1
|
Wang Y, Huang J, Lin X, Su W, Zhu P, Yang N, Adams E. Recent progress in the extraction of terpenoids from essential oils and separation of the enantiomers by GC-MS. J Chromatogr A 2024; 1730:465118. [PMID: 38936162 DOI: 10.1016/j.chroma.2024.465118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Terpenoids possess significant physiological activities and are rich in essential oils. Some terpenoids have chiral centers and could form enantiomers with distinct physiological activities. Therefore, the extraction and separation of terpenoids enantiomers are very important and have attracted extensive attention in recent years. Meanwhile, the specific distribution and enantiomer excess results (the excess of one enantiomer over the other in a mixture of enantiomers) could be used as quality markers for illegitimate adulteration, origin identification, and exploring component variations and functional interrelations across different plant tissues. In this study, an overview of the progress in the extraction of terpenoids from essential oils and the separation of their enantiomers over the past two decades has been made. Extraction methods were retrieved by the resultant network visualization findings. The results showed that the predominant methods are hydrodistillation, solvent-free microwave extraction, headspace solid-phase microextraction and supercritical fluid extraction methods. GC-MS combined with chiral chromatography columns is commonly used for the separation of enantiomers, while 2D GC is found to have stronger resolution ability. Finally, some prospects for future research directions in the extraction and separation identification of essential oils are proposed.
Collapse
Affiliation(s)
- Yixi Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, PR China
| | - Jinchun Huang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, PR China
| | - Xinyue Lin
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, PR China
| | - Weike Su
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, PR China
| | - Peixi Zhu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, PR China.
| | - Ni Yang
- Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Erwin Adams
- KU Leuven, University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923 3000 Leuven, Belgium
| |
Collapse
|
2
|
Cucinotta L, Cannizzaro F, Paolini M, Roncone A, Camin F, Bontempo L, Larcher R, Sciarrone D, Mondello L. From grape to wine: A thorough compound specific isotopic, enantiomeric and quali-quantitative investigation by means of gas chromatographic analysis. J Chromatogr A 2024; 1730:465149. [PMID: 38991602 DOI: 10.1016/j.chroma.2024.465149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
In this study, multiple analytical approaches, including simultaneous enantiomeric and isotopic analysis, were employed to thoroughly investigate the volatile fraction in Moscato giallo grape berries and wines. For the qualitative and quantitative profiling, a fast GC-QqQ/MS approach was successfully utilized. However, prior to isotopic analysis, the extracts underwent an additional concentration step, necessitating an assessment of isotopic fractionation during the concentration process. Once the absence of carbon isotopic fractionation was confirmed, this research aimed to develop a suitable gas chromatographic method for the simultaneous detection of both enantiomeric and isotopic ratios of target monoterpenoids in Moscato giallo samples. To address the limitations associated with a one-dimensional approach, multidimensional gas chromatography was employed to enhance separation before IRMS and qMS detections. Utilizing a Deans switch transfer device, the coupling of an apolar column in the first dimension and a chiral cyclodextrin-based stationary phase in the second dimension proved effective for this purpose. The data obtained from the analysis of Moscato giallo samples allowed for the assessment of natural isotopic and enantiomeric distributions in grapes and wines for the first time in the literature. Significant enantiomeric excesses were observed for the target terpenoids investigated. Regarding isotopic distribution, a consistent trend was observed for all detected target terpenols, including the linalool enantiomers. To date, this study represents the first investigation of simultaneous δ13C and chiral investigation of the main terpenoids in oenological products in the literature.
Collapse
Affiliation(s)
- Lorenzo Cucinotta
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, Messina 98168, Italy; Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy
| | - Francesca Cannizzaro
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, Messina 98168, Italy
| | - Mauro Paolini
- Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy
| | - Alberto Roncone
- Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy
| | - Federica Camin
- Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy; Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, San Michele all'Adige, TN 38010, Italy
| | - Luana Bontempo
- Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy
| | - Roberto Larcher
- Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy
| | - Danilo Sciarrone
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, Messina 98168, Italy.
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, Messina 98168, Italy; Chromaleont s.r.l., c/o Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, Messina 98168, Italy
| |
Collapse
|
3
|
Kontrec D, Jurin M, Jakas A, Roje M. New Levan-Based Chiral Stationary Phases: Synthesis and Comparative HPLC Enantioseparation of (±)- trans-β-Lactam Ureas in the Polar Organic Mode. Molecules 2024; 29:2213. [PMID: 38792075 PMCID: PMC11124272 DOI: 10.3390/molecules29102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
In this paper, the preparation of three new polysaccharide-type chiral stationary phases (CSPs) based on levan carbamates (3,5-dimethylphenyl, 4-methylphenyl, and 1-naphthyl) is described. The enantioseparation of (±)-trans-β-lactam ureas 1a-h was investigated by high-performance liquid chromatography (HPLC) on six different chiral columns (Chiralpak AD-3, Chiralcel OD-3, Chirallica PST-7, Chirallica PST-8, Chirallica PST-9, and Chirallica PST-10) in the polar organic mode, using pure methanol (MeOH), ethanol (EtOH), and acetonitrile (ACN). Apart from the Chirallica PST-9 column (based on levan tris(1-naphthylcarbamate), the columns exhibited a satisfactory chiral recognition ability for the tested trans-β-lactam ureas 1a-h.
Collapse
Affiliation(s)
| | - Mladenka Jurin
- Laboratory for Chiral Technologies, Division of Organic Chemistry and Biochemistry, Ruder Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia; (D.K.); (A.J.)
| | | | - Marin Roje
- Laboratory for Chiral Technologies, Division of Organic Chemistry and Biochemistry, Ruder Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia; (D.K.); (A.J.)
| |
Collapse
|
4
|
Badgujar D, Paritala ST, Matre S, Sharma N. Enantiomeric purity of synthetic therapeutic peptides: A review. Chirality 2024; 36. [PMID: 38448043 DOI: 10.1002/chir.23652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Synthetic therapeutic peptides are a complex and popular class of pharmaceuticals. In recent years, peptides with proven therapeutic activity have gained significant interest in the market. The determination of synthetic peptide enantiomeric purity plays a critical role in the evaluation of the quality of the medicine. Since racemization is one of the most common side reactions occurring in AAs or peptides, enantiomeric impurities such as D-isomers can form during the peptide synthesis or can be introduced from the starting materials (e.g., AAs). The therapeutic effect of a synthetic or semi-synthetic bioactive peptide molecule depends on its AA enantiomeric purity and secondary/tertiary structure. Therefore, the enantiomeric purity determination for synthetic peptides is supportive for interpreting unwanted therapeutic effects and determining the quality of synthetic peptide therapeutics. However, enantiomeric purity analysis encounters formidable analytical challenges during chromatographic separation, as D/L isomers have identical physical-chemical properties except stereochemical configuration. To ensure peptides AA stereochemical configuration whether in the free or bound state, sensitive and reproducible quantitative analytical method is mandatory. In this regard, numerous analytical techniques were emerged for the quantification of D-isomeric impurities in synthetic peptides, but still, very few reports are available in the literature. Thus, the purpose of this paper is to provide an overview of the importance, regulatory requirements, and various analytical methods used for peptide enantiomeric purity determination. In addition, we discussed the available literature in terms of enantiomeric impurity detection, common hydrolysis procedural aspects, and different analytical strategies used for sample preparation.
Collapse
Affiliation(s)
- Devendra Badgujar
- National Institute of Pharmaceutical Education and Research-Ahmedabad, Ministry of Chemicals and Fertilizers, Government of India, Gandhinagar, Gujarat, India
| | - Sree Teja Paritala
- National Institute of Pharmaceutical Education and Research-Ahmedabad, Ministry of Chemicals and Fertilizers, Government of India, Gandhinagar, Gujarat, India
| | - Shubham Matre
- National Institute of Pharmaceutical Education and Research-Ahmedabad, Ministry of Chemicals and Fertilizers, Government of India, Gandhinagar, Gujarat, India
| | - Nitish Sharma
- National Institute of Pharmaceutical Education and Research-Ahmedabad, Ministry of Chemicals and Fertilizers, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Liao X, Wu B, Li H, Zhang M, Cai M, Lang B, Wu Z, Wang F, Sun J, Zhou P, Chen H, Di D, Ren C, Zhang H. Fluorescent/Colorimetric Dual-Mode Discriminating Gln and Val Enantiomers Based on Carbon Dots. Anal Chem 2023; 95:14573-14581. [PMID: 37729469 DOI: 10.1021/acs.analchem.3c01854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Discrimination and quantification of amino acid (AA) enantiomers are particularly important for diagnosing and treating diseases. Recently, dual-mode probes have gained a lot of research interest because they can catch more detecting information compared with the single-mode probes. Thus, it is of great significance to develop a dual-mode sensor realizing AA enantiomer discrimination conveniently and efficiently. In this work, carbon dot L-TCDs were prepared by N-methyl-1,2-benzenediamine dihydrochloride (OTD) and l-tryptophan. With the assistance of H2O2, L-TCDs show an excellent discrimination performance for enantiomers of glutamine (Gln) and valine (Val) in both fluorescent and colorimetric modes. The fluorescence enantioselectivity of Gln (FD/FL) and Val (FL/FD) is 5.29 and 4.13, respectively, and the colorimetric enantioselectivity of Gln (ID/IL) and Val (IL/ID) is 13.26 and 3.42, individually. The chiral recognition mechanism of L-TCDs was systematically studied. L-TCDs can be etched by H2O2, and the participation of AA enantiomers results in different amounts of the released OTD, which provides fluorescent and colorimetric signals for identifying and quantifying the enantiomers of Gln and Val. This work provides a more convenient and flexible dual-mode sensing strategy for discriminating AA enantiomers, which is expected to be of great value in facile and high-throughput chiral recognition.
Collapse
Affiliation(s)
- Xuan Liao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bingyan Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixia Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mengtao Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Muzi Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bozhi Lang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhizhen Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fangling Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianong Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
6
|
Zhang Y, Zhang YH, Yan H, Shao CY, Li WX, Lv HP, Lin Z, Zhu Y. Enantiomeric separation and precise quantification of chiral volatiles in Wuyi rock teas using an efficient enantioselective GC × GC-TOFMS approach. Food Res Int 2023; 169:112891. [PMID: 37254338 DOI: 10.1016/j.foodres.2023.112891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Chiral volatiles play important roles in the formation of aroma quality of foods. To date, enantiomeric characteristics of chiral volatiles in Wuyi rock tea (WRT) and their aroma contributions are still unclear. In this study, an efficient enantioselective comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (Es-GC × GC-TOFMS) approach to separate and precisely quantitate 24 pairs of chiral volatiles in WRTs was established, and the enantiomeric distribution and aroma contribution of chiral volatiles among WRTs from four representative cultivars were investigated. Enantiomeric ratio (ER) of R-α-ionone (80%) in Dahongpao (DHP), ER of S-α-terpineol (57%) in Jinfo (JF), ERs of R-γ-heptanolactone (69%), S-γ-nonanolactone (55%), (2R, 5S)-theaspirane B (91%), concentration of S-(E)-nerolidol (313.37 ng/mL) in Rougui (RG) and concentration of R-α-ionone (33.01 ng/mL) in Shuixian (SX) were unique from other types of WRTs, which were considered as the potential chemical markers to distinguish WRT cultivars. The OAV assessment determined 7 volatile enantiomers as the aroma-active compounds, especially R-α-ionone and R-δ-octanolactone in SX, as well as S-(E)-nerolidol and (1R, 2R)-methyl jasmonate in RG contribute much to aroma formation of the corresponding WRTs. The above results provide scientific references for discrimination of tea cultivars and directed improvement of the aroma quality of WRT.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yu-Hui Zhang
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Yan
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen-Yang Shao
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei-Xuan Li
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Hai-Peng Lv
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
7
|
Zaid A, Hassan NH, Marriott PJ, Wong YF. Comprehensive Two-Dimensional Gas Chromatography as a Bioanalytical Platform for Drug Discovery and Analysis. Pharmaceutics 2023; 15:1121. [PMID: 37111606 PMCID: PMC10140985 DOI: 10.3390/pharmaceutics15041121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Over the last decades, comprehensive two-dimensional gas chromatography (GC×GC) has emerged as a significant separation tool for high-resolution analysis of disease-associated metabolites and pharmaceutically relevant molecules. This review highlights recent advances of GC×GC with different detection modalities for drug discovery and analysis, which ideally improve the screening and identification of disease biomarkers, as well as monitoring of therapeutic responses to treatment in complex biological matrixes. Selected recent GC×GC applications that focus on such biomarkers and metabolite profiling of the effects of drug administration are covered. In particular, the technical overview of recent GC×GC implementation with hyphenation to the key mass spectrometry (MS) technologies that provide the benefit of enhanced separation dimension analysis with MS domain differentiation is discussed. We conclude by highlighting the challenges in GC×GC for drug discovery and development with perspectives on future trends.
Collapse
Affiliation(s)
- Atiqah Zaid
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Norfarizah Hanim Hassan
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC 3800, Australia
| | - Yong Foo Wong
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
8
|
Zhou Y, He Y, Zhu Z. Understanding of formation and change of chiral aroma compounds from tea leaf to tea cup provides essential information for tea quality improvement. Food Res Int 2023; 167:112703. [PMID: 37087269 DOI: 10.1016/j.foodres.2023.112703] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Abundant secondary metabolites endow tea with unique quality characteristics, among which aroma is the core component of tea quality. The ratio of chiral isomers of aroma compounds greatly affects the flavor of tea leaves. In this paper, we review the progress of research on chiral aroma compounds in tea. With the well-established GC-MS methods, the formation of, and changes in, the chiral configuration of tea aroma compounds during the whole cycle of tea leaves from the plant to the tea cup has been studied in detail. The ratio of aroma chiral isomers varies among different tea varieties and finished teas. Enzymatic reactions involving tea aroma synthases and glycoside hydrolases participate the formation of aroma compound chiral isomers during tea tree growth and tea processing. Non-enzymatic reactions including environmental factors such as high temperature and microbial fermentation involve in the change of aroma compound chiral isomers during tea processing and storage. In the future, it will be interesting to determine how changes in the proportions of chiral isomers of aroma compounds affect the environmental adaptability of tea trees; and to determine how to improve tea flavor by modifying processing methods or targeting specific genes to alter the ratio of chiral isomers of aroma compounds.
Collapse
Affiliation(s)
- Ying Zhou
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China.
| | - Yunchuan He
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Zengrong Zhu
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| |
Collapse
|
9
|
Ma S, Ren G, Cui J, Lin M, Wang J, Yuan J, Yin W, Peng P, Yu Z. Chiral signatures of polychlorinated biphenyls in serum from e-waste workers and their correlation with hydroxylated metabolites. CHEMOSPHERE 2022; 304:135212. [PMID: 35690175 DOI: 10.1016/j.chemosphere.2022.135212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Elevated concentrations of polychlorinated biphenyls (PCBs) found in environmental media and biota from typical e-waste dismantling sites have raised concerns regarding their human body burden and potential negative health effects. In the present study, the enantiomeric compositions of three typical chiral congeners (PCB-95, PCB-132, and PCB-149) were measured in 24 serum samples from e-waste workers by using gas chromatography coupled to triple quadrupole tandem mass spectrometry. The mean enantiomer fractions (EFs) of chiral congeners in serum from the workers were 0.655 ± 0.103, 0.679 ± 0.164, and 0.548 ± 0.095 for PCB-95, PCB-132, and PCB-149, respectively. The (+) enantiomers of PCB-95, PCB-132, and PCB-149 were enantioselectively enriched in serum. Significant positive correlations were observed between the EF of the chiral congener PCB-95 and the total concentration of OH-PCBs, suggesting that EF values of chiral PCBs could be used to indicate the extent of biological metabolism. In addition, the EF of PCB-95 in serum samples increased with increasing work duration of the e-waste workers, thus demonstrating the usefulness of EF values of chiral PCBs as tracers of human exposure to PCBs. Because of the enantioselective enrichment of (+) enantiomers of PCB-95, PCB-132, and PCB-149, further studies are needed to explore the metabolism and toxicity of chiral contaminants in humans.
Collapse
Affiliation(s)
- Shengtao Ma
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guofa Ren
- Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200072, China.
| | - Juntao Cui
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Meiqing Lin
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jingzhi Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jing Yuan
- Department of Occupational and Environmental Health and the MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjun Yin
- Department of Occupational and Environmental Health and the MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, 430015, Hubei, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
10
|
Câmara JS, Martins C, Pereira JAM, Perestrelo R, Rocha SM. Chromatographic-Based Platforms as New Avenues for Scientific Progress and Sustainability. Molecules 2022; 27:5267. [PMID: 36014506 PMCID: PMC9412595 DOI: 10.3390/molecules27165267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chromatography was born approximately one century ago and has undergone outstanding technological improvements in innovation, research, and development since then that has made it fundamental to advances in knowledge at different levels, with a relevant impact on the well-being and health of individuals. Chromatography boosted a comprehensive and deeper understanding of the complexity and diversity of human-environment interactions and systems, how these interactions affect our life, and the several societal challenges we are currently facing, namely those related to the sustainability of our planet and the future generations. From the life sciences, which allowed us to identify endogenous metabolites relevant to disease mechanisms, to the OMICS field, nanotechnology, clinical and forensic analysis, drug discovery, environment, and "foodprint", among others, the wide range of applications of today's chromatographic techniques is impressive. This is fueled by a great variability of powerful chromatographic instruments currently available, with very high sensitivity, resolution, and identification capacity, that provide a strong basis for an analytical platform able to support the challenging demands of the postgenomic and post COVID-19 eras. Within this context, this review aims to address the great utility of chromatography in helping to cope with several societal-based challenges, such as the characterization of disease and/or physiological status, and the response to current agri-food industry challenges of food safety and sustainability, or the monitoring of environmental contamination. These are increasingly important challenges considering the climate changes, the tons of food waste produced every day, and the exponential growth of the human population. In this context, the principles governing the separation mechanisms in chromatography as well the different types and chromatographic techniques will be described. In addition, the major achievements and the most important technological advances will be also highlighted. Finally, a set of studies was selected in order to evince the importance of different chromatographic analyses to understand processes or create fundamental information in the response to current societal challenges.
Collapse
Affiliation(s)
- José S. Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Cátia Martins
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A. M. Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Sílvia M. Rocha
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Abstract
In the past two decades, metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) assembled from metal ions or clusters and organic linkers via metal-ligand coordination bonds have captivated significant scientific interest on account of their high crystallinity, exceptional porosity, and tunable pore size, high modularity, and diverse functionality. The opportunity to achieve functional porous materials by design with promising properties, unattainable for solid-state materials in general, distinguishes MOFs from other classes of materials, in particular, traditional porous materials such as activated carbon, silica, and zeolites, thereby leading to complementary properties. Scientists have conducted intense research in the production of chiral MOF (CMOF) materials for specific applications including but not limited to chiral recognition, separation, and catalysis since the discovery of the first functional CMOF (i.e., d- or l-POST-1). At present, CMOFs have become interdisciplinary between chirality chemistry, coordination chemistry, and material chemistry, which involve in many subjects including chemistry, physics, optics, medicine, pharmacology, biology, crystal engineering, environmental science, etc. In this review, we will systematically summarize the recent progress of CMOFs regarding design strategies, synthetic approaches, and cutting-edge applications. In particular, we will highlight the successful implementation of CMOFs in asymmetric catalysis, enantioselective separation, enantioselective recognition, and sensing. We envision that this review will provide readers a good understanding of CMOF chemistry and, more importantly, facilitate research endeavors for the rational design of multifunctional CMOFs and their industrial implementation.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhijie Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
12
|
Bureš MS, Maslov Bandić L, Vlahoviček-Kahlina K. Determination of Bioactive Components in Mandarin Fruits: A Review. Crit Rev Anal Chem 2022; 53:1489-1514. [PMID: 35157545 DOI: 10.1080/10408347.2022.2035209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
During the last decade, there has been a continuous rise in the consumption of fresh easy-to-peel mandarins. However, the majority of the knowledge comes from other citrus fruit, like orange, while there are relatively few studies about mandarins and no comprehensive research on literature data about them. One of the most important steps in the analytical process is sample preparation. Its value is evident in analyzing the samples with complex matrices, such as in mandarin fruit. In addition, mandarin contains hundreds to thousands of various compounds and metabolites, some of them present in extremely low concentrations, that interfere with the detection of one another. Hence, mandarin samples are commonly pretreated by extraction to facilitate analysis of bioactive compounds, improve accuracy and quantification levels. There is an abundance of extraction techniques available, depending on the group of compounds of interest. Finally, modern analytical techniques, have been applied to cope with numerous bioactive compounds in mandarins. Considering all the above, this review aims to (i) list the most valuable procedures of sample preparation, (ii) highlight the most important techniques for extraction of bioactive compounds from mandarin fruit, and (iii) summarize current trends in the identification and determination of bioactive compounds in mandarin.
Collapse
Affiliation(s)
| | - Luna Maslov Bandić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
13
|
Xu H, Dai Y, Qiu S, Sun B, Zeng X. Distribution and Quantification of 1,2-Propylene Glycol Enantiomers in Baijiu. Foods 2021; 10:foods10123039. [PMID: 34945589 PMCID: PMC8700810 DOI: 10.3390/foods10123039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Enantiomers of 1,2-Propylene glycol (1,2-PG) were investigated in 64 commercial Chinese Baijiu including soy sauce aroma-type Baijiu (SSB), strong aroma-type Baijiu (STB), and light aroma-type Baijiu (LTB), via chiral gas chromatography (β-cyclodextrin). The natural enantiomeric distribution and concentration of 1,2-PG in various baijiu were studied to evaluate whether the distribution and content of the two isomers of 1,2-PG were correlated with the aroma type and storage year. The results showed that 1,2-PG has a high enantiomeric ratio and the (S)-configuration predominated in SSB. The average S/R enantiomeric ratio of this compound in SSB was approximately 87:13 (±3.17), with an average concentration of 52.77 (±23.70) mg/L for the (S)-configuration and 8.72 (±3.63) mg/L for the (R)-enantiomer. The (R)-configuration was predominant in the STB, whereas neither (S) nor (R)-form of 1,2-PG were detected in LTB. The content of the two configurations of 1,2-PG in the JSHSJ vintage of SSB showed a wave variation, with an average S/R enantiomeric ratio of 89:11 (±1.15). The concentration of (R)-1,2-PG in XJCTJ vintage liquors showed an upward and then downward trend with aging time, with an overall downward trend, and the concentration of (S)-form showed a wavy change with an overall upward trend. Except for the LZLJ-2019 vintage where both (R) and (S)-1,2-PG were present, all other samples only existed (R)-form, and a decreasing trend of (R)-enantiomer with aging time was observed. The enantiomeric ratio of 1,2-PG might be one of the potential markers for adulteration control of Baijiu as industrial 1,2-PG usually presented in the racemic mixture. Sensory analysis revealed olfactory thresholds of 4.66 mg/L and 23.92 mg/L for the (R)- and (S)-configurations in pure water respectively. GC-O showed both enantiomers exhibited different aromatic nuances.
Collapse
Affiliation(s)
- Hao Xu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (H.X.); (S.Q.); (X.Z.)
| | - Yifeng Dai
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (H.X.); (S.Q.); (X.Z.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China;
- Correspondence:
| | - Shuyi Qiu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (H.X.); (S.Q.); (X.Z.)
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Xiangyong Zeng
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (H.X.); (S.Q.); (X.Z.)
| |
Collapse
|
14
|
Maistrenko VN, Zil’berg RA. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
|
16
|
|
17
|
Marriott PJ, Nolvachai Y. A better way to separate the wheat from the chaff. Progression from single-dimension gas chromatography to multidimensional gas chromatography. SEP SCI TECHNOL 2020. [DOI: 10.1016/b978-0-12-813745-1.00002-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Carrão DB, Perovani IS, de Albuquerque NCP, de Oliveira ARM. Enantioseparation of pesticides: A critical review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115719] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Amaral MSS, Nolvachai Y, Marriott PJ. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal Chem 2019; 92:85-104. [DOI: 10.1021/acs.analchem.9b05412] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michelle S. S. Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Yada Nolvachai
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
|
21
|
Amaral MSS, Marriott PJ. The Blossoming of Technology for the Analysis of Complex Aroma Bouquets-A Review on Flavour and Odorant Multidimensional and Comprehensive Gas Chromatography Applications. Molecules 2019; 24:E2080. [PMID: 31159223 PMCID: PMC6600270 DOI: 10.3390/molecules24112080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 01/09/2023] Open
Abstract
Multidimensional approaches in gas chromatography have been established as potent tools to (almost) attain fully resolved analyses. Flavours and odours are important application fields for these techniques since they include complex matrices, and are of interest for both scientific study and to consumers. This article is a review of the main research studies in the above theme, discussing the achievements and challenges that demonstrate a maturing of analytical separation technology.
Collapse
Affiliation(s)
- Michelle S S Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Philip J Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
22
|
Tiritan ME, Fernandes C, Maia AS, Pinto M, Cass QB. Enantiomeric ratios: Why so many notations? J Chromatogr A 2018; 1569:1-7. [PMID: 30025608 DOI: 10.1016/j.chroma.2018.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
The correct quantification of enantiomers is pivotal in a variety of fields, such as pharmacokinetic studies, enantioselective syntheses, chemical characterization of natural products, authentication of fragrance and food, biodegradation behavior, accurate evaluation of environmental risk, and it can also provide information for sentencing guidance in forensic field. Enantioselective chromatography is the first choice to assess the composition of an enantiomeric mixture. Different notations have been used to express the measured enantiomeric ratios, which compromise the results and represent a challenge for data comparison. This manuscript critically discusses the currently used notations and exemplifies with applications in different fields indicating the advantages and disadvantages of one of the adopted systems. In order to simplify the notations, the use of enantiomeric ratio (e.r.%) as standardization for nonchiroptical methods is proposed.
Collapse
Affiliation(s)
- Maria E Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116, Gandra PRD, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos, Portugal
| | - Alexandra S Maia
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116, Gandra PRD, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208, Matosinhos, Portugal
| | - Quezia B Cass
- SEPARARE, Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, 13565-905, SP, Brazil.
| |
Collapse
|