1
|
Yoo J, Park JE, Han JS. HMC Ameliorates Hyperglycemia via Acting PI3K/AKT Pathway and Improving FOXO1 Pathway in ob/ob Mice. Nutrients 2023; 15:2023. [PMID: 37432173 DOI: 10.3390/nu15092023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Type 2 diabetes is a disease characterized by hyperglycemia and is a growing health problem worldwide. Since many known diabetes drugs are side effects, it is necessary to develop natural substances with guaranteed safety. HM-chromanone isolated from Portulaca oleracea L. is a homoisoflavonoid compound. We investigated the effects of HM-chromanone on hyperglycemia and its mechanism in C57BL/6J ob/ob mice. C57BL/6J-Jms Slc mice were used as the control group, and C57BL/6J-ob/ob mice were divided into three groups: ob/ob (control), metformin (Met; positive control), and HM-chromanone (HMC). Fasting blood glucose was lower in the HMC group than those in the ob/ob group. Insulin resistance was improved by reducing HbA1c, plasma insulin, and HOMA-IR levels in the HMC group. HMC administration decreased the phosphorylation of IRS-1ser307 and increased the phosphorylation of IRS-1tyr612, PI3K, phosphorylation of AKTser473, and PM-GLUT4 in the skeletal muscles of ob/ob mice, indicating improved insulin signaling. HMC administration also increased the phosphorylation of FOXO1 in the liver of ob/ob mice. This inhibited PEPCK and G6pase involved in gluconeogenesis and regulated phosphorylation of glycogen synthase kinase 3β and glycogen synthase involved in glycogen synthesis. In conclusion, HM-chromanone ameliorates hyperglycemia by PI3K/AKT and improves the FOXO1 in ob/ob mice.
Collapse
Affiliation(s)
- Jeong Yoo
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jae Eun Park
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Das A, Panneerselvam A, Yannam SK, Baskaran V. Shelf‐life, nutritional and sensory quality of cereal and herb based low glycaemic index foods for managing diabetes. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Arpita Das
- Department of Biochemistry CSIR‐Central Food Technological Research Institute Mysore India
- Academy of Science and Innovative Research (AcSIR) Ghaziabad India
| | - Arunkumar Panneerselvam
- Academy of Science and Innovative Research (AcSIR) Ghaziabad India
- Department of Food Packaging Technology CSIR‐Central Food Technological Research Institute Mysore India
| | - Sudheer Kumar Yannam
- Academy of Science and Innovative Research (AcSIR) Ghaziabad India
- Department of Traditional Food and Sensory Science CSIR‐Central Food Technological Research Institute Mysore India
| | - Vallikannan Baskaran
- Department of Biochemistry CSIR‐Central Food Technological Research Institute Mysore India
- Academy of Science and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
3
|
Affiliation(s)
- Dery Bede
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Luhu Avenue Wuxi Jiangsu Province 214122 P. R. China
| | - Lou Zaixiang
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Luhu Avenue Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
4
|
Tanaka M, Kanazashi M, Kondo H, Ishihara A, Fujino H. Licorice flavonoid oil supplementation promotes a reduction of visceral fat in exercised rats. J Sports Med Phys Fitness 2020; 61:480-488. [PMID: 33000933 DOI: 10.23736/s0022-4707.20.11260-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The beneficial effect of exercise combined with licorice flavonoid oil supplementation on visceral fat was investigated. METHODS Male Sprague-Dawley rats were divided into 4 groups: control, exercise (Ex), control with licorice flavonoid oil supplementation (LFO), and exercise with licorice flavonoid oil supplementation (ExLFO) groups. The rats in the Ex and ExLFO groups ran on a treadmill (20-degree incline at 20 m/min for 30 min/day) 5 times a week for 7 weeks, and those in the LFO and ExLFO groups were orally administered with licorice flavonoid oil daily using a feeding needle. RESULTS Exercise or licorice flavonoid oil supplementation resulted in the reduction of the visceral fat mass and adipocyte size, respectively. In addition, exercise combined with licorice flavonoid oil supplementation more effectively decreased both measures. Exercise alone increased the β-hydroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS) activities in the soleus and plantaris muscles, and licorice flavonoid oil supplementation alone increased the hepatic carnitine palmitoyl transferase-2 (CPT-2) activity. Furthermore, the combination of exercise and licorice flavonoid oil supplementation enhanced the both muscular β-HAD and CS activities, and hepatic CPT-2 activity. CONCLUSIONS These results suggest that exercise combined with licorice flavonoid oil supplementation may be effective to decrease visceral adipose tissue via enhancing skeletomuscular and hepatic fatty acids oxidative capacity.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, Okayama, Japan
| | - Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara, Japan
| | - Hiroyo Kondo
- Department of Food Sciences and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan -
| |
Collapse
|
5
|
Application of Box-Behnken Design and Desirability Function for Green Prospection of Bioactive Compounds from Isochrysis galbana. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A microalga, Isochrysis galbana, was chosen in this study for its potent natural antioxidant composition. A broad bioactive compounds spectrum such as carotenoids, fatty acid polyunsaturated (PUFA), and antioxidant activity are described with numerous functional properties. However, most of the optimization of extraction use toxic solvents or consume a lot of it becoming an environmental concern. In this research, a Box-Behnken design with desirability function was used to prospect the bioactive composition by supercritical fluid extraction (SFE) after performing the kinetics curve to obtain the optimal extraction time minimizing operational costs in the process. The parameters studied were: pressure (20–40 MPa), temperature (40–60 °C), and co-solvent (0–8% ethanol) with a CO2 flow rate of 7.2 g/min for 120 min. The response variables evaluated in I. galbana were extraction yield, carotenoids content and recovery, total phenols, antioxidant activity (TEAC method, trolox equivalents antioxidant capacity method), and fatty acid profile and content. In general, improvement in all variables was observed using an increase in ethanol concentration used as a co-solvent (8% v/v ethanol) high pressure (40 MPa), and moderately high temperature (50 °C). The fatty acids profile was rich in polyunsaturated fatty acid (PUFA) primarily linoleic acid (C18:2) and linolenic acid (C18:3). Therefore, I. galbana extracts obtained by supercritical fluid extraction showed relevant functional ingredients for use in food and nutraceutical industries.
Collapse
|
6
|
Cao Y, Chen X, Sun Y, Shi J, Xu X, Shi YC. Hypoglycemic Effects of Pyrodextrins with Different Molecular Weights and Digestibilities in Mice with Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2988-2995. [PMID: 29446938 DOI: 10.1021/acs.jafc.8b00404] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pyrodextrin shares some properties of resistant starch, which is metabolically beneficial, and has potential applications as a functional food. In this study, we report that the oral administration of pyrodextrin (50 mg/kg/d for 7 weeks) decreased blood glucose (from 9.18 ± 1.47 to 7.67 ± 0.42 mmol/L), serum HbA1c, triglycerides, adipocyte size, and body weight (from 24.4 ± 1.2 to 22.5 ± 1.2 g) in mice with high-fat-diet-induced obesity. Western-blotting analysis suggested that pyrodextrins decreased intestinal SGLT-1 and GLUT-2 expression to ∼70 and ∼60% of the obese control, respectively, which slowed down glucose transportation from the gut into the blood and tentatively improved hepatic metabolism. Moreover, the pyrodextrin with a lower molecular weight of 44 kDa, a more branched structure, and increased nondigestible starch of 46.2 ± 0.3% showed stronger hypoglycemic activity. This work provides important information for developing pyrodextrins as a functional food and dietary supplement for the management of obesity and diabetes.
Collapse
Affiliation(s)
- Yan Cao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiaoli Chen
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
- College of Food Science and Technology, Modern Biochemistry Experimental Center , Guangdong Ocean University , Zhanjiang 524088 , China
| | - Ying Sun
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Jialiang Shi
- Department of Grain Science and Industry , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Yong-Cheng Shi
- Department of Grain Science and Industry , Kansas State University , Manhattan , Kansas 66506 , United States
| |
Collapse
|
7
|
Zheng J, Yuan X, Cheng G, Jiao S, Feng C, Zhao X, Yin H, Du Y, Liu H. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice. Carbohydr Polym 2018; 190:77-86. [PMID: 29628262 DOI: 10.1016/j.carbpol.2018.02.058] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/20/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
The aim of this study is to investigate the effect of chitosan oligosaccharides (COS) on type 2 diabetes mellitus. Wild type C57BL/6J mice or diabetic db/db mice were treated with vehicle or COS for three months. COS treatment significantly decreased the blood glucose (P < 0.01) and reversed the insulin resistance (P < 0.05) in db/db mice, which was accompanied by suppressing the inflammation mediators (P < 0.05), down-regulating the lipogenesis (P < 0.01) and inhibiting the adipocyte differentiation (P < 0.05) in white adipose tissue. Additionally, COS treatment inhibited the reduction of occludin (P < 0.01) and relieved the gut dysbiosis in diabetic mice by promoting Akkermansia (P < 0.01) and suppressing Helicobacter (P < 0.05). Spearman's correlation analysis indicates that the COS-modulated bacteria are positively correlated with inflammation, hyperglycemia and dyslipidemia. The functional profiling based on the microbiota composition implicated that COS treatment may regulate the metabolic pathways of gut microbiota. In summary, COS treatment remarkably improved the glucose metabolism and reshaped the unbalanced gut microbiota of diabetic mice. Our study provided the evidence for application of COS to the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Junping Zheng
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xubing Yuan
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaoming Zhao
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, PR China.
| |
Collapse
|
8
|
Tessari P, Lante A. A Multifunctional Bread Rich in Beta Glucans and Low in Starch Improves Metabolic Control in Type 2 Diabetes: A Controlled Trial. Nutrients 2017; 9:E297. [PMID: 28304350 PMCID: PMC5372960 DOI: 10.3390/nu9030297] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 01/17/2023] Open
Abstract
DESIGN Functional foods may be useful for people with diabetes. The soluble fibers beta glucans can modify starch digestion and improve postprandial glucose response. We analyzed the metabolic effects of a specifically designed 'functional' bread, low in starch, rich in fibers (7 g/100 g), with a beta glucan/starch ratio of (7.6:100, g/g), in people with type 2 diabetes mellitus. Methods: Clinical and metabolic data from two groups of age-, sex- and glycated hemoglobin-matched diabetic subjects, taking either the functional bread or regular white bread, over a roughly six-month observation period, were retrieved. RESULTS Bread intake did not change during the trial. The functional bread reduced glycated hemoglobin by ~0.5% (absolute units) vs. pre-treatment values (p = 0.028), and by ~0.6% vs. the control group (p = 0.027). Post-prandial and mean plasma glucose was decreased in the treatment group too. Body weight, blood pressure and plasma lipids did not change. The acceptance of the functional bread was good in the majority of subjects, except for taste. CONCLUSIONS A starch-restricted, fiber-rich functional bread, with an increased beta glucan/starch ratio, improved long term metabolic control, and may be indicated in the dietary treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Paolo Tessari
- Department of Medicine (DIMED), University of Padova, 35128 Padova PD, Italy.
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals & Environment (DAFNAE), University of Padova, 35123 Padova PD, Italy.
| |
Collapse
|
9
|
Abstract
Background: The dramatic rise in the prevalence of obesity and type 2 diabetes mellitus (T2DM) is associated with increased mortality, morbidity as well as public health care expenses worldwide. Previous research suggests that yoga holds promise for obesity and T2DM management. Objective: The objective of the present study was to assess the effect of intensive integrated approach of yoga therapy (IAYT) on body fat and body mass index (BMI) and resting metabolism in mid-life overweight patients with T2DM (BMI, Mean ± SD, 27.05 ± 4.51). Materials and Methods: Twenty-four mid-life patients (6 females) with T2DM (Age, Mean ± SD, 55.38 ± 7.96 years) participated in the study and practiced IAYT for 7 days. The IAYT works at five layers of human existence (physical, vital, mental, intellectual and bliss) to bring positive health. The body fat and BMI and resting metabolism were recorded before and after IAYT using Karada Scan body composition monitor HBF-375 from Omron Healthcare Singapore PTE LTD. Statistical Analysis: SPSS-16 was used to analyze the data. Shapiro-Wilk test showed that the data was not normally distributed. Further, the Wilcoxon signed-ranks test was used to analyze the change in means of pre- and post-measurements. Results: Data analysis showed that there was a significant decrease in body fat and BMI and resting metabolism (in all assessments, P < 0.001). Conclusion: The present study suggests that 7 days practice of IAYT has a great promise for the management of overweight in mid-life patients with T2DM. Additional well-designed studies are needed before a strong recommendation can be made.
Collapse
Affiliation(s)
- Ashwini Sham Tikhe
- Swami Vivekananda Yoga Anusandhana Samsthana University, Bangalore, Karnataka, India
| | - Subramanya Pailoor
- Assistant Professor, Department of Yoga and Management, S-VYASA University, Bangalore, Karnataka, India
| | - Kashinath Metri
- Assistant Professor, Department of Yoga and Management, S-VYASA University, Bangalore, Karnataka, India
| | - Tikhe Sham Ganpat
- Project Coordinator, Morarji Desai National Institute of Yoga, New Delhi, India
| | | |
Collapse
|