1
|
Zhao Q, Hu Y, Yan Y, Song X, Yu J, Wang W, Zhou S, Su X, Bloch MH, Leckman JF, Chen Y, Sun H. The effects of Shaoma Zhijing granules and its main components on Tourette syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155686. [PMID: 38759346 DOI: 10.1016/j.phymed.2024.155686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Tourette syndrome (TS) represents a neurodevelopmental disorder characterized by an uncertain etiology and influencing factors. Frequently, it co-occurs with conditions such as attention deficit hyperactivity disorder, obsessive-compulsive disorder, and sleep disturbances, which have garnered substantial attention from the research community in recent years. Clinical trials have demonstrated that Shaoma Zhijing Granules (SMZJG, 5-ling granule, also known as TSupport or T92 under U.S. development), a traditional Chinese medicine compound, is an effective treatment for TS. PURPOSE To conduct scientometric analysis on developing trends, research countries and institutions, current status, hot spots of TS and discuss the underlying mechanisms of SMZJG and its main components on TS. The aim is to provide valuable reference for ongoing clinical and basic research on TS and SMZJG. STUDY DESIGN & METHODS Using Tourette syndrome, SMZJG and its main components along with their synonyms as keywords, we conducted a comprehensive search across major scientific databases including the Web of Science Core Collection, PubMed and China National Knowledge Infrastructure (CNKI) databases. A total of 5952 references and 99 patents were obtained. Among these, 5039 articles and reviews, as well as 54 patents were analyzed by Citespace and VOSviewer software. RESULTS The available evidence indicates that the SMZJG's components likely exert their mechanisms in treating TS by regulating the dopaminergic pathway system, neurotransmitter imbalances, reducing neuroinflammation, promoting the repair of nerve damage and improving sleep disorders. CONCLUSION This comprehensive analysis lays the foundation for an extensive exploration of the feasibility and clinical applications of SMZJG in TS treatment.
Collapse
Affiliation(s)
- Qian Zhao
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China
| | - Yunhui Hu
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China
| | - Yiman Yan
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China
| | - Xujiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jie Yu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenjia Wang
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China
| | - Shuiping Zhou
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China
| | - Xuefeng Su
- Tasly Pharmaceuticals Inc., Rockville, MD 20850, USA
| | - Michael H Bloch
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James F Leckman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yibing Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - He Sun
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China; Tasly Pharmaceuticals Inc., Rockville, MD 20850, USA.
| |
Collapse
|
2
|
Qin JX, Hong Y, Zhao LY, Wang CQ, Fang X, Liang S. The basic chemical substances of total alkaloids of Uncaria rhynchophylla and their anti-neuroinflammatory activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:765-771. [PMID: 38373226 DOI: 10.1080/10286020.2024.2315211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
To clarify the chemical basis of the total alkaloids of Uncaria rhynchophylla, HPLC-VWD chromatogram of total alkaloids was established. Under its guidance, modern chromatographic and spectroscopic techniques were used to track, isolate and identify the representative principal components. As a result, one new monoterpenoid indole alkaloid, 3S,15S-N4-methoxymethyl-geissoschizine methyl ether (1), together with 20 known alkaloids (2-21), and 5 other known compounds (22-26) were obtained. Meanwhile, sixteen characteristic peaks were identified from the total alkaloids using HPLC analysis. Then, the anti-neuroinflammatory effect of compounds 1-21 was assessed through inhibiting nitric ---oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Among them, compounds 1, 3, 7, 8, 11, 12, 19 and 21 showed potent inhibitory activities with IC50 values of 5.87-76.78 μM.
Collapse
Affiliation(s)
- Jia-Xu Qin
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Hong
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lu-Yi Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao-Qun Wang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Fang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuang Liang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Cao R, Wang Y, Zhou Y, Zhu J, Zhang K, Liu W, Feng F, Qu W. Advanced researches of traditional uses, phytochemistry, pharmacology, and toxicology of medical Uncariae Ramulus Cum Uncis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117848. [PMID: 38336181 DOI: 10.1016/j.jep.2024.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medical Uncariae Ramulus Cum Uncis consists of Uncaria rhynchophylla (Miq.) Miq. ex Havil, Uncaria macrophylla Wall, Uncaria sinensis (Oliv.) Havil, Uncaria hirsuta Havil, and Uncaria sessilifructus Roxb, which belongs to the species widely used in the genus Uncaria. These species resource widely distributed in China and abroad, and the hook-bearing stem is the primary constituent enrichment site. There are many different forms and architectures of chemicals, depending on the extraction site. Traditional remedies employing URCU had been used widely in antiquity and were first compiled in renowned ancient masterpiece 'Mingyi Bielu ()' written by Hongjing Tao. In modern pharmacological studies, both the total extracts and the phytoconstituents isolated from URCU have been shown to have neuroprotective, antioxidant, anti-inflammatory, anticancer, antibacterial, and autophagy-enhancer properties. AIM OF THE STUDY This review concentrates on the traditional uses, phytochemistry, pharmacology, toxicology, and nanomaterials studies of URCU, with a perspective to assist with further research and advance. MATERIAL AND METHODS The Chinese and English literature studies of this review are based on these database searches including Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Medalink, Google scholar, Elsevier, ACS Publications, iPlant, Missouri Botanical Garden, Plant of the World Online. The pertinent data on URCU was gathered. RESULTS Based on the examination of the genus Uncaria, 107 newly marked chemical compositions have been identified from URCU from 2015 to present, including alkaloids, terpenoids, flavonoids, steroids, and others. Pharmacological studies have demonstrated that URCU has a variety of benefits in diseases such as neurodegenerative diseases, cancer, cardiovascular diseases, diabetes, and migraine, due to its neuroprotective, anti-inflammatory, antioxidant, anti-tumor, anti-bacterial and anti-viral properties. According to metabolic and toxicological studies, the dosage, frequency, and interactions of the drugs that occur in vivo are of great significance for determining whether the organic bodies can perform efficacy or produce toxicity. The research on URCU-mediated nanomaterials is expanding and increasing in order to address the inadequacies of conventional Chinese medicine. The alkaloids in URCU have the capability to self-assemble with other classes of components in addition to being biologically active. CONCLUSION URCU plants are widely distributed, abundant in chemical constituents, and widely used in both traditional and modern medicine for a variety of pharmacological effects. The utilization of herbal medicines can be raised by assessing the pharmacological distinctions among several species within the same genus and may accelerate the modernization of traditional Chinese medicine. Controlling the concentration of drug administration, monitoring metabolic markers, and inventing novel nanotechnologies are effective strategies for synergistic influence and detoxification to alleviate the main obstacles that toxicity, low bioavailability, and poor permeability. This review can assist further research and advances.
Collapse
Affiliation(s)
- Ruolian Cao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Ya Zhou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaxin Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Kexin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Nanjing Medical University, Nanjing, 211198, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Qi W, Zhou C, Bai X, Kano Y, Chen Y, Yuan D. Metabolites identification and pharmacokinetic profile of hirsuteine, a bioactive component in Uncaria in rats by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci 2022; 45:4145-4157. [PMID: 36216761 DOI: 10.1002/jssc.202200452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022]
Abstract
Hirsuteine is one of the major bioactive tetracyclic indole alkaloids found in Uncaria rhynchophylla (Miq.) Jacks, possessing a wide range of pharmacological activities including neuroprotective, anticonvulsant, antihypertensive, sedative and hypnotic, and so forth. The present study was undertaken to assess the metabolism and plasma pharmacokinetics of hirsuteine in rats. After oral administration of hirsuteine at the dose of 30 mg/kg, 13, 21, and 8 metabolites were detected in rat plasma, urine, and bile by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, respectively. Furthermore, plasma concentrations of hirsuteine and its four metabolites, 4-hirsuteine N-oxide, 3,4-dehydrohirsuteine, 11-hydroxyhirsuteine, and 11-hydroxyhirsuteine-11-O-glucuronide were simultaneously quantified in rat plasma, using carbamazepine as the internal standard. The linear calibration curve of hirsuteine was in the concentration range of 0.005-5.0 μg/ml. The lower limit of quantitation in the rat plasma was 5 ng/ml for hirsuteine. This study is the first to comprehensively investigate the metabolism process of hirsuteine and the pharmacokinetic profiles of hirsuteine and its major metabolite, and will provide a scientific basis to further elucidate the pharmacodynamic material basis and therapeutic mechanism of Uncaria prescriptions.
Collapse
Affiliation(s)
- Wen Qi
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Chunwei Zhou
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xue Bai
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yoshihiro Kano
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yan Chen
- Department of Pharmacy, Xiang'an Hospital of Xiamen University, Xiamen, P. R. China
| | - Dan Yuan
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
5
|
Hu S, Yang L, Ma Y, Li L, Li Z, Wen X, Wu Z. Protection against H 2O 2-evoked toxicity in HT22 hippocampal neuronal cells by geissoschizine methyl ether via inhibiting ERK pathway. Transl Neurosci 2022; 13:369-378. [PMID: 36304098 PMCID: PMC9552775 DOI: 10.1515/tnsci-2022-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Oxidative stress is considered as an important mechanism underlying the pathology of neurodegenerative disorders. In this study, we utilized an in vitro model where oxidative stress process was evoked by exogenous hydrogen peroxide (H2O2) in HT22 murine hippocampal neurons and evaluated the neuroprotective effects of geissoschizine methyl ether (GME), a naturally occurring alkaloid from the hooks of Uncaria rhynchophylla (Miq.) Jacks. After a 24 h H2O2 (350 μM) insult, a significant decrease in cell survival and a sharp increase in intracellular reactive oxygen species were observed in HT22 cells. Encouragingly, GME (10-200 μM) effectively reversed these abnormal cellular changes induced by H2O2. Moreover, mechanistic studies using Western blot revealed that GME inhibited the increase of phospho-ERK protein expression, but not phospho-p38, caused by H2O2. Molecular docking simulation further revealed a possible binding mode that GME inhibited ERK protein, showing that GME favorably bound to ERK via multiple hydrophobic and hydrogen bond interactions. These findings indicate that GME provide effective neuroprotection via inhibiting ERK pathway and also encourage further ex vivo and in vivo pharmacological investigations of GME in treating oxidative stress-mediated neurological disorders.
Collapse
Affiliation(s)
- Shengquan Hu
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| | - Lei Yang
- Department of Spine Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| | - Yucui Ma
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| | - Limin Li
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| | - Zhiyue Li
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| | - Xiaomin Wen
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhengzhi Wu
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
6
|
Singla RK, He X, Chopra H, Tsagkaris C, Shen L, Kamal MA, Shen B. Natural Products for the Prevention and Control of the COVID-19 Pandemic: Sustainable Bioresources. Front Pharmacol 2021; 12:758159. [PMID: 34925017 PMCID: PMC8671886 DOI: 10.3389/fphar.2021.758159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The world has been unprecedentedly hit by a global pandemic which broke the record of deadly pandemics that faced humanity ever since its existence. Even kids are well-versed in the terminologies and basics of the SARS-CoV-2 virus and COVID-19 now. The vaccination program has been successfully launched in various countries, given that the huge global population of concern is still far behind to be vaccinated. Furthermore, the scarcity of any potential drug against the COVID-19-causing virus forces scientists and clinicians to search for alternative and complementary medicines on a war-footing basis. Aims and Objectives: The present review aims to cover and analyze the etiology and epidemiology of COVID-19, the role of intestinal microbiota and pro-inflammatory markers, and most importantly, the natural products to combat this deadly SARS-CoV-2 virus. Methods: A primary literature search was conducted through PubMed and Google Scholar using relevant keywords. Natural products were searched from January 2020 to November 2020. No timeline limit has been imposed on the search for the biological sources of those phytochemicals. Interactive mapping has been done to analyze the multi-modal and multi-target sources. Results and Discussion: The intestinal microbiota and the pro-inflammatory markers that can serve the prognosis, diagnosis, and treatment of COVID-19 were discussed. The literature search resulted in yielding 70 phytochemicals and ten polyherbal formulations which were scientifically analyzed against the SARS-CoV-2 virus and its targets and found significant. Retrospective analyses led to provide information about 165 biological sources that can also be screened if not done earlier. Conclusion: The interactive analysis mapping of biological sources with phytochemicals and targets as well as that of phytochemical class with phytochemicals and COVID-19 targets yielded insights into the multitarget and multimodal evidence-based complementary medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | | | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Kushida H, Matsumoto T, Ikarashi Y. Properties, Pharmacology, and Pharmacokinetics of Active Indole and Oxindole Alkaloids in Uncaria Hook. Front Pharmacol 2021; 12:688670. [PMID: 34335255 PMCID: PMC8317223 DOI: 10.3389/fphar.2021.688670] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Uncaria Hook (UH) is a dry stem with hook of Ucaria plant and is contained in Traditional Japanese and Chinese medicine such as yokukansan, yokukansankachimpihange, chotosan, Gouteng-Baitouweng, and Tianma-Gouteng Yin. UH contains active indole and oxindole alkaloids and has the therapeutic effects on ailments of the cardiovascular and central nervous systems. The recent advances of analytical technology led to reports of detailed pharmacokinetics of UH alkaloids. These observations of pharmacokinetics are extremely important for understanding the treatment’s pharmacological activity, efficacy, and safety. This review describes properties, pharmacology, and the recently accumulated pharmacokinetic findings of UH alkaloids, and discusses challenges and future prospects. UH contains major indole and oxindole alkaloids such as corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsuteine, hirsutine, and geissoschizine methyl ether (GM). These alkaloids exert neuroprotective effects against Alzheimer’s disease, Parkinson’s disease, and depression, and the mechanisms of these effects include anti-oxidant, anti-inflammatory, and neuromodulatory activities. Among the UH alkaloids, GM exhibits comparatively potent pharmacological activity (e.g., agonist activity at 5-HT1A receptors). UH alkaloids are absorbed into the blood circulation and rapidly eliminated when orally administered. UH alkaloids are predominantly metabolized by Cytochrome P450 (CYP) and converted into various metabolites, including oxidized and demethylated forms. Regarding GM metabolism by CYPs, a gender-dependent difference is observed in rats but not in humans. Several alkaloids are detected in the brain after passing through the blood–brain barrier in rats upon orally administered. GM is uniformly distributed in the brain and binds to various channels and receptors such as the 5-HT receptor. By reviewing the pharmacokinetics of UH alkaloids, challenges were found, such as differences in pharmacokinetics between pure drug and crude drug products administration, food-influenced absorption, metabolite excretion profile, and intestinal tissue metabolism of UH alkaloids. This review will provide readers with a better understanding of the pharmacokinetics of UH alkaloids and their future challenges, and will be helpful for further research on UH alkaloids and crude drug products containing UH.
Collapse
Affiliation(s)
- Hirotaka Kushida
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| |
Collapse
|
8
|
Antihypernociceptive and Neuroprotective Effects of the Aqueous and Methanol Stem-Bark Extracts of Nauclea pobeguinii (Rubiaceae) on STZ-Induced Diabetic Neuropathic Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6637584. [PMID: 33603820 PMCID: PMC7872765 DOI: 10.1155/2021/6637584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
The greatest common and devastating complication of diabetes is painful neuropathy that can cause hyperalgesia and allodynia. It can disturb psychosocial functioning by increasing levels of anxiety and depression. This work was designed to evaluate the antihyperalgesic, antidepressant, and anxiolytic-like effects of the aqueous and methanol extracts of Nauclea pobeguinii stem-bark in diabetic neuropathy induced by streptozotocin in mice. Diabetic neuropathy was induced in mice by the intraperitoneal administration of 200 mg/kg streptozotocin (STZ) to provoke hyperglycemia. Nauclea pobeguinii aqueous and methanol extracts at the doses of 150 and 300 mg/kg were administered by oral route, and their effects were evaluated on antihyperalgesic activity (Von Frey filaments, hot plate, acetone, and formalin tests), blood glucose levels, body weight, serum, sciatic nerve proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and sciatic nerve growth factor (IGF and NGF) rates, depression (open field test, forced swimming test, tail suspension test), and anxiety (elevated plus maze, light-dark box test, social interaction). Oral administration of Nauclea pobeguinii stem-bark aqueous and methanol extracts (150 and 300 mg/kg) produced antihyperalgesic, antidepressant, and anxiolytic-like effects in STZ-induced diabetic neuropathic mice. Extracts also triggered a decrease in glycaemia and increased body weight in treated animals. They also significantly (p <0.001) reduced tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 and significantly (p <0.001) increased nerve growth factor (NGF) and insulin-like growth factor (IGF) in sciatic nerves. The results of this study confirmed that Nauclea pobeguinii aqueous and methanol extracts possess antihyperalgesic, antidepressant, and anxiolytic activities and could be beneficial therapeutic agents.
Collapse
|
9
|
Yang W, Ip SP, Liu L, Xian YF, Lin ZX. Uncaria rhynchophylla and its Major Constituents on Central Nervous System: A Review on Their Pharmacological Actions. Curr Vasc Pharmacol 2020; 18:346-357. [PMID: 31272356 DOI: 10.2174/1570161117666190704092841] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Uncaria rhynchophylla (Miq.) Jacks (Rubinaceae), a common herbal medicine known as Gou-teng in Chinese, is commonly used in Chinese medicine practice for the treatment of convulsions, hypertension, epilepsy, eclampsia and other cerebral diseases. The major active components of U. rhynchophylla are alkaloids, terpenoids and flavonoids. The protective effects of U. rhynchophylla and its major components on central nervous system (CNS) have become a focus of research in recent decades. OBJECTIVE The study aimed to systematically summarize the pharmacological activities of U. rhynchophylla and its major components on the CNS. METHODS This review summarized the experimental findings from our laboratories, together with other literature data obtained through a comprehensive search of databases including the Pubmed and the Web of Science. RESULTS U. rhynchophylla and its major components such as rhynchophylline and isorhynchophylline have been shown to have neuroprotective effects on Alzheimer's disease, Parkinson's disease, depression, cerebral ischaemia through a number of mechanisms including anti-oxidant, anti-inflammatory actions and regulation on neurotransmitters. CONCLUSION U. rhynchophylla and its major components have multiple beneficial pharmacological effects on CNS. Further studies on U. rhynchophylla and its major components are warranted to fully illustrate the underlying molecular mechanisms, pharmacokinetics, and toxicological profiles of these naturally occurring compounds and their potential for clinical application.
Collapse
Affiliation(s)
- Wen Yang
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siu-Po Ip
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Liu
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yan-Fang Xian
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhi-Xiu Lin
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Sun J, He F, Gao Y, Zhou Y, Zhang H, Huang M, Bi H. Lipidomics-based study on the neuroprotective effect of geissoschizine methyl ether against oxidative stress-induced cytotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112636. [PMID: 32004630 DOI: 10.1016/j.jep.2020.112636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/24/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lipid homoeostasis is important for neurodevelopment, cell signaling and neurotransmission. Alteration of lipid metabolism has been demonstrated in many neurological disorders and neurodegenerative diseases. Geissoschizine methyl ether (GM) is an active alkaloid ingredient in the traditional Chinese medicine Uncaria hook. It has been shown that GM has strong potency in neuroprotective activity and GM reduces the production of reactive oxygen species by regulating glucose metabolism, which protects neurons against oxidative stress-induced cell death. However, it is unknown whether GM could regulate neuronal lipid metabolism during oxidative challenge. AIM OF THE STUDY The current study aimed to explore whether GM regulates lipid metabolism in oxidative damaged neurons and to determine the underlying mechanism involved in this neuro-protection. MATERIALS AND METHODS Using a glutamate-induced oxidative toxicity model in mouse hippocampal neuronal cell line (HT-22 cells), we investigated the effect of GM on glutamate-induced lipid peroxidation, lipotoxicity and mitochondrial dysfunction. In order to clarify the mechanism underlying the neuroprotection by GM, lipid metabolomics was performed to investigate whether GM prevent oxidative stress-induced lipid metabolism disruption. Furthermore, the expression of lipid metabolism-related genes was measured. RESULTS The results show the protective effect of GM against oxidative stress through blocking glutamate-induced lipid peroxidation and lipotoxicity. Overall, lipidomics analysis revealed that glutamate treatment resulted in different extents of changes in a wide range of lipid classes such as fatty acids (FA), triacylglycerol (TG), sphingomyelin (SM), cardiolipin (CL), lysophosphatidylcholines (LPC). However, GM treatment can significantly reverse glutamate-induced lipids disorder to the homeostasis level. GM prevented the disruption of lipid metabolism by regulating the expression of lipid homeostasis related genes, which contributes to preserve mitochondrial function under oxidative damage. CONCLUSION These findings clearly demonstrated a novel protective mechanism of GM against glutamate-induced oxidative toxicity in neurons via regulating lipid metabolism. GM may provide an effective approach for the prevention and treatment of oxidative damaged neurons.
Collapse
Affiliation(s)
- Jiahong Sun
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Fajing He
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Huizhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Xie ZQ, Tian XT, Zheng YM, Zhan L, Chen XQ, Xin XM, Huang CG, Gao ZB. Antiepileptic geissoschizine methyl ether is an inhibitor of multiple neuronal channels. Acta Pharmacol Sin 2020; 41:629-637. [PMID: 31911638 PMCID: PMC7471432 DOI: 10.1038/s41401-019-0327-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022] Open
Abstract
Geissoschizine methyl ether (GM) is an indole alkaloid isolated from Uncaria rhynchophyll (UR) that has been used for the treatment of epilepsy in traditional Chinese medicine. An early study in a glutamate-induced mouse seizure model demonstrated that GM was one of the active ingredients of UR. In this study, electrophysiological technique was used to explore the mechanism underlying the antiepileptic activity of GM. We first showed that GM (1−30 μmol/L) dose-dependently suppressed the spontaneous firing and prolonged the action potential duration in cultured mouse and rat hippocampal neurons. Given the pivotal roles of ion channels in regulating neuronal excitability, we then examined the effects of GM on both voltage-gated and ligand-gated channels in rat hippocampal neurons. We found that GM is an inhibitor of multiple neuronal channels: GM potently inhibited the voltage-gated sodium (NaV), calcium (CaV), and delayed rectifier potassium (IK) currents, and the ligand-gated nicotinic acetylcholine (nACh) currents with IC50 values in the range of 1.3−13.3 μmol/L. In contrast, GM had little effect on the voltage-gated transient outward potassium currents (IA) and four types of ligand-gated channels (γ-amino butyric acid (GABA), N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainite (AMPA/KA receptors)). The in vivo antiepileptic activity of GM was validated in two electricity-induced seizure models. In the maximal electroshock (MES)-induced mouse seizure model, oral administration of GM (50−100 mg/kg) dose-dependently suppressed generalized tonic-clonic seizures. In 6-Hz-induced mouse seizure model, oral administration of GM (100 mg/kg) reduced treatment-resistant seizures. Thus, we conclude that GM is a promising antiepileptic candidate that inhibits multiple neuronal channels.
Collapse
|
12
|
Liang JH, Luan ZL, Tian XG, Zhao WY, Wang YL, Sun CP, Huo XK, Deng S, Zhang BJ, Zhang ZJ, Ma XC. Uncarialins A-I, Monoterpenoid Indole Alkaloids from Uncaria rhynchophylla as Natural Agonists of the 5-HT 1A Receptor. JOURNAL OF NATURAL PRODUCTS 2019; 82:3302-3310. [PMID: 31789520 DOI: 10.1021/acs.jnatprod.9b00532] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nine new monoterpenoid indole alkaloids, uncarialins A-I (1-9), were isolated from Uncaria rhynchophylla as well as 14 known analogues (10-23). Their structures were determined by HRESIMS, 1D and 2D NMR, and experimental and calculated electronic circular dichroism data. Compounds 5, 7, 15, and 22 displayed significant agonistic effects against the 5-HT1A receptor with EC50 values of 2.2 ± 0.1, 0.1 ± 0.1, 1.6 ± 0.3, and 2.0 ± 0.5 μM, respectively. The mechanisms of action of these four compounds with the 5-HT1A receptor were investigated by molecular docking, and the results suggested that amino acid residues Asp116, Thr196, Asn386, and Tyr390 played critical roles in the observed activity of the above-mentioned compounds.
Collapse
Affiliation(s)
- Jia-Hao Liang
- College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease , Dalian Medical University , Dalian 116044 , People's Republic of China
| | - Zhi-Lin Luan
- College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease , Dalian Medical University , Dalian 116044 , People's Republic of China
| | - Xiang-Ge Tian
- College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease , Dalian Medical University , Dalian 116044 , People's Republic of China
| | - Wen-Yu Zhao
- College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease , Dalian Medical University , Dalian 116044 , People's Republic of China
| | - Ya-Li Wang
- College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease , Dalian Medical University , Dalian 116044 , People's Republic of China
| | - Cheng-Peng Sun
- College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease , Dalian Medical University , Dalian 116044 , People's Republic of China
| | - Xiao-Kui Huo
- College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease , Dalian Medical University , Dalian 116044 , People's Republic of China
| | - Sa Deng
- College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease , Dalian Medical University , Dalian 116044 , People's Republic of China
| | - Bao-Jing Zhang
- College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease , Dalian Medical University , Dalian 116044 , People's Republic of China
| | - Zhan-Jun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Xiao-Chi Ma
- College of Pharmacy, College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease , Dalian Medical University , Dalian 116044 , People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou 221004 , People's Republic of China
| |
Collapse
|
13
|
Li WS, Hu HB, Huang ZH, Yan RJ, Tian LW, Wu J. Phomopsols A and B from the Mangrove Endophytic Fungus Phomopsis sp. xy21: Structures, Neuroprotective Effects, and Biogenetic Relationships. Org Lett 2019; 21:7919-7922. [PMID: 31525876 DOI: 10.1021/acs.orglett.9b02906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wan-Shan Li
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Han-Bo Hu
- Marine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, P. R. China
| | - Zhong-Hui Huang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Ren-Jie Yan
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Li-Wen Tian
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Jun Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| |
Collapse
|
14
|
Zhang H, Wang L, Lu B, Qi W, Jiao F, Zhang H, Yuan D. Metabolite profiling and quantification of phytochemicals of Tianma-Gouteng granule in human and rat urine using ultra high performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 2019; 42:2762-2770. [PMID: 31207093 DOI: 10.1002/jssc.201900029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Tianma-Gouteng granule has been used for the treatment of hypertension, headache, and stroke in China. However, the metabolism of Tianma-Gouteng granule has not been clear. In the present study, an ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method has been developed for rapid identification of 35 prototypes and 43 metabolites in human and rat urine after single oral administration of Tianma-Gouteng granule. The results showed that glucuronidation and sulfation were the main metabolic pathways for flavonoids, alkaloids, iridoidic glycosides, anthraquinones, phenols, and stilbenes that were found in Tianma-Gouteng granule. Moreover, a validated ultra high performance liquid chromatography coupled with tandem mass spectrometry method was applied for the quantification of 14 compounds in rat urine after an oral administration of Tianma-Gouteng granule (2.5 g/kg). During 0-48 h after dosing, the cumulative excretion rates of nine prototype components were 53% for gastrodin, 0.07∼1.6% for geniposide, baicalin and baicalein, wogonoside, rhynchophylline and isorhynchophylline, leonurine, and emodin, indicating that urinary excretion is the major way for gastrodin to eliminate from the body. This study provides a comprehensive understanding of metabolism and excretive kinetics of Tianma-Gouteng granule in human and/or rat, and helpful information for screening of its active components in vivo and clinical application.
Collapse
Affiliation(s)
- Hongye Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lu Wang
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Bin Lu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Wen Qi
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Fuying Jiao
- 2nd Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, P. R. China
| | - Hong Zhang
- 2nd Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, P. R. China
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
15
|
Han A, Lin G, Cai J, Wu Q, Geng P, Ma J, Wang X, Lin C. Pharmacokinetic study on hirsutine and hirsuteine in rats using UPLC–MS/MS. ACTA CHROMATOGR 2019. [DOI: 10.1556/1326.2017.00365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Aixia Han
- Department of Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| | - Guanyang Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jinzhang Cai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Wu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Peiwu Geng
- Department of Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| | - Jianshe Ma
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xianqin Wang
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chongliang Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
16
|
|
17
|
Liu Y, Yu HY, Xu HZ, Liu JJ, Meng XG, Zhou M, Ruan HL. Alkaloids with Immunosuppressive Activity from the Bark of Pausinystalia yohimbe. JOURNAL OF NATURAL PRODUCTS 2018; 81:1841-1849. [PMID: 30059216 DOI: 10.1021/acs.jnatprod.8b00324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ten new alkaloids (1-10), including two pairs of enantiomeric mixtures (5a,b and 6a,b), and 15 known analogues (11-25) were obtained from the bark of Pausinystalia yohimbe. The structures of 1-25 were established by spectroscopic methods, and the absolute configurations of compounds 1-10 were resolved by X-ray diffraction and ECD data analyses. The in vitro immunosuppressive activities of selected isolates were tested. Compounds 11 and 16 exhibited moderate inhibition with IC50 values of 16.8 and 27.6 μM against ConA-induced T lymphocyte proliferation and 13.5 and 40.5 μM against LPS-induced B lymphocyte proliferation, respectively.
Collapse
Affiliation(s)
- Ye Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
- Medical Science Research Center , Zhongnan Hospital of Wuhan University , Wuhan 430071 , People's Republic of China
| | - Heng-Yi Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Hong-Zhe Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jun-Jun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Xiang-Gao Meng
- College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China
| | - Ming Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Han-Li Ruan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
18
|
New zwitterionic monoterpene indole alkaloids from Uncaria rhynchophylla. Fitoterapia 2018; 127:47-55. [DOI: 10.1016/j.fitote.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 11/21/2022]
|
19
|
Haudecoeur R, Peuchmaur M, Pérès B, Rome M, Taïwe GS, Boumendjel A, Boucherle B. Traditional uses, phytochemistry and pharmacological properties of African Nauclea species: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 212:106-136. [PMID: 29045823 DOI: 10.1016/j.jep.2017.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOALOGICAL RELEVANCE The genus Nauclea in Africa comprises seven species. Among them, N. latifolia, N. diderrichii and N. pobeguinii are widely used by the local population in traditional remedies. Preparation from various parts of plants (e.g. roots, bark, leaves) are indicated by traditional healers for a wide range of diseases including malaria, pain, digestive ailments or metabolic diseases. MATERIALS AND METHODS A literature search was conducted on African species of the genus Nauclea using scientific databases such as Google Scholar, Pubmed or SciFinder. Every document of ethnopharmacological, phytochemical or pharmacological relevance and written in English or French were analyzed. RESULTS AND DISCUSSION The Nauclea genus is used as ethnomedicine all along sub-Saharan Africa. Several local populations consider Nauclea species as a major source of remedies for malaria. In this regard, two improved traditional medicines are currently under development using extracts from N. latifolia and N. pobeguinii. Concerning the chemical composition of the Nauclea genus, indoloquinolizidines alkaloids could be considered as the major class of compounds as they are reported in every analyzed Nauclea species, with numerous structures identified. Based on traditional indications a considerable amount of pharmacological studies were conducted to ensure activity and attempt to link them to the presence of particular compounds in plant extracts. CONCLUSION Many experimental studies using plant extracts of the African species of the genus Nauclea validate traditional indications (e.g. malaria and pain). However, bioactive compounds are rarely identified and therefore, there is a clear need for further evaluations as well as for toxicity experiments. The sustainability of these plants, especially of N. diderrichii, a threatened species, should be kept in mind to adapt local uses and preparation modes of traditional remedies.
Collapse
Affiliation(s)
- Romain Haudecoeur
- Univ. Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Basile Pérès
- Univ. Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Maxime Rome
- Univ. Grenoble Alpes, SAJF UMS 3370, F-38041 Grenoble, France; CNRS, SAJF UMS 3370, F-38041 Grenoble, France
| | | | - Ahcène Boumendjel
- Univ. Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Benjamin Boucherle
- Univ. Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France.
| |
Collapse
|
20
|
Wei X, Jiang LP, Guo Y, Khan A, Liu YP, Yu HF, Wang B, Ding CF, Zhu PF, Chen YY, Zhao YL, Chen YB, Wang YF, Luo XD. Indole Alkaloids Inhibiting Neural Stem Cell from Uncaria rhynchophylla. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:413-419. [PMID: 28952128 PMCID: PMC5655363 DOI: 10.1007/s13659-017-0141-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/12/2017] [Indexed: 05/23/2023]
Abstract
Uncaria rhynchophylla is commonly recognized as a traditional treatment for dizziness, cerebrovascular diseases, and nervous disorders in China. Previously, the neuro-protective activities of the alkaloids from U. rhynchophylla were intensively reported. In current work, three new indole alkaloids (1-3), identified as geissoschizic acid (1), geissoschizic acid N 4-oxide (2), and 3β-sitsirikine N 4-oxide (3), as well as 26 known analogues were isolated from U. rhynchophylla. However, in the neural stem cells (NSCs) proliferation assay for all isolated compounds, geissoschizic acid (1), geissoschizic acid N 4-oxide (2), isocorynoxeine (6), isorhynchophylline (7), (4S)-akuammigine N-oxide (8), and (4S)-rhynchophylline N-oxide (10) showed unexpected inhibitory activities at 10 μM. Unlike previous neuro-protective reports, as a warning or caution, our finding showcased a clue for possible NSCs toxicity and the neural lesions risk of U. rhynchophylla, while the structure-activity relationships of the isolated compounds were discussed also.
Collapse
Affiliation(s)
- Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Li-Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ying Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Afsar Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Hao-Fei Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bei Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Cai-Feng Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pei-Feng Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ying-Ying Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yun-Li Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yong-Bing Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, People's Republic of China
| | - Yi-Fen Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China.
| |
Collapse
|
21
|
Loh YC, Ch'ng YS, Tan CS, Ahmad M, Asmawi MZ, Yam MF. Mechanisms of Action of Uncaria rhynchophylla Ethanolic Extract for Its Vasodilatory Effects. J Med Food 2017; 20:895-911. [DOI: 10.1089/jmf.2016.3804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yean Chun Loh
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Yung Sing Ch'ng
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Chu Shan Tan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mariam Ahmad
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohd Zaini Asmawi
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
22
|
Kong F, Ma Q, Huang S, Yang S, Fu L, Zhou L, Dai H, Yu Z, Zhao Y. Tetracyclic indole alkaloids with antinematode activity from Uncaria rhynchophylla. Nat Prod Res 2016; 31:1403-1408. [DOI: 10.1080/14786419.2016.1255885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fandong Kong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Qingyun Ma
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Shengzhuo Huang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Shuang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Linran Fu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liman Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Haofu Dai
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Zhifang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Youxing Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| |
Collapse
|
23
|
Sun J, Ren X, Qi W, Yuan D, Simpkins JW. Geissoschizine methyl ether protects oxidative stress-mediated cytotoxicity in neurons through the 'Neuronal Warburg Effect'. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:249-58. [PMID: 27114061 PMCID: PMC4887292 DOI: 10.1016/j.jep.2016.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/17/2016] [Accepted: 04/21/2016] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rate of production of reactive oxygen species (ROS) is determined by mitochondrial metabolic rate. In turn, excessive ROS damage mitochondrial function, which is linked to aging and neurodegenerative conditions. One possible path to prevent oxidative stress could be achieved by reducing mitochondrial respiration in favor of less efficient ATP production via glycolysis. Such a shift in energy metabolism is known as the 'Warburg effect'. Geissoschizine methyl ether (GM) is one of the active components responsible for the psychotropic effects of Yokukansan, an herbal preparation widely used in China and Japan. AIM OF THE STUDY GM protects neurons from glutamate-induced oxidative cytotoxicity through regulating mitochondrial function and suppressing ROS generation. We investigated the protective mechanism of GM against glutamate-induced oxidative stress in neuronal cells. MATERIALS AND METHODS The current study was performed on primary neurons and HT22 cells, a hippocampus neuronal cell line. Cell viability was measured by Calcein AM assay. H2DCFDA staining was used for intracellular ROS measurement. GSH level was measured using the GSH-Glo™ luminescence-based assay. Mitochondrial respiration and glycolysis were measured by the Seahorse Bioscience XFe 96 Extracellular Flux Analyzer. Protein levels were analyzed by western blot analysis. RESULTS GM prevented glutamate-induced cytotoxicity in an HT-22 neuronal cell line even with a 9-hour exposure delay. GM blocked glutamate-induced intracellular ROS accumulation through suppressing mitochondrial respiration. Further, we found that GM up-regulated glycolysis and the pentose-phosphate pathway, which is involved in the production of intracellular reducing agent, NADPH. In addition, GM protected primary cortical neurons from both glutamate and buthioninesulfoximine toxicity. CONCLUSION GM prevents glutamate-induced oxidative damage through reducing mitochondrial respiration, which further suppresses ROS generation. In addition, GM up-regulates glycolysis which compensate for the energy depletion induced by mitochondrial respiration inhibition. Overall, our study is the first to report that GM protects neurons from oxidative toxicity by shifting energy metabolism from mitochondrial respiration to glycolysis.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Xuefang Ren
- Department of Physiology and Pharmacology, Center for Basic and Translational Stroke Research, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506, United States
| | - Wen Qi
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Dan Yuan
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China
| | - James W Simpkins
- Department of Physiology and Pharmacology, Center for Basic and Translational Stroke Research, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506, United States.
| |
Collapse
|
24
|
Boucherle B, Haudecoeur R, Queiroz EF, De Waard M, Wolfender JL, Robins RJ, Boumendjel A. Nauclea latifolia: biological activity and alkaloid phytochemistry of a West African tree. Nat Prod Rep 2016; 33:1034-43. [PMID: 27346294 DOI: 10.1039/c6np00039h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering up to 2016Nauclea latifolia (syn. Sarcocephalus latifolius, Rubiaceae), commonly called the African pincushion tree, is a plant widely used in folk medicine in different regions of Africa for treating a variety of illnesses, including malaria, epilepsy and pain. N. latifolia has not only drawn the interest of traditional healers but also of phytochemists, who have identified a range of bioactive indole alkaloids in its tissue. More recently, following up on the traditional use of extracts in pain management, a bio-guided purification from the roots of the tree led to the identification of the active ingredient as tramadol, available as a synthetic analgesic since the 1970s. The discovery of this compound as a natural phytochemical was highlighted worldwide. This review focuses on the correlation between extracted compounds and pharmacological activities, paying special attention to infectious diseases and neurologically-related disorders. A critical analysis of the data reported so far on the natural origin of tramadol and its proposed biosynthesis is also presented.
Collapse
|