1
|
Wang P, Wang SC, Liu X, Jia S, Wang X, Li T, Yu J, Parpura V, Wang YF. Neural Functions of Hypothalamic Oxytocin and its Regulation. ASN Neuro 2022; 14:17590914221100706. [PMID: 35593066 PMCID: PMC9125079 DOI: 10.1177/17590914221100706] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Oxytocin (OT), a nonapeptide, has a variety of functions. Despite extensive studies on OT over past decades, our understanding of its neural functions and their regulation remains incomplete. OT is mainly produced in OT neurons in the supraoptic nucleus (SON), paraventricular nucleus (PVN) and accessory nuclei between the SON and PVN. OT exerts neuromodulatory effects in the brain and spinal cord. While magnocellular OT neurons in the SON and PVN mainly innervate the pituitary and forebrain regions, and parvocellular OT neurons in the PVN innervate brainstem and spinal cord, the two sets of OT neurons have close interactions histologically and functionally. OT expression occurs at early life to promote mental and physical development, while its subsequent decrease in expression in later life stage accompanies aging and diseases. Adaptive changes in this OT system, however, take place under different conditions and upon the maturation of OT release machinery. OT can modulate social recognition and behaviors, learning and memory, emotion, reward, and other higher brain functions. OT also regulates eating and drinking, sleep and wakefulness, nociception and analgesia, sexual behavior, parturition, lactation and other instinctive behaviors. OT regulates the autonomic nervous system, and somatic and specialized senses. Notably, OT can have different modulatory effects on the same function under different conditions. Such divergence may derive from different neural connections, OT receptor gene dimorphism and methylation, and complex interactions with other hormones. In this review, brain functions of OT and their underlying neural mechanisms as well as the perspectives of their clinical usage are presented.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, California, USA
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Neuroscience Laboratory for Translational Medicine, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Jiawei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Kerqin District Maternity & Child Healthcare Hospital, Tongliao, Inner Mongolia, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Zhang K, Zhang X, Lv A, Fan S, Zhang J. Saccharomyces boulardii modulates necrotizing enterocolitis in neonatal mice by regulating the sirtuin 1/NF‑κB pathway and the intestinal microbiota. Mol Med Rep 2020; 22:671-680. [PMID: 32626966 PMCID: PMC7339617 DOI: 10.3892/mmr.2020.11138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Exaggerated inflammatory response and gut microbial dysbiosis play a crucial role in necrotizing enterocolitis (NEC). The probiotic Saccharomyces boulardii (SB) is a yeast that has a beneficial effect on NEC; however, the association between its protective effects and the regulation of the inflammation-related sirtuin 1 (SIRT1)/nuclear factor-κB (NF-κB) signaling pathway and gut microbiota in NEC is unknown. In the present study, the NEC model was established by artificial feeding and lipopolysaccharide (LPS), hypoxia and hypothermia stimulation. Mice were divided into normal, control (artificial feeding), NEC and NEC + SB groups. Hematoxylin and eosin staining demonstrated that SB improved the pathological damage of the intestine caused by NEC in neonatal mice. Furthermore, downregulation of SIRT1 and upregulation of NF-κB expression were confirmed by immunofluorescence staining, western blotting and reverse transcription-quantitative PCR (RT-qPCR) in NEC mice. SB treatment concurrently inhibited the NEC roles on the SIRT1 and NF-κB pathway at both the protein and mRNA levels. Deletion of SIRT1 [SIRT1 knockout (KO)] in the intestine abolished all the effects of SB in NEC mice, including protection of pathological damage and inhibition of the SIRT1/NF-κB pathway activation. The abundance of gut microbial composition, as determined by RT-qPCR, was significantly decreased in the control group compared with the normal group. A further decrease in microbiota abundance was observed in the NEC group, and SB administration significantly improved the enrichment of gut microbiota in neonatal mice with NEC. As anticipated, the increased abundance of gut microbiota modulated by SB was markedly reduced in SIRT1KO NEC mice. The present study revealed that the protective role of SB on NEC was associated with the SIRT1/NF-κB pathway and gut microbiota regulation.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xi Zhang
- Department of Obstetrics, Changning Maternity and Infant Health Hospital, Shanghai 200050, P.R. China
| | - Anping Lv
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Sainan Fan
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jinping Zhang
- Department of Pediatrics, East Campus of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 201306, P.R. China
| |
Collapse
|
3
|
Tabbaa M, Hammock EAD. Orally administered oxytocin alters brain activation and behaviors of pre-weaning mice. Horm Behav 2020; 118:104613. [PMID: 31654673 PMCID: PMC7015803 DOI: 10.1016/j.yhbeh.2019.104613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 02/02/2023]
Abstract
Oxytocin (OXT) regulates adult social behavior and has been implicated in its development. Because mammalian milk contains OXT and we have recently identified OXT receptors (OXTR) in the face and oronasal cavity of pre-weaning mice, we hypothesize that orally applied OXT may impact brain activity and acute behavior in developing mice. Oral OXT may have effects in the absence of sensory stimulation or perhaps by modulating sensory input, such as whisker stimulation. The present study investigates the acute c-Fos response in the paraventricular nucleus of the hypothalamus (PVN) and along whisker sensory processing brain regions (trigeminothalamocortical circuit) to orally applied OXT, compared to saline, with and without whisker stimulation in postnatal day (P) 14 and P21 male and female mice. Acute behavioral responses were also quantified after oral OXT with whisker stimulation in a non-social context. Oral OXT with and without whisker stimulation increased c-Fos activity in the PVN of males and decreased c-Fos in the ventroposterior medial thalamus in both males and females compared to saline. Additionally, oral OXT with whisker stimulation decreased c-Fos activity across whisker sensory processing brain regions in males and females and decreased c-Fos activity in the trigeminal motor nucleus of females. Lastly, oral OXT with whisker stimulation increased males' locomotor behavior and decreased females' oromotor behavior compared to saline-treated controls. These data indicate that orally applied OXT has acute brain and behavioral effects on developing mice. OXT-modulated sensory signals may bias brain and behavior development toward the social world.
Collapse
Affiliation(s)
- Manal Tabbaa
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL, 32306, USA
| | - Elizabeth A D Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|