1
|
Wang P, Li H, Wang Y, Dong F, Li H, Gui X, Ren Y, Gao X, Li X, Liu R. One of the major challenges of masking the bitter taste in medications: an overview of quantitative methods for bitterness. Front Chem 2024; 12:1449536. [PMID: 39206439 PMCID: PMC11349634 DOI: 10.3389/fchem.2024.1449536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Objective The aim of the present study was to carry out a systematic research on bitterness quantification to provide a reference for scholars and pharmaceutical developers to carry out drug taste masking research. Significance: The bitterness of medications poses a significant concern for clinicians and patients. Scientifically measuring the intensity of drug bitterness is pivotal for enhancing drug palatability and broadening their clinical utility. Methods The current study was carried out by conducting a systematic literature review that identified relevant papers from indexed databases. Numerous studies and research are cited and quoted in this article to summarize the features, strengths, and applicability of quantitative bitterness assessment methods. Results In our research, we systematically outlined the classification and key advancements in quantitative research methods for assessing drug bitterness, including in vivo quantification techniques such as traditional human taste panel methods, as well as in vitro quantification methods such as electronic tongue analysis. It focused on the quantitative methods and difficulties of bitterness of natural drugs with complex system characteristics and their difficulties in quantification, and proposes possible future research directions. Conclusion The quantitative methods of bitterness were summarized, which laid an important foundation for the construction of a comprehensive bitterness quantification standard system and the formulation of accurate, efficient and rich taste masking strategies.
Collapse
Affiliation(s)
- Panpan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Haiyang Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanli Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Fengyu Dong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Han Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinjing Gui
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province, Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanna Ren
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojie Gao
- Zhengzhou Traditional Chinese Medicine Hospital, Zhengzhou, China
| | - Xuelin Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province, Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
- Third Level Laboratory of Traditional Chinese Medicine Preparations of the State Administration of Traditional Chinese Medicine, Zhengzhou, China
| | - Ruixin Liu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province, Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
- Third Level Laboratory of Traditional Chinese Medicine Preparations of the State Administration of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Dong W, Dai X, Jia Y, Ye S, Shen C, Liu M, Lin F, Sun X, Xiong Y, Deng B. Association between Baijiu chemistry and taste change: Constituents, sensory properties, and analytical approaches. Food Chem 2024; 437:137826. [PMID: 37897822 DOI: 10.1016/j.foodchem.2023.137826] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Typical flavors, such as sourness, sweetness, and bitterness, possess numerous functions and physiological significance, and are closely related to Baijiu production management, quality control, and product development. However, current research on Baijiu flavor primarily focuses on the volatile constituents and distinctive aroma compounds. Furthermore, studies on taste substance recognition, identification, and formation are remain in the preliminary phase. Herein, we take an integrated account of the signal transduction, recognition, composition, and sensory properties of the three main basic tastes of Baijiu, including sourness, sweetness, and bitterness. Moreover, to elucidate the factors that might influence the taste perception of Baijiu, we also discussed the biotic and abiotic factors within the fermentation system. Finally, further elucidating the contribution underlying the three main tastes in Baijiu using a combination of the "Sensomics" and "Flavoromics", will allow for Baijiu taste characteristics to be manipulated.
Collapse
Affiliation(s)
- Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xinran Dai
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yintao Jia
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Siting Ye
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, Sichuan 646000, China
| | - Miao Liu
- Luzhou Laojiao Co. Ltd., Luzhou, Sichuan 646000, China
| | - Feng Lin
- Luzhou Laojiao Co. Ltd., Luzhou, Sichuan 646000, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Yanfei Xiong
- Luzhou Laojiao Co. Ltd., Luzhou, Sichuan 646000, China
| | - Bo Deng
- Luzhou Laojiao Co. Ltd., Luzhou, Sichuan 646000, China
| |
Collapse
|
3
|
Wang J, Huang XH, Zhang YY, Li S, Dong X, Qin L. Effect of sodium salt on meat products and reduction sodium strategies - A review. Meat Sci 2023; 205:109296. [PMID: 37562267 DOI: 10.1016/j.meatsci.2023.109296] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Sodium salt is one of the important additives in food processing. However, excessive intake of sodium salt may cause a series of cardiovascular diseases. Nowadays, sodium intake in most countries is higher than the World Health Organization recommends maximum consumption (5 g/d). 20% of the sodium intake in diets comes from meat products. Therefore, reducing the content of sodium salt in meat products and developing sodium salt-reduction meat products have attracted more and more attention for consumers. In this paper, the roles of sodium salt in meat product processing were reviewed. At the same time, sodium salt reduction strategies and existing problems were summarized and discussed. Multiple factors need to be considered to improve the salt-reduction meat product's quality. Relying on a single technology has a narrow application area, and it is difficult to achieve salt reduction. Therefore, a combination of multiple strategies could obtain a more ideal effect.
Collapse
Affiliation(s)
- Ji Wang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China
| | - Xu-Hui Huang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China
| | - Yu-Ying Zhang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China
| | - Shengjie Li
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China
| | - Xiuping Dong
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China
| | - Lei Qin
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China.
| |
Collapse
|
4
|
Lu H, Wang J, Huang M, Ahmad M, Cong L, Tian M, Wang Q, Ying R, Tan C. Bitterness-masking assessment of luteolin encapsulated in whey protein isolate-coated liposomes. Food Funct 2023; 14:3230-3241. [PMID: 36938848 DOI: 10.1039/d2fo03641j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An unacceptable bitter taste limits the application of luteolin in healthier food systems. In this study, a bitterness-masking assessment was performed on whey protein isolate-coated liposomes loaded with luteolin (WPI-coated liposomes) using an electronic tongue and human sensory test. The physical properties of the WPI-coated colloidal nanocarrier were characterized by zeta potential, average diameter, distribution, and morphology analyses. The results indicated that WPI-coated nanocarrier systems exhibited a uniformly dispersed distribution and spherical morphology. After the comparison of the bitterness value, the bitterness-reducing effect of 5% WPI-coated liposomes was the most significant and reduced the bitterness of luteolin by 75%. Raman spectroscopy and X-ray diffraction analysis demonstrated that the decoration of WPI on the liposomes reduced the free motion of lipid molecules. This promoted the ordering at the polar headgroup area and hydrophobic core of the lipid bilayer, which explained why luteolin-loaded liposomes (uncoated liposomes) and WPI-coated liposomes could reduce the bitterness of luteolin from the perspective of bitter molecular groups. Combined with the Raman spectral data, the bilayer rigidity of 5% WPI-coated liposomes was positively responsive to the stabilization of uncoated liposomes against storage and resistance ability against surfactants. It was proven that the emergence of the surface modification of the WPI coating enhanced the stability of uncoated liposomes. These results may contribute to the use of WPI-coated liposomes as prospective candidates for effective delivery of the bioactive bitter substance in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Hui Lu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lixia Cong
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengwei Tian
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
5
|
Mabizela GS, du Preez BVP, Human C, Muller M, de Beer D, van der Rijst M, Slabbert MM, Bester C, Joubert E. A balancing act – Optimising harvest season of Cyclopia genistoides (honeybush tea) for enhanced phenolic content and acceptable sensory profile. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Perez SL, Chianfrone DJ, Bagnato VS, Blanco KC. Optical technologies for antibacterial control of fresh meat on display. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Liu F, Li M, Wang Q, Yan J, Han S, Ma C, Ma P, Liu X, McClements DJ. Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Crit Rev Food Sci Nutr 2022; 63:6423-6444. [PMID: 35213241 DOI: 10.1080/10408398.2022.2033683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are numerous challenges facing the modern food and agriculture industry that urgently need to be addressed, including feeding a growing global population, mitigating and adapting to climate change, decreasing pollution, waste, and biodiversity loss, and ensuring that people remain healthy. At the same time, foods should be safe, affordable, convenient, and delicious. The latest developments in science and technology are being deployed to address these issues. Some of the most important elements within this modern food design approach are encapsulated by the MATCHING model: Meat-reduced; Automation; Technology-driven; Consumer-centric; Healthy; Intelligent; Novel; and Globalization. In this review article, we focus on four key aspects that will be important for the creation of a new generation of healthier and more sustainable foods: emerging raw materials; structural design principles for creating innovative products; developments in eco-friendly packaging; and precision nutrition and customized production of foods. We also highlight some of the most important new developments in science and technology that are being used to create future foods, including food architecture, synthetic biology, nanoscience, and sensory perception.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2033683.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Moting Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shuang Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | | |
Collapse
|
8
|
McClure AP, Hopfer H, Grün IU. Optimizing consumer acceptability of 100% chocolate through roasting treatments and effects on bitterness and other important sensory characteristics. Curr Res Food Sci 2022; 5:167-174. [PMID: 35072104 PMCID: PMC8761865 DOI: 10.1016/j.crfs.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
Chocolate is a highly appreciated food around the world which is rich in polyphenols but usually sweetened to mask inherent bitterness and astringency. Here we aim to determine how roast time and temperature in cacao roasting affect bitterness intensity and consumer liking of chocolate. We have also determined the relationship between consumer liking and perceived bitterness, astringency, sourness, sweetness, and cocoa intensity. Unroasted cacao from three different origins was roasted according to a designed experiment into a total of 27 treatments which were evaluated for overall liking and sensory attribute intensities by 145 chocolate consumers. We demonstrate that bitterness, sourness and astringency of 100% chocolate can be reduced through optimizing roasting temperature and time. Reduction of bitterness, sourness and astringency were significantly correlated with increased acceptability of the unsweetened chocolate samples. Aside from roasting, cacao origin including base levels of bitterness, astringency, and sourness should also be considered when optimizing consumer acceptability. Perceived cocoa flavor intensity, being highly positively correlated to liking, is likely to also be an important consideration for raw material selection. As for optimal roast profiles, for the cacao origins in our study, more intense roasting conditions such as 20 min at 171 °C, 80 min at 135 °C, and 54 min at 151 °C, all led to the most acceptable unsweetened chocolate. Conversely, for the purposes of optimizing consumer acceptability, our data do not support the use of raw or lightly roasted cacao, such as 0 min at 24 °C, 11 min at 105 °C, or 55 min at 64 °C. Bitterness and astringency in chocolate can be reduced through optimizing roasting. Bitterness, sourness, and astringency are negatively correlated to consumer liking. Sweetness and cocoa intensity are correlated with increased liking of chocolate. Generally, more intense roasting conditions lead to more acceptable chocolate. Use of raw or lightly roasted cacao leads to less acceptable chocolate.
Collapse
Affiliation(s)
- Alan P. McClure
- Patric Chocolate, 6601 Stephens Station Rd, Ste 109, Columbia, MO, 65202, USA
| | - Helene Hopfer
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Corresponding author. Department of Food Science, The Pennsylvania State University, 218 Rodney A. Erickson Food Science Building University Park, PA, 16802, USA.
| | - Ingolf U. Grün
- Department of Food Science, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
9
|
High-Protein Bar as a Meal Replacement in Elite Sports Nutrition: A Pilot Study. Foods 2021; 10:foods10112628. [PMID: 34828911 PMCID: PMC8617883 DOI: 10.3390/foods10112628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023] Open
Abstract
This study was focused on the creation of high-protein bars formulated using whey protein isolate (24%) and soy protein isolate (6%) as the sources of proteins; oat flakes and inulin, both abundant in dietary fibres, and creatine monohydrate and other minor ingredients (vitamin and mineral mixture, potassium sorbate) to achieve the requirements for a meal replacement formula for physically active people. The nutritional profile of the high-protein bar was examined (energy 1215 kJ/288 kcal; protein 34.1 ± 0.20 g, fat 6.01 ± 0.13 g of which was saturated 3.12 ± 0.08 g, fibre 3.10 ± 0.17 g carbohydrate 23.0 ± 0.16 g of which sugars 1.50 ± 0.19 g and starch 21.5 ± 0.11 g in 100 g), and sensory properties with instrumental parameters (texture and colour) were determined and compared with bars commercially available on the market. The created high-protein bar was sensorily acceptable in comparison to other commercially available bars. The dietary intervention study was conducted on elite athletes (professional handball players) to evaluate effects of created versus control bar consumption on their metabolic parameters. The baseline characteristics (mean age, body mass index (BMI), fat mass, muscle mass, lean mass and fat percentage) of the athletes (8) were determined at the start of the study. The cross-over intervention study was organized in two successive phases (5 days each) with a seven-day long washout period between phases. Bars were consumed after the afternoon training unit. Blood samples were collected at the start and the end of the intervention study to analyse the metabolic profiles of the athletes. Serum levels of high-density cholesterol (HDL), low-density cholesterol (LDL) and total cholesterol (HOL), glucose, triacylglycerides (TAG), total and direct bilirubin, creatine kinase (CK), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were measured. The results showed that bar consumption significantly decreased serum aspartate transaminase (AST) and lactate dehydrogenase (LDH) and increased total and direct bilirubin levels, suggesting lower exercise-induced muscle damage and increased antioxidative response, respectively. Therefore, it can be concluded that the consumption of the created high-protein bar was able to improve physiological adaptation after training.
Collapse
|
10
|
Guan C, Yuan Y, Zhang W, Ding X, Zhang C, Chen D, Lu M, Gu R, Chen X. Variation of bitter components of the asparagus juices during lactic acid bacteria fermentation. Biosci Biotechnol Biochem 2021; 85:2300-2310. [PMID: 34506626 DOI: 10.1093/bbb/zbab158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022]
Abstract
To investigate the bitterness status of asparagus juices during lactic acid fermentation, Limosilactobacillus fermentum Xd, Lacticaseibacillus paracasei Yd, Lactiplantibacillus plantarum 5-7-3, and their various combinations were used for single and mixed fermentation of asparagus juices. The fermentation characteristics and variation of the main bitter substances were studied. For the single and cofermented samples, the viable counts, pH value, and acidity were ranged from 8.33-8.65 lg CFU/mL, 3.58-3.86, and 6.29-6.52 g/kg, respectively. By sensory evaluation, the bitterness of every fermented sample was continuously reduced by at least 77% during fermentation, and the corresponding content of total saponins, flavonoids, and 9 bitter amino acids showed varying degrees of declination. These results suggested that it was feasible to develop novel low-bitter asparagus juices fermented by the lactic acid bacteria used in this study.
Collapse
Affiliation(s)
- Chengran Guan
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Jiangsu, China
| | - Yuan Yuan
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Jiangsu, China
| | - Wenjuan Zhang
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Jiangsu, China
| | - Xiangli Ding
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Jiangsu, China
| | - Chenchen Zhang
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Jiangsu, China
| | - Dawei Chen
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Jiangsu, China
| | - Maolin Lu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Jiangsu, China
| | - Ruixia Gu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Jiangsu, China
| | - Xia Chen
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Jiangsu, China
| |
Collapse
|
11
|
Huang J, Lu YJ, Guo C, Zuo S, Zhou JL, Wong WL, Huang B. The study of citrus-derived flavonoids as effective bitter taste inhibitors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5163-5171. [PMID: 33608884 DOI: 10.1002/jsfa.11162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/26/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The pericarp of citrus in rutaceae is rich in flavonoids that may possess diverse biological activities. Some citrus flavonoids have been used as natural bitterness inhibitors; however, many citrus flavonoid analogues that possess merit taste amelioration functions have not been reported with respect to utilization in food industry. RESULTS The effects of 12 citrus flavonoids on the inhibition of the bitter taste of naringin, quinine hydrochloride and stevioside were evaluated both by a sensory panel and electronic tongue analysis. Among the flavonoid compounds evaluated, both neohesperidin dihydrochalcone (NHDC) and neodiosmin were identified to show an excellent bitterness inhibition effect on all three bitterness vehicles tested. The results of the electronic tongue evaluation also showed that the addition of neodiosmin, NHDC or hesperidin dihydrochalcone-7-o-glucoside (HDC-7-G) was able to reduce significantly the bitterness response value of quinine hydrochloride, which is consistent with the sensory panel evaluation. Structure-activity relationship analysis found that the 7-linked neohesperidosyloxy group in the A-ring of the citrus flavonoid skeleton has the best bitterness inhibition effect. In addition, a ternary mixture of NHDC, neodiosmin and naringin, and neodiosmin/β-cyclodextrin was formulated and it demonstrated, for the first time in the flavor improvement of citrus fruit wine, an enhancement of sweetness and a reduction of bitter taste. CONCLUSION Twelve citrus flavonoids were found to inhibit the bitter taste of naringin, quinine hydrochloride and stevioside. With respect to the structure-activity relationship analysis, it was found that the 7-linked neohesperidosyloxy group in the A-ring of the citrus flavonoid skeleton possessed the best bitterness inhibition effect. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiali Huang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yu-Jing Lu
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
- Goldenpomelo Biotechnology Co. Ltd, Meizhou, China
- Zhongke Institute (Meizhou) of High-Value Utilization of Green Plants, Meizhou, China
| | - Chenglong Guo
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shanshan Zuo
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jin-Lin Zhou
- Goldenpomelo Biotechnology Co. Ltd, Meizhou, China
- Zhongke Institute (Meizhou) of High-Value Utilization of Green Plants, Meizhou, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Baohua Huang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Vidal VAS, Paglarini CS, Lorenzo JM, Munekata PE, Pollonio MAR. Salted Meat Products: Nutritional Characteristics, Processing and Strategies for Sodium Reduction. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1949342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vitor A. S. Vidal
- Faculdade De Engenharia De Alimentos, Universidade Estadual De Campinas, Campinas, São Paulo, Brazil
- Departament De Nutrició, Ciències De l’Alimentació I Gastronomia, Facultat De Farmàcia I Ciències De l’Alimentació, Universitat De Barcelona, Santa Coloma De Gramenet, Spain
| | - Camila S. Paglarini
- Faculdade De Engenharia De Alimentos, Universidade Estadual De Campinas, Campinas, São Paulo, Brazil
| | - Jose M. Lorenzo
- Centro Tecnológico da Carne de Galícia, Parque Tecnológico de Galícia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultat de Vigo, 32004, Ourense, Spain
| | - Paulo E.S. Munekata
- Centro Tecnológico da Carne de Galícia, Parque Tecnológico de Galícia, Ourense, Spain
| | - Marise A. R. Pollonio
- Faculdade De Engenharia De Alimentos, Universidade Estadual De Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Manninen H, Sandell M, Mattila S, Hopia A, Laaksonen T. Comparing the taste-modifying properties of nanocellulose and carboxymethyl cellulose. J Food Sci 2021; 86:1928-1935. [PMID: 33942317 DOI: 10.1111/1750-3841.15711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
The taste-modifying properties of nanofibrillar cellulose (NFC) and carboxymethyl cellulose (CMC) are compared for the first time. The samples were prepared in the form of gels, with and without added sweet and bitter taste components. As viscosity itself is known to affect taste perception, the viscosities of NFC and CMC samples were set to the same level as shear rates commonly found in the oral cavity. A trained panel of 10 assessors evaluated the bitterness and sweetness of the samples. Further, the assessors were given an opportunity to describe the samples in free words. The taste-modifying capacities of the thickening agents were at the same level when sweet compounds were added. However, CMC was better able to reduce the bitterness of quinine hydrochloride than NFC, which did not show any bitterness-reduction ability with the compound. This was unexpected, as our previous studies of NFC showed fairly high binding capacity with quinine. The open-ended responses revealed that the NFC-containing samples had an astringent sensation, while certain assessors observed a sensation of saltiness in the CMC samples. This may explain the inability of NFC to mask the bitterness of quinine hydrochloride, as astringency may act as a bitterness enhancer, while saltiness may suppress it. Both thickening agents were perceived as slightly bitter. Our study reveals the need for further assessment of the orosensory properties of NFC, particularly the magnitude and origin of its astringency, before it can be fully utilized in food industry applications.
Collapse
Affiliation(s)
- Hanna Manninen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Mari Sandell
- Functional Foods Forum, University of Turku, Turku, Finland.,Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Saila Mattila
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Anu Hopia
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Timo Laaksonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
|
15
|
Andrews D, Salunke S, Cram A, Bennett J, Ives RS, Basit AW, Tuleu C. Bitter-blockers as a taste masking strategy: A systematic review towards their utility in pharmaceuticals. Eur J Pharm Biopharm 2021; 158:35-51. [DOI: 10.1016/j.ejpb.2020.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/17/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022]
|
16
|
Dridi W, Bordenave N. Pine Bark Phenolic Extracts, Current Uses, and Potential Food Applications: A Review. Curr Pharm Des 2020; 26:1866-1879. [PMID: 32048960 DOI: 10.2174/1381612826666200212113903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To summarize the main findings from research on food uses of Pine Bark Phenolic Extracts (PBPE), their origin, methods of extraction, composition, health effects, and incorporation into food products. METHODS A narrative review of all the relevant papers known to the authors was conducted. RESULTS PBPE are mainly extracted from the bark Pinus pinaster. They are generally rich in procyanidins and their effects on health in the form of nutritional supplements include effect on some forms of cancer, on diabetes, on eye and skin health. Their method of extraction influences greatly their composition and yield, and commercially suitable methods are still to be developed. Incorporation into food products raises challenges related to bioavailability and subsequent bioactivity and sensory properties of the final products. CONCLUSION PBPE represent an opportunity for the development of functional foods with phenolic-rich bioactive compounds.
Collapse
Affiliation(s)
- Wafa Dridi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas Bordenave
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Improvement of Fatty Acid Profile in Durum Wheat Breads Supplemented with Portulaca oleracea L. Quality Traits of Purslane-Fortified Bread. Foods 2020; 9:foods9060764. [PMID: 32531917 PMCID: PMC7353616 DOI: 10.3390/foods9060764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022] Open
Abstract
The addition of functional ingredients to breads could have effects on preventing cardiovascular diseases, cancers and inflammation. The incorporation of 0–5–10–15% of three populations of dried purslane flour on the rheological, sensorial and nutritional quality of fortified durum wheat breads were evaluated. The increase in dried purslane (up to 15%) caused an increase in the resistance to the mixture and a consequent reduction in its extensibility. The “panel test” gave a largely positive evaluation in 10% of enrichment. The fatty acids in breads resulted higher with the 5% substitution. Contrary to what has been imagined, the increase in percentage of substitution to 10 and 15% did not lead to an increase in linoleic (omega-3) and α-linolenic (omega-6) acid and probably the cause is in the cooking. The total phenols content and the antioxidant potential, evaluated by ferric reducing antioxidant potential (FRAP) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays of the enriched breads increased with the percentage of the dry purslane substitution. The enrichment of the durum wheat flour with 5% purslane resulted in a good compromise to obtain good rheological characteristics of loaves and breads with decreased omega-6/omega-3 ratio and good antioxidant properties.
Collapse
|
18
|
Debittering Moringa oleifera (Lam.) Leaves in Fortified South Indian Instant Soup. CHEMOSENS PERCEPT 2020. [DOI: 10.1007/s12078-020-09280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Identifying objective quality attributes of functional foods. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2020. [DOI: 10.15586/qas2020.663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Jiang Z, Li T, Ma L, Chen W, Yu H, Abdul Q, Hou J, Tian B. Comparison of interaction between three similar chalconoids and α-lactalbumin: Impact on structure and functionality of α-lactalbumin. Food Res Int 2020; 131:109006. [DOI: 10.1016/j.foodres.2020.109006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 12/31/2022]
|
21
|
Yavuz-Düzgün M, Zeeb B, Dreher J, Özçelik B, Weiss J. The Impact of Esterification Degree and Source of Pectins on Complex Coacervation as a Tool to Mask the Bitterness of Potato Protein Isolates. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09631-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Luo Y, Kong L, Xue R, Wang W, Xia X. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
23
|
Canivenc-Lavier MC, Neiers F, Briand L. Plant polyphenols, chemoreception, taste receptors and taste management. Curr Opin Clin Nutr Metab Care 2019; 22:472-478. [PMID: 31490201 DOI: 10.1097/mco.0000000000000595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Polyphenols display beneficial health effects through chemopreventive actions on numerous chronic diseases including cancers, metabolic disorders, reproductive disorders and eating behaviour disorders. According to the principle of chemoreception, polyphenols bind cellular targets capable of accepting their stereochemistry, namely metabolizing enzymes and protein receptors, including taste receptors. The extraoral expression of taste receptors and their pharmacological interest in terms of novel drug therapies open up new perspectives on the potential use of these compounds and their interactions with other chemicals in cells. These new perspectives suggest the need to examine these phytochemicals further. However, most polyphenols have a bitterness property that may disrupt the acceptability of healthy foods or dietary supplements. RECENT FINDINGS Polyphenols bind to oral and extraoral bitter type 2 taste receptors, which modulate the signalling pathways involved in anti-inflammatory processes and metabolic and dietary regulations. Depending on their chemical nature, polyphenols may act as activators or inhibitors of taste receptors, and combinations of polyphenols (or herbal mixtures) may be used to modulate the acceptability of bitterness. SUMMARY The current review summarizes recent findings on polyphenol chemoreception and highlights the evidence of healthy effects through type 2 taste receptor mediation in signalling pathways, such as new targets, with promising perspectives.
Collapse
Affiliation(s)
- Marie-Chantal Canivenc-Lavier
- Centre des Sciences du GoÛt et de l'Alimentation (CSGA), INRA, Université de Bourgogne Franche-Comté, AgroSup, CNRS, Dijon, France
| | | | | |
Collapse
|
24
|
Effects of Varying the Color, Aroma, Bitter, and Sweet Levels of a Grapefruit-Like Model Beverage on the Sensory Properties and Liking of the Consumer. Nutrients 2019; 11:nu11020464. [PMID: 30813331 PMCID: PMC6413041 DOI: 10.3390/nu11020464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/24/2022] Open
Abstract
Color, aroma, sweet, and bitter tastes contribute to the sensory perception of grapefruit juice. Consumers differ about liking grapefruit. A reason is the bitter taste that characterize the fruit. The objective was to determine the effect of varying the color (red or yellow), aroma (two levels), bitterness (three levels), and sweetness (three levels) of a grapefruit-like model beverage, on consumers’ liking and perception of its sensory properties. The sensory profiles of thirty-six grapefruit-like beverages, created on the basis of a factorial design, has been described. Consumers rated their liking of color, aroma, and flavor of the twelve most diverse beverages. Bitter and sweet levels of the beverages had a significant effect on the flavor and aftertaste attributes. Aroma concentration had a significant effect on the majority of the sensory attributes. Color had a significant effect on perception of some of the aroma attributes, as well as the grapefruit’s flavor intensity. Consumers liked the red beverages more than the yellow ones, and those with low aroma over the high aroma intensity. Consumers preferred the low bitter/high sweet beverages. Pungent and grapefruit aroma were found to be negative drivers for liking of the aroma. Sweet and citrus flavors were found to be positive drivers and sour and bitter flavors were found to be negative drivers of flavor-preferences (or liking) of the tested beverages.
Collapse
|
25
|
De Toffoli A, Monteleone E, Bucalossi G, Veneziani G, Fia G, Servili M, Zanoni B, Pagliarini E, Gallina Toschi T, Dinnella C. Sensory and chemical profile of a phenolic extract from olive mill waste waters in plant-base food with varied macro-composition. Food Res Int 2019; 119:236-243. [PMID: 30884654 DOI: 10.1016/j.foodres.2019.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Phenols from olive mill waste water (OMWW) represent valuable functional ingredients. The negative impact on sensory quality limits their use in functional food formulations. Chemical interactions phenols/biopolymers and their consequences on bioactivity in plant-base foods have been widely investigated, but no studies to date have explored the variation of bitterness, astringency and pungency induced by OMWW phenols as a function of the food composition. The aim of the paper was to profile the sensory and chemical properties of phenols from OMWW in plant-base foods varied in their macro-composition. Four phenol concentrations were selected (0.44, 1.00, 2.25, 5.06 g/kg) to induce significant variations of bitterness, sourness, astringency and pungency in three plant-base food: proteins/neutral pH - bean purée (BP), starch/neutral pH - potato purée (PP), fiber/low pH - tomato juice (TJ). The macro-composition affected the amount of the phenols recovered from functionalized food. The highest recovery was from TJ and the lowest from BP. Two groups of 29 and 27 subjects, trained to general Labelled Magnitude Scale and target sensations, participated in the evaluation of psychophysical curves of OMWW phenols and of functionalized plant-base foods, respectively. Target sensations were affected by the food macro-composition. Bitterness increased with phenol concentration in all foods. Astringency and sourness slightly increased with concentration, reaching the weak-moderate intensity at the highest phenol concentration in PP and TJ only. Pungency was suppressed in BP and perceived at weak-moderate intensity in PP and TJ sample at the highest phenol concentration. Proteins/neutral pH plant-food (BP) resulted more appropriate to counteract the impact of added phenol on negative sensory properties thus allowing to optimize the balance between health and sensory properties.
Collapse
Affiliation(s)
| | | | | | - G Veneziani
- Dept. Agricultural, Food and Environmental Sciences, University of Perugia, Italy
| | - G Fia
- Dept.GESAAF, University of Florence, Italy
| | - M Servili
- Dept. Agricultural, Food and Environmental Sciences, University of Perugia, Italy
| | - B Zanoni
- Dept.GESAAF, University of Florence, Italy
| | | | - T Gallina Toschi
- Dep. DiSTAL, Alma Mater Studiorum, - University of Bologna, Italy
| | - C Dinnella
- Dept.GESAAF, University of Florence, Italy
| |
Collapse
|
26
|
Chen W, Zhu J, Niu H, Song Y, Zhang W, Chen H, Chen W. Composition and Characteristics of Yam Juice Fermented by Lactobacillus plantarum and Streptococcus thermophilus. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2018. [DOI: 10.1515/ijfe-2018-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, Lactobacillus plantarum (LP), alone or in combination with Streptococcus thermophilus, was used to ferment yam juice. Changes in the composition (phenols, organic acids, reducing sugars and volatile substances) and functional characteristics (antioxidative activity and ability to regulate the intestinal flora) of yam juice during fermentation were investigated. The results showed that the total phenolic (TP) content increased from 201.27 to 281.27 and 285.77 μg/mL for LP- and L. plantarum and S. thermophilus (LPST)-fermented yam juice, respectively. The antioxidative activity of yam juice improved significantly after fermentation, highly correlating with its TP content. In addition, LP- or LPST-fermented yam juice had positive effects on members of the human intestinal flora, improving the activity of Bifidobacterium and inhibiting the growth of Escherichia coli. Sensory analysis showed that LPST-fermented yam juice had a highest score. The results of this study showed that fermented yam juice can serve as a healthy beverage for consumers with low immunity or an imbalance of the intestinal flora.
Collapse
|
27
|
Bakke AJ, Stubbs CA, McDowell EH, Moding KJ, Johnson SL, Hayes JE. Mary Poppins was right: Adding small amounts of sugar or salt reduces the bitterness of vegetables. Appetite 2018; 126:90-101. [DOI: 10.1016/j.appet.2018.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/01/2018] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
|
28
|
Yang W, Zhou K, Zhou Y, An Y, Hu T, Lu J, Huang S, Pei G. Naringin Dihydrochalcone Ameliorates Cognitive Deficits and Neuropathology in APP/PS1 Transgenic Mice. Front Aging Neurosci 2018; 10:169. [PMID: 29922152 PMCID: PMC5996202 DOI: 10.3389/fnagi.2018.00169] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/18/2018] [Indexed: 01/30/2023] Open
Abstract
Alzheimer’s disease (AD) is a multi-factorial neurodegenerative disorder with abnormal accumulation of amyloid-β (Aβ) plaques, neuroinflammation and impaired neurogenesis. Mounting evidences suggest that single-target drugs have limited effects on clinical treatment and alternative or multiple targets are required. In recent decades, natural compounds and their derivatives have gained increasing attention in AD drug discovery due to their inherently enormous chemical and structural diversity. In this study, we demonstrated that naringin dihydrochalcone (NDC), a widely used dietary sweetener with strong antioxidant activity, improved the cognitive function of transgenic AD mice. Pathologically, NDC attenuated Aβ deposition in AD mouse brain. Furthermore, NDC reduced periplaque activated microglia and astrocytes, indicating the inhibition of neuroinflammation. It also enhanced neurogenesis as investigated by BrdU/NeuN double labeling. Additionally, the inhibition of Aβ level and neuroinflammation by NDC treatment was also observed in an AD cell model or a microglia cell line. Taken together, our study indicated that NDC might be a potential therapeutic agent for the treatment of AD against multiple targets that include Aβ pathology, neuroinflammation and neurogenesis.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Keyan Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuqian An
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tingting Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shichao Huang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Time-intensity and reaction-time methodology applied to the dynamic perception and liking of bitterness in relation to body mass index. Food Res Int 2018; 109:606-613. [PMID: 29803490 DOI: 10.1016/j.foodres.2018.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/28/2018] [Accepted: 05/06/2018] [Indexed: 11/21/2022]
Abstract
There are very few studies which have considered perception temporality when relating perceived intensity and hedonic responses in relation to body mass index (BMI; kg/cm2). The aim of the present study was to determine the relationship between BMI with the dynamic perception and liking of bitter tasting solutions. For this purpose, two different categories of bitter products were applied: 6-n-propilthiouracil (PROP) solutions (0.010, 0.032 and 0.060 mmol/L) and commercial beverages (coffee, yerba mate infusion and grapefruit juice). The proposed methodology to evaluate perception and hedonic response was based on the measurement of reaction-time (R-T) and multiple-sip time-intensity (T-I) registers in people with a high BMI (25 < BMI < 30; overweight group) and a normal BMI (<25; normal-weight control group). The multiple-sip evaluation to describe perception of PROP solutions and liking of beverages was used as a more ecologically valid laboratory methodology to simulate a situation of usual consumption. In this sense, working with a multiple-sip design helped confirm that bitter taste has a cumulative effect since in every case the sip effect was significant when evaluating the maximum intensity; this effect was more important as the bitterness increased. Regarding the body weight group comparisons, the normal BMI group perceived bitter taste more intensely and the time to react to it was shorter (faster reaction) for both PROP solutions and the three beverages. Interestingly, even though the high BMI group rated the bitter taste as less intense, they had a lower level of acceptance than normal BMI. This result suggests that the hedonic rather than the sensory component might be playing a crucial role in the perception of bitter taste in individuals with high BMI.
Collapse
|
30
|
Waluga M, Jonderko K, Domosławska E, Matwiejszyn A, Dzielicki M, Krusiec-Świdergoł B, Kasicka-Jonderko A. Effects of taste stimulation on gastric myoelectrical activity and autonomic balance. Saudi J Gastroenterol 2018; 24:100-108. [PMID: 29637917 PMCID: PMC5900469 DOI: 10.4103/sjg.sjg_419_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND/AIM Sham feeding, reproducing the cephalic phase of digestion, and involving combined visual, olfactory, and taste stimulation affects gastrointestinal motility and secretory functions of the digestive system, as well as the sympathetic/parasympathetic balance (SPB). In this study, we aimed to check if taste stimulation with a single flavor affects the gastric myoelectrical activity (GMA) and/or SPB. MATERIALS AND METHODS Eighteen healthy volunteers underwent, on four separate days, 30-min electrogastrographic and electrocardiographic recordings: basal, with stimulation - while keeping in the mouth an agar cube with taste-delivering substance, and postexposure. Concentrations of saccharose, NaCl, citric acid, and quinine hydrochloride within the cubes were adjusted to 100-fold the individual taste recognition thresholds. SPB was determined from the heart rate variability (HRV) analysis of the recorded electrocardiograms. RESULTS A moderate but statistically significant increase in tachygastria and bradygastria percentage time share was observed, regardless of the type of taste applied. Bitter taste elicited a considerable decrease in the normogastria time share (from 82.8 ± 2.5% to 73.5 ± 3.5%, P = 0.00076) and a diminution of the dominant frequency (from 3.07 ± 0.08 to 2.90 ± 0.10 cycles per minute (cpm) postexposure, P = 0.01). Sour taste brought about a drop of the dominant power (from 42.5 ± 1.1 to 40.1 ± 1.4 dB, P = 0.0015). Two tastes hindered propagation of the gastric slow waves - the average percentage of slow wave coupling decreased from 77.9 ± 3.1% to 69.5 ± 3.1% (P = 0.0078) and from 74.6 ± 2.5% to 68.2 ± 2.8% (P = 0.0054) with the bitter and the salty taste, respectively. Stimulation with sweet, salty, or sour taste evoked a significant decrease in the high frequency component of the HRV, whereas bitter taste did not affect the SPB. CONCLUSIONS Oral stimulation with tastes subjectively perceived as unpleasant brings about disturbances of the interdigestive GMA. This, however, does not coincide with its effect upon SPB.
Collapse
Affiliation(s)
- Marek Waluga
- Department of Basic Biomedical Science, School of Pharmacy, Medical University of Silesia, Sosnowiec, Poland
| | - Krzysztof Jonderko
- Department of Basic Biomedical Science, School of Pharmacy, Medical University of Silesia, Sosnowiec, Poland,Address for correspondence: Prof. Krzysztof Jonderko, Department of Basic Biomedical Science, School of Pharmacy, Medical University of Silesia, Sosnowiec, Poland. E-mail:
| | - Ewelina Domosławska
- Department of Basic Biomedical Science, School of Pharmacy, Medical University of Silesia, Sosnowiec, Poland
| | - Anna Matwiejszyn
- Department of Basic Biomedical Science, School of Pharmacy, Medical University of Silesia, Sosnowiec, Poland
| | - Marek Dzielicki
- Department of Basic Biomedical Science, School of Pharmacy, Medical University of Silesia, Sosnowiec, Poland
| | - Beata Krusiec-Świdergoł
- Department of Basic Biomedical Science, School of Pharmacy, Medical University of Silesia, Sosnowiec, Poland
| | - Anna Kasicka-Jonderko
- Department of Basic Biomedical Science, School of Pharmacy, Medical University of Silesia, Sosnowiec, Poland
| |
Collapse
|
31
|
Gaudette NJ, Pietrasik Z. The sensory impact of salt replacers and flavor enhancer in reduced sodium processed meats is matrix dependent. J SENS STUD 2017. [DOI: 10.1111/joss.12247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nicole J. Gaudette
- Food Processing Development Centre, Food and Bio Processing Branch; Alberta Agriculture and Forestry; Leduc Alberta Canada
| | - Zeb Pietrasik
- Food Processing Development Centre, Food and Bio Processing Branch; Alberta Agriculture and Forestry; Leduc Alberta Canada
| |
Collapse
|
32
|
Khor CM, Ng WK, Kanaujia P, Chan KP, Dong Y. Hot-melt extrusion microencapsulation of quercetin for taste-masking. J Microencapsul 2017; 34:29-37. [DOI: 10.1080/02652048.2017.1280095] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chia Miang Khor
- Division of Crystallisation & Particle Science, Institute of Chemical and Engineering Sciences, Jurong Island, Singapore
| | - Wai Kiong Ng
- Division of Crystallisation & Particle Science, Institute of Chemical and Engineering Sciences, Jurong Island, Singapore
| | - Parijat Kanaujia
- Division of Crystallisation & Particle Science, Institute of Chemical and Engineering Sciences, Jurong Island, Singapore
| | - Kok Ping Chan
- Division of Crystallisation & Particle Science, Institute of Chemical and Engineering Sciences, Jurong Island, Singapore
| | - Yuancai Dong
- Division of Crystallisation & Particle Science, Institute of Chemical and Engineering Sciences, Jurong Island, Singapore
| |
Collapse
|
33
|
Influence of sodium chloride treatment and polysaccharides as debittering agent on the physicochemical properties, antioxidant capacity and sensory characteristics of bitter gourd ( Momordica charantia) juice. Journal of Food Science and Technology 2016; 54:228-235. [PMID: 28242920 DOI: 10.1007/s13197-016-2454-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/24/2016] [Accepted: 12/16/2016] [Indexed: 01/06/2023]
Abstract
The effects of sodium chloride (NaCl) (3.5%) solution and polysaccharides, such as carboxymethyl cellulose (CMC) (0.1, 0.3 and 0.5%) and gum arabic (5, 10 and 15%), on the physicochemical properties, antioxidant capacity and sensory characteristics of bitter gourd juice were investigated. An increase in the concentration of CMC and gum arabic significantly was observed to increase the lightness (L value) and the viscosity (mPas) of bitter gourd juice at all levels. Increased concentrations of gum arabic significantly increased the total soluble solids. The bitter gourd fruit treated with NaCl solution produced the highest lightness (L value) and scavenging activity of free radical 2,2-diphenyl-1-picrylhydrazyl of bitter gourd juice. Increased concentration of gum arabic up to 15% significantly increased the total phenolic content. The addition of 5% gum arabic effectively reduced the bitterness of the bitter gourd juice. Viscosity of the juice resulted in negative correlation for bitterness.
Collapse
|
34
|
Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation – Current knowledge and future research considerations. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Pickering GJ, Klodnicki CE. Does Liking and Orosensation Intensity Elicited by Sampled Foods Vary with Thermal Tasting? CHEMOSENS PERCEPT 2016. [DOI: 10.1007/s12078-016-9207-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
The effect of modifying the distribution of sucralose and quinine on bitterness suppression in model gels. Food Qual Prefer 2016. [DOI: 10.1016/j.foodqual.2016.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
|
38
|
The effect of inhomogeneous quinine and hydrocolloid distributions on the bitterness of model gels. Food Qual Prefer 2015. [DOI: 10.1016/j.foodqual.2015.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Symoneaux R, Guichard H, Le Quéré JM, Baron A, Chollet S. Could cider aroma modify cider mouthfeel properties? Food Qual Prefer 2015. [DOI: 10.1016/j.foodqual.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Pietrasik Z, Gaudette NJ. The effect of salt replacers and flavor enhancer on the processing characteristics and consumer acceptance of turkey sausages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1845-1851. [PMID: 25155993 DOI: 10.1002/jsfa.6885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/06/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Producing high-quality processed meats that contain reduced amounts of sodium chloride is a major challenge facing industry owing to the importance of sodium chloride toward the functional, microbial stability and sensory properties of these products. In order to create reduced sodium alternatives, a number of commercial salt replacers and flavor enhancers have entered the market; however, their ability to be applied in processed meats requires investigation. In this study, two salt replacers (Ocean's Flavor - OF45, OF60) and one flavor enhancer (Fonterra™ Savoury Powder - SP) were evaluated for their ability to effectively reduce sodium while maintaining the functional and sensory properties of turkey sausages. Functionality via instrumental measures (yield, purge loss, pH, expressible moisture, proximate composition, sodium content, color, texture), safety (microbiological assessment) and consumer acceptability were obtained on all samples. RESULTS All non-control treatments resulted in products with sodium chloride contents below Canada's Health Check™ Program target for processed meats. There was no detrimental effect on water binding and texture in treatments when NaCl was substituted with OF60 sea salt replacers. Sodium reduction had no negative effect on the shelf life of the turkey sausages with up to 60 days of refrigerated storage. Consumer acceptability for all attributes did not differ significantly, except for aftertaste, which scored lowest for OF45 compared with the control (regular NaCl content). CONCLUSION This work demonstrated that salt replacers could potentially substitute for NaCl in smoked turkey sausages; however, further flavor optimization may be required to suppress undesirable levels of bitterness elicited by some of these ingredients.
Collapse
Affiliation(s)
- Zeb Pietrasik
- Food Processing Development Centre, Food and Bio Processing Division, Alberta Agriculture and Rural Development, Leduc, AB T9E 7C5, Canada
| | - Nicole J Gaudette
- Food Processing Development Centre, Food and Bio Processing Division, Alberta Agriculture and Rural Development, Leduc, AB T9E 7C5, Canada
| |
Collapse
|
41
|
Garcia-Burgos D, Zamora MC. Exploring the hedonic and incentive properties in preferences for bitter foods via self-reports, facial expressions and instrumental behaviours. Food Qual Prefer 2015. [DOI: 10.1016/j.foodqual.2014.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Coupland JN, Hayes JE. Physical approaches to masking bitter taste: lessons from food and pharmaceuticals. Pharm Res 2014; 31:2921-39. [PMID: 25205460 PMCID: PMC4898047 DOI: 10.1007/s11095-014-1480-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/15/2014] [Indexed: 01/08/2023]
Abstract
Many drugs and desirable phytochemicals are bitter, and bitter tastes are aversive. Food and pharmaceutical manufacturers share a common need for bitterness-masking strategies that allow them to deliver useful quantities of the active compounds in an acceptable form and in this review we compare and contrast the challenges and approaches by researchers in both fields. We focus on physical approaches, i.e., micro- or nano-structures to bind bitter compounds in the mouth, yet break down to allow release after they are swallowed. In all of these methods, the assumption is the degree of bitterness suppression depends on the concentration of bitterant in the saliva and hence the proportion that is bound. Surprisingly, this hypothesis has only rarely been fully tested using a combination of adequate human sensory trials and measurements of binding. This is especially true in pharmaceutical systems, perhaps due to the greater experimental challenges in sensory analysis of drugs.
Collapse
Affiliation(s)
- John N Coupland
- Department of Food Science, The Pennsylvania State University, 337 Food Science Building, University Park, Pennsylvania, 16802, USA,
| | | |
Collapse
|
43
|
Sagioglou C, Greitemeyer T. Bitter Taste Causes Hostility. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2014; 40:1589-97. [DOI: 10.1177/0146167214552792] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present research tested the novel hypothesis that bitter taste increases hostility. Theoretical background formed the intimate link of the taste-sensory system to the visceral system, with bitter intake typically eliciting a strong aversion response. Three experiments using differential bitter and control stimuli showed that hostile affect and behavior is increased by bitter taste experiences. Specifically, participants who consumed a bitter (vs. control) drink showed an increase in self-reported current hostility (Experiment 1), in hypothetical aggressive affect and hypothetical aggressive behavior (Experiment 2) and in actual hostile behavior assessed using a well-established method for non-physical laboratory aggression (Experiment 3). Furthermore, the effect occurred not only when participants were previously provoked (Experiments 2 and 3) but also when no provocation preceded (Experiment 1 and 3). Importantly, stimulus aversiveness and intensity did not influence the effects observed, ruling them out as explanations. Alternative interpretative frameworks and limitations are discussed.
Collapse
|
44
|
Increasing the health benefits of bread: Assessment of the physical and sensory qualities of bread formulated using a renin inhibitory Palmaria palmata protein hydrolysate. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.11.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Liu B, Zhu X, Zeng J, Zhao J. Preparation and physicochemical characterization of the supramolecular inclusion complex of naringin dihydrochalcone and hydroxypropyl-β-cyclodextrin. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|