1
|
Zhang Y, Xing B, Feng Q, Zhu Z, Ni X, Wang D, Li D. Fractionation on debranched waxy maize starch by gradient ethanol combined with annealing to improve in vitro digestion resistance and hydrothermal stability of type 3 resistant starch. Food Chem 2025; 480:143950. [PMID: 40120303 DOI: 10.1016/j.foodchem.2025.143950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Retrograded resistant starch (RS3), as a prebiotic, has attracted great attention owing to a good stability and an edible feature. This study aims to demonstrate how molecular weights, structural properties, in vitro digestibility and hydrothermal behaviors of RS3 are influenced by gradient ethanol fractionation assisted with annealing. Waxy maize dextrin (WMD) was sequentially precipitated by different volume ratios of dextrin solution to absolute ethanol in an order of 0.5:1, 1:1, and 1.5:1. RS3 prepared from WMD through tertiary precipitation (RWMD 1.5) exhibited higher resistance to digestibility and hydrothermal stability. This was attributed to the high production of slowly digestible starch (SDS, 63.1 %) and resistant starch (RS, 32.1 %), together with the highest peak temperature (101.3 °C) and gelatinization enthalpy (16.2 J/g). Moreover, RWMD 1.5 was largely formed by uniform and short WMD (weight-average molecular weight, 2.990 kDa), which thus caused the formation of homogeneous A-type crystals with ordered structures.
Collapse
Affiliation(s)
- Yao Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Postdoctoral Programme of Juxiangyuan Healthy Food (Zhongshan) Co., Ltd., 528437 Zhongshan, China
| | - Baofang Xing
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qian Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Zhiting Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Xinjing Ni
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Dandan Li
- Wuhu Green Food Industry Research Institute Co., Ltd., 238300 Wuhu, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
2
|
Li B, Mo L, Narsimhan V, Narsimhan G, Frostad JM. A refined mechanistic model for swelling kinetics of starch granules. SOFT MATTER 2025. [PMID: 40008588 DOI: 10.1039/d4sm00980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
This paper investigates the gelatinization of individual starch granules using numerical simulations, validated against experimental microscopy data from a ParCS apparatus. We show that the dynamics of starch-granule swelling can be captured by a diffusion equation for mass transfer of water into the granule, with the equilibrium water content captured by a Flory-Rehner theory of a cross-linked network in which the fraction of cross-linked chains is made to vary as an empirical function of temperature. Having the cross-link density vary with temperature is vital to capture the swelling behavior at large and small swelling extents (i.e., close to and far away from the gelatinization temperature). The theory produces excellent agreement with both equilibrium swelling data and dynamic swelling data for red bean starch. Further, we show that the model is able to reproduce a previous experimental finding that swelling data from different granules from red bean, chickpea, green lentil, and yellow pea starches can be collapsed onto a universal curve with only two empirical parameters. The simulations are then used to predict the relationship between the empirical parameters in the master curve and the true material properties. The modified theory presented here is a major step forward in the fundamental understanding of starch gelatinization and the ability to use predictive models for optimization of industrial manufacturing processes.
Collapse
Affiliation(s)
- Botong Li
- School of Mathematics and Physics, University of Science and Technology Beijing, China
| | - Lanxin Mo
- Food Science, University of British Columbia, Canada.
| | - Vivek Narsimhan
- Davidson School of Chemical Engineering, Purdue University, USA.
| | - Ganesan Narsimhan
- Department of Agricultural and Biological Engineering, Purdue University, USA
| | - John M Frostad
- Food Science, University of British Columbia, Canada.
- Department of Chemical and Biological Engineering, University of British Columbia, Canada
| |
Collapse
|
3
|
He HJ, Li G, Obadi M, Ou X. An overview on the dry heat treatment (DHT) for starch modification: Current progress and prospective applications. Curr Res Food Sci 2025; 10:101007. [PMID: 40094064 PMCID: PMC11908613 DOI: 10.1016/j.crfs.2025.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Starch plays a pivotal role in numerous applications, making the enhancement of its functionality through physical processes increasingly important. Dry heat treatment (DHT) is a straightforward and eco-friendly technique that significantly improves starch characteristics and boosts food quality. This method has emerged as a focal point in starch modification research in recent years. This paper reviews current studies on the DHT of starches from various botanical sources, presenting key concepts and methodologies while delving into the impacts and mechanisms of DHT on the structural and physicochemical properties of starches. Furthermore, it elaborates on how additional components, such as ionic gums, amino acids, and sugars, can enhance the functionality of starches modified by DHT. Additionally, this review discusses the practical applications of dry heat-modified starches in the food industry, aiming to offer valuable insights for ongoing research and potential applications in enhancing food quality and functionality through innovative starch modifications.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Guanglei Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Mohammed Obadi
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xingqi Ou
- School of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| |
Collapse
|
4
|
Mal T, Pandey A. Isolation and effect of physical modification on the release characteristics Euryale ferox Salisb polysaccharide. Int J Biol Macromol 2025; 305:141243. [PMID: 39984069 DOI: 10.1016/j.ijbiomac.2025.141243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
This study investigates the potential of native and physically modified Euryale ferox Salisb. (makhana) starch as excipients for colon-targeted drug delivery systems. Physical modifications, including pregelatinization, retrogradation, ultrasonication, autoclave heating, and osmotic pressure treatment, were applied to enhance delayed-release characteristics. Functional analysis revealed improvements in swelling, solubility, and water-holding capacity, attributed to increased amylose content and structural reorganization. FTIR analysis showed significant molecular changes, with prominent peaks at ∼3320 cm-1 (OH stretching) and ∼ 1742 cm-1 (CO stretching) in retrograded starch (RMS), reflecting enhanced hydrogen bonding and crystallinity. XRD analysis further confirmed these changes, with characteristic peaks of native starch at ∼13°, ∼17°, and ∼ 22° reduced or shifted, indicating the formation of A-type and B-type crystalline structures in modified starches. The in vitro dissolution studies conducted in simulated gastric (pH 1.2) and intestinal (pH 6.8) media demonstrated the gastroprotective properties of native and modified starch-based tablets, with <25 % drug release at pH 1.2. At pH 6.8, retrograded starch (RMS) and pregelatinized starch (PS-60) exhibited sustained-release profiles, achieving approximately 18 % and 22 % drug release at 2 h and 55 % and 60 % at 6 h, respectively, compared to the rapid release of native starch (95 % at 6 h). Drug release kinetics analysis revealed that the Korsmeyer-Peppas model best described the release profiles of RMS and PS-60 compared to other formulations, indicating a combination of diffusion and erosion mechanisms. These findings establish modified makhana starch as a sustainable, plant-based alternative to conventional excipients, offering enhanced functionality and delayed-release properties for colon-specific drug delivery in treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Tuhin Mal
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Jharkhand 835215, India.
| | - Anima Pandey
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Jharkhand 835215, India.
| |
Collapse
|
5
|
Zhang S, Wang Z, Zhou X, Song Y, Wang L, Tian H, Zhang D, Lü X, Liu F, Huang J, Zhang X. Insights into the regulation mechanisms of dual hydrothermal treatment on the structure and digestive characteristics of A- and B-type wheat starch granules. Food Res Int 2025; 200:115448. [PMID: 39779101 DOI: 10.1016/j.foodres.2024.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Hydrothermal treatment is a physical modification technology to alter starch structures for the production of resistant starch (RS). However, the underlying regulation mechanism of the multiscale structure and digestive properties of starch by dual hydrothermal synergistic treatment remains unclear. To solve this problem, A- and B-type wheat starch granules (AWS and BWS) were separated and subjected to toughening and heat-moisture synergistic treatment (THT) with various moisture content (10 %, 15 %, 20 %, 25 %). Scanning electron microscopy (SEM) and particle size distribution results showed that THT disrupted starch granules and the particles aggregated with each other to increase the particle size. Fourier transform infrared spectroscopy results confirmed that the hydrogen bond between starch molecules was destroyed after THT. Thermogravimetric analysis (TG) results demonstrated that the thermodynamic stability of AWS and BWS was improved after THT. Moreover, THT with 10 % or 15 % moisture content increased the crystallinity of AWS and BWS. The AWS and BWS had the highest RS content with THT at 15 % moisture content (the RS of AWS increased from 17.56 % to 25.04 % and that of BWS increased from 13.03 % to 27.08 %). These results showed that the THT with 10 % or 15 % moisture content improved the regularity of starch molecule accumulation, and promoted the crystalline structure recombination with superior crystallinity, thermodynamic stability, and high enzymatic resistance. Additionally, SEM, TG, particle size distribution, and in vitro digestion results showed that BWS was more sensitive to THT than AWS. This study provides a potential strategy to design functional wheat starchy foods with low digestibility.
Collapse
Affiliation(s)
- Sijie Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Xinpeng Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Luyang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Hailong Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Dale Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Feng Liu
- Baolingbao Biology Co., LTD., Dezhou 251200, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China; Collaborative Innovation Center of Functional Food Green Manufacturing Henan Province, School of Food and Pharmacy, Xuchang University, Xuchang 461000, China.
| | - Xinrui Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
6
|
Li HT, Zhang W, Bao Y, Dhital S. Enhancing enzymatic resistance of starch through strategic application of food physical processing technologies. Crit Rev Food Sci Nutr 2024; 64:11826-11849. [PMID: 37589389 DOI: 10.1080/10408398.2023.2245031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The demand for clean-label starch, perceived as environmentally friendly in terms of production and less hazardous to health, has driven the advancement of food physical processing technologies aimed at modifying starch. One of the key objectives of these modifications has been to reduce the glycaemic potency and increase resistant starch content of starch, as these properties have the potential to positively impact metabolic health. This review provides a comprehensive overview of recent updates in typical physical processing techniques, including annealing, heat-moisture, microwave and ultrasonication, and a brief discussion of several promising recent-developed methods. The focus is on evaluating the molecular, supramolecular and microstructural changes resulting from these modifications and identifying targeted structures that can foster enzyme-digestion resistance in native starch and its forms relevant to food applications. After a comprehensive search and assessment, the current physical modifications have not consistently improved starch enzymatic resistance. The opportunities for enhancing the effectiveness of modifications lie in (1) identifying modification conditions that avoid the intensive disruption of the granular and supramolecular structure of starch and (2) exploring novel strategies that incorporate multi-type modifications.
Collapse
Affiliation(s)
- Hai-Teng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wenyu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Cabrera SF, Ronco LI, Passeggi MCG, Gugliotta LM, Minari RJ. The Role of Starch Incorporation into Waterborne Acrylic-Hybrid Nanoparticles for Film-Forming Applications. Biomacromolecules 2024; 25:6591-6601. [PMID: 39312198 DOI: 10.1021/acs.biomac.4c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The use of biopolymers as an alternative to petroleum-based polymers offers a sustainable solution with benefits such as biodegradability and unique functionalities. In this study, starch/zein bioparticles (BPs) obtained by nanoprecipitation were employed to synthesize acrylic polymer/biopolymer waterborne nanoparticles with excellent film formation capability. These hybrid nanoparticle dispersions were obtained through a semibatch emulsion polymerization using the previously synthesized BPs as seed and variable monomeric formulations composed of butyl acrylate and methyl methacrylate. A synergetic effect between acrylic and biopolymer phases was evidenced where the incorporation of BPs had a fundamental role in improving sensitive properties, such as film blocking resistance, while attaining smooth films at room temperature. These excellent film-forming properties of starch/acrylic hybrid latexes without requiring the addition of formulation agents, which depict an important benefit from an environmental viewpoint, demonstrate that they represent a promising alternative for the development of a new generation of eco-friendly binders.
Collapse
Affiliation(s)
- Sofía F Cabrera
- Polymer Reaction Engineering Group, INTEC, Santa Fe 3000, Argentina
| | - Ludmila I Ronco
- Polymer Reaction Engineering Group, INTEC, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Mario C G Passeggi
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
- Physics of Surfaces and Interfaces Laboratory, IFIS - Litoral, Santa Fe 3000, Argentina
| | - Luis M Gugliotta
- Polymer Reaction Engineering Group, INTEC, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Roque J Minari
- Polymer Reaction Engineering Group, INTEC, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| |
Collapse
|
8
|
Kajubi A, Baingana R, Matovu M, Katwaza R, Kubiriba J, Namanya P. Variation and Abundance of Resistant Starch in Selected Banana Cultivars in Uganda. Foods 2024; 13:2998. [PMID: 39335926 PMCID: PMC11431251 DOI: 10.3390/foods13182998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
The physiochemical, structural, and molecular characteristics of starch influence its functional properties, thereby dictating its utilization. The study aimed to profile the properties and quantity of resistant starch (RS) from 15 different banana varieties, extracted using a combination of alkaline and enzyme treatments. Granular structure and molecular organization were analyzed using light microscopy, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The physiochemical and functional properties were also investigated. RS content ranged from 49% to 80% without significant relationship to amylose (AM) (r = -0.1062). SEM revealed significant microarchitectural differences on the granules potentially affecting granule digestibility. FTIR and chemometrics identified differences in the crystalline peaks, yielding varying degrees of the molecular order of the RS polymers that aid in differentiating the RS sources. Despite similar solubility and swelling profiles, the pasting profiles varied across varieties, indicating high paste stability in hydrothermal processing. Clarity ranged from 43% to 93%, attributed to amylose leaching. This study highlights that RS from bananas varies in quantity, structure, and functionality, necessitating individualized approaches for processing and utilization.
Collapse
Affiliation(s)
- Ali Kajubi
- National Agricultural Research Laboratories (NARL), Kampala P.O. Box 7065, Uganda; (M.M.); (R.K.); (J.K.); (P.N.)
- College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Rhona Baingana
- College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Moses Matovu
- National Agricultural Research Laboratories (NARL), Kampala P.O. Box 7065, Uganda; (M.M.); (R.K.); (J.K.); (P.N.)
| | - Ronald Katwaza
- National Agricultural Research Laboratories (NARL), Kampala P.O. Box 7065, Uganda; (M.M.); (R.K.); (J.K.); (P.N.)
| | - Jerome Kubiriba
- National Agricultural Research Laboratories (NARL), Kampala P.O. Box 7065, Uganda; (M.M.); (R.K.); (J.K.); (P.N.)
| | - Priver Namanya
- National Agricultural Research Laboratories (NARL), Kampala P.O. Box 7065, Uganda; (M.M.); (R.K.); (J.K.); (P.N.)
| |
Collapse
|
9
|
Gu Z, Cheng G, Sha X, Wu H, Wang X, Zhao R, Huang Q, Feng Y, Tang J, Jiang H. Heat-moisture treatment of freshly harvested high-amylose maize kernels improves its starch thermal stability and enzymatic resistance. Carbohydr Polym 2024; 340:122303. [PMID: 38858024 DOI: 10.1016/j.carbpol.2024.122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The objective of this work was to study the effects of heat-moisture treatment (HMT) of freshly harvested mature high-amylose maize (HAM) kernels on its starch structure, properties, and digestibility. Freshly harvested HAM kernels were sealed in Pyrex glass bottles and treated at 80 °C, 100 °C, or 120 °C. HMT of HAM kernels had no impact on its starch X-ray diffraction pattern but increased the relative crystallinity. This result together with the increased starch gelatinization temperatures and enthalpy change indicated starch molecules reorganization forming long-chain double-helical crystalline structure during HMT of HAM kernels. The aggregation of starch granules were observed after HMT, indicating interaction of starch granules and other components. This interaction and the high-temperature crystalline structure led to reductions in the starch digestibility, swelling power, solubility, and pasting viscosity of the HAM flours. Some starch granules remained intact and showed strong birefringence after the HAM flours were precooked at 100 °C for 20 min and followed by enzymatic hydrolysis, and the amount of undigested starch granules increased with increasing HMT temperatures. This result further supported that HMT of HAM kernels with high moisture level could increase the starch thermal stability and enzymatic resistance.
Collapse
Affiliation(s)
- Zhonghua Gu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Gaomin Cheng
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xianying Sha
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Haochen Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yinong Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jihua Tang
- National Key Laboratory of Crop Science in Wheat and Maize, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450056, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Hongxin Jiang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
10
|
Li H, Li H, Liu Y, Liu R, Siriamornpun S. Optimization of Heat-Moisture Treatment Conditions for High-Amylose Starch and Its Application in High-Resistant Starch Triticale Noodles. Foods 2024; 13:2724. [PMID: 39272490 PMCID: PMC11395564 DOI: 10.3390/foods13172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Heat-moisture treatment (HMT) is a widely used method for modifying starch properties with the potential to reduce the digestibility of high-amylose starch (HAS). This study aimed to optimize the HMT conditions for HAS and apply the resulting HMT-HAS to triticale noodles to develop low-glycemic-index products. HMT significantly increased the resistant starch (RS) content and decreased the rapidly digestible starch (RDS) content of HAS. The treatment conditions-temperature, heating time, and moisture content-were found to significantly influence the starch composition. Optimal HMT conditions were determined using response surface methodology: a temperature of 108 °C, a heating time of 5.8 h, and a moisture content of 25.50%. Under these conditions, the RS content of HMT-HAS was 60.23%, nearly double that of the untreated sample. Increasing the level of HMT-HAS in triticale noodles led to significant decreases in short-range order, relative crystallinity, and viscosities, while the RS content increased from 12.08% to 34.41%. These findings suggest that incorporating HMT-HAS into triticale noodles effectively enhances starch digestive resistance, supporting the development of functional, low-glycemic-index triticale-based foods.
Collapse
Affiliation(s)
- Hua Li
- Department of Cuisine and Nutrition, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Hua Li
- Department of Cuisine and Nutrition, Yangzhou University, Yangzhou 225127, China
| | - Yu Liu
- Department of Cuisine and Nutrition, Yangzhou University, Yangzhou 225127, China
| | - Ruixin Liu
- Department of Cuisine and Nutrition, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Sirithon Siriamornpun
- Research Unit of Thai Food Innovation (TFI), Mahasarakham University, Kantarawichai 44150, Thailand
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Kantarawichai 44150, Thailand
| |
Collapse
|
11
|
Ji H, Zhong Y, Zhang Z, Chen Y, Zhang Y, Bian S, Yin J, Hu J, Nie S. In vitro digestion and fermentation characteristics of eight kinds of pulses and suggestions for different populations. Food Funct 2024; 15:7314-7332. [PMID: 38898712 DOI: 10.1039/d4fo00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Pulse-based diets are attracting attention for their potential in combating diet-related non-communicable diseases. However, limited research studies have focused on the digestive and fermentative properties of pulses, which are crucial for exerting benefits. Here, we investigated the in vitro digestibility of starch/protein, along with the fermentation characteristics, of eight pulses and their pastes, including white kidney beans, adzuki beans, cowpeas, broad beans, mung beans, chickpeas, white lentils, and yellow peas. The findings indicated that pulse flours and pastes were low GL food (estimated GL < 10) and had a low degree of protein hydrolysis during simulated gastrointestinal digestion. During in vitro fermentation, pulses flours and pastes decreased the fermentation pH, increased the level of short-chain fatty acids (mainly consisting of valeric acid, followed by acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid), and positively modulated the microbiota composition over time, specifically reducing the ratio of Firmicutes to Bacteroidetes. In addition, we found that boiling could affect the in vitro digestion and fermentation characteristics of pulses, possibly depending on their intrinsic nutrient characteristics. This research could provide a comprehensive summary of the nutrient content, digestibility, and fermentation of eight pulses and their pastes. Guided by factor analysis, for different individuals' consumption, pulses, cowpeas, broad beans, white lentils, and white kidney beans were preferred for diabetic individuals, yellow peas and white lentils were preferred for intestinal homeostasis disorders, and white lentils, broad beans, white kidney beans, and cowpeas were suitable for obese individuals, in which white lentils were considered healthier and suggested for healthy adults.
Collapse
Affiliation(s)
- Haihua Ji
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ziyi Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yu Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yanli Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shuigen Bian
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
12
|
Ghoshal U, Paul R, Ali SI, Sarkar P, Sen K. Starch spectra of Ampelopteris prolifera (Retz.) Copel, a new addition to the existing lexicon and its comparison with a local potato cultivar (Solanum tuberosum L. cv. Kufri Jyoti). Int J Biol Macromol 2024; 266:131163. [PMID: 38547950 DOI: 10.1016/j.ijbiomac.2024.131163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Novel kinds of starch spectra were generated from a lesser-known plant, making this investigation unique. The recent trend of starch characterization shows the establishment of novel bioresources from nonconventional unexplored databases. The present endeavor was made to obtain the starch fingerprint of Ampelopteris prolifera (rhizome) belonging to seedless vascular plants. For comparison, a commercial local cultivar of potato (Kufri Jyoti) was taken. The starch particle of A. prolifera shows much uniqueness depicting its novelty viz., crystallinity index of 60.04 %, powder diffractogram at (2θ scale)17.57° to 39.78°; this diffractogram pattern is reported from this study as newer one i.e. R type(whereas potato starch is CB type); characteristic peak at 2θ = 20.07° suggests starch-lipid complex formation and V type crystallinity (i.e. RS 5 type); FTIR spectra showing the presence of more short chain branching; high gelatinization temperature(84.62 ± 0.10), particle size and zeta value of A. prolifera is 4.00 ± 0.81 μm and - 18.91 ± 3.58 mV respectively. Bragg's peak from the single crystal X-ray diffraction has been generated for the first time of A. prolifera. Extraction of the starch particle was performed in chilled water. Therefore, the present study suggests wide-spectrum commercial utility and cost-effective production.
Collapse
Affiliation(s)
- Utsha Ghoshal
- Deapartment of Botany, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India
| | - Raja Paul
- Deapartment of Botany, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Priyanka Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Kakali Sen
- Deapartment of Botany, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India.
| |
Collapse
|
13
|
Alexander R, Khaja A, Debiec N, Fazioli A, Torrance M, Razzaque MS. Health-promoting benefits of lentils: Anti-inflammatory and anti-microbial effects. Curr Res Physiol 2024; 7:100124. [PMID: 38501131 PMCID: PMC10945126 DOI: 10.1016/j.crphys.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
This paper describes how lentils (Lens culinaris species) can positively affect health by reducing inflammation, providing antioxidants, and displaying antimicrobial properties. Lentils are rich in proteins, essential amino acids, minerals, and fibers, making them a valuable source of nutrition, particularly in low and middle-income countries. Lentils have many health benefits, including positive effects on diabetes management, support for cardiovascular health, and antioxidative properties. The antioxidative properties of lentils, attributed to their phenolic content, and their ability to inhibit inflammation-related enzymes are also discussed. We discuss the potential of lentils as a dietary tool in promoting immunity, reducing disease burdens, and preventing nutritional deficiencies. Overall, lentils are a highly nutritious food with various health benefits, including anti-inflammatory and antimicrobial effects. The fiber and protein content in lentils make them beneficial for weight management, blood sugar regulation, and supporting overall gut health. Furthermore, the slow rate at which lentils affect blood sugar levels, due to their low glycemic index, can be advantageous for individuals with diabetes.
Collapse
Affiliation(s)
- Rachel Alexander
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Abdullah Khaja
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Nicholas Debiec
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Alex Fazioli
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Mary Torrance
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), 1204 W Schunior Street, Edinburg, TX 78541, USA
| |
Collapse
|
14
|
Cahyana Y, Annisa NDN, Khoerunnisa TK, Sulastri S, Marta H, Rialita T, Yuliana T, Aït-Kaddour A, Şumnu G. Banana starch modified by heat moisture treatment and annealing: Study on digestion kinetics and enzyme affinity. Int J Biol Macromol 2024; 258:128771. [PMID: 38101675 DOI: 10.1016/j.ijbiomac.2023.128771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Starch modification by annealing (ANN) and heat-moisture treatment (HMT) results in a lower crystallinity compared to native but the change of B crystalline type to A type is only observed in HMT starch. All starches possess two different digestion rate constants i.e. k1 (at rapid phase) and k2 (at slow phase) which may be linked to the preserved intact starch granule following thermal treatment. HMT starch contains higher content of slowly digestible starch (C2∞) compared to the C2∞ of the other starches. The lower enzyme binding to HMT starch (Kd value increases from 0.12 mg/mL in native starch to 0.83 mg/mL) may be linked to the increase in the degree of ordered structure of the granule surface (observed from the absorption band ratio of 1000 cm-1/1022 cm-1). The lower affinity may lead to a lower k1 value. This holds true for ANN and native starch which displays similar k1, Kd value and degree of ordered to disordered structure. Lower k2 in HMT starch compared to the corresponding k2 in the other starches may be linked to the slower enzyme diffusion into the core of starch granule due to the tightly packed structure of A crystalline type in HMT starch.
Collapse
Affiliation(s)
- Yana Cahyana
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia.
| | - Nadia Dewi Nur Annisa
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Tiara Kurnia Khoerunnisa
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Sri Sulastri
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Herlina Marta
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Tita Rialita
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Tri Yuliana
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Abderrahmane Aït-Kaddour
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia; VetAgro Sup, INRAE (National Institute for Agriculture, Food, and Environment), Université Clermont-Auvergne, 63370 Lempdes, France
| | - Gülüm Şumnu
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
15
|
Gayary MA, Marboh V, Mahnot NK, Chutia H, Mahanta CL. Characteristics of rice starches modified by single and dual heat moisture and osmotic pressure treatments. Int J Biol Macromol 2024; 255:127932. [PMID: 37949279 DOI: 10.1016/j.ijbiomac.2023.127932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
The effect of osmotic pressure treatment (OPT), heat moisture treatment (HMT), and their dual combination as HMT-OPT and OPT-HMT on functional and pasting properties, gel texture, crystallinity, thermal, morphological, and rheological properties, and in vitro digestibility of modified starches were investigated. HMT was done with 29 % moisture at 111 °C for 45 min while OPT was performed at 117 °C for 35 min with saturated sodium sulphate solution. All modifications increased amylose content, improved pasting stability, and reduced swelling power and solubility. Dual modifications caused higher morphological changes than single modified starches. HMT and OPT increased pasting temperature, setback and final viscosity while decreased peak viscosity and breakdown, whereas HMT-OPT and OPT-HMT reduced all pasting parameters except pasting temperature. 1047/1022 and 995/1022 ratios and relative crystallinity decreased. V-type polymorphs were formed, and gelatinization temperature range increased with lower gelatinization enthalpy. Starch gel elasticity, RS and SDS content were enhanced to a greater extent after HMT-OPT and OPT-HMT. HMT as a single and dual form with OPT showed prominent effect on pasting, thermal, crystalline, and rheological properties. Application of HMT, OPT and dual modified starches with improved functionalities may be targeted for suitable food applications such as noodles.
Collapse
Affiliation(s)
- Mainao Alina Gayary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India; Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Vegonia Marboh
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Nikhil Kumar Mahnot
- Department of Food Technology, Rajiv Gandhi University, Doimukh 791112, Arunachal Pradesh, India
| | - Hemanta Chutia
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
16
|
Hong JS, Huber KC, Goderis B, Delcour JA. Hydrothermal treatments of starch impact reaction patterns during subsequent chemical derivatization. Int J Biol Macromol 2023; 253:127426. [PMID: 37838115 DOI: 10.1016/j.ijbiomac.2023.127426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Differences in derivatization patterns (using a fluorescent reagent, fluorescein isothiocyanate) of wheat, pea, and potato starches between native granular (NAT) starches and their respective annealed (ANN) and heat-moisture treated (HMT) starches were investigated to reveal structural changes associated with starch hydrothermal treatments. Size-exclusion chromatography with fluorescence and refractive index detection assessed the reactivity of amylose (AM), intermediate chains (IM1 and IM2), and amylopectin branch chains (AP1, AP2, and AP3) within the different starches. Shifts in X-ray diffraction patterns of HMT starches and in the gelatinization properties of both ANN and HMT starches confirmed molecular rearrangement. The reaction homogeneity (wheat and pea) and the overall extent of reaction (pea and potato) increased for HMT starches compared to other starches. The lower reactivities of IM2 chains (HMT starch) and AP3 chains (ANN starch) relative to NAT starches, indicated their involvement in molecular rearrangements and improved double helical order. IM2 and AP branch chains in ANN pea starch also were less reacted than NAT starch chains, suggesting their co-crystallization. Molecular rearrangements in ANN and HMT starches led to altered swelling and pasting viscosities. Thus, changes in the relative crystallinity of individual starch branch chains induced by hydrothermal processing impact the final physical properties.
Collapse
Affiliation(s)
- Jung Sun Hong
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Kerry C Huber
- Animal and Food Science, Brigham Young University-Idaho, Rexburg, ID 83460-1405, USA.
| | - Bart Goderis
- Polymer Chemistry and Materials, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
17
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
18
|
Salimi M, Channab BE, El Idrissi A, Zahouily M, Motamedi E. A comprehensive review on starch: Structure, modification, and applications in slow/controlled-release fertilizers in agriculture. Carbohydr Polym 2023; 322:121326. [PMID: 37839830 DOI: 10.1016/j.carbpol.2023.121326] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
This comprehensive review thoroughly examines starch's structure, modifications, and applications in slow/controlled-release fertilizers (SRFs) for agricultural purposes. The review begins by exploring starch's unique structure and properties, providing insights into its molecular arrangement and physicochemical characteristics. Various methods of modifying starch, including physical, chemical, and enzymatic techniques, are discussed, highlighting their ability to impart desirable properties such as controlled release and improved stability. The review then focuses on the applications of starch in the development of SRFs. It emphasizes the role of starch-based hydrogels as effective nutrient carriers, enabling their sustained release to plants over extended periods. Additionally, incorporating starch-based hydrogel nano-composites are explored, highlighting their potential in optimizing nutrient release profiles and promoting plant growth. Furthermore, the review highlights the benefits of starch-based fertilizers in enhancing plant growth and crop yield while minimizing nutrient losses. It presents case studies and field trials demonstrating starch-based formulations' efficacy in promoting sustainable agricultural practices. Overall, this review consolidates current knowledge on starch, its modifications, and its applications in SRFs, providing valuable insights into the potential of starch-based formulations to improve nutrient management, boost crop productivity, and support sustainable agriculture.
Collapse
Affiliation(s)
- Mehri Salimi
- Soil Science Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
19
|
Bello-Perez LA, Flores-Silva PC. Interaction between starch and dietary compounds: New findings and perspectives to produce functional foods. Food Res Int 2023; 172:113182. [PMID: 37689934 DOI: 10.1016/j.foodres.2023.113182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 09/11/2023]
Abstract
Due to the increased prevalence of overweight, obesity, diabetes, colon cancer, cardiovascular diseases, and metabolic syndrome, dietary approaches to reduce starch digestion and regulate glucose homeostasis have gained attention. Starch is a polysaccharide in most daily food consumed as bakery products, snacks, breakfast cereals, and pasta, which are often vilified. However, it is also present in beans, lentils, and oatmeal, which are considered healthy food products. The difference relays on the food matrix and the thermal process that can produce interactions between starch and dietary compounds (protein, lipid, non-starch polysaccharide, and bioactive compounds) or among starch chains (retrogradation). Such interactions produce structural changes so the digestive enzymes cannot hydrolyze them; additionally, the physical barrier of some macromolecules (proteins, hydrocolloids) restricts starch gelatinization and accessibility of the digestive enzymes to hydrolyze the starch. The interactions mentioned above and the use of some macromolecules as physical barriers could be explored as a pathway to develop functional foods. This review analyzes the interactions between starch and dietary compounds influenced by the processing of some food matrices to better understand their potential for developing functional foods.
Collapse
Affiliation(s)
- Luis A Bello-Perez
- Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos, Yautepec, Morelos, Mexico.
| | | |
Collapse
|
20
|
Liu G, Zhang R, Huo S, Li J, Wang M, Wang W, Yuan Z, Hu A, Zheng J. Insights into the changes of structure and digestibility of microwave and heat moisture treated quinoa starch. Int J Biol Macromol 2023; 246:125681. [PMID: 37406899 DOI: 10.1016/j.ijbiomac.2023.125681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In this study, quinoa starch was subjected to microwave and heat moisture treatment (MHT) with various moisture content (15 %, 25 %, 35 %) and microwave power (4.8, 9.6, 14.4 W/g), and its structure and digestibility were investigated. SEM and particle size analysis indicated that MHT caused the agglomeration of starch granules and increased the particle size. Moreover, MHT increased the short-range order structure and relative crystallinity, except for MHT with moisture content (35 %). DSC results demonstrated that the gelatinization temperature and gelatinization enthalpy had a slight improvement after MHT. Moreover, MHT increased the amylose content to some extent. It was worth noting that the digestibility of quinoa starch significantly decreased. After MHT, a part of rapidly digestible starch (RDS) was converted into slowly digestible starch (SDS) or resistant starch (RS). Particularly, when moisture content was 25 %, the starch had a highest SDS + RS content. Thus, this study provided a potential approach using MHT to modulate the digestibility of starch.
Collapse
Affiliation(s)
- Guangxin Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Rong Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Shuan Huo
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Jing Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Mengting Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Wei Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Zhining Yuan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Aijun Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| | - Jie Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| |
Collapse
|
21
|
Dong Y, Dai Y, Xing F, Hou H, Wang W, Ding X, Zhang H, Li C. Exploring the influence mechanism of water grinding on the gel properties of corn starch based on changes in its structure and properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4858-4866. [PMID: 36918962 DOI: 10.1002/jsfa.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/07/2023] [Accepted: 03/14/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND At present, most studies have focused on the preparation of modified starches by dry grinding. As an excellent starch plasticizer, water might enhance the action of grinding on the structure of starch granules, and water grinding might improve the gel properties of starch. Therefore, this article explored the influence mechanism of water grinding on the gel properties of corn starch based on the changes in its structure and properties. RESULTS The results showed that water grinding could make water enter the starch granules and hydrate the starch molecules, and the starch gelatinized after water grinding for 20 min. Thus, water enhanced the action of grinding on the structure of the starch granules. Under the plasticization and grinding action of water grinding, the mechanochemical effect of the starch granules occurred. When the starch was in the aggregation stage (7.5-10 min), the crystallinity of the starch increased, and the starch molecules rearranged into a more stable structure, which increased apparent viscosity (η), elastic modulus (G') and viscous modulus (G″) of the starch gels. CONCLUSION Therefore, appropriate water grinding (10 min) contributed to increasing the viscoelasticity of starch gels. This study provided a theoretical foundation for research on improving the properties of starch by mechanical modification in future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Fu Xing
- Shandong Drug and Food Vocational College, Weihai, Shandong, 264210, People's Republic of China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Xiuzhen Ding
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Hui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, 271018, People's Republic of China
| |
Collapse
|
22
|
Marta H, Rismawati A, Soeherman GP, Cahyana Y, Djali M, Yuliana T, Sondari D. The Effect of Dual-Modification by Heat-Moisture Treatment and Octenylsuccinylation on Physicochemical and Pasting Properties of Arrowroot Starch. Polymers (Basel) 2023; 15:3215. [PMID: 37571112 PMCID: PMC10421524 DOI: 10.3390/polym15153215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Starch is widely applied in various industrial sectors, including the food industry. Starch is used as a thickener, stabilizer, or emulsifier. However, arrowroot starch generally has weaknesses, such as unstable under heating and acidic conditions, which are generally applied to processing in the food industry. Modifications were applied to improve the characteristics of native arrowroot starch. In this study, arrowroot starch was modified by heat-moisture treatment (HMT), octenylsuccinylation (OSA), and dual modification between OSA and HMT in a different sequence--namely, HMT followed by OSA, and OSA followed by HMT. This study aims to determine the effect of different modification methods on the physicochemical and functional properties of native arrowroot starch. The result shows that both single HMT and dual modification caused damage to native starch granules, such as the formation of cracks and roughness. For single OSA treatment, especially, there is no significant change in granule morphology after modification. All modification treatments did not change the crystalline type of starch but reduced the RC of native starch. Both single HMT and dual modifications (HMT-OSA, OSA-HMT) increased pasting temperature and setback, but, conversely, decreased the peak and the breakdown viscosity of native starch, whereas single OSA had the opposite trend compared with the other modifications. HMT played a greater role in increasing the thermal stability and the retrogradation ability of arrowroot starch. Both single modifications (HMT and OSA) increased the hardness and gumminess of native starch, and the opposite was true for the dual modifications. HMT had a greater effect on color characteristics, where the lightness and whiteness index of native arrowroot starch decreased. Single OSA modification increased swelling volume higher than dual modification. Both single HMT and dual modifications increased water absorption capacity and decreased the oil absorption capacity of native arrowroot starch.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (A.R.); (Y.C.); (M.D.); (T.Y.)
| | - Ari Rismawati
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (A.R.); (Y.C.); (M.D.); (T.Y.)
| | | | - Yana Cahyana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (A.R.); (Y.C.); (M.D.); (T.Y.)
| | - Mohamad Djali
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (A.R.); (Y.C.); (M.D.); (T.Y.)
| | - Tri Yuliana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (A.R.); (Y.C.); (M.D.); (T.Y.)
| | - Dewi Sondari
- Research Center for Biomass and Bioproducts, Cibinong Science Center, National Research and Innovation Agency, Cibinong 16911, Indonesia;
| |
Collapse
|
23
|
Luo W, Li B, Zhang Y, Tan L, Hu C, Huang C, Chen Z, Huang L. Unveiling the retrogradation mechanism of a novel high amylose content starch- Pouteria campechiana seed. Food Chem X 2023; 18:100637. [PMID: 36949750 PMCID: PMC10025978 DOI: 10.1016/j.fochx.2023.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The research of starch retrogradation have been attracting interest. Thereby, the long-term retrogradation mechanism (0-21 days) of Pouteria campechiana seed starch (PCSS) was investigated. The results showed that crystal type was changed from A- to B + V-type during retrogradation. The retrogradation PCSS (RPCSS) exhibited faster retrogradation rate and more compact internal ultra-structure compared to rice, wheat and maize starch. Pearson correlation indicated that, as retrogradation days increased, values of α-1,4-glycosidic bond, A chains, double helix, V-type polymorphism, Mw, relative crystallinity (Rc) and short-range order gradually significantly increased, and B1 chains, B3 + chains values gradually significantly dropped (p < 0.05). These inferred an increasing peak temperature and compactness of morphology with increasing retrogradation days. Compared to native starch, RPCSS α-1.4-glycosidic bond was increased, which indicated that its quick molecules degradation including decreased Mw, B3 + chains, Rc, semicrystalline order, and ΔH. These might provide a theoretical direction for preparation of starch-basis food.
Collapse
Affiliation(s)
- Wanru Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Bo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Yanjun Zhang
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Lehe Tan
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Chi Hu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Chongxing Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- Corresponding author.
| | - Zhanpeng Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Lijie Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| |
Collapse
|
24
|
Kumar SR, Tangsrianugul N, Suphantharika M. A Review on Isolation, Characterization, Modification, and Applications of Proso Millet Starch. Foods 2023; 12:2413. [PMID: 37372623 DOI: 10.3390/foods12122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Proso millet starch (PMS) as an unconventional and underutilized millet starch is becoming increasingly popular worldwide due to its health-promoting properties. This review summarizes research progress in the isolation, characterization, modification, and applications of PMS. PMS can be isolated from proso millet grains by acidic, alkaline, or enzymatic extraction. PMS exhibits typical A-type polymorphic diffraction patterns and shows polygonal and spherical granular structures with a granule size of 0.3-17 µm. PMS is modified by chemical, physical, and biological methods. The native and modified PMS are analyzed for swelling power, solubility, pasting properties, thermal properties, retrogradation, freeze-thaw stability, and in vitro digestibility. The improved physicochemical, structural, and functional properties and digestibility of modified PMS are discussed in terms of their suitability for specific applications. The potential applications of native and modified PMS in food and nonfood products are presented. Future prospects for research and commercial use of PMS in the food industry are also highlighted.
Collapse
Affiliation(s)
- Simmi Ranjan Kumar
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Nuttinee Tangsrianugul
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|
25
|
Ye SJ, Baik MY. Characteristics of physically modified starches. Food Sci Biotechnol 2023; 32:875-883. [PMID: 37123068 PMCID: PMC10130308 DOI: 10.1007/s10068-023-01284-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Starch is an abundant natural, non-toxic, biodegradable polymer. Due to its low price, it is used for various purposes in various fields such as the cosmetic, paper, and construction industries as well as the food industry. Due to recent consumer interest in clean label materials, physically modified starch is attracting attention. Manufacturing methods of physically modified starch include pregelatinization, hydrothermal treatment such as heat moisture treatment and annealing, hydrostatic pressure treatment, ultrasonic treatment, milling, and freezing. In this study, toward development of clean label materials, manufacturing methods and characteristics of physically modified starches were discussed.
Collapse
Affiliation(s)
- Sang-Jin Ye
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 South Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 South Korea
| |
Collapse
|
26
|
Noda T, Ishiguro K, Suzuki T, Morishita T. Tartary Buckwheat Bran: A Review of Its Chemical Composition, Processing Methods and Food Uses. PLANTS (BASEL, SWITZERLAND) 2023; 12:1965. [PMID: 37653882 PMCID: PMC10222156 DOI: 10.3390/plants12101965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 09/02/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) containing large amounts of functional compounds with antioxidant activity, such as rutin, has attracted substantial research attention due to its industrial applications. Particularly, the functional compounds in Tartary buckwheat bran, an unexploited byproduct of the buckwheat flour milling process, are more concentrated than those in Tartary buckwheat flour. Thus, Tartary buckwheat bran is deemed to be a potential material for making functional foods. However, a review that comprehensively summarizes the research on Tartary buckwheat bran is lacking. Therefore, we highlighted current studies on the chemical composition of Tartary buckwheat bran. Moreover, the processing method and food uses of Tartary buckwheat bran are also discussed.
Collapse
Affiliation(s)
- Takahiro Noda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| | - Koji Ishiguro
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| | - Tatsuro Suzuki
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Suya, Koshi, Kumamoto 861-1192, Japan
| | - Toshikazu Morishita
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| |
Collapse
|
27
|
Li HT, Zhang W, Chen Y, Pan W, Bao Y. Physical modification of high amylose starch using electron beam irradiation and heat moisture treatment: The effect on multi-scale structure and in vitro digestibility. Food Chem 2023; 424:136344. [PMID: 37207609 DOI: 10.1016/j.foodchem.2023.136344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/09/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
This study explores a new strategy for manipulating the digestibility of high-amylose maize starch (HAMS) through combinative modifications, namely depolymerization via electron beam irradiation (EBI) followed by reorganizing glucan chains via heat moisture treatment (HMT). The results show that semi-crystalline structure, morphological features and thermal properties of HAMS remained similar. However, EBI increased branching degree of the starch at high irradiation dosage (20 kGy), resulting in more readily leached amylose during heating. HMT increased the relative crystallinity (3.9-5.4% increase) and V-type fraction (0.6-1.9% increase), without significant changes (p > 0.05) in gelatinization onset temperature, peak temperature and enthalpy. Under simulated gastrointestinal conditions, the combination of EBI and HMT either had no effect or negative effect on starch enzymatic resistance, depending on the irradiation dosage. These results suggest that the depolymerization by EBI predominantly affects the changes in enzyme resistance, rather than the growth and perfection of crystallites induced by HMT.
Collapse
Affiliation(s)
- Hai-Teng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Wenyu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yangyang Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Wenwen Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|
28
|
Kumar SR, Tangsrianugul N, Sriprablom J, Wongsagonsup R, Wansuksri R, Suphantharika M. Effect of heat-moisture treatment on the physicochemical properties and digestibility of proso millet flour and starch. Carbohydr Polym 2023; 307:120630. [PMID: 36781281 DOI: 10.1016/j.carbpol.2023.120630] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Proso millet flour (PMF) and starch (PMS) were subjected to heat-moisture treatment (HMT) at 25 % moisture content and 110 °C for 4 h. The effects of HMT on physicochemical and structural properties and in vitro digestibility of PMF and PMS were analyzed. After HMT, SEM showed aggregation and damage to the surface of starch granules, while CLSM showed proteins wrapped around the granules. The amylopectin chain length distribution (CLD) remained unchanged in PMF and PMS after HMT, indicating intact covalent bonds between glucose units. HMT decreased the swelling power, solubility, viscosity of the paste, and gelatinization enthalpy and increased the pasting temperature and gelatinization temperature of PMF and PMS. HMT changed the XRD pattern of PMF from A to A + V type starches, whereas that of PMS remained unchanged. FTIR study showed an increase in the degree of short-range molecular order of PMF and PMS after HMT. In vitro digestibility evaluation showed that the rapidly (RDS) and slowly digestible starch (SDS) contents of PMF and PMS increased, whereas the resistant starch (RS) content decreased after HMT. HMT flour and starch have suitable properties for use in a wide range of food products, from canned to frozen, as well as non-food products.
Collapse
Affiliation(s)
- Simmi Ranjan Kumar
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Nuttinee Tangsrianugul
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Jiratthitikan Sriprablom
- Division of Food Technology, Kanchanaburi Campus, Mahidol University, Kanchanaburi 71150, Thailand
| | - Rungtiwa Wongsagonsup
- Division of Food Technology, Kanchanaburi Campus, Mahidol University, Kanchanaburi 71150, Thailand
| | - Rungtiva Wansuksri
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| |
Collapse
|
29
|
Channab BE, El Idrissi A, Zahouily M, Essamlali Y, White JC. Starch-based controlled release fertilizers: A review. Int J Biol Macromol 2023; 238:124075. [PMID: 36940767 DOI: 10.1016/j.ijbiomac.2023.124075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Starch, as a widely available renewable resource, has the potential to be used in the production of controlled-release fertilizers (CRFs) that support sustainable agriculture. These CRFs can be formed by incorporating nutrients through coating or absorption, or by chemically modifying the starch to enhance its ability to carry and interact with nutrients. This review examines the various methods of creating starch-based CRFs, including coating, chemical modification, and grafting with other polymers. In addition, the mechanisms of controlled release in starch-based CRFs are discussed. Overall, the potential benefits of using starch-based CRFs in terms of resource efficiency and environmental protection are highlighted.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Younes Essamlali
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| |
Collapse
|
30
|
Liu Y, Li M, Jiang D, Guan E, Bian K, Zhang Y. Superheated steam processing of cereals and cereal products: A review. Compr Rev Food Sci Food Saf 2023; 22:1360-1386. [PMID: 36789799 DOI: 10.1111/1541-4337.13114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/27/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
The concept of superheated steam (SS) was proposed over a century ago and has been widely studied as a drying method. SS processing of cereals and cereal products has been extensively studied in recent years for its advantages of higher drying rates above the inversion temperature, oxygen-free environment, energy conservation, and environmental protection. This review provides a brief introduction to the history, principles, and classification of SS. The applications of SS processing in the drying, enzymatic inactivation, sterilization, mycotoxin degradation, roasting, and cooking of cereals and cereal products are summarized and discussed. Moreover, the effects of SS processing on the physicochemical properties of cereals and the qualities of cereal foods are reviewed and discussed. The applications of SS for cereal processing and its effects on cereal properties have been extensively studied; however, issues such as the browning of cereal foods, thermal damage of starch, protein denaturation, and nutrition loss have not been comprehensively studied. Therefore, further studies are required to better understand the mechanism of the quality changes caused by SS processing and to expand the fields of application of SS in the cereal processing industry. This review enhances the understanding of SS processing and presents theoretical suggestions for promoting SS processing to improve the safety and quality of cereals and cereal products.
Collapse
Affiliation(s)
- Yuanxiao Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Mengmeng Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Di Jiang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Erqi Guan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Ke Bian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
31
|
Optimisation of the techno-functional and thermal properties of heat moisture treated Bambara groundnut starch using response surface methodology. Sci Rep 2023; 13:2261. [PMID: 36755062 PMCID: PMC9908914 DOI: 10.1038/s41598-023-28451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
This work optimised the techno-functional and thermal properties of heat moisture treated Bambara groundnut starch (BGS). A central composite rotatable design (Design-Expert software v8.0.1.0) comprising two independent factors of temperature and time was used. Extracted BGS were subjected to heat-moisture treatment (HMT) at 80-120 °C for 30-90 min at different moisture levels of 15% (HMT 15-BGS), 25% (HMT 25-BGS) and 35% (HMT 35-BGS). The optimum HMT conditions for BGS were found to be 80 °C for 30 min (HMT 15), 105.74 °C for 30 min (HMT 25), and 113.16 °C for 30 min (HMT 35). The desirability values of the obtained optimum conditions were 0.63 (HMT 15) and 1.00 (HMT 25 and 35). In HMT 35-BGS, water absorption capacity was significantly affected by the quadratic effect of temperature and time. In contrast, solubility was significantly affected by the linear effect of time and the quadratic effect of temperature. Temperature and treatment time had no significant effect (p ≥ 0.05) on the differential scanning calorimetry thermal properties of HMT 15, 25 and 35-BGS. Scanning electron micrographs of optimised BGS showed round and oval-shaped starch granules ranging from 4.2 to 4.7 mm (width) and 10 μm for length. Unmodified and optimised HMT-BGS showed characteristic FTIR bands linked with common starches. All BGS samples displayed multiple vibrations in the region below 1000 cm-1 due to the skeletal vibrations of the glucose pyranose ring.
Collapse
|
32
|
High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydr Polym 2023; 299:120185. [PMID: 36876800 DOI: 10.1016/j.carbpol.2022.120185] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
High-amylose maize refers to a special type of maize cultivar with a 50 %-90 % amylose content of the total starch. High-amylose maize starch (HAMS) is of interest because it possesses unique functionalities and provides many health benefits for humans. Therefore, many high-amylose maize varieties have been developed via mutation or transgenic breeding approaches. From the literature reviewed, the fine structure of HAMS is different from the waxy and normal corn starches, influencing its gelatinization, retrogradation, solubility, swelling power, freeze-thaw stability, transparency, pasting and rheological properties, and even in vitro digestion. HAMS has undergone physical, chemical, and enzymatical modifications to enhance its characteristics and thereby broaden its possible uses. HAMS has also been used for the benefit of increasing resistant starch levels in food products. This review summarizes the recent developments in our understanding of the extraction and chemical composition, structure, physicochemical properties, digestibility, modifications, and industrial applications of HAMS.
Collapse
|
33
|
Different nitrogen fertilizer application in the field affects the morphology and structure of protein and starch in rice during cooking. Food Res Int 2023; 163:112193. [PMID: 36596133 DOI: 10.1016/j.foodres.2022.112193] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Nitrogen fertilization is one of the most important cultivation practices that affects the eating quality of rice. During the cooking process, nitrogen fertilizer application in the field changed the structure of protein and starch during cooking, which eventually reduced the rice eating quality. However, the morphology and structure of rice during cooking under high nitrogen fertilizer application in the field have not been explored. The relationship between the morphological and structural changes of rice protein and starch during cooking and the rice eating quality has not been studied. In this study, we conducted field trials at two nitrogen fertilizer levels (0 N and 350 N), and the rice was cooked after harvest. Our results showed that the peak viscosity of rice flour was 3326 cp and 2453 cp at 0 N and 350 N, respectively, and the peak viscosity of rice starch was 3424 cp and 3378 cp, respectively. Rice proteins played an important role in the starch gelatinization properties and thermodynamic properties. High nitrogen fertilizer application increased the protein content of rice from 5.97 % to 11.32 %, and more protein bodies adhered to the surface of amyloplasts eventually inhibiting starch gelatinization. The rice proteins could bind to amylose-lipid complexes during cooking, promoting the formation of V-type diffraction peaks. What is more, under high nitrogen fertilizer, rice protein had more β-sheets, which slowed the entry of water into the interior of starch molecules and prevented the destruction of the short-range ordered structure of starch. Our study provides the possibility to further improve the eating quality of rice under nitrogen fertilizer treatment.
Collapse
|
34
|
Pressure moisture treatment (PMT) of starch, a new physical modification method. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Surojanametakul V, Satmalee P, Thirathumthavorn D, Udomrati S. Combined-acid hydrolysis and heat-moisture treatment of rice flour: physicochemical properties and resistant starch. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment. Polymers (Basel) 2022; 14:polym14245447. [PMID: 36559814 PMCID: PMC9786624 DOI: 10.3390/polym14245447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Starch and flour from various plants have been widely used for sundry applications, especially in the food and chemical industries. However, native starch and flour have several weaknesses, especially in functional, pasting, and physicochemical properties. The quality of native starch and flour can be improved by a modification process. The type of modification that is safe, easy, and efficient is physical modification using hydrothermal treatment techniques, including heat moisture treatment (HMT) and annealing (ANN). This review discusses the hydrothermal modifications of starch and flour, especially from various tubers and cereals. The discussion is mainly on its effect on five parameters, namely functional properties, morphology, pasting properties, crystallinity, and thermal properties. Modification of HMT and ANN, in general, can improve the functional properties, causing cracking of the granule surface, stable viscosity to heat, increasing crystallinity, and increasing gelatinization temperature. However, some modifications of starch and flour by HMT and ANN had no effect on several parameters or even had the opposite effect. The summary of the various studies reviewed can be a reference for the development of hydrothermal-modified starch and flour applications for various industries.
Collapse
|
37
|
Duceac IA, Stanciu MC, Nechifor M, Tanasă F, Teacă CA. Insights on Some Polysaccharide Gel Type Materials and Their Structural Peculiarities. Gels 2022; 8:771. [PMID: 36547295 PMCID: PMC9778405 DOI: 10.3390/gels8120771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Global resources have to be used in responsible ways to ensure the world's future need for advanced materials. Ecologically friendly functional materials based on biopolymers can be successfully obtained from renewable resources, and the most prominent example is cellulose, the well-known most abundant polysaccharide which is usually isolated from highly available biomass (wood and wooden waste, annual plants, cotton, etc.). Many other polysaccharides originating from various natural resources (plants, insects, algae, bacteria) proved to be valuable and versatile starting biopolymers for a wide array of materials with tunable properties, able to respond to different societal demands. Polysaccharides properties vary depending on various factors (origin, harvesting, storage and transportation, strategy of further modification), but they can be processed into materials with high added value, as in the case of gels. Modern approaches have been employed to prepare (e.g., the use of ionic liquids as "green solvents") and characterize (NMR and FTIR spectroscopy, X ray diffraction spectrometry, DSC, electronic and atomic force microscopy, optical rotation, circular dichroism, rheological investigations, computer modelling and optimization) polysaccharide gels. In the present paper, some of the most widely used polysaccharide gels will be briefly reviewed with emphasis on their structural peculiarities under various conditions.
Collapse
Affiliation(s)
- Ioana Alexandra Duceac
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Fulga Tanasă
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
38
|
Lv Y, Ma S, Yan J, Sun B, Wang X. Effect of Heat–Moisture Treatment on the Physicochemical Properties, Structure, Morphology, and Starch Digestibility of Highland Barley (Hordeum vulgare L. var. nudum Hook. f) Flour. Foods 2022; 11:foods11213511. [PMID: 36360123 PMCID: PMC9659211 DOI: 10.3390/foods11213511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
This study modified native highland barley (HB) flour by heat–moisture treatment (HMT) at different temperatures (90, 110, and 130 °C) and moisture contents (15%, 25%, and 35%). The effects of the treatment on the pasting, thermal, rheological, structural, and morphological properties of the native and HMT HB flour were evaluated. The results showed that HMT at 90 °C and 25% moisture content induced the highest pasting viscosity (3626–5147 cPa) and final viscosity (3734–5384 cPa). In all conditions HMT increased gelatinization temperature (To, 55.77–73.72 °C; Tp, 60.47–80.69 °C; Tc, 66.16–91.71 °C) but decreased gelatinization enthalpy (6.41–0.43 J/g) in the HMT HB flour compared with that in the native HB flour. The HB flour treated at 15% moisture content had a higher storage modulus and loss modulus than native HB flour, indicating that HMT (moisture content, 15%, 25%, and 35%) favored the strengthening of the HB flour gels. X-ray diffraction and Fourier-transform infrared spectroscopy results showed that HMT HB flour retained the characteristics of an A-type crystal structure with an increased orderly structure of starch, while the relative crystallinity could be increased from 28.52% to 41.32%. The aggregation of starch granules and the denaturation of proteins were observed after HMT, with additional breakage of the starch granule surface as the moisture content increased. HMT could increase the resistant starch content from 24.77% to 33.40%, but it also led to an increase in the rapidly digestible starch content to 85.30% with the increase in moisture content and heating temperature. These results might promote the application of HMT technology in modifying HB flour.
Collapse
|
39
|
Vicente A, Villanueva M, Caballero PA, Muñoz JM, Ronda F. Buckwheat grains treated with microwave radiation: Impact on the techno-functional, thermal, structural, and rheological properties of flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Variability of carbohydrate composition and pasting properties of oat flakes and oat flours produced by industrial oat milling process – comparison to non-heat-treated oat flours. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Yang S, Dhital S, Zhang MN, Wang J, Chen ZG. Structural, gelatinization, and rheological properties of heat-moisture treated potato starch with added salt and its application in potato starch noodles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
42
|
Solaesa ÁG, Villanueva M, Vela AJ, Ronda F. Impact of microwave radiation on in vitro starch digestibility, structural and thermal properties of rice flour. From dry to wet treatments. Int J Biol Macromol 2022; 222:1768-1777. [PMID: 36195232 DOI: 10.1016/j.ijbiomac.2022.09.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Microwave radiation (MW) is an environment-friendly technology used to physically modify flours. Rice flour was MW-treated at different moisture content (MC) (3 %, 8 %, 13 %, 15 %, 20 % and 30 %). In vitro starch digestibility was determined and related to the changes caused by MW treatment to flours' structure and thermal properties, which were influenced by MC. A reduction of 49 % and 65 % in the gelatinization enthalpy of samples treated at 20 % and 30 %MC denoted a partial gelatinization. A loss of granular crystallinity in treated samples was confirmed by XR-diffraction and FTIR, particularly at 15 %, 20 % and 30 %MC. MW promoted the formation of random-coil, α-helix and β-turn protein structure, and the disappearance of LF-β-sheet. Morphological differences were found between samples treated at 8 %MC (loss of polygonal structure, protein layer covering granules' surface and small holes) and 30 %MC (rounded and aggregated granules, covered with exudate amylose). In vitro starch digestibility revealed that samples treated at 20 % and 30 %MC showed 40 % and 47 % higher rapidly digestible starch, 48 % and 70 % lower slowly digestible starch and 90 % lower resistant starch than the untreated flour. Flour MC in MW-treatment allowed the modulation of structural and thermal characteristics of rice flour and consequently its starch hydrolysis rate.
Collapse
Affiliation(s)
- Ángela García Solaesa
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, Spain; Faculty of Health Sciences, Santa Teresa de Jesús Catholic University of Ávila, Ávila, Spain
| | - Marina Villanueva
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, Spain
| | - Antonio J Vela
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, Spain
| | - Felicidad Ronda
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, Spain.
| |
Collapse
|
43
|
Dutta D, Sit N. Comparison of Properties of Films Prepared from Potato Starch Modified by Annealing and Heat‐Moisture Treatment. STARCH-STARKE 2022. [DOI: 10.1002/star.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ditimoni Dutta
- Department of Food Engineering and Technology Tezpur University Tezpur Assam 784028 India
| | - Nandan Sit
- Department of Food Engineering and Technology Tezpur University Tezpur Assam 784028 India
| |
Collapse
|
44
|
Wei P, Fang F, Liu G, Zhang Y, Wei L, Zhou K, You X, Li M, Wang Y, Sun J, Deng S. Effects of composition, thermal, and theological properties of rice raw material on rice noodle quality. Front Nutr 2022; 9:1003657. [PMID: 36118753 PMCID: PMC9479187 DOI: 10.3389/fnut.2022.1003657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
The study aims to evaluate the relationships between characteristics of regional rice raw material and resulting quality of rice noodles. Four of most commonly used rice cultivars in Guangxi for noodles production were investigated. The results showed that compositions of rice flour primarily affected gelatinization and retrogradation, which then influenced the textural and sensory properties of rice noodles. Amylose content had strong positive correlation with peak viscosity (PV) and trough viscosity (TV) of rice flour (P < 0.01). PV and TV had strong negative correlations with adhesive strength (P < 0.01) and positive correlations with chewiness (P < 0.05), hardness, peak load and deformation at peak of rice noodles (P < 0.01). Protein content had positive correlation with the Setback of rice flour (P < 0.05), which is known to have influences on retrogradation. In addition, solubility had positive correlations with cooking loss (P < 0.01) and broken rate (P < 0.05) of rice noodles and strong negative correlation with its springiness (P < 0.01). Swelling power had negative correlation with broken rate (P < 0.05). As sensory score of rice noodles was negatively correlated with broken rate (P < 0.05) and cooking loss (P < 0.01) and positively correlated with springiness (P < 0.01), solubility and swelling power of rice flours were presumed to be useful for predicting consumer acceptability of rice noodles.
Collapse
Affiliation(s)
- Ping Wei
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Fang Fang
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Guoming Liu
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
- *Correspondence: Yayuan Zhang
| | - Linyan Wei
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Kui Zhou
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Xiangrong You
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
- Xiangrong You
| | - Mingjuan Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Ying Wang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Sili Deng
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
45
|
Mudgal S, Singh N. Diversity in phenolics, amino acids, rheology and noodles glycemic response of brown rice from non-basmati and basmati rice. Food Res Int 2022; 158:111500. [DOI: 10.1016/j.foodres.2022.111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
|
46
|
Effect of heat-moisture treated brown rice crackers on postprandial flow-mediated dilation in adults with mild endothelial dysfunction. Heliyon 2022; 8:e10284. [PMID: 36051263 PMCID: PMC9424955 DOI: 10.1016/j.heliyon.2022.e10284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Endothelial dysfunction is an early pathophysiological feature and independent predictor of a poor prognosis in most forms of cardiovascular disease. We evaluated the effect of brown rice crackers (BR-C) on endothelial function. Methods Effect of heat-moisture treated (HMT) -BR-C on postprandial flow-mediated dilation (FMD) in adults with mild endothelial dysfunction was compared with that of BR-C and white rice crackers (WR-C) in 12 adults with mild endothelial dysfunction (less than 7.0% of FMD) by a randomized, single-blind, three-treatment three-period crossover trial (UMIN 000034898). Since we considered that the FMD increase was associated with the treatment of HMT-BR-C, we examined the effect of three possible factors: postprandial glucose levels, polyphenol content, and polyphenol release from the food matrix. Results Mean pre-intake baseline FMD values of HMT-BR-C, BR-C, and WR-C were 4.9%, 5.1%, and 4.9%, respectively, and those values 1 h post-intake were 6.3%, 5.1%, and 4.8%, respectively. There was no difference in intergroup comparisons of FMD using Dunnett's multiple comparison test. There was a significant increase in FMD only in HMT-BR-C in intragroup comparisons (P = 0.042 by paired-t test). In comparison with BR-C, no significant difference was noted in the postprandial glucose level nor in the content of total polyphenols and ferulic acid derivatives in HMT-BR-C. However, the 70% ethanol extracted from HMT-BR-C contained a significantly larger amount of free and bound ferulic acids than from BR-C. Conclusion HMT-BR-C intake increased the postprandial FMD response.
Collapse
|
47
|
Sun Q, Song X, Arun S M, Zhang L, Yu X, Zhou C, Tang Y, Yagoub AEA. Effects of blanching drying methods on the structure and physicochemical properties of starch in sweet potato slices. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
Marta H, Cahyana Y, Bintang S, Soeherman GP, Djali M. Physicochemical and pasting properties of corn starch as affected by hydrothermal modification by various methods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2064490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Laboratory of Food Processing Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Yana Cahyana
- Department of Food Technology, Laboratory of Food Chemistry, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Sarah Bintang
- Department of Food Technology, Laboratory of Food Processing Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Giffary Pramafisi Soeherman
- Department of Food Technology, Laboratory of Food Chemistry, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Laboratory of Food Processing Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
49
|
Shi M, Cheng Y, Wang F, Ji X, Liu Y, Yan Y. Rheological Properties of Wheat Flour Modified by Plasma-Activated Water and Heat Moisture Treatment and in vitro Digestibility of Steamed Bread. Front Nutr 2022; 9:850227. [PMID: 35369070 PMCID: PMC8968317 DOI: 10.3389/fnut.2022.850227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 01/26/2023] Open
Abstract
The study investigated the effects of plasma-activated water (PAW) and heat moisture treatment (HMT) on the rheological properties of wheat flour and the in vitro digestibility of steamed bread partially replaced by the modified wheat flour. After HMT, the gelatinization temperature of wheat flour increased and the gelatinization enthalpy reduced. The solubility and swelling power of wheat flour increased after the heat-moisture treatment. The solubility of modified flour after PAW-HMT treatment was lower than that of distilled water (DW)-HMT at the same temperature. The wheat flour with HMT had higher storage modulus (G') and loss modulus (G"), and had better ductility and deformability. Common wheat flour was partially replaced by modified flour to make steamed bread. The results indicated that the volume, height, diameter and specific volume of steamed bread were significantly decreased with the addition of HMT flour. However, the hardness, viscosity and chewiness increased significantly. The resistant starch content of steamed bread with the modified wheat flour increased. The results provide new insights for the development of new functional steamed bread.
Collapse
Affiliation(s)
- Miaomiao Shi
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yanqiu Cheng
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Fei Wang
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Lanzhou Quality Supervision Center Limited, China Grain Reserves Group Ltd. Company, Lanzhou, China
| | - Xiaolong Ji
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yanqi Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yizhe Yan
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
50
|
Modification of structural and physicochemical properties of cowpea (Vigna unguiculata) starch by hydrothermal and ultrasound treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|