1
|
Yu B, Ma T, Nawaz M, Chen H, Zheng H. Advances in Metabolic Engineering for the Accumulation of Astaxanthin Biosynthesis. Mol Biotechnol 2024:10.1007/s12033-024-01289-1. [PMID: 39373956 DOI: 10.1007/s12033-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Astaxanthin, a lipophilic carotenoid renowned for its strong antioxidant activity, holds significant commercial value across industries such as feed, food, and cosmetics. Although astaxanthin can be synthesized through chemical methods, it may contain toxic by-products in the synthesized astaxanthin, limiting its application in medicine or functional food. Natural astaxanthin can be extracted from algae, however, the cultivation cycle of algae is relatively longer compared to microorganisms. With the advancement of synthetic biology and metabolic engineering, the method of microbial fermentation has emerged as a promising strategy for the large-scale production of astaxanthin. This article provides a comprehensive overview of the research progress in astaxanthin biosynthesis, highlighting the use of the natural host Xanthophyllomyces dendrorhous, and the heterologous hosts Yarrowia lipolytica and Saccharomyces cerevisiae. Additionally, future research prospects are also discussed.
Collapse
Affiliation(s)
- Bingxin Yu
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
2
|
Sasi Rekha V, Sankar K, Rajaram S, Karuppiah P, Dawoud TMS, Syed A, Elgorban AM. Unveiling the impact of additives on structural integrity, thermal and color stability of C-phycocyanin - Agar hydrocolloid. Food Chem 2024; 448:139000. [PMID: 38547706 DOI: 10.1016/j.foodchem.2024.139000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/24/2024]
Abstract
C-Phycocyanin and sugar (C-PC/S) blended agar hydrocolloid was prepared and its rheological, thermo-functional and morphological properties were examined based on the fluorescence excitation-emission matrix profile. Sucrose (40%, w/v) determined as a superior preservative, maintaining the native conformation of C-PC effectively. C-PC/S exhibited enhanced structural integrity with high storage modulus (G') and 86.4% swelling index. FT-IR demonstrated strong intramolecular bonding. TGA revealed that the presence of sucrose prolonged the devolatilization peak up to 325 °C, with a degradation rate of -2.273 mg/min, it the thermal stability. C-PC/S fortified hydrocolloid in ice cream (5.0% w/w), reduced melting rate up to five times. In conclusion, sucrose as a promising enhancer of color stability and structural integrity for C-PC, and this combination effectively improves the functional and rheological properties. Further, the findings exposed the agar hydrocolloid as a potential enhancer of color retention and improved performance for various food and cosmetic products.
Collapse
Affiliation(s)
- V Sasi Rekha
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, K.Vellakulam, 625701, Tamil Nadu, India
| | - Karthikumar Sankar
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, K.Vellakulam, 625701, Tamil Nadu, India.
| | - Shyamkumar Rajaram
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, K.Vellakulam, 625701, Tamil Nadu, India
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box - 2455, Riyadh 11451, Saudi Arabia.
| | - Turkey M S Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box - 2455, Riyadh 11451, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box - 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Centre of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Chen L, Liang Q, Lai Z, Cui H, Xu Z, Chen Z, Dong Z, Wang Z, Guo Y. Systematic selection of suitable reference genes for quantitative real-time PCR normalization studies of gene expression in Lutjanus erythropterus. Sci Rep 2024; 14:13323. [PMID: 38858385 PMCID: PMC11164968 DOI: 10.1038/s41598-024-63335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Quantitative real-time PCR (qRT-PCR) has been widely employed for the study of gene expression in fish, and accurate normalization is crucial. In this study, we aimed to identify the most stably expressed genes in various tissues, different developmental stages, and within astaxanthin treatment groups in Lutjanus erythropterus. Twelve candidate genes (EEF1A, CYB5R3, DLD, IDH3A, MRPL17, MRPL43, NDUFS7, PABPC1, PAGR1, PFDN2, PSMC3, and RAB10) were examined via qRT-PCR. We employed geNorm and NormFinder to assess their stability. The results revealed that RAB10 and PFDN2 exhibited relatively stable expression patterns across different tissue and astaxanthin treatment groups, while NDUFS7 and MRPL17 proved to be the most reliable reference gene combinations across various developmental stages. The stability of these selected genes was further validated by assessing the expression of two target genes, CRADD and CAPNS1, across developmental stages, reinforcing the reliability of NDUFS7 as it closely aligned with transcriptome-wide expression patterns at these stages. The present results will help researchers to obtain more accurate results in future qRT-PCR analysis in L. erythropterus.
Collapse
Affiliation(s)
- Lujun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Qiulu Liang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhuoxin Lai
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Haitao Cui
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhenmin Xu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zizhao Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China.
| |
Collapse
|
4
|
Dhandwal A, Bashir O, Malik T, Salve RV, Dash KK, Amin T, Shams R, Wani AW, Shah YA. Sustainable microalgal biomass as a potential functional food and its applications in food industry: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33431-6. [PMID: 38710849 DOI: 10.1007/s11356-024-33431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Microalgae (MA) are the most abundant seaweeds with high nutritional properties. They are accepted as potential biocatalysts for the bioremediation of wastewater. They are widely used in food, feed, and biofuel industries and can potentially be food for future generations. MA-based purification of wastewater technology could be a universal alternative solution for the recovery of resources from wastewater for low-cost biomass feedstock for industry. They provide a wide range of functional components, viz. omega-3 fatty acids, along with a plenteous number of pigments such as ß-carotene, astaxanthin, lutein, phycocyanin, and chlorophyll, which are used extensively as food additives and nutraceuticals. Further, proteins, lipids, vitamins, and carbohydrates are described as nutritional characteristics in MA. They are investigated as single-cell protein, thickening/stabilizing agents, and pigment sources in the food industry. The review emphasizes the production and extraction of nutritional and functional components of algal biomass and the role of microalgal polysaccharides in digestion and nutritional absorption in the gastrointestinal tract. Further, the use of MA in the food industry was also investigated along with their potential therapeutic applications.
Collapse
Affiliation(s)
- Akhil Dhandwal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Tanu Malik
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Vinayak Salve
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Phagwara, Punjab, India
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| |
Collapse
|
5
|
Occhipinti PS, Russo N, Foti P, Zingale IM, Pino A, Romeo FV, Randazzo CL, Caggia C. Current challenges of microalgae applications: exploiting the potential of non-conventional microalgae species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3823-3833. [PMID: 37971887 DOI: 10.1002/jsfa.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
The intensified attention to health, the growth of an elderly population, the changing lifestyles, and the medical discoveries have increased demand for natural and nutrient-rich foods, shaping the popularity of microalgae products. Microalgae thanks to their metabolic versatility represent a promising solution for a 'green' economy, exploiting non-arable land, non-potable water, capturing carbon dioxide (CO2) and solar energy. The interest in microalgae is justified by their high content of bioactive molecules, such as amino acids, peptides, proteins, carbohydrates, polysaccharides, polyunsaturated fatty acids (as ω-3 fatty acids), pigments (as β-carotene, astaxanthin, fucoxanthin, phycocyanin, zeaxanthin and lutein), or mineral elements. Such molecules are of interest for human and animal nutrition, cosmetic and biofuel production, for which microalgae are potential renewable sources. Microalgae, also, represent effective biological systems for treating a variety of wastewaters and can be used as a CO2 mitigation approach, helping to combat greenhouse gases and global warming emergencies. Recently a growing interest has focused on extremophilic microalgae species, which are easier to cultivate axenically and represent good candidates for open pond cultivation. In some cases, the cultivation and/or harvesting systems are still immature, but novel techniques appear as promising solutions to overcome such barriers. This review provides an overview on the actual microalgae cultivation systems and the current state of their biotechnological applications to obtain high value compounds or ingredients. Moreover, potential and future research opportunities for environment, human and animal benefits are pointed out. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
| | - Paola Foti
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Irene Maria Zingale
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
| | - Flora Valeria Romeo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Acireale, Italy
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
- CERNUT, Interdepartmental Research Center in Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
- CERNUT, Interdepartmental Research Center in Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Thevarajah B, Piyatilleke S, Nimarshana PHV, Koushalya S, Malik A, Ariyadasa TU. Exploring effective light spectral conversion techniques for enhanced production of Spirulina-derived blue pigment protein, c-phycocyanin. BIORESOURCE TECHNOLOGY 2024; 399:130612. [PMID: 38508281 DOI: 10.1016/j.biortech.2024.130612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Spirulina is a promising feedstock for c-phycocyanin, a blue pigment-protein, commercially incorporated in many food products for its desirable bright blue attributes, exceptional bioavailability, and inherent therapeutic properties. Remarkably, enhancing c-phycocyanin synthesis in Spirulina would facilitate economic viability and sustainability at large-scale production, as the forecasted market value is $ 409.8 million by 2030. Notably, the lighting source plays a key role in enhancing c-phycocyanin in Spirulina, and thus, strategies to filter/concentrate the photons of respective wavelengths, influencing light spectra, are beneficial. Enveloping open raceway ponds and greenhouses by luminescent solar concentrators and light filtering sheets enables solar spectral conversion of the sunlight at desirable wavelengths, emerges as a promising strategy to enhance synthesis of c-phycocyanin in Spirulina. Nevertheless, the conduction of techno-economic assessments and evaluation of scalability at large-scale cultivation of Spirulina are essential for the real-time implementation of lighting strategies.
Collapse
Affiliation(s)
- Bavatharny Thevarajah
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Sajani Piyatilleke
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - P H V Nimarshana
- Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - S Koushalya
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka.
| |
Collapse
|
7
|
Rifna EJ, Rajauria G, Dwivedi M, Tiwari BK. Circular economy approaches for the production of high-value polysaccharides from microalgal biomass grown on industrial fish processing wastewater: A review. Int J Biol Macromol 2024; 254:126887. [PMID: 37709230 DOI: 10.1016/j.ijbiomac.2023.126887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The discharge of high-strength wastewater from the fish-processing industries, comprising undefined blends of toxic and organic compounds, has always been a subject of great disquiet worldwide. Despite a large number of effluent treatment methodologies known to date, biosorption with the aid of naturally grown microalgae has been recognized recently to possess promising outcomes in eradicating pollutants comprising organic compounds from liquid effluents. Interestingly, the microalgal biomass harvested from phytoremediation of fish effluent was identified to be abundant in bio compounds that exhibited potential application in pharmaceutical, nutraceutical, and, aquaculture feed, generating a circular economy. In this context, the focus of the review is to emphasize the applications of microalgal species as naturally occurring and zero-cost adsorbents for the elimination of organic contaminants from fish liquid effluents. The summary of the literature encompassed in this work is supposed to benefit the readers to comprehend the primary mechanisms by which microalgae uptakes the organic matter from fish processing effluents and converts them into various biological molecules. From the scientific works assessed through this review, the most promising microalgae species regards to nutrient uptake and removal efficiency from fish effluent, were identified as Chlorella sp. > Spirulina sp. > Scenedesmus sp. The review further revealed supercritical fluid extraction as the robust extraction tool for the extraction of targeted bioproducts from microalgal biomass grown within fish effluents. Eventually, the information presented through this review establishes phytoremediation using microalgal biomass to be a natural cost-effective, sustainable circular bio-economy approach that could be robustly applied for the efficient treatment of wastewater discharged from food processing industries.
Collapse
Affiliation(s)
- E J Rifna
- Teagasc Food Research Centre, Department of Food Chemistry and Technology, Ashtown D15 KN3K, Dublin, Ireland
| | - Gaurav Rajauria
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Tralee V92 CX88, Co. Kerry, Ireland; School of Microbiology, School of Food and Nutritional Sciences, SUSFERM Fermentation Science and Bioprocess Engineering Centre, University College Cork, Cork, Ireland.
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Brijesh K Tiwari
- Teagasc Food Research Centre, Department of Food Chemistry and Technology, Ashtown D15 KN3K, Dublin, Ireland.
| |
Collapse
|
8
|
Sharma N, Shekhar P, Kumar V, Kaur H, Jayasena V. Microbial pigments: Sources, current status, future challenges in cosmetics and therapeutic applications. J Basic Microbiol 2024; 64:4-21. [PMID: 37861279 DOI: 10.1002/jobm.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Color serves as the initial attraction and offers a pleasing aspect. While synthetic colorants have been popular for many years, their adverse environmental and health effects cannot be overlooked. This necessitates the search for natural colorants, especially microbial colorants, which have proven and more effective. Pigment-producing microorganisms offer substantial benefits. Natural colors improve product marketability and bestow additional benefits, including antioxidant, antiaging, anticancer, antiviral, antimicrobial, and antitumor properties. This review covers the various types of microbial pigments, the methods to enhance their production, and their cosmetic and therapeutic applications. We also address the challenges faced during the commercial production of microbial pigments and propose potential solutions.
Collapse
Affiliation(s)
- Nitin Sharma
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | | | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Harpreet Kaur
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
9
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
10
|
Lee WK, Ryu YK, Kim T, Park A, Lee YJ, Sunwoo IY, Koh EJ, Oh C, Choi WY, Kang DH. Enhanced Photosynthetic Pigment Production Using a Scaled-Up Continuously Circulated Bioreactor. Mar Drugs 2023; 21:576. [PMID: 37999400 PMCID: PMC10672258 DOI: 10.3390/md21110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Microalgae have gained attention as a promising source of chlorophylls and carotenoids in various industries. However, scaling up of conventional bubble columns presents challenges related to cell sedimentation and the presence of non-photosynthetic cells due to non-circulating zones and decreased light accessibility, respectively. Therefore, this study aimed to evaluate the newly developed continuously circulated bioreactor ROSEMAX at both laboratory and pilot scales, compared to a conventional bubble column. There was no significant difference in the biomass production and photosynthetic pigment content of Tetraselmis sp. cultivated at the laboratory scale (p > 0.05). However, at the pilot scale, the biomass cultured in ROSEMAX showed significantly high biomass (1.69 ± 0.11 g/L, dry weight, DW), chlorophyll-a (14.60 ± 0.76 mg/g, DW), and total carotene (5.64 ± 0.81 mg/g, DW) concentrations compared to the conventional bubble column (1.17 ± 0.11 g/L, DW, 10.67 ± 0.72 mg/g, DW, 3.21 ± 0.56 mg/g, DW, respectively) (p ≤ 0.05). Flow cytometric analyses confirmed that the proportion of Tetraselmis sp. live cells in the culture medium of ROSEMAX was 32.90% higher than that in the conventional bubble column, with a photosynthetic efficiency 1.14 times higher. These results support suggestions to use ROSEMAX as a bioreactor for industrial-scale applications.
Collapse
Affiliation(s)
- Won-Kyu Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670 Iljudong-ro, Gujwa-eup, Jeju-si 63349, Republic of Korea; (W.-K.L.); (Y.-K.R.); (T.K.); (A.P.); (Y.-J.L.); (I.Y.S.); (E.-J.K.); (C.O.); (W.-Y.C.)
- Department of Marine Biotechnology, KIOST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Yong-Kyun Ryu
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670 Iljudong-ro, Gujwa-eup, Jeju-si 63349, Republic of Korea; (W.-K.L.); (Y.-K.R.); (T.K.); (A.P.); (Y.-J.L.); (I.Y.S.); (E.-J.K.); (C.O.); (W.-Y.C.)
- Department of Marine Biotechnology, KIOST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Taeho Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670 Iljudong-ro, Gujwa-eup, Jeju-si 63349, Republic of Korea; (W.-K.L.); (Y.-K.R.); (T.K.); (A.P.); (Y.-J.L.); (I.Y.S.); (E.-J.K.); (C.O.); (W.-Y.C.)
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670 Iljudong-ro, Gujwa-eup, Jeju-si 63349, Republic of Korea; (W.-K.L.); (Y.-K.R.); (T.K.); (A.P.); (Y.-J.L.); (I.Y.S.); (E.-J.K.); (C.O.); (W.-Y.C.)
| | - Yeon-Ji Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670 Iljudong-ro, Gujwa-eup, Jeju-si 63349, Republic of Korea; (W.-K.L.); (Y.-K.R.); (T.K.); (A.P.); (Y.-J.L.); (I.Y.S.); (E.-J.K.); (C.O.); (W.-Y.C.)
| | - In Yung Sunwoo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670 Iljudong-ro, Gujwa-eup, Jeju-si 63349, Republic of Korea; (W.-K.L.); (Y.-K.R.); (T.K.); (A.P.); (Y.-J.L.); (I.Y.S.); (E.-J.K.); (C.O.); (W.-Y.C.)
| | - Eun-Jeong Koh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670 Iljudong-ro, Gujwa-eup, Jeju-si 63349, Republic of Korea; (W.-K.L.); (Y.-K.R.); (T.K.); (A.P.); (Y.-J.L.); (I.Y.S.); (E.-J.K.); (C.O.); (W.-Y.C.)
| | - Chulhong Oh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670 Iljudong-ro, Gujwa-eup, Jeju-si 63349, Republic of Korea; (W.-K.L.); (Y.-K.R.); (T.K.); (A.P.); (Y.-J.L.); (I.Y.S.); (E.-J.K.); (C.O.); (W.-Y.C.)
- Department of Marine Biotechnology, KIOST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Woon-Yong Choi
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670 Iljudong-ro, Gujwa-eup, Jeju-si 63349, Republic of Korea; (W.-K.L.); (Y.-K.R.); (T.K.); (A.P.); (Y.-J.L.); (I.Y.S.); (E.-J.K.); (C.O.); (W.-Y.C.)
- Department of Marine Biotechnology, KIOST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Do-Hyung Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670 Iljudong-ro, Gujwa-eup, Jeju-si 63349, Republic of Korea; (W.-K.L.); (Y.-K.R.); (T.K.); (A.P.); (Y.-J.L.); (I.Y.S.); (E.-J.K.); (C.O.); (W.-Y.C.)
| |
Collapse
|
11
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
12
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
13
|
Zhang L, Liu J, Shen X, Li S, Li W, Xiao X. Response Surfaces Method and Artificial Intelligence Approaches for Modeling the Effects of Environmental Factors on Chlorophyll a in Isochrysis galbana. Microorganisms 2023; 11:1875. [PMID: 37630435 PMCID: PMC10458309 DOI: 10.3390/microorganisms11081875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
This study reported the condition optimization for chlorophyll a (Chl a) from the microalga Isochrysis galbana. The key parameters affecting the Chl a content of I. galbana were determined by a single-factor optimization experiment. Then the individual and interaction of three factors, including salinity, pH and nitrogen concentration, was optimized by using the method of Box-Benhnken Design. The highest Chl a content (0.51 mg/L) was obtained under the optimum conditions of salinity 30‱ and nitrogen concentration of 72.1 mg/L at pH 8.0. The estimation models of Chl a content based on the response surfaces method (RSM) and three different artificial intelligence models of artificial neural network (ANN), support vector machine (SVM) and radial basis function neural network (RBFNN), were established, respectively. The fitting model was evaluated by using statistical analysis parameters. The high accuracy of prediction was achieved on the ANN, SVM and RBFNN models with correlation coefficients (R2) of 0.9113, 0.9127, and 0.9185, respectively. The performance of these artificial intelligence models depicted better prediction capability than the RSM model for anticipating all the responses. Further experimental results suggested that the proposed SVM and RBFNN model are efficient techniques for accurately fitting the Chl a content of I. galbana and will be helpful in validating future experimental work on the Chl a content by computational intelligence approach.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinfeng Xiao
- College of Chemistry and Environment Engineering, Shandong University of Science & Technology, Qingdao 266510, China
| |
Collapse
|
14
|
Kashem AHM, Das P, AbdulQuadir M, Khan S, Thaher MI, Alghasal G, Hawari AH, Al-Jabri H. Microalgal bioremediation of brackish aquaculture wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162384. [PMID: 36841414 DOI: 10.1016/j.scitotenv.2023.162384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Rapid aquaculture industry development contributed to a major increase in aquaculture wastewater generation. In the context of a circular economy, aquaculture wastewater treatment should simultaneously recover nutrients from the wastewater. Among many treatment methods, bioremediation using microalgae could be a cost-effective and environmentally friendly system that can be applied to treat aquaculture wastewater and simultaneously produce high-value microalgal biomass. This study explored the feasibility of treating brackish wastewater (0.8 % NaCl) generated from a Qatari commercial tilapia farm by microalgae. At first, 10 strains were grown using wastewater from the local farm in an indoor experiment. Based on nitrogen assimilation, biomass yield, biomass quality, and ease of harvesting, 4 candidate strains (Haematococcus sp., Neochloris sp., Monoraphidium sp., and Nostoc sp.) were shortlisted for outdoor growth experiments. Although Nostoc sp. could not grow outdoor in the wastewater, the other three strains were able to assimilate at least 70.5 % of the total nitrogen in the wastewater. Haematococcus sp. and Neochloris sp. could be harvested using self-settling, whereas Monoraphidium required an energy-intensive tangential flow filtration membrane process. Hence, the overall energy requirement for bioremediation, including biomass dewatering, for Haematococcus sp., Neochloris sp., and Monoraphidium sp. were determined as 0.64, 0.78, and 5.68 MJ/m3, respectively. Neochloris sp. had almost twice the biomass yield compared to Haematococcus sp. - suggesting that Neochloris sp. could be a potential candidate for aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Abdurahman Hafez Mohammed Kashem
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar; Department of Civil and Architectural Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar.
| | - Mohammad AbdulQuadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Ghamza Alghasal
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar
| | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
15
|
Marazzi F, Fornaroli R, Clagnan E, Brusetti L, Ficara E, Bellucci M, Mezzanotte V. Wastewater from textile digital printing as a substrate for microalgal growth and valorization. BIORESOURCE TECHNOLOGY 2023; 375:128828. [PMID: 36878375 DOI: 10.1016/j.biortech.2023.128828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This study aims at evaluating an innovative biotechnological process for the concomitant bioremediation and valorization of wastewater from textile digital printing technology based on a microalgae/bacteria consortium. Nutrient and colour removal were assessed in lab-scale batch and continuous experiments and the produced algae/bacteria biomass was characterized for pigment content and biomethane potential. Microbial community analysis provided insight of the complex community structure responsible for the bioremediation action. Specifically, a community dominated by Scenedesmus spp. and xenobiotic and dye degrading bacteria was naturally selected in continuous photobioreactors. Data confirm the ability of the microalgae/bacteria consortium to grow in textile wastewater while reducing the nutrient content and colour. Improvement strategies were eventually identified to foster biomass growth and process performances. The experimental findings pose the basis of the integration of a microalgal-based process into the textile sector in a circular economy perspective.
Collapse
Affiliation(s)
- Francesca Marazzi
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - Riccardo Fornaroli
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - Elisa Clagnan
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Lorenzo Brusetti
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy
| | - Micol Bellucci
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy; Research and Science Department, Italian Space Agency (ASI), Via del Politecnico snc, Rome 00133, Italy.
| | - Valeria Mezzanotte
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
16
|
Iglesias MJ, Soengas R, López-Ortiz F, Biondi N, Tredici MR, Gutiérrez-Del-Río I, López-Ibáñez S, Villar CJ, Lombó F, López Y, Gabasa Y, Soto S. Effect of culture conditions at lab-scale on metabolite composition and antibacterial and antibiofilm activities of Dunaliella tertiolecta. JOURNAL OF PHYCOLOGY 2023; 59:356-369. [PMID: 36690599 DOI: 10.1111/jpy.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
Dunaliella tertiolecta RCC6 was cultivated indoors in glass bubble column photobioreactors operated under batch and semi-continuous regimens and using two different conditions of light and temperature. Biomass was harvested by centrifugation, frozen, and then lyophilized. The soluble material was obtained by sequential extraction of the lyophilized biomass with solvents with a gradient of polarity (hexane, ethyl acetate, and methanol) and its metabolic composition was investigated through nuclear magnetic resonance (NMR) spectroscopy. The effect of light on chlorophyll biosynthesis was clearly shown through the relative intensities of the 1 H NMR signals due to pheophytins. The highest signal intensity was observed for the biomasses obtained at lower light intensity, resulting in a lower light availability per cell. Under high temperature and light conditions, the 1 H NMR spectra of the hexane extracts showed an incipient accumulation of triacylglycerols. In these conditions and under semi-continuous regimen, an enhancement of β-carotene and sterols production was observed. The antibacterial and antibiofilm activities of the extracts were also tested. Antibacterial activity was not detected, regardless of culture conditions. In contrast, the minimal biofilm inhibitory concentrations (MBICs) against Escherichia coli for the hexane extract obtained under semi-continuous regimen using high temperature and irradiance conditions was promising.
Collapse
Affiliation(s)
- María José Iglesias
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Raquel Soengas
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Fernando López-Ortiz
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Natascia Biondi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Mario R Tredici
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Ignacio Gutiérrez-Del-Río
- Área de Microbiología, Research Group BIONUC, Universidad de Oviedo, IUOPA (Instituto Universitario de Oncología del Principado de Asturias), ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Sara López-Ibáñez
- Área de Microbiología, Research Group BIONUC, Universidad de Oviedo, IUOPA (Instituto Universitario de Oncología del Principado de Asturias), ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Claudio J Villar
- Área de Microbiología, Research Group BIONUC, Universidad de Oviedo, IUOPA (Instituto Universitario de Oncología del Principado de Asturias), ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Felipe Lombó
- Área de Microbiología, Research Group BIONUC, Universidad de Oviedo, IUOPA (Instituto Universitario de Oncología del Principado de Asturias), ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Yuly López
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Sara Soto
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Zarekarizi A, Hoffmann L, Burritt DJ. The potential of manipulating light in the commercial production of carotenoids from algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
18
|
Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carotenoid production from oleaginous red yeast has been considered as a safe alternative to chemically synthesized carotenoids commonly used in the food industry, since plant-based carotenoids are expensive and an irregular source for obtaining pigments. This is a summative review on the factors affecting carotenoid production, cost-effective production strategies using various inexpensive feedstock, metabolic engineering, and strain improvisation. The review specially highlights the various potential applications of carotenoids as anti-microbial, anti-viral, antioxidant, anti-cancerous, anti-malarial agents, etc. The importance of such natural and easily available resources for prevention, evasion, or cure of emerging diseases and their plausible nutraceutical effect demands exhaustive research in this area.
Collapse
|
19
|
Effects of Different Nitrogen Concentrations on Co-Production of Fucoxanthin and Fatty Acids in Conticribra weissflogii. Mar Drugs 2023; 21:md21020106. [PMID: 36827147 PMCID: PMC9967173 DOI: 10.3390/md21020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Fucoxanthin and fatty acids are active substances that are beneficial to the growth and immunity of humans and aquatic animals. However, relatively few species have been exploited for fucoxanthin and fatty acids in the industry. At the same time, due to its low extract content, poor stability, high production cost, and serious seasonal and regional limitations, the industry cannot normally meet the greater demand of the international market. Therefore, this experiment seeks to improve the fucoxanthin and fatty acid content of C. weissflogii by adjusting the nitrogen concentration in the culture medium. It was found that when the nitrogen concentration was 150 mg L-1, the cell number was 1.5 × 106 cell mL-1, and the average biomass was 0.75 g L-1. The mean value of carotenoid concentration was 2.179 mg L-1. The average concentration of fucoxanthin was 1.547 mg g-1. When the nitrogen concentration was 75 mg L-1, the fatty acid content reached its highest. By adjusting the concentration of nitrogen, the contents of fucoxanthin and fatty acids were increased. The results provided a theoretical basis for commercial extraction of fucoxanthin and fatty acids and further promoted the industrialization of fucoxanthin and fatty acids.
Collapse
|
20
|
Sun H, Wang Y, He Y, Liu B, Mou H, Chen F, Yang S. Microalgae-Derived Pigments for the Food Industry. Mar Drugs 2023; 21:md21020082. [PMID: 36827122 PMCID: PMC9967018 DOI: 10.3390/md21020082] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In the food industry, manufacturers and customers have paid more attention to natural pigments instead of the synthetic counterparts for their excellent coloring ability and healthy properties. Microalgae are proven as one of the major photosynthesizers of naturally derived commercial pigments, gaining higher value in the global food pigment market. Microalgae-derived pigments, especially chlorophylls, carotenoids and phycobiliproteins, have unique colors and molecular structures, respectively, and show different physiological activities and health effects in the human body. This review provides recent updates on characteristics, application fields, stability in production and extraction processes of chlorophylls, carotenoids and phycobiliproteins to standardize and analyze their commercial production from microalgae. Potential food commodities for the pigment as eco-friendly colorants, nutraceuticals, and antioxidants are summarized for the target products. Then, recent cultivation strategies, metabolic and genomic designs are presented for high pigment productivity. Technical bottlenecks of downstream processing are discussed for improved stability and bioaccessibility during production. The production strategies of microalgal pigments have been exploited to varying degrees, with some already being applied at scale while others remain at the laboratory level. Finally, some factors affecting their global market value and future prospects are proposed. The microalgae-derived pigments have great potential in the food industry due to their high nutritional value and competitive production cost.
Collapse
Affiliation(s)
- Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| |
Collapse
|
21
|
Díaz-Sánchez LM, Blanco-Tirado C, Combariza MY. Electron-transfer MALDI MS methodology for microalgae/phytoplankton pigments analysis. MethodsX 2023; 10:102140. [PMID: 37007620 PMCID: PMC10050785 DOI: 10.1016/j.mex.2023.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
The method describes pigment analysis from microalgae/phytoplankton extracts using electron-transfer Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (ET MALDI MS). Current microalgae/phytoplankton pigment analysis requires resource- and time-intensive chromatographic methods due to the broad polarity range of the target analytes. On the other hand, traditional MALDI MS chlorophyll analysis, using proton-transfer matrices such as 2,5-dihydroxybenzoic acid (DHB) or α-cyano-4-hydroxycinnamic acid (CHCA), results in central metal loss and phytol-ester cleavage. ET MALDI MS is an alternative for the rapid screening and detection of pigments in microalgae extracts.•MALDI matrices with ionization energies above 8.0 eV guarantee electron-transfer processes from photosynthetic and photoprotective pigments whose ionization energies lay below 7.5 eV.•ET MALDI MS pigment analysis agrees with data gathered from conventional chromatographic techniques (HPLC) and optical microscopy for pigment extracts from C. vulgaris cultures and freshwater phytoplankton samples.•The ET MALDI MS method allows fast and reliable detection of pigments in microalgae cultures and freshwater phytoplankton samples.
Collapse
|
22
|
Deepika C, Wolf J, Roles J, Ross I, Hankamer B. Sustainable Production of Pigments from Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:171-251. [PMID: 36571616 DOI: 10.1007/10_2022_211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.
Collapse
Affiliation(s)
- Charu Deepika
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Juliane Wolf
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - John Roles
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Ross
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
23
|
Muñoz-Miranda LA, Iñiguez-Moreno M. An extensive review of marine pigments: sources, biotechnological applications, and sustainability. AQUATIC SCIENCES 2023; 85:68. [PMID: 37096011 PMCID: PMC10112328 DOI: 10.1007/s00027-023-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The global demand for food and healthcare products based on natural compounds means that the industrial and scientific sectors are on a continuous search for natural colored compounds that can contribute to the replacement of synthetic colors. Natural pigments are a heterogeneous group of chemical molecules, widely distributed in nature. Recently, the interest in marine organisms has increased as they represent the most varied environment in the world and provide a wide range of colored compounds with bioactive properties and biotechnological applications in areas such as the food, pharmaceutical, cosmetic, and textile industries. The use of marine-derived pigments has increased during the last two decades because they are environmentally safe and healthy compounds. This article provides a comprehensive review of the current knowledge of sources, applications, and sustainability of the most important marine pigments. In addition, alternatives to protect these compounds from environmental conditions and their applications in the industrial sector are reviewed.
Collapse
Affiliation(s)
- Luis Alfonso Muñoz-Miranda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 Jalisco Mexico
| | - Maricarmen Iñiguez-Moreno
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey, 64849 Mexico
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849 Mexico
- Universidad Politécnica del Estado de Nayarit, Tepic, 63506 Nayarit Mexico
| |
Collapse
|
24
|
The increasing role of structural proteomics in cyanobacteria. Essays Biochem 2022; 67:269-282. [PMID: 36503929 PMCID: PMC10070481 DOI: 10.1042/ebc20220095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Cyanobacteria, also known as blue–green algae, are ubiquitous organisms on the planet. They contain tremendous protein machineries that are of interest to the biotechnology industry and beyond. Recently, the number of annotated cyanobacterial genomes has expanded, enabling structural studies on known gene-coded proteins to accelerate. This review focuses on the advances in mass spectrometry (MS) that have enabled structural proteomics studies to be performed on the proteins and protein complexes within cyanobacteria. The review also showcases examples whereby MS has revealed critical mechanistic information behind how these remarkable machines within cyanobacteria function.
Collapse
|
25
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
26
|
Sirohi P, Verma H, Singh SK, Singh VK, Pandey J, Khusharia S, Kumar D, Kaushalendra, Teotia P, Kumar A. Microalgal Carotenoids: Therapeutic Application and Latest Approaches to Enhance the Production. Curr Issues Mol Biol 2022; 44:6257-6279. [PMID: 36547088 PMCID: PMC9777246 DOI: 10.3390/cimb44120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Microalgae are microscopic photosynthetic organisms frequently found in fresh and marine water ecosystems. Various microalgal species have been considered a reservoir of diverse health-value products, including vitamins, proteins, lipids, and polysaccharides, and are broadly utilized as food and for the treatment of human ailments such as cancer, cardiovascular diseases, allergies, and immunodeficiency. Microalgae-derived carotenoids are the type of accessory pigment that possess light-absorbing potential and play a significant role in metabolic functions. To date, nearly a thousand carotenoids have been reported, but a very less number of microalgae have been used for the commercial production of carotenoids. This review article briefly discussed the carotenoids of microalgal origin and their therapeutic application. In addition, we have briefly compiled the optimization of culture parameters used to enhance microalgal carotenoid production. In addition, the latest biotechnological approaches used to improve the yields of carotenoid has also been discussed.
Collapse
Affiliation(s)
- Priyanka Sirohi
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College Duddhi, Sonbhadra 231216, India
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | | - Jyoti Pandey
- Department of Biochemistry, Singhania University, Pacheri Barı, Jhunjhunu 333515, India
| | - Saksham Khusharia
- Kuwar SatyaVira College of Engineering and Management, Bijnor 246701, India
| | - Dharmendra Kumar
- Department of Zoology, C.M.B. College, Deorh, Ghoghardiha 847402, India
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl 796001, India
| | - Pratibha Teotia
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization (ARO)—Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
27
|
Natural Astaxanthin Is a Green Antioxidant Able to Counteract Lipid Peroxidation and Ferroptotic Cell Death. Int J Mol Sci 2022; 23:ijms232315137. [PMID: 36499464 PMCID: PMC9737268 DOI: 10.3390/ijms232315137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Astaxanthin is a red orange xanthophyll carotenoid produced mainly by microalgae but which can also be chemically synthesized. As demonstrated by several studies, this lipophilic molecule is endowed with potent antioxidant properties and is able to modulate biological functions. Unlike synthetic astaxanthin, natural astaxanthin (NAst) is considered safe for human nutrition, and its production is considered eco-friendly. The antioxidant activity of astaxanthin depends on its bioavailability, which, in turn, is related to its hydrophobicity. In this study, we analyzed the water-solubility of NAst and assessed its protective effect against oxidative stress by means of different approaches using a neuroblastoma cell model. Moreover, due to its highly lipophilic nature, astaxanthin is particularly protective against lipid peroxidation; therefore, the role of NAst in counteracting ferroptosis was investigated. This recently discovered process of programmed cell death is indeed characterized by iron-dependent lipid peroxidation and seems to be linked to the onset and development of oxidative-stress-related diseases. The promising results of this study, together with the "green sources" from which astaxanthin could derive, suggest a potential role for NAst in the prevention and co-treatment of chronic degenerative diseases by means of a sustainable approach.
Collapse
|
28
|
Kim KY, Kim SM, Kim JY, Choi YE. Elucidating the mechanisms underlying the cytotoxic effects of nano-/micro-sized graphene oxide on the microalgae by comparing the physiological and morphological changes in different trophic modes. CHEMOSPHERE 2022; 309:136539. [PMID: 36150492 DOI: 10.1016/j.chemosphere.2022.136539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Understanding the cytotoxic mechanisms of environmental contaminants is important to estimate their environmental impacts and prepare guidelines for pollution control. Many studies have assessed the cytotoxic mechanisms of graphene oxide (GO), an emerging aquatic contaminant. However, in many cases, the effect of GO size and putative trophic modes of microalgae on cytotoxicity has been neglected, hindering complete understanding of the cytotoxic mechanisms of GO. In this study, the microalga Euglena gracilis cultivated under light (phototrophic) or dark (heterotrophic) conditions was exposed to two sizes of GO [nano-sized (N) and micro-sized (M)] for assessing the effect of GO on microalgal growth. The cytotoxic effect of GO was higher under phototrophic conditions than under heterotrophic conditions, suggesting that a major cytotoxic mechanism of GO is related to photosynthetic activity inhibition. Moreover, N-GO showed higher toxicity than M-GO. The morphological and physiological changes in N-GO- and M-GO-exposed E. gracilis were assessed to further elucidate the cytotoxic mechanisms. N-GO internalized the cells via endocytic activity/piercing, whereas M-GO partially attached to the cell surface and did not enter the cells. Moreover, N-GO and M-GO negatively affected the cells by inducing oxidative stress; the oxidative stress parameters were higher in N-GO-exposed cells than in M-GO-exposed cells.
Collapse
Affiliation(s)
- Ka Young Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Shin Myung Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Jee Young Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
29
|
Hasson O, Wishkerman A. CultureLED: A 3D printer-based LED illumination cultivation system for multi-well culture plates. HARDWAREX 2022; 12:e00323. [PMID: 35712357 PMCID: PMC9194848 DOI: 10.1016/j.ohx.2022.e00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are a source of high value products such as pigments, lipids and carbohydrates. Microalgae cultivation techniques have evolved and improved, but a vast amount of research is still needed to achieve a better understanding of these microorganisms. Due to this, there is a growing need for affordable, flexible, and easy to control research systems and protocols. 3D printing revolutionized design and manufacturing as it became widely available to the mass market, allowing the creation of novel forms, enabling mass customization, and supporting low-volume, distributed production. The emergence of open-source designs combined with 3D printing applications have the potential to replace and outperform standard designs and methods. This protocol describes CultureLED, a well plated cell culture system that can be mounted on an orbital shaker or positioned on a shelf. It is an open hardware design, based on low-cost commercial off-the-shelf components. It was designed for optimized production cost, simplicity, low power consumption, design flexibility, and controllable light conditions. The CultureLED utilizes light-emitting diodes and it can be used for cultivation of small sized organisms or microorganisms with different light requirements and as such, has a wide range of applications.
Collapse
Affiliation(s)
| | - Asher Wishkerman
- Corresponding author at: Faculty of Marine Sciences, Ruppin Academic Center, Mikhmoret, 4029700, Israel. Tel.: +972-9-8663497 ext. 138, Fax: +972-9-8665053.
| |
Collapse
|
30
|
Aditya L, Mahlia TMI, Nguyen LN, Vu HP, Nghiem LD. Microalgae-bacteria consortium for wastewater treatment and biomass production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155871. [PMID: 35568165 DOI: 10.1016/j.scitotenv.2022.155871] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The diversity of microalgae and bacteria allows them to form a complementary consortium for efficient wastewater treatment and nutrient recovery. This review highlights the potential of wastewater-derived microalgal biomass as a renewable feedstock for producing animal feed, biofertilisers, biofuel, and many valuable biochemicals. Data corroborated from this review shows that microalgae and bacteria can thrive in many environments. Microalgae are especially effective at utilising nutrients from the water as they grow. This review also consolidates the current understanding of microalgae characteristics and their interactions with bacteria in a consortium system. Recent studies on the performance of only microalgae and microalgae-bacteria wastewater treatment are compared and discussed to establish a research roadmap for practical implementation of the consortium systems for various wastewaters (domestic, industrial, agro-industrial, and landfill leachate wastewater). In comparison to the pure microalgae system, the consortium system has a higher removal efficiency of up to 15% and shorter treatment time. Additionally, this review addresses a variety of possibilities for biomass application after wastewater treatment.
Collapse
Affiliation(s)
- Lisa Aditya
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - T M Indra Mahlia
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Luong N Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Hang P Vu
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
31
|
Tounsi L, Hentati F, Ben Hlima H, Barkallah M, Smaoui S, Fendri I, Michaud P, Abdelkafi S. Microalgae as feedstock for bioactive polysaccharides. Int J Biol Macromol 2022; 221:1238-1250. [PMID: 36067848 DOI: 10.1016/j.ijbiomac.2022.08.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Due to the increase in industrial demand for new biosourced molecules (notably bioactive exopolysaccharides (EPS)), microalgae are gaining popularity because of their nutraceutical potential and benefits health. Such health effects are delivered by specific secondary metabolites, e.g., pigments, exopolysaccharides, polyunsaturated fatty acids, proteins, and glycolipids. These are suitable for the subsequent uses in cosmetic, nutraceutical, pharmaceutical, biofuels, biological waste treatment, animal feed and food fields. In this regard, a special focus has been given in this review to describe the various methods used for extraction and purification of polysaccharides. The second part of the review provides an up-to-date and comprehensive summary of parameters affecting the microalgae growth and insights to maximize the metabolic output by understanding the intricacies of algal development and polysaccharides production. In the ultimate part, the health and nutraceutical claims associated with marine algal bioactive polysaccharides, explaining their noticeable potential for biotechnological applications, are summarized and comprehensively discussed.
Collapse
Affiliation(s)
- Latifa Tounsi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Faiez Hentati
- Université de Lorraine, INRAE, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), USC 340, Nancy F-54000, France
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, 3018 Sfax, Tunisia
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
32
|
Shen N, Ren J, Liu Y, Sun W, Li Y, Xin H, Cui Y. Natural edible pigments: a comprehensive review of resource, chemical classification, biosynthesis pathway, separated methods and application. Food Chem 2022; 403:134422. [PMID: 36194934 DOI: 10.1016/j.foodchem.2022.134422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/03/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
33
|
Prihanto AA, Jatmiko YD, Nurdiani R, Miftachurrochmah A, Wakayama M. Freshwater Microalgae as Promising Food Sources: Nutritional and Functional Properties. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2206200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of researchers have predicted that the current food crisis is predicted to worsen in 2050. The prediction of this crisis is aligned with climate change causing increases in some basic foodstuff prices. Therefore, everyone should prepare to consume alternative foods at an early stage. Alternative foods have been widely developed, one of which involves microalgae. However, the type of microalgae produced by some countries on a large scale consists of only oceanic/seawater microalgae. This will have an impact on and hinder development in countries that do not have these resources. Therefore, it is necessary to explore the use of microalgae derived from freshwater. Unfortunately, freshwater microalgae are still rarely investigated for use as alternative foods. However, there is considerable potential to utilize freshwater microalgae, and these algae are very abundant and diverse. In terms of nutritional properties, compared to oceanic / seawater microalgae, freshwater microalgae contain nearly the same protein and amino acids, lipids and fatty acids, carbohydrates, and vitamins. There are even more species whose composition is similar to those currently consumed foods, such as beef, chicken, beans, eggs, and corn. In addition to dietary properties, freshwater microalgae also have functional properties, due to the presence of pigments, sterols, fatty acids, and polyphenols. Given the potential of freshwater microalgae, these aquatic resources need to be developed for potential use as future food resources.
Collapse
|
34
|
Sarkarat R, Mohamadnia S, Tavakoli O. Recent advances in non-conventional techniques for extraction of phycobiliproteins and carotenoids from microalgae. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
He YL, Lin L, Zheng H, Mo Y, Zhou C, Sun S, Hong P, Qian ZJ. Potential anti-skin aging effect of a peptide AYAPE isolated from Isochrysis zhanjiangensis on UVB-induced HaCaT cells and H 2O 2-induced BJ cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112481. [PMID: 35660310 DOI: 10.1016/j.jphotobiol.2022.112481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
AYAPE (Ala-Tyr-Ala-Pro-Glu) is a pentapeptide isolated from Isochrysis zhanjiangensis, previous studies have proved that this pentapeptide has antioxidant and inflammatory activities. In this study, we determined the anti-skin aging bioactivity of AYAPE with UVB-induced human immortalized keratinocytes (HaCaT) and H2O2-induced human skin fibroblasts (BJ cells) as models. The results showed that AYAPE against UVB-induced photoaging on HaCaT cells via alleviating DNA damage, reducing intracellular reactive oxygen (ROS) levels, down regulating phosphorylation of proteins in MAPK/AP-1 signaling pathways. In addition, AYAPE attenuated senescence related effectors expression in H2O2-induced BJ cells. Furthermore, p53 showed an important role in regulation effect of AYAPE in both two cells, and AYAPE showed a directly combination with p53 by molecular docking. These results demonstrated that AYAPE is potential to against skin aging by decreasing matrix metalloproteinase-1 (MMP-1) production, inhibiting inflammation and apoptosis, and attenuating fibroblast senescence.
Collapse
Affiliation(s)
- Yuan-Lin He
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Liyuan Lin
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Haiyan Zheng
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Yinhuan Mo
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Shengli Sun
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China.
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China.
| |
Collapse
|
36
|
Patil AD, Kasabe PJ, Dandge PB. Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:25. [PMID: 35794254 PMCID: PMC9259778 DOI: 10.1007/s13659-022-00347-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) is an orange-red, lipophilic keto-carotenoid pigment. It is majorly found in marine ecosystems particularly in aquatic animals such as salmon, shrimp, trout, krill, crayfish, and so on. It is also synthesized in microalgae Heamatococcus pluvialis, Chlorococcum, Chlorella zofingiensis, red yeast Phaffia rhodozyma and bacterium Paracoccus carotinifaciens. Some aquatic and terrestrial creatures regarded as a primary and secondary sources of the astaxanthin producing and accumulating it through their metabolic pathways. Astaxanthin is the powerful antioxidant, nutritional supplement as well as promising therapeutic compound, observed to have activities against different ravaging diseases and disorders. Researchers have reported remarkable bioactivities of astaxanthin against major non-communicable chronic diseases such as cardiovascular diseases, cancer, diabetes, neurodegenerative, and immune disorders. The current review discusses some structural aspects of astaxanthin. It further elaborates its multiple potencies such as antioxidant, anti-inflammatory, anti-proliferative, anti-cancer, anti-obese, anti-diabetic, anti-ageing, anti-TB, anti-viral, anti-COVID 19, neuro-protective, nephro-protective, and fertility-enhancing properties. These potencies make it a more precious entity in the preventions as well as treatments of prevalent systematic diseases and/or disorders. Also, the review is acknowledging and documenting its powerful bioactivities in relation with the pharmaceutical as well as nutraceutical applicability.
Collapse
Affiliation(s)
- Apurva D. Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| | - Pramod J. Kasabe
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra India
| | - Padma B. Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| |
Collapse
|
37
|
Microalgal carotenoids: A promising alternative to synthetic dyes. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Anthocyanins, Carotenoids and Chlorophylls in Edible Plant Leaves Unveiled by Tandem Mass Spectrometry. Foods 2022; 11:foods11131924. [PMID: 35804744 PMCID: PMC9265259 DOI: 10.3390/foods11131924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Natural pigments are a quite relevant group of molecules that are widely distributed in nature, possessing a significant role in our daily lives. Besides their colors, natural pigments are currently recognized as having relevant biological properties associated with health benefits, such as anti-tumor, anti-atherogenicity, anti-aging and anti-inflammatory activities, among others. Some of these compounds are easily associated with specific fruits (such as blueberries with anthocyanins, red pitaya with betalain or tomato with lycopene), vegetables (carrots with carotenoids), plant leaves (chlorophylls in green leaves or carotenoids in yellow and red autumn leaves) and even the muscle tissue of vertebrates (such as myoglobin). Despite being less popular as natural pigment sources, edible plant leaves possess a high variety of chlorophylls, as well as a high variety of carotenoids and anthocyanins. The purpose of this review is to critically analyze the whole workflow employed to identify and quantify the most common natural pigments (anthocyanin, carotenoids and chlorophylls) in edible plant leaves using tandem mass spectrometry. Across the literature there, is a lack of consistency in the methods used to extract and analyze these compounds, and this review aims to surpass this issue. Additionally, mass spectrometry has stood out in the context of metabolomics, currently being a widely employed technique in this field. For the three pigments classes, the following steps will be scrutinized: (i) sample pre-preparation, including the solvents and extraction conditions; (ii) details of the chromatographic separation and mass spectrometry experiments (iii) pigment identification and quantification.
Collapse
|
39
|
Wood EE, Ross ME, Jubeau S, Montalescot V, Stanley MS. Progress towards a targeted biorefinery of Chromochloris zofingiensis: a review. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:8127-8152. [PMID: 38510795 PMCID: PMC10948469 DOI: 10.1007/s13399-022-02955-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 03/22/2024]
Abstract
Biorefinery approaches offer the potential to improve the economics of the microalgae industry by producing multiple products from a single source of biomass. Chromochloris zofingiensis shows great promise for biorefinery due to high biomass productivity and a diverse range of products including secondary carotenoids, predominantly astaxanthin; lipids such as TAGs; carbohydrates including starch; and proteins and essential amino acids. Whilst this species has been demonstrated to accumulate multiple products, the development of an integrated downstream process to obtain these is lacking. The objective of this review paper is to assess the research that has taken place and to identify the steps that must be taken to establish a biorefinery approach for C. zofingiensis. In particular, the reasons why C. zofingiensis is a promising species to target for biorefinery are discussed in terms of cellular structure, potential products, and means to accumulate desirable components via the alteration of culture conditions. Future advances and the challenges that lie ahead for successful biorefinery of this species are also reviewed along with potential solutions to address them. Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-02955-7.
Collapse
Affiliation(s)
- Eleanor E. Wood
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
- Xanthella Ltd, Malin House, European Marine Science Park, Dunstaffnage, Argyll, Oban PA37 1SZ Scotland, UK
| | - Michael E. Ross
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
| | - Sébastien Jubeau
- Xanthella Ltd, Malin House, European Marine Science Park, Dunstaffnage, Argyll, Oban PA37 1SZ Scotland, UK
| | | | - Michele S. Stanley
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
| |
Collapse
|
40
|
Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Carbohydrates or polysaccharides are the main products derived from photosynthesis and carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microalgae are safe, biocompatible, biodegradable, stable, and versatile. These polymeric macromolecules present complex biochemical structures according to each microalgal species. In addition, they exhibit emulsifying properties and biological characteristics that include antioxidant, anti-inflammatory, antitumor, and antimicrobial activities. Some microalgal species have a naturally high concentration of carbohydrates. Other species can adapt their metabolism to produce more sugars from changes in temperature and light, carbon source, macro and micronutrient limitations (mainly nitrogen), and saline stress. In addition to growing in adverse conditions, microalgae can use industrial effluents as an alternative source of nutrients. Microalgal polysaccharides are predominantly composed of pentose and hexose monosaccharide subunits with many glycosidic bonds. Microalgae polysaccharides can be structural constituents of the cell wall, energy stores, or protective polysaccharides and cell interaction. The industrial use of microalgae polysaccharides is on the rise. These microorganisms present rheological and biological properties, making them a promising candidate for application in the food industry and agriculture. Thus, microalgae polysaccharides are promising sustainable alternatives for potential applications in several sectors, and the choice of producing microalgal species depends on the required functional activity. In this context, this review article aims to provide an overview of microalgae technology for polysaccharide production, emphasizing its potential in the food, animal feed, and agriculture sector.
Collapse
|
41
|
Basiony M, Ouyang L, Wang D, Yu J, Zhou L, Zhu M, Wang X, Feng J, Dai J, Shen Y, Zhang C, Hua Q, Yang X, Zhang L. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synth Syst Biotechnol 2022; 7:689-704. [PMID: 35261927 PMCID: PMC8866108 DOI: 10.1016/j.synbio.2022.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The global market demand for natural astaxanthin is rapidly increasing owing to its safety, the potential health benefits, and the diverse applications in food and pharmaceutical industries. The major native producers of natural astaxanthin on industrial scale are the alga Haematococcus pluvialis and the yeast Xanthopyllomyces dendrorhous. However, the natural production via these native producers is facing challenges of limited yield and high cost of cultivation and extraction. Alternatively, astaxanthin production via metabolically engineered non-native microbial cell factories such as Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica is another promising strategy to overcome these limitations. In this review we summarize the recent scientific and biotechnological progresses on astaxanthin biosynthetic pathways, transcriptional regulations, the interrelation with lipid metabolism, engineering strategies as well as fermentation process control in major native and non-native astaxanthin producers. These progresses illuminate the prospects of producing astaxanthin by microbial cell factories on industrial scale.
Collapse
Affiliation(s)
- Mostafa Basiony
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaming Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mohan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengguo Zhang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuliang Yang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
42
|
Patel AK, Albarico FPJB, Perumal PK, Vadrale AP, Nian CT, Chau HTB, Anwar C, Wani HMUD, Pal A, Saini R, Ha LH, Senthilkumar B, Tsang YS, Chen CW, Dong CD, Singhania RR. Algae as an emerging source of bioactive pigments. BIORESOURCE TECHNOLOGY 2022; 351:126910. [PMID: 35231601 DOI: 10.1016/j.biortech.2022.126910] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Algae have been identified as natural producer of bioactive commercial pigments. To perform photosynthesis, algae use pigments to harvest sunlight energy. The pigments found in algae are categorized in chlorophylls, phycobilins, and carotenoids. Popular carotenoids include astaxanthin, lutein,fucoxanthin, canthaxanthin, zeaxanthin, β-cryptoxanthin and finds application as antioxidant, anti-inflammatory, immunoprophylactic, antitumor activities among others. Due to double-bonds in their structure, they exhibit broad health applications while protecting other molecules from oxidative stress induced by active radicals using various mechanisms. These carotenoids are synthesized by certain species as major products however they also present as byproducts in several species based on the pathway and genetic capability. Haematococcus pluvialis and Chlorella zofingiensis are ideal strains for commercial astaxanthin production. This review provides recent updates on microalgal pigment production, extraction, and purification processes to standardize and analyze for commercial production. Also, discussed the factors affecting its production, application, market potential, bottlenecks, and future prospects.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Fisheries and Marine Research Station (FaMaRS), Fisheries and Marine Sciences Department, College of Fisheries and Allied Sciences, Northern Negros State College of Science and Technology, Sagay City 6122, Philippines
| | - Pitchurajan Krishna Perumal
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Akash Pralhad Vadrale
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cherry T Nian
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Aquaculture Department, College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Philippines
| | - Ho Thi Bao Chau
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Choirul Anwar
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Henna Mohi Ud Din Wani
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anugunj Pal
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reetu Saini
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Le Hai Ha
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Balamurugan Senthilkumar
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yi-Sheng Tsang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| |
Collapse
|
43
|
Hosseinkhani N, McCauley JI, Ralph PJ. Key challenges for the commercial expansion of ingredients from algae into human food products. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Lin JY, Tan SI, Yi YC, Hsiang CC, Chang CH, Chen CY, Chang JS, Ng IS. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcus sp. PCC7002 for antioxidation, antibacterial and lead adsorption. ENVIRONMENTAL RESEARCH 2022; 206:112283. [PMID: 34699757 DOI: 10.1016/j.envres.2021.112283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Global warming and climate change because carbon dioxide (CO2) release to atmosphere is the forecasting challenges to human being. We are facing how to overcome the dilemma on the balance between economic and environment, thus taking more efforts on green processes to meet agreement of sustainable society are urgent and crucial. The absorption of CO2 by microalgae reduces the impact of CO2 on the environment. In this study, the CO2 removal efficiency was the highest in the culture of Cyanobacterium Synechococcus sp. PCC7002 (also called blue-green algae), at 2% CO2 to reach a value of 0.86 g-CO2/g-DCW. The main product of PCC7002 is C-phycocyanin (C-PC) which regarding to phycobilisome complex in all cyanobacterial species. A 160% increasing C-PC was achieved in the cultivation under 100 μmol/m2/s light intensity, 12:12 light-period with 2% CO2 at 30 °C. The mix-culture of nitric and ammonia ions had positive effect on the cell growth and C-PC accumulation, thus realized the highest yield of 0.439 g-CPC/g-DCW. Additionally, the partial purified C-PC displayed 89% antioxidant activity of 2,2-diphenyl-1-picryhydrazyl (DPPH) and 11% of superoxide free radical scavenging activity, respectively. The production of C-PC from PCC7002 reduced the CO2 emission and exhibited antibacterial activity against Escherichia coli and lead ion adsorption at room temperature, which has the great potential for eco-friendly application.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
45
|
Ahmad A, W Hassan S, Banat F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered 2022; 13:9521-9547. [PMID: 35387561 PMCID: PMC9161971 DOI: 10.1080/21655979.2022.2061148] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sustainable management of natural resources is critical to food security. The shrimp feed and fishery sector is expanding rapidly, necessitating the development of alternative sustainable components. Several factors necessitate the exploration of a new source of environmentally friendly and nutrient-rich fish feed ingredients. Microalgal biomass has the potential to support the growth of fish and shrimp aquaculture for global food security in the bio-economy. Algal biorefineries must valorize the whole crop to develop a viable microalgae-based economy. Microalgae have the potential to replace fish meal and fish oil in aquaculture and ensure sustainability standards. Microalgae biomasses provide essential amino acids, valuable triglycerides such as lipids, vitamins, and pigments, making them suitable as nutritional supplements in livestock feed formulations. Fish and microalgae have similar nutritional profiles, and digestibility is a critical aspect of the aquafeed formulation. A highly digestible feed reduces production costs, feed waste, and the risk of eutrophication. Due to low input costs, low carbon footprint, wastewater treatment benefits, and carbon credits from industrial CO2 conversion, microalgae-based fish and shrimp feeds have the potential to provide significant economic benefits. However, several challenges must be addressed before microalgal biomass and bioproducts may be used as fish feeds, including heavy metal bioaccumulation, poor algal biomass digestion, and antinutrient effects. Knowledge of biochemical composition is limited and diverse, and information on nutritional value is scattered or contradictory. This review article presents alternative approaches that could be used in aquaculture to make microalgal biomass a viable alternative to fish meal.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hassan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
46
|
Sharma P, Gujjala LKS, Varjani S, Kumar S. Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152417. [PMID: 34923013 DOI: 10.1016/j.scitotenv.2021.152417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Industrial wastewater treatment is of paramount importance considering the safety of the aquatic ecosystem and its associated health risk to humankind inhabiting near the water bodies. Microalgae-based technologies for remediation of environmental pollutants present avenues for bioenergy applications and production of value-added biochemicals having pharmaceutical, nutraceutical, antioxidants, carbohydrate, phenolics, long-chain multi-faceted fatty acids, enzymes, and proteins which are considered healthy supplements for human health. Such a wide range of products put up a good case for the biorefinery concept. Microalgae play a pivotal role in degrading complex pollutants, such as organic and inorganic contaminants thereby efficiently removing them from the environment. In addition, microalgal species, such as Botryococcus braunii, Tetraselmis suecica, Phaeodactylum tricornutum, Neochloris oleoabundans, Chlorella vulgaris, Arthrospira, Chlorella, and Tetraselmis sp., etc., are also reported for generation of value-added products. This review presents a holistic view of microalgae based biorefinery starting from cultivation and harvesting of microalgae, the potential for remediation of environmental pollutants, bioenergy application, and production of value-added biomolecules. Further, it summarizes the current understanding of microalgae-based technologies and discusses the risks involved, potential for bioeconomy, and outlines future research directions.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
47
|
Cerezal-Mezquita P, Espinosa-Álvarez C, Jáuregui-Tirado M, Jaime-Matus C, Palma-Ramírez J, Ruiz-Domínguez MC. Physical-chemical characteristics of “Red Meal”, a novel non-defatted additive in the fish feed from cracked biomass of Haematococcus pluvialis. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Ma S, Zeng W, Huang Y, Zhu X, Xia A, Zhu X, Liao Q. Revealing the synergistic effects of cells, pigments, and light spectra on light transfer during microalgae growth: A comprehensive light attenuation model. BIORESOURCE TECHNOLOGY 2022; 348:126777. [PMID: 35104654 DOI: 10.1016/j.biortech.2022.126777] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
As the sole energy for photosynthesis, light decrease rapidly with path due to absorption by pigments and scattering by cells in microalgal suspensions. By comprehensively considering cell concentrations, pigment components, and light spectra, a modified Cornet model for light transmission in microalgal suspensions is established. The developed model better fits experimental data with a higher adjusted R2, which is 5% higher than the model that is based only on cell concentration. The attenuation of blue light is the most severe, followed by red and green light. Among the three main pigments, total carotenoids contribute the most to the absorption of blue and green light (with contribution coefficients of 89.26 ± 4.53% and 46.04 ± 3.77%, respectively), and chlorophyll a contributes the most to the absorption of red light (with a contribution coefficient of 75.33 ± 5.08%). This study provides a better understanding and prediction of light transmission during microalgal cultivation.
Collapse
Affiliation(s)
- Shiyan Ma
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Weida Zeng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
49
|
The Algal Polysaccharide Ulvan and Carotenoid Astaxanthin Both Positively Modulate Gut Microbiota in Mice. Foods 2022; 11:foods11040565. [PMID: 35206042 PMCID: PMC8871025 DOI: 10.3390/foods11040565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
The intestinal microbial community (microbiota) is dynamic and variable amongst individuals and plays an essential part in gut health and homeostasis. Dietary components can modulate the structure of the gut microbiota. In recent years, substantial efforts have been made to find novel dietary components with positive effects on the gut microbial community structure. Natural algal polysaccharides and carotenoids have been reported to possess various functions of biological relevance and their impact on the gut microbiota is currently a topic of interest. This study, therefore, reports the effect of the sulfated polysaccharide ulvan and the carotenoid astaxanthin extracted and purified from the aquacultured marine green macroalgae Ulva ohnoi and freshwater green microalgae Haematococcus pluvialis, respectively, on the temporal development of the murine gut microbiota. Significant changes with the increase in the bacterial classes Bacteroidia, Bacilli, Clostridia, and Verrucomicrobia were observed after feeding the mice with ulvan and astaxanthin. Duration of the treatments had a more substantial effect on the bacterial community structure than the type of treatment. Our findings highlight the potential of ulvan and astaxanthin to mediate aspects of host-microbe symbiosis in the gut, and if incorporated into the diet, these could assist positively in improving disease conditions associated with gut health.
Collapse
|
50
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|