord in MZD dietary groups decreased (P < 0.05) in SCI. There was a positive correlation between ZnT1 protein and zinc content in spinal cord (R = 0.49880, P = 0.0492). We found that both zinc and ZnT1 expressions in spinal cord are regulated by dietary zinc. These results indicate that dietary zinc may regulate the expression of ZnT1 in the dorsal horn of spinal cord after SCI. ZnT1 may, at the same time, play a significant role in the maintenance of zinc homeostasis in SCI.
Collapse
Affiliation(s)
- Ribao Su
- Department of Orthopaedic Surgery, Affiliated Hospital of Liaoning Medical University, No. 3-40 Songpo Road, Guta District, Jinzhou City, Liaoning Province, 121001, China
| | | | | | | |
Collapse
|
17
|
Cope EC, Morris DR, Levenson CW. Improving treatments and outcomes: an emerging role for zinc in traumatic brain injury. Nutr Rev 2012; 70:410-3. [PMID: 22747843 DOI: 10.1111/j.1753-4887.2012.00486.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Traumatic brain injury is associated with a wide variety of behavioral deficits, including memory loss, depression, and anxiety. While treatments for these outcomes are currently limited, human clinical data suggest that supplemental zinc can be used during recovery to improve cognitive and behavioral deficits associated with brain injury. Additionally, pre-clinical models suggest that zinc may increase resilience to traumatic brain injury, making it potentially useful in populations at risk for injury.
Collapse
Affiliation(s)
- Elise C Cope
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | | | | |
Collapse
|
18
|
Pankhurst MW, Gell DA, Butler CW, Kirkcaldie MTK, West AK, Chung RS. Metallothionein (MT) -I and MT-II expression are induced and cause zinc sequestration in the liver after brain injury. PLoS One 2012; 7:e31185. [PMID: 22363575 PMCID: PMC3281953 DOI: 10.1371/journal.pone.0031185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/04/2012] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II(-/-)) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II(-/-) mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. CONCLUSION MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver.
Collapse
Affiliation(s)
- Michael W Pankhurst
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Cope EC, Morris DR, Scrimgeour AG, Levenson CW. Use of zinc as a treatment for traumatic brain injury in the rat: effects on cognitive and behavioral outcomes. Neurorehabil Neural Repair 2012; 26:907-13. [PMID: 22331212 DOI: 10.1177/1545968311435337] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND While treatments for the behavioral deficits associated with traumatic brain injury (TBI) are currently limited, animal models suggest that zinc supplementation may increase resilience to TBI. OBJECTIVE This work tests the hypothesis that zinc supplementation after TBI can be used as treatment to improve behavioral outcomes such as anxiety, depression, and learning and memory. METHODS TBI was induced by controlled cortical impact to the medial frontal cortex. After TBI, rats were fed either a zinc adequate (ZA, 30 ppm) or zinc supplemented (ZS, 180 ppm) diet. Additional rats in each dietary group (ZA or ZS) were given a single intraperitoneal (ip) injection of zinc (30 mg/kg) 1 hour following injury. RESULTS Brain injury resulted in significant increases in anxiety-like and depression-like behaviors as well as impairments in learning and memory. None of the zinc treatments (dietary or ip zinc) improved TBI-induced anxiety. The 2-bottle saccharin preference test for anhedonia revealed that dietary ZS also did not improve depression-like behaviors. However, dietary ZS combined with an early ip zinc injection significantly reduced anhedonia (P < .001). Dietary supplementation after injury, but not zinc injection, significantly improved (P < .05) cognitive behavior as measured by the time spent finding the hidden platform in the Morris water maze test compared with injured rats fed a ZA diet. CONCLUSIONS These data suggest that zinc supplementation may be an effective treatment option for improving behavioral deficits such as cognitive impairment and depression following TBI.
Collapse
|
20
|
Zinc supplementation provides behavioral resiliency in a rat model of traumatic brain injury. Physiol Behav 2011; 104:942-7. [PMID: 21699908 DOI: 10.1016/j.physbeh.2011.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 01/25/2023]
Abstract
Depression, anxiety, and impairments in learning and memory are all associated with traumatic brain injury (TBI). Because of the strong link between zinc deficiency, depression, and anxiety, in both humans and rodent models, we hypothesized that dietary zinc supplementation prior to injury could provide behavioral resiliency to lessen the severity of these outcomes after TBI. Rats were fed a marginal zinc deficient (5 ppm), zinc adequate (30 ppm), or zinc supplemented (180 ppm) diet for 4 weeks followed by a moderately-severe TBI using the well-established model of controlled cortical impact (CCI). Following CCI, rats displayed depression-like behaviors as measured by the 2-bottle saccharin preference test for anhedonia. Injury also resulted in evidence of stress and impairments in Morris water maze (MWM) performance compared to sham-injured controls. While moderate zinc deficiency did not worsen outcomes following TBI, rats that were fed the zinc supplemented diet for 4 weeks showed significantly attenuated increases in adrenal weight (p<0.05) as well as reduced depression-like behaviors (p<0.001). Supplementation prior to injury improved resilience such that there was not only significant improvements in cognitive behavior compared to injured rats fed an adequate diet (p<0.01), there were no significant differences between supplemented and sham-operated rats in MWM performance at any point in the 10-day trial. These data suggest a role for supplemental zinc in preventing cognitive and behavioral deficits associated with TBI.
Collapse
|
21
|
Chemical blocking of zinc ions in CNS increases neuronal damage following traumatic brain injury (TBI) in mice. PLoS One 2010; 5:e10131. [PMID: 20396380 PMCID: PMC2852423 DOI: 10.1371/journal.pone.0010131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Traumatic brain injury (TBI) is one of the leading causes of disability and death among young people. Although much is already known about secondary brain damage the full range of brain tissue responses to TBI remains to be elucidated. A population of neurons located in cerebral areas associated with higher cognitive functions harbours a vesicular zinc pool co-localized with glutamate. This zinc enriched pool of synaptic vesicles has been hypothesized to take part in the injurious signalling cascade that follows pathological conditions such as seizures, ischemia and traumatic brain injury. Pathological release of excess zinc ions from pre-synaptic vesicles has been suggested to mediate cell damage/death to postsynaptic neurons. Methodology/Principal Findings In order to substantiate the influence of vesicular zinc ions on TBI, we designed a study in which damage and zinc movements were analysed in several different ways. Twenty-four hours after TBI ZnT3-KO mice (mice without vesicular zinc) were compared to littermate Wild Type (WT) mice (mice with vesicular zinc) with regard to histopathology. Furthermore, in order to evaluate a possible neuro-protective dimension of chemical blocking of vesicular zinc, we treated lesioned mice with either DEDTC or selenite. Our study revealed that chemical blocking of vesicular zinc ions, either by chelation with DEDTC or accumulation in zinc-selenium nanocrystals, worsened the effects on the aftermath of TBI in the WT mice by increasing the number of necrotic and apoptotic cells within the first 24 hours after TBI, when compared to those of chemically untreated WT mice. Conclusion/Significance ZnT3-KO mice revealed more damage after TBI compared to WT controls. Following treatment with DEDTC or selenium an increase in the number of both dead and apoptotic cells were seen in the controls within the first 24 hours after TBI while the degree of damage in the ZnT3-KO mice remained largely unchanged. Further analyses revealed that the damage development in the two mouse strains was almost identical after either zinc chelation or zinc complexion therapy.
Collapse
|
22
|
Aguilar-Alonso P, Martinez-Fong D, Pazos-Salazar NG, Brambila E, Gonzalez-Barrios JA, Mejorada A, Flores G, Millan-Perezpeña L, Rubio H, Leon-Chavez BA. The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat. Brain Res 2008; 1200:89-98. [PMID: 18289514 DOI: 10.1016/j.brainres.2007.11.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 11/19/2022]
Abstract
The transient occlusion of cerebral arteries causes an increase in zinc levels in the brain, which is associated with a production of nitric oxide (NO). The types of zinc transporters (ZnT) involved in zinc homeostasis in the cerebral cortex after hypoxia-ischemia are not completely known. We studied the effect of the transient occlusion (10 min) of the common carotid artery (CCA) on NO-induced zinc levels, ZnT mRNA expression, and cell-death markers in the cerebral cortex-hippocampus of the rat. Nitrites, zinc, and lipoperoxidation were quantified by colorimetric methods, ZnT expression was determined by RT-PCR, caspase-3 by ELISA and immunohistochemistry, and histopathological alterations by H&E staining. After restoration of the blood flow, the basal levels of NO and zinc increased in a biphasic manner over time, but the peaks of NO levels appeared earlier (2 h and 24 h) than those of zinc (6 h and 36 h). Upregulation of ZnT1, ZnT2, and ZnT4 mRNAs was determined after 8-h postreperfusion, but ZnT3 RNA levels were unaffected. Lipoperoxidation and caspase-3 levels were also increased, and necrosis and apoptosis were present at 24 h postreperfusion. All the effects determined were prevented by l-nitro-arginine methyl ester injected 1 h before the occlusion of the CCA. Our results suggest that the upregulation of ZnT1, ZnT2, and ZnT4 was to decrease the cytosolic zinc levels caused by NO after transient occlusion of the CCA, although this was unable to lead to physiological levels of zinc and to prevent cell damage in the cerebral cortex-hippocampus of the rat.
Collapse
Affiliation(s)
- Patricia Aguilar-Alonso
- Area de Bioquímica y Biología Molecular, Facultad de Ciencias químicas, BUAP. 14 sur y Av. San Claudio, 72570, Puebla, Pue. México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
OBJECTIVE The aim of this study was to review the published evidence for a role of zinc nutrition in attention-deficit/hyperactivity disorder (ADHD). METHOD A computer literature search was supplemented by the authors' knowledge. RESULTS Numerous controlled studies report cross-sectional evidence of lower zinc tissue levels (serum, red cells, hair, urine, nails) in children who have ADHD, compared to normal controls and population norms. A few studies show correlations of zinc level with either clinical severity or a change thereof in response to stimulant or chemical challenge. Two placebo-controlled trials--one of zinc monotherapy, the other of zinc supplementation of methylphenidate--reported significant benefit. However, diagnostic procedures and sample representativeness were often not clear, and most such reports have come from countries and cultures with different diets and/or socioeconomic realities than are found in the United States (only one American sample in nine published reports). In particular, both positive clinical trials of zinc supplementation came from the Mid-East (Turkey and Iran), an area with suspected endemic zinc deficiency. The largest of these trials used zinc doses above the recommended upper tolerable limit and had a 2 in 3 dropout rate. CONCLUSION It is not clear how well the accumulating evidence for a possible role of zinc in ADHD applies to middle-class American children. However, the evidence appears strong enough to warrant further controlled study in well-diagnosed samples representative of the socioeconomic spectrum. Hypothesis-testing clinical trials are needed of this potential treatment that, if found effective, might become a relatively safe, cheap substitute for, or adjunct to, current treatments in some patients. At present, it should remain an investigational treatment.
Collapse
Affiliation(s)
- L Eugene Arnold
- Department of Psychiatry, Ohio State University, Columbus, OH 43074, USA.
| | | |
Collapse
|
24
|
Abstract
While zinc is essential for normal brain function and repair, recent work has implicated this trace element in the neuronal damage and death that follow traumatic brain injury, stroke, and seizure. Therefore, the development of new zinc-based therapeutic strategies will need to consider the emerging roles of zinc in the central nervous system.
Collapse
Affiliation(s)
- Cathy W Levenson
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee 32306-4340, USA.
| |
Collapse
|