1
|
Liu J, Xiao Y, Zhao X, Du J, Hu J, Jin W, Li G. Integrated Transcriptome and Metabolome Analysis Reveals Mechanism of Flavonoid Synthesis During Low-Temperature Storage of Sweet Corn Kernels. Foods 2024; 13:4025. [PMID: 39766968 PMCID: PMC11727310 DOI: 10.3390/foods13244025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Sweet corn is a globally important food source and vegetable renowned for its rich nutritional content. However, post-harvest quality deterioration remains a significant challenge due to sweet corn's high sensitivity to environmental factors. Currently, low-temperature storage is the primary method for preserving sweet corn; however, the molecular mechanisms involved in this process remain unclear. In this study, kernels stored at different temperatures (28 °C and 4 °C) for 1, 3, and 5 days after harvest were collected for physiological and transcriptomic analysis. Low temperature storage significantly improved the PPO and SOD activity in sweet corn kernels compared to storage at a normal temperature. A total of 1993 common differentially expressed genes (DEGs) were identified in kernels stored at low temperatures across all three time points. Integrated analysis of transcriptomic and previous metabolomic data revealed that low temperature storage significantly affected flavonoid biosynthesis. Furthermore, 11 genes involved in flavonoid biosynthesis exhibited differential expression across the three storage periods, including CHI, HCT, ANS, F3'H, F3'5'H, FLS, and NOMT, with Eriodictyol, Myricetin, and Hesperetin-7-O-glucoside among the key flavonoids. Correlation analysis revealed three AP2/ERF-ERF transcription factors (EREB14, EREB182, and EREB200) as potential regulators of flavonoid biosynthesis during low temperature treatment. These results enhance our understanding of the mechanisms of flavonoid synthesis in sweet corn kernels during low-temperature storage.
Collapse
Affiliation(s)
- Jingyan Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China; (J.L.); (X.Z.); (J.D.)
| | - Yingni Xiao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China; (Y.X.); (J.H.)
| | - Xu Zhao
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China; (J.L.); (X.Z.); (J.D.)
| | - Jin Du
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China; (J.L.); (X.Z.); (J.D.)
| | - Jianguang Hu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China; (Y.X.); (J.H.)
| | - Weiwei Jin
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China; (J.L.); (X.Z.); (J.D.)
| | - Gaoke Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China; (Y.X.); (J.H.)
| |
Collapse
|
2
|
Rostaei M, Fallah S, Carrubba A, Lorigooini Z. Organic manures enhance biomass and improve content, chemical compounds of essential oil and antioxidant capacity of medicinal plants: A review. Heliyon 2024; 10:e36693. [PMID: 39296011 PMCID: PMC11408794 DOI: 10.1016/j.heliyon.2024.e36693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
The current farming systems strongly depend on chemical fertilizers (CF), which are widely applied to increase crop yield worldwide. However, although CF enhance crop yield in the short term, their excessive and long-term application can have adverse effects on environmental and human health. One of the most important goals of sustainable agriculture is substituting CF with organic manures. Organic manures can be used as a low-cost and safe alternative for CF. They contain essential nutrients for crop growth, improve soil conditions and nutrient availability, increase plant growth, and ultimately enhance yield. The application of organic manures to medicinal plants (MP) is more critical than to other plants, because organic manures not only enhance the growth and productivity of MP but also modify quality of their products. In this review, the effect of different types of organic manures on the biomass, content and chemical compositions of essential oil and antioxidant activity of various MP has been investigated. The included information was gathered from scientific databases such as Science Direct, Google Scholar, PubMed, and Scopus. Many of the collected studies showed that organic manures increase biomass and improve the quality of these plants. The findings of this review indicate that broiler litter (BL) and compost (C) are highly recommended as organic manures to promote biomass. Moreover, C, sheep manure, and vermicompost (VC) are suggested as the optimal organic manures for enhancing the essential oil content. Organic manures significantly changed the aroma profile of the essential oils and in many cases, they enhanced major chemical compositions. The usage of VC raised the content of the linalool of studied MP. Most of the organic manures, especially BL, VC, farmyard manure, and poultry manure increased the antioxidant activity of these plants. Hence, the utilization of organic manures can be recommended for productivity enhancement and quality improvement of MP.
Collapse
Affiliation(s)
- Maryam Rostaei
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Alessandra Carrubba
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Italy
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Simić M, Nikolić V, Škrobot D, Srdić J, Perić V, Despotović S, Žilić S. Effect of Anthocyanin-Enriched Brine on Nutritional, Functional and Sensory Properties of Pickled Baby Corn. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091812. [PMID: 37176872 PMCID: PMC10181262 DOI: 10.3390/plants12091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Considering the great potential of black soybean seed coat as a source of bioactive compounds, the objective of this study was to investigate the effect of anthocyanin-rich brine from the seed coat on functional properties of pickled baby corn, as well as its sensory properties. Given that the ears of sweet corn, popping corn and semi-flint corn were used for pickling in the pre-pollination phase, the effect of genotype and its growing stage on the chemical composition of Baby corn product was also taken into consideration. The brine of black soybean with a total anthocyanins content of 11,882.9 mg CGE/kg (cyanidin 3-glucoside equivalent) and an antioxidant capacity of 399.5 mmol Trolox Eq/kg determined by QUENCHER method had a positive impact on the functional potential of baby corn products. The content of total anthocyanins in the obtained products ranged from 748.6 to 881.2 mg CGE/kg, the predominant anthocyanin was cyanidin-3-glucoside (184.6 to 247.5 μg/g), while their colour was red. Compared to the commercial sample, baby corn products pickled in the enriched solution had a 26% to 46% and 17% to 26% higher content of total free phenolic compounds and antioxidant capacity, respectively. Contrarily, the control sample had higher sugar and fibre content. As established, pickled popping corn had the best sensory properties.
Collapse
Affiliation(s)
- Marijana Simić
- Department of Food Technology and Biochemistry, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia
| | - Valentina Nikolić
- Department of Food Technology and Biochemistry, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia
| | - Dubravka Škrobot
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Srdić
- Plant Breeding Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia
| | - Vesna Perić
- Plant Breeding Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia
| | - Saša Despotović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Slađana Žilić
- Department of Food Technology and Biochemistry, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia
| |
Collapse
|
4
|
Ciriello M, Formisano L, Kyriacou M, Soteriou GA, Graziani G, De Pascale S, Rouphael Y. Zinc biofortification of hydroponically grown basil: Stress physiological responses and impact on antioxidant secondary metabolites of genotypic variants. FRONTIERS IN PLANT SCIENCE 2022; 13:1049004. [PMID: 36388561 PMCID: PMC9647093 DOI: 10.3389/fpls.2022.1049004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Ocimum basilicum L. is an aromatic plant rich in bioactive metabolites beneficial to human health. The agronomic biofortification of basil with Zn could provide a practical and sustainable solution to address Zn deficiency in humans. Our research appraised the effects of biofortification implemented through nutrient solutions of different Zn concentration (12.5, 25.0, 37.5, and 50 µM) on the yield, physiological indices (net CO2 assimilation rate, transpiration, stomatal conductance, and chlorophyll fluorescence), quality, and Zn concentration of basil cultivars 'Aroma 2' and 'Eleonora' grown in a floating raft system. The ABTS, DPPH, and FRAP antioxidant activities were determined by UV-VIS spectrophotometry, the concentrations of phenolic acids by mass spectrometry using a Q Extractive Orbitrap LC-MS/MS, and tissue Zn concentration by inductively coupled plasma mass spectrometry. Although increasing the concentration of Zn in the nutrient solution significantly reduced the yield, this reduction was less evident in 'Aroma 2'. However, regardless of cultivar, the use of the maximum dose of Zn (50 µM) increased the concentration of carotenoids, polyphenols, and antioxidant activity on average by 19.76, 14.57, and 33.72%, respectively, compared to the Control. The significant positive correlation between Zn in the nutrient solution and Zn in plant tissues underscores the suitability of basil for soilless biofortification programs.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Marios Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | | | - Giulia Graziani
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
5
|
A novel method for analyzing mineral ratio profiles of treated buckwheat sprouts (Fagopyrum esculentum Moench). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Mining of Potential Gene Resources for Breeding Nutritionally Improved Maize. PLANTS 2022; 11:plants11050627. [PMID: 35270097 PMCID: PMC8912576 DOI: 10.3390/plants11050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Maize is one of the leading food crops and its kernel is rich in starch, lipids, protein and other energy substances. In addition, maize kernels also contain many trace elements that are potentially beneficial to human health, such as vitamins, minerals and other secondary metabolites. However, gene resources that could be applied for nutrient improvement are limited in maize. In this review, we summarized 107 genes that are associated with nutrient content from different plant species and identified 246 orthologs from the maize genome. In addition, we constructed physical maps and performed a detailed expression pattern analysis for the 246 maize potential gene resources. Combining expression profiles and their potential roles in maize nutrient improvement, genetic engineering by editing or ectopic expression of these genes in maize are expected to improve resistant starch, oil, essential amino acids, vitamins, iron, zinc and anthocyanin levels of maize grains. Thus, this review provides valuable gene resources for maize nutrient improvement.
Collapse
|
7
|
Xiang N, Li C, Li G, Yu Y, Hu J, Guo X. Comparative Evaluation on Vitamin E and Carotenoid Accumulation in Sweet Corn ( Zea mays L.) Seedlings under Temperature Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9772-9781. [PMID: 31398019 DOI: 10.1021/acs.jafc.9b04452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aims to investigate the response profiles of vitamin E and carotenoids on transcription and metabolic levels of sweet corn seedlings under temperature stress. The treated temperatures were set as 10 °C (low temperature, LT), 25 °C (control, CK), and 40 °C (high temperature, HT) for sweet corn seedlings. The gene expression profiles of vitamin E and carotenoids biosynthesis pathways were analyzed by real time quantitative polymerase chain reaction (RT-qPCR), and the composition profiles were analyzed by high performance liquid chromatography (HPLC). Results showed that vitamin E gradually accumulated in response to LT stress but was limited by HT stress. The increase of carotenoids was suppressed by LT stress whereas HT stress promoted it. The existing results elaborated the interactive and competitive relationships of vitamin E and carotenoids in sweet corn seedlings to respond to extreme temperature stress at transcriptional and metabolic levels. The present study would improve sweet corn temperature resilience with integrative knowledge in the future.
Collapse
Affiliation(s)
- Nan Xiang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , School of Food Science and Engineering, South China University of Technology , Guangzhou 510640 , China
| | - Chunyan Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Gaoke Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Yongtao Yu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Xinbo Guo
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , School of Food Science and Engineering, South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
8
|
Galli V, Messias RS, Guzman F, Perin EC, Margis R, Rombaldi CV. Transcriptome analysis of strawberry (Fragaria × ananassa) fruits under osmotic stresses and identification of genes related to ascorbic acid pathway. PHYSIOLOGIA PLANTARUM 2019; 166:979-995. [PMID: 30367706 DOI: 10.1111/ppl.12861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Strawberry (Fragaria ananassa Duch.) is an economically important fruit with a high demand owing to its good taste and medicinal properties. However, its cultivation is affected by various biotic and abiotic stresses. Plants exhibit several intrinsic mechanisms to deal with stresses. In the case of strawberry, the mechanisms highlighting the response against these stresses remain to be elucidated, which has hampered the efforts to develop and cultivate strawberry plants with high yield and quality. Although a virtual reference genome of F. ananassa has recently been published, there is still a lack of information on the expression of genes in response to various stresses. Therefore, to provide molecular information for further studies with strawberry plants, we present the reference transcriptome dataset of F. ananassa, assembled and annotated from deep RNA-Seq data of fruits cultivated under salinity and drought stresses. We also systematically arranged a series of transcripts differentially expressed during these stresses, with an emphasis on genes related to the accumulation of ascorbic acid (AsA). Ascorbic acid is the most potent antioxidant present in these fruits and highly considered during biofortification. A comparison of the expression profile of these genes by RT-qPCR with the content of AsA in the fruits verified a tight regulation and balance between the expression of genes, from biosynthesis, degradation and recycling pathways, resulting in the reduced content of AsA in fruits under these stresses. These results provide a useful repertoire of genes for metabolic engineering, thereby improving the tolerance to stresses.
Collapse
Affiliation(s)
- Vanessa Galli
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rafael S Messias
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Frank Guzman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ellen C Perin
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rogério Margis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cesar V Rombaldi
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
9
|
Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A. Sprouted Grains: A Comprehensive Review. Nutrients 2019; 11:E421. [PMID: 30781547 PMCID: PMC6413227 DOI: 10.3390/nu11020421] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/27/2022] Open
Abstract
In the last decade, there has been an increase in the use of sprouted grains in human diet and a parallel increase in the scientific literature dealing with their nutritional traits and phytochemical contents. This review examines the physiological and biochemical changes during the germination process, and the effects on final sprout composition in terms of macro- and micro-nutrients and bioactive compounds. The main factors affecting sprout composition are taken into consideration: genotype, environmental conditions experimented by the mother plant, germination conditions. In particular, the review deepens the recent knowledge on the possible elicitation factors useful for increasing the phytochemical contents. Microbiological risks and post-harvest technologies are also evaluated, and a brief summary is given of some important in vivo studies matching with the use of grain sprouts in the diet. All the species belonging to Poaceae (Gramineae) family as well as pseudocereals species are included.
Collapse
Affiliation(s)
- Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Beatrice Falcinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Fabio Stagnari
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Carlo Lerici 1, 64023 Teramo, Italy.
| | - Angelica Galieni
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Salaria 1, 63030 Monsampolo del Tronto, Italy.
| |
Collapse
|
10
|
Mazzei P, Cozzolino V, Piccolo A. High-Resolution Magic-Angle-Spinning NMR and Magnetic Resonance Imaging Spectroscopies Distinguish Metabolome and Structural Properties of Maize Seeds from Plants Treated with Different Fertilizers and Arbuscular mycorrhizal fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2580-2588. [PMID: 29323890 DOI: 10.1021/acs.jafc.7b04340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Both high-resolution magic-angle-spinning (HRMAS) and magnetic resonance imaging (MRI) NMR spectroscopies were applied here to identify the changes of metabolome, morphology, and structural properties induced in seeds (caryopses) of maize plants grown at field level under either mineral or compost fertilization in combination with the inoculation by arbuscular mycorrhizal fungi (AMF). The metabolome of intact caryopses was examined by HRMAS-NMR, while the morphological aspects, endosperm properties and seed water distribution were investigated by MRI. Principal component analysis (PCA) was applied to evaluate 1H CPMG (Carr-Purcel-Meiboom-Gill) HRMAS spectra as well as several MRI-derived parameters ( T1, T2, and self-diffusion coefficients) of intact maize caryopses. PCA score-plots from spectral results indicated that both seeds metabolome and structural properties depended on the specific field treatment undergone by maize plants. Our findings show that a combination of multivariate statistical analyses with advanced and nondestructive NMR techniques, such as HRMAS and MRI, enables the evaluation of the effects induced on maize caryopses by different fertilization and management practices at field level. The spectroscopic approach adopted here may become useful for the objective appraisal of the quality of seeds produced under a sustainable agriculture.
Collapse
|
11
|
Diversity of Maize Kernels from a Breeding Program for Protein Quality III: Ionome Profiling. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8020009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Karak T, Kutu FR, Nath JR, Sonar I, Paul RK, Boruah RK, Sanyal S, Sabhapondit S, Dutta AK. Micronutrients (B, Co, Cu, Fe, Mn, Mo, and Zn) content in made tea (Camellia sinensis L.) and tea infusion with health prospect: A critical review. Crit Rev Food Sci Nutr 2018; 57:2996-3034. [PMID: 26478953 DOI: 10.1080/10408398.2015.1083534] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tea (Camellia sinensis L.) is a perennial acidophilic crop, and known to be a nonalcoholic stimulating beverage that is most widely consumed after water. The aim of this review paper is to provide a detailed documentation of selected micronutrient contents, viz. boron (B), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), and zinc (Zn) in made tea and tea infusion. Available data from the literature were used to calculate human health aspect associated with the consumption of tea infusion. A wide range of micronutrients reported in both made tea and tea infusion could be the major sources of micronutrients for human. The content of B, Co, Cu, Fe, Mn, Mo, and Zn in made tea are ranged from 3.04 to 58.44 μg g-1, below detectable limit (BDL) to 122.4 μg g-1, BDL to 602 μg g-1, 0.275 to 13,040 μg g-1, 0.004 to 15,866 μg g-1, 0.04 to 570.80 μg g-1 and 0.01 to 1120 μg g-1, respectively. Only 3.2 μg L-1 to 7.25 mg L-1, 0.01 μg L-1 to 7 mg L-1, 3.80 μg L-1 to 6.13 mg L-1, 135.59 μg L-1 -11.05 mg L-1, 0.05 μg L-1 to 1980.34 mg L-1, 0.012 to 3.78 μg L-1, and 1.12 μg L-1 to 2.32 μg L-1 of B, Co, Cu, Fe, Mn, Mo, and Zn, respectively, are found in tea infusion which are lower than the prescribed limit of micronutrients in drinking water by World Health Organization. Furthermore, micronutrient contents in tea infusion depend on infusion procedure as well as on the instrument used for analysis. The proportion of micronutrients found in different tea types are 1.0-88.9% for B, 10-60% for Co, 2.0-97.8% for Cu, 67.8-89.9% for Fe, 71.0-87.4% for Mn, 13.3-34% for Mo, and 34.9-83% for Zn. From the results, it can also be concluded that consumption of three cups of tea infusion per day does not have any adverse effect on human health with respect to the referred micronutrients rather got beneficial effects to human.
Collapse
Affiliation(s)
- Tanmoy Karak
- a Upper Assam Advisory Centre , Tea Research Association , Assam , India
| | - Funso Raphael Kutu
- b Department of Crop Science, School of Agricultural Sciences , North West University, Mafikeng Campus , Mmabatho , South Africa
| | - Jyoti Rani Nath
- a Upper Assam Advisory Centre , Tea Research Association , Assam , India
| | - Indira Sonar
- a Upper Assam Advisory Centre , Tea Research Association , Assam , India
| | - Ranjit Kumar Paul
- c Indian Agricultural Statistics Research Institute , New Delhi , India
| | | | - Sandip Sanyal
- d Department of Tea Processing and Manufacturing Advisory , Tea Research Association, Tocklai Tea Research Institute , Jorhat , Assam , India
| | - Santanu Sabhapondit
- e Department of Biochemistry , Tea Research Association, Tocklai Tea Research Institute , Jorhat , Assam , India
| | - Amrit Kumar Dutta
- a Upper Assam Advisory Centre , Tea Research Association , Assam , India
| |
Collapse
|
13
|
Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS One 2017; 12:e0187224. [PMID: 29077764 PMCID: PMC5659790 DOI: 10.1371/journal.pone.0187224] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022] Open
Abstract
Zinc (Zn) is one of the essential mineral elements for both plants and humans. Zn deficiency in human is one of the major causes of hidden hunger, a serious health problem observed in many developing countries. Therefore, increasing Zn concentration in edible part is an important issue for improving human Zn nutrition. Here, we found that an Australian wild rice O. meridionalis showed higher grain Zn concentrations compared with cultivated and other wild rice species. The quantitative trait loci (QTL) analysis was then performed to identify the genomic regions controlling grain Zn levels using backcross recombinant inbred lines derived from O. sativa 'Nipponbare' and O. meridionalis W1627. Four QTLs responsible for high grain Zn were detected on chromosomes 2, 9, and 10. The QTL on the chromosome 9 (named qGZn9), which showed the largest effect on grain Zn concentration was confirmed with the introgression line, which had a W1627 chromosomal segment covering the qGZn9 region in the genetic background of O. sativa 'Nipponbare'. Fine mapping of this QTL resulted in identification of two tightly linked loci, qGZn9a and qGZn9b. The candidate regions of qGZn9a and qGZn9b were estimated to be 190 and 950 kb, respectively. Furthermore, we also found that plants having a wild chromosomal segment covering qGZn9a, but not qGZn9b, is associated with fertility reduction. qGZn9b, therefore, provides a valuable allele for breeding rice with high Zn in the grains.
Collapse
|
14
|
Compositional variability of nutrients and phytochemicals in corn after processing. Journal of Food Science and Technology 2017; 54:1080-1090. [PMID: 28416857 DOI: 10.1007/s13197-017-2547-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 01/01/2023]
Abstract
The result of various process strategies on the nutrient and phytochemical composition of corn samples were studied. Fresh and cooked baby corn, sweet corn, dent corn and industrially processed and cooked popcorn, corn grits, corn flour and corn flakes were analysed for the determination of proximate, minerals, xanthophylls and phenolic acids content. This study revealed that the proximate composition of popcorn is high compared to the other corn products analyzed while the mineral composition of these maize products showed higher concentration of magnesium, phosphorus, potassium and low concentration of calcium, manganese, zinc, iron, copper, and sodium. Popcorn was high in iron, zinc, copper, manganese, sodium, magnesium and phosphorus. The xanthophylls lutein and zeaxanthin were predominant in the dent corn and the total polyphenolic content was highest in dent corn while the phenolic acids distribution was variable in different corn products. This study showed preparation and processing brought significant reduction of xanthophylls and polyphenols.
Collapse
|
15
|
|
16
|
Torres MD, Arufe S, Chenlo F, Moreira R. Coeliacs cannot live by gluten-free bread alone - every once in awhile they need antioxidants. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13287] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- María D. Torres
- Department of Chemical Engineering; Universidade de Santiago de Compostela; Rúa Lope Gómez de Marzoa Santiago de Compostela E15782 Spain
| | - Santiago Arufe
- Department of Chemical Engineering; Universidade de Santiago de Compostela; Rúa Lope Gómez de Marzoa Santiago de Compostela E15782 Spain
| | - Francisco Chenlo
- Department of Chemical Engineering; Universidade de Santiago de Compostela; Rúa Lope Gómez de Marzoa Santiago de Compostela E15782 Spain
| | - Ramon Moreira
- Department of Chemical Engineering; Universidade de Santiago de Compostela; Rúa Lope Gómez de Marzoa Santiago de Compostela E15782 Spain
| |
Collapse
|
17
|
Ding J, Yang T, Feng H, Dong M, Slavin M, Xiong S, Zhao S. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1094-1102. [PMID: 26765954 DOI: 10.1021/acs.jafc.5b04859] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biofortification of staple grains with high contents of essential micronutrients is an important strategy to overcome micronutrient malnutrition. However, few attempts have targeted at γ-aminobutyric acid (GABA), a functional nutrient for aging populations. In this study, two rice cultivars, Heinuo and Xianhui 207, were used to investigate changes in GABA and other nutritional compounds of dehulled rice after germination under normoxic and hypoxic conditions. Forty-one metabolites were identified in both cultivars treated by normoxic germination, whereas the germinated dehulled rice of Heinuo and Xianhui 207 under hypoxic treatment had 43 and 41 metabolites identified, respectively. GABA increased in dehulled rice after germination, especially under hypoxia. Meanwhile, a number of other health-beneficial and/or flavor-related compounds such as lysine and d-mannose increased after the hypoxic treatment. The accumulation of GABA exhibited genotype-specific modes in both normoxic and hypoxic treatments. With regard to GABA production, Xianhui 207 was more responsive to the germination process than Heinuo, whereas Heinuo was more responsive to hypoxia than Xianhui 207. This study provides a promising approach to biofortify dehulled rice with increased GABA and other nutrients through metabolomic-based regulation.
Collapse
Affiliation(s)
- Junzhou Ding
- College of Food Sciences and Technology, Huazhong Agricultural University , Wuhan 430070, China
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Tewu Yang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Sciences and Technology, Huazhong Agricultural University , Wuhan 430070, China
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mengyi Dong
- Department of Nutrition and Food Studies, George Mason University , Fairfax, Virginia 22030, United States
| | - Margaret Slavin
- Department of Nutrition and Food Studies, George Mason University , Fairfax, Virginia 22030, United States
| | - Shanbai Xiong
- College of Food Sciences and Technology, Huazhong Agricultural University , Wuhan 430070, China
| | - Siming Zhao
- College of Food Sciences and Technology, Huazhong Agricultural University , Wuhan 430070, China
| |
Collapse
|
18
|
da Silva Messias R, Galli V, Dos Anjos E Silva SD, Rombaldi CV. Carotenoid biosynthetic and catabolic pathways: gene expression and carotenoid content in grains of maize landraces. Nutrients 2014; 6:546-63. [PMID: 24476639 PMCID: PMC3942716 DOI: 10.3390/nu6020546] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/19/2013] [Accepted: 12/10/2013] [Indexed: 01/06/2023] Open
Abstract
Plant carotenoids have been implicated in preventing several age-related diseases, and they also provide vitamin A precursors; therefore, increasing the content of carotenoids in maize grains is of great interest. It is not well understood, however, how the carotenoid biosynthetic pathway is regulated. Fortunately, the maize germplasm exhibits a high degree of genetic diversity that can be exploited for this purpose. Here, the accumulation of carotenoids and the expression of genes from carotenoid metabolic and catabolic pathways were investigated in several maize landraces. The carotenoid content in grains varied from 10.03, in the white variety MC5, to 61.50 μg·g−1, in the yellow-to-orange variety MC3, and the major carotenoids detected were lutein and zeaxanthin. PSY1 (phythoene synthase) expression showed a positive correlation with the total carotenoid content. Additionally, the PSY1 and HYD3 (ferredoxin-dependent di-iron monooxygenase) expression levels were positively correlated with β-cryptoxanthin and zeaxanthin, while CYP97C (cytochrome P450-type monooxygenase) expression did not correlate with any of the carotenoids. In contrast, ZmCCD1 (carotenoid dioxygenase) was more highly expressed at the beginning of grain development, as well as in the white variety, and its expression was inversely correlated with the accumulation of several carotenoids, suggesting that CCD1 is also an important enzyme to be considered when attempting to improve the carotenoid content in maize. The MC27 and MC1 varieties showed the highest HYD3/CYP97C ratios, suggesting that they are promising candidates for increasing the zeaxanthin content; in contrast, MC14 and MC7 showed low HYD3/CYP97C, suggesting that they may be useful in biofortification efforts aimed at promoting the accumulation of provitamin A. The results of this study demonstrate the use of maize germplasm to provide insight into the regulation of genes involved in the carotenoid pathway, which would thus better enable us to select promising varieties for biofortification efforts.
Collapse
Affiliation(s)
| | - Vanessa Galli
- Embrapa Temperate Agriculture, BR 396, Km 78, P.O. Box 403, Pelotas-RS 96010-900, Brazil.
| | | | - Cesar Valmor Rombaldi
- Federal University of Pelotas, Eliseu Maciel Agronomy College, Campus Universitário s/n, P.O. Box 354, Pelotas-RS 96010-900, Brazil.
| |
Collapse
|