1
|
Zhong H, Tang C, Li J, Cheng JH. Ultrasound-assisted cold plasma treatment reduces resistance to in vitro digestion of tropomyosin and Allergenicity of tropomyosin digestion products. Food Chem 2025; 473:143049. [PMID: 39864178 DOI: 10.1016/j.foodchem.2025.143049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Tropomyosin (TM), the primary allergen in crustacean aquatic products, has excellent thermal and digestive stability. In this work, the changes in digestive resistance of TM and allergenicity of TM digestion products induced by ultrasound-assisted cold plasma (UCP) treatment were investigated. The stability of TM to simulated digestion were reduced, especially the simulated intestinal fluid (SIF) digestive resistance. The analysis of TM allergenicity showed that the IgE binding capacity of digestion product of UCP treated TM was significantly reduced, from 68.13 % in TM group to 39.12 % in T10 group. Moreover, the level of degranulation, the intensity of intracellular Ca2+ and the concentrations of histamine, IL-4 and TNF-α decreased by 67.91 %, 68.06 %, 48.81 %, 57.19 % and 50.55 %, respectively, which demonstrated that UCP-treated TM resulted in lower degree of degranulation and cytokine secretion in KU812 cells. UCP treatment provide a new possibility to advance the development of shrimp products with low allergenicity.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Caidie Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
2
|
Arribas C, Sanchiz A, Pedrosa MM, Perez-Garcia S, Linacero R, Cuadrado C. Impact of Heat and Pressure Processing Treatments on the Digestibility of Peanut, Hazelnut, Pistachio and Cashew Allergens. Foods 2024; 13:3549. [PMID: 39593965 PMCID: PMC11593142 DOI: 10.3390/foods13223549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Food processing can alter protein biochemical properties, impacting immunoreactivity and allergenicity. A key feature of food allergens is their resistance to enzymatic digestion, particularly by pepsin and trypsin. This study compares the digestomes of raw and heat- and/or pressure-treated peanuts, hazelnuts, pistachios and cashews using the INFOGEST harmonized digestion protocol and analyzing their IgE-binding capacity through in vitro methods. Protein patterns from controls and digestomes were resolved by SDS-PAGE and tested with sera from allergic patients, confirmed by competitive ELISA for hazelnuts and peanuts. The results indicate that processing methods differently affect the gastrointestinal (GI) digestion of these allergens. Simulated GI digestion caused a significant destruction of protein structures, reducing but not eliminating IgE reactivity for all four nuts. Boiling for 60 min did not change the SDS-PAGE profiles, but it did stimulate enzymatic activity, decreasing IgE binding capacity. In contrast, applying heat and pressure led to a nearly complete inhibition of allergenic potential during simulated digestion. These findings suggest that employing intense food processing techniques and investigating the gastrointestinal effects of highly allergenic nuts could be crucial steps toward developing new hypoallergenic formulations.
Collapse
Affiliation(s)
- Claudia Arribas
- Food Technology Department, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC-INIA), Ctra. La Coruña Km. 7.5, 28040 Madrid, Spain; (C.A.); (M.M.P.); (S.P.-G.); (C.C.)
| | - Africa Sanchiz
- Food Technology Department, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC-INIA), Ctra. La Coruña Km. 7.5, 28040 Madrid, Spain; (C.A.); (M.M.P.); (S.P.-G.); (C.C.)
| | - Mercedes M. Pedrosa
- Food Technology Department, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC-INIA), Ctra. La Coruña Km. 7.5, 28040 Madrid, Spain; (C.A.); (M.M.P.); (S.P.-G.); (C.C.)
| | - Selene Perez-Garcia
- Food Technology Department, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC-INIA), Ctra. La Coruña Km. 7.5, 28040 Madrid, Spain; (C.A.); (M.M.P.); (S.P.-G.); (C.C.)
| | - Rosario Linacero
- Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University, 28040 Madrid, Spain;
| | - Carmen Cuadrado
- Food Technology Department, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC-INIA), Ctra. La Coruña Km. 7.5, 28040 Madrid, Spain; (C.A.); (M.M.P.); (S.P.-G.); (C.C.)
| |
Collapse
|
3
|
Li D, He X, Li F, Yang Y, Liu M, Liu Q, Luo L, Chen G, Liu G. Effect of transglutaminase-catalyzed glycosylation on the allergenicity of tropomyosin in the Perna viridis food matrix. Food Funct 2024; 15:9136-9148. [PMID: 39157921 DOI: 10.1039/d4fo02305f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Food allergy is one of the hot issues in the field of food safety, and there have been a lot of concerns on how to reduce the allergenicity of food allergens. Food processing can change the allergenicity of allergens in the food matrix. In this study, ten IgE linear epitopes of the major allergen tropomyosin (TM) in Perna viridis were identified by bioinformatics prediction and serological experiments. The transglutaminase-catalyzed glycosylation modification sites glutamine, lysine and arginine were highly represented in the IgE linear epitopes of TM. The Perna viridis food matrix was treated with transglutaminase-catalyzed glycosylation. This reaction changed the secondary structure of protein in the food matrix, increased the content of β-sheets and decreased the content of β-turns. The intensity of intrinsic fluorescence and surface hydrophobicity were reduced. The IgE-binding activity of TM in the food matrix was reduced by modifying seven amino acid residues on six IgE linear epitopes. Transglutaminase-catalyzed glycosylation products decreased allergic symptoms in allergic mice, reduced the proportion of CD4+IL-4+ Th2 cells, and increased the proportion of CD4+IFN-γ+ Th1 cells and Treg cells. Mouse serum levels of IgE and IgG1 antibodies in the food matrix and TM were reduced. Therefore, this study provided a theoretical basis for the development of hypoallergenic Perna viridis products.
Collapse
Affiliation(s)
- Dongxiao Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Xinrong He
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Fajie Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361000, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| | - Qingmei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Lianzhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Guixia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| |
Collapse
|
4
|
Villa C, Carriço-Sá B, Teixeira CSS, Dias C, Costa R, M. Pereira C, Mafra I, Costa J. γ-Conglutin Immunoreactivity Is Differently Affected by Thermal Treatment and Gastrointestinal Digestion in Lupine Species. Foods 2024; 13:2330. [PMID: 39123522 PMCID: PMC11312398 DOI: 10.3390/foods13152330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Lupine is a legume commonly used in human diet as a functional food due to its high nutritional content and important technological properties. However, its consumption can lead to the manifestation of adverse immunological reactions, posing significant health issues in sensitized/allergic patients. This work aims to investigate the effect of food processing combined with simulated gastrointestinal (GI) digestion on the immunoreactivity of lupine γ-conglutin. Model foods of wheat pasta containing 35% of lupine flour (Lupinus albus, L. luteus, and L. angustifolius) were prepared and submitted to a boiling process. The proteins were extracted and their profiles characterized by SDS-PAGE. Simulated GI digestion was performed on thermally treated pasta using the INFOGEST harmonized digestion protocol 2.0. The IgG binding capacity of γ-conglutin was assessed by immunoblotting in non-reducing conditions and indirect ELISA with specific antibodies. Results demonstrate that the boiling treatment affected the immunoreactivity of the three lupine species differently. Simulated GI digestion led to extensive destruction of the protein structure, more significant in the intestinal phase, reducing but not abolishing the IgG affinity to γ-conglutin and its potential presentation to immunocompetent cells. This information can offer valuable insights to the food industry for developing food formulations with reduced allergenic properties.
Collapse
Affiliation(s)
- Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.S.S.T.); (C.D.); (I.M.); (J.C.)
| | - Bruno Carriço-Sá
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.S.S.T.); (C.D.); (I.M.); (J.C.)
| | - Carla S. S. Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.S.S.T.); (C.D.); (I.M.); (J.C.)
| | - Catarina Dias
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.S.S.T.); (C.D.); (I.M.); (J.C.)
- Instituto de Ciências Moleculares/Centro de Investigação em Química da Universidade do Porto (IMS/CIQUP), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (R.C.); (C.M.P.)
| | - Renata Costa
- Instituto de Ciências Moleculares/Centro de Investigação em Química da Universidade do Porto (IMS/CIQUP), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (R.C.); (C.M.P.)
| | - Carlos M. Pereira
- Instituto de Ciências Moleculares/Centro de Investigação em Química da Universidade do Porto (IMS/CIQUP), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (R.C.); (C.M.P.)
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.S.S.T.); (C.D.); (I.M.); (J.C.)
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.S.S.T.); (C.D.); (I.M.); (J.C.)
| |
Collapse
|
5
|
Wei L, Wong D, Jeoh T, Marco ML. Intestinal delivery of encapsulated bacteriocin peptides in cross-linked alginate microcapsules. Food Res Int 2024; 188:114473. [PMID: 38823837 DOI: 10.1016/j.foodres.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Oral delivery of larger bioactive peptides (>20 amino acids) to the small intestine remains a challenge due to their sensitivity to proteolytic degradation and chemical denaturation during gastrointestinal transit. In this study, we investigated the capacity of crosslinked alginate microcapsules (CLAMs) formed by spray drying to protect Plantaricin EF (PlnEF) (C-EF) in gastric conditions and to dissolve and release PlnEF in the small intestine. PlnEF is an unmodified, two-peptide (PlnE: 33 amino acids; PlnF: 34 amino acids) bacteriocin produced by Lactiplantibacillus plantarum with antimicrobial and gut barrier protective properties. After 2 h incubation in simulated gastric fluid (SGF) (pH 1.5), 43.39 % ± 8.27 % intact PlnEF was liberated from the CLAMs encapsulates, as determined by an antimicrobial activity assay. Transfer of the undissolved fraction to simulated intestinal fluid (SIF) (pH 7) for another 2 h incubation resulted in an additional release of 16.13 % ± 4.33 %. No active PlnEF was found during SGF or sequential SIF incubations when pepsin (2,000 U/ml) was added to the SGF. To test PlnEF release in C-EF contained in a food matrix, C-EF was mixed in peanut butter (PB) (0.15 g C-EF in 1.5 g PB). A total of 12.52 % ± 9.09 % active PlnEF was detected after incubation of PB + C-EF in SGF without pepsin, whereas no activity was found when pepsin was included. Transfer of the remaining PB + C-EF fractions to SIF yielded the recovery of 46.67 % ± 13.09 % and 39.42 % ± 11.53 % active PlnEF in the SIF following exposure to SGF and to SGF with pepsin, respectively. Upon accounting for the undissolved fraction after SIF incubation, PlnEF was fully protected in the CLAMs-PB mixture and there was not a significant reduction in active PlnEF when pepsin was present. These results show that CLAMs alone do not guard PlnEF bacteriocin peptides from gastric conditions, however, mixing them in PB protected against proteolysis and improved intestinal release.
Collapse
Affiliation(s)
- Lei Wei
- Department of Food Science and Technology, University of California, Davis, USA
| | - Dana Wong
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Tina Jeoh
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, USA.
| |
Collapse
|
6
|
Mousavi Khaneghah A, Mostashari P. Decoding food reactions: a detailed exploration of food allergies vs. intolerances and sensitivities. Crit Rev Food Sci Nutr 2024:1-45. [DOI: 10.1080/10408398.2024.2349740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Kedar O, Golberg A, Obolski U, Confino-Cohen R. Allergic to bureaucracy? Regulatory allergenicity assessments of novel food: Motivations, challenges, compromises, and possibilities. Compr Rev Food Sci Food Saf 2024; 23:e13300. [PMID: 38477215 DOI: 10.1111/1541-4337.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 03/14/2024]
Abstract
New sources of proteins are essential to meet the demands of the growing world population and evolving food trends. Assessing the allergenicity of proteins in novel food (NF) poses a significant food safety regulatory challenge. The Codex Alimentarius Commission presented an allergenicity assessment protocol for genetically modified (GM) foods, which can also be adapted for NF. Since no single laboratory test can adequately predict the allergenic potential of NF, the protocol follows a weight-of-evidence approach, evaluated by experts, as part of a risk management process. Regulatory bodies worldwide have adopted this safety protocol, which, among other things, promotes global harmonization. This review unravels the reliability and various motivations, terms, concepts, and approaches of allergenicity assessments, aiming to enhance understanding among manufacturers and the public. Health Canada, Food Safety Commission JAPAN, and Food Standards Australia New Zealand were surveyed, focusing on the European Food Safety Authority and the US Food Safety Administration for examples of scientific opinions regarding allergenicity assessments for novel and GM foods, from 2019 to 2023. According to our findings, current regulatory allergenicity assessments for NF approval primarily rely on literature reviews. Only a few of the NF assessments proactively presented additional tests. We recommend conducting bioinformatic analyses on NF when a panel of experts deems that there is insufficient prior scientific research.
Collapse
Affiliation(s)
- Odeya Kedar
- Faculty of Exact Sciences, Department of Environmental Studies, The Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Golberg
- Faculty of Exact Sciences, Department of Environmental Studies, The Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Obolski
- Faculty of Exact Sciences, Department of Environmental Studies, The Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, School of Public Health, Department of Epidemiology and Preventive Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Confino-Cohen
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Gravina A, Olivero F, Brindisi G, Comerci AF, Ranucci C, Fiorentini C, Sculco E, Figliozzi E, Tudini L, Matys V, De Canditiis D, Piccioni MG, Zicari AM, Anania C. Dietary Intervention during Weaning and Development of Food Allergy: What Is the State of the Art? Int J Mol Sci 2024; 25:2769. [PMID: 38474015 DOI: 10.3390/ijms25052769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Food allergy (FA) affects approximately 6-8% of children worldwide causing a significant impact on the quality of life of children and their families. In past years, the possible role of weaning in the development of FA has been studied. According to recent studies, this is still controversial and influenced by several factors, such as the type of food, the age at food introduction and family history. In this narrative review, we aimed to collect the most recent evidence about weaning and its role in FA development, organizing the gathered data based on both the type of study and the food. As shown in most of the studies included in this review, early food introduction did not show a potential protective role against FA development, and we conclude that further evidence is needed from future clinical trials.
Collapse
Affiliation(s)
- Alessandro Gravina
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Giulia Brindisi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonia Fortunata Comerci
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Chiara Ranucci
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Cinzia Fiorentini
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Eleonora Sculco
- Department of Translation and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ethel Figliozzi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Tudini
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Matys
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Anania
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
9
|
Simões R, Ribeiro AC, Dias R, Freitas V, Soares S, Pérez-Gregorio R. Unveiling the Immunomodulatory Potential of Phenolic Compounds in Food Allergies. Nutrients 2024; 16:551. [PMID: 38398875 PMCID: PMC10891931 DOI: 10.3390/nu16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Food allergies are becoming ever more prevalent around the world. This pathology is characterized by the breakdown of oral tolerance to ingested food allergens, resulting in allergic reactions in subsequent exposures. Due to the possible severity of the symptoms associated with this pathology, new approaches to prevent it and reduce associated symptoms are of utmost importance. In this framework, dietary phenolic compounds appear as a tool with a not fully explored potential. Some phenolic compounds have been pointed to with the ability to modulate food allergies and possibly reduce their symptoms. These compounds can modulate food allergies through many different mechanisms, such as altering the bioaccessibility and bioavailability of potentially immunogenic peptides, by modulating the human immune system and by modulating the composition of the human microbiome that resides in the oral cavity and the gastrointestinal tract. This review deepens the state-of-the-art of the modulation of these mechanisms by phenolic compounds. While this review shows clear evidence that dietary supplementation with foods rich in phenolic compounds might constitute a new approach to the management of food allergies, it also highlights the need for further research to delve into the mechanisms of action of these compounds and decipher systematic structure/activity relationships.
Collapse
Affiliation(s)
- Rodolfo Simões
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | - Ana Catarina Ribeiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Ricardo Dias
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Victor Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Rosa Pérez-Gregorio
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| |
Collapse
|
10
|
Zhang K, Zhang L, Han M, Pu Z, Zhong J, Hou Y, Zhou P. Higher Potential Sensitization of Cow α S1-Casein over Goat α S1-Casein in a Mouse Model due to Enhanced Dendritic Cell Uptake and Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2765-2776. [PMID: 38277407 DOI: 10.1021/acs.jafc.3c07688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Cow's milk allergy is a common food allergy, with the milk protein αS1-casein being a major allergen. This study aimed to investigate differences in sensitization between cow and goat αS1-CN. Cow and goat αS1-CN were labeled with fluorescent dyes and given to mice sensitized with cholera toxin adjuvant. Both proteins reached immune organs, suggesting no major difference in digestion. However, compared with goat αS1-CN, cow αS1-CN is more readily taken up by dendritic cells, inducing dendritic cell maturation. Furthermore, cow αS1-CN can more effectively induce the generation of Th2 cells, leading to a higher production of specific IgE. In a Caco-2/RBL-2H3 cell model, cow αS1-CN caused more mast cell degranulation and loss of epithelial barrier integrity than goat αS1-CN. In summary, this study found differences in immune responses between cow and goat milk αS1-CN. Cow αS1-CN elicited stronger dendritic cell and Th2 responses, leading to increased mast cell degranulation.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengyu Han
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiping Pu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinjing Zhong
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, Hunan 410011, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, Hunan 410011, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
He S, Zhou F. Characterization of T-Cell Epitopes in Food Allergens by Bioinformatic Tools. Methods Mol Biol 2024; 2717:77-99. [PMID: 37737979 DOI: 10.1007/978-1-0716-3453-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The identification of T-cell epitopes is a critical step in the understanding of the immunologic mechanisms such as food allergy. Epitope screening in silico by bioinformatic tools can be used to identify T-cell epitopes, which can save time and resources. In this chapter, a multiparametric approach to predict and assess major histocompatibility complex (MHC) class II binding T-cell epitopes using bioinformatics was introduced for food allergens. Furthermore, the ability of predicted T-cell epitopes to induce interleukin (IL)-4, as well as the allergenicity potential based on the sequence analysis and population coverage of epitopes were also determined. The molecular docking approach was further used to explore the binding ability between epitopes and human leukocyte antigen (HLA) class II molecules. The amino acids that might be responsible for binding to HLA class II molecules and their binding interactions were analyzed.
Collapse
Affiliation(s)
- Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, China.
| | - Fanlin Zhou
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
12
|
Hevia A, Ruas-Madiedo P, Faria MA, Petit V, Alves B, Alvito P, Arranz E, Bastiaan-Net S, Corredig M, Dijk W, Dupont D, Giblin L, Graf BA, Kondrashina A, Ramos H, Ruiz L, Santos-Hernández M, Soriano-Romaní L, Tomás-Cobos L, Vivanco-Maroto SM, Recio I, Miralles B. A Shared Perspective on in Vitro and in Vivo Models to Assay Intestinal Transepithelial Transport of Food Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19265-19276. [PMID: 38035628 PMCID: PMC10723066 DOI: 10.1021/acs.jafc.3c05479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Assessing nutrient bioavailability is complex, as the process involves multiple digestion steps, several cellular environments, and regulatory-metabolic mechanisms. Several in vitro models of different physiological relevance are used to study nutrient absorption, providing significant challenges in data evaluation. However, such in vitro models are needed for mechanistic studies as well as to screen for biological functionality of the food structures designed. This collaborative work aims to put into perspective the wide-range of models to assay the permeability of food compounds considering the particular nature of the different molecules, and, where possible, in vivo data are provided for comparison.
Collapse
Affiliation(s)
- Arancha Hevia
- Dairy
Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares, sn. Villaviciosa 33300, Asturias. Spain
| | - Patricia Ruas-Madiedo
- Dairy
Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares, sn. Villaviciosa 33300, Asturias. Spain
| | - Miguel Angelo Faria
- LAQV/REQUIMTE,
Laboratório de Bromatologia e Hidrologia, Departamento de Ciências
Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Valérie Petit
- Nestlé
Research, Société des Produits
Nestlé SA, 1000 Lausanne, Switzerland
| | - Bruna Alves
- Faculty
of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa Portugal
| | - Paula Alvito
- Food
and Nutrition Department, National Institute
of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM - Centre
for Environmental and Marine Studies, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Elena Arranz
- Department
of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), E-28040 Madrid, Spain
| | - Shanna Bastiaan-Net
- Wageningen
Food & Biobased Research, Wageningen
University & Research, 6708 WG Wageningen, The Netherlands
| | - Milena Corredig
- Department
of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | | | - Didier Dupont
- INRAE Agrocampus Ouest, STLO, F-35042 Rennes, France
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, P61
C996 County Cork, Ireland
| | - Brigitte Anna Graf
- Department
of Health Professions, Faculty of Health and Education, Manchester Metropolitan University, M15 6BH Manchester, U.K.
| | - Alina Kondrashina
- H&H
Group, H&H Research, Global Research
and Technology Centre, P61
K202 Cork, County Cork, Ireland
| | - Helena Ramos
- LAQV/REQUIMTE,
Laboratório de Bromatologia e Hidrologia, Departamento de Ciências
Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Lorena Ruiz
- Dairy
Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares, sn. Villaviciosa 33300, Asturias. Spain
| | - Marta Santos-Hernández
- Wellcome
Trust - MRC Institute of Metabolic Science, Metabolic Research laboratories, Addenbrooke’s Hospital, Hills Road, CB2 0QQ Cambridge, U.K.
| | - Laura Soriano-Romaní
- AINIA
in Vitro Preclinical Studies Area, Parque
Tecnológico de Valencia. c/Benjamín Franklin, 5-11, E46980 Paterna, Spain
| | - Lidia Tomás-Cobos
- AINIA
in Vitro Preclinical Studies Area, Parque
Tecnológico de Valencia. c/Benjamín Franklin, 5-11, E46980 Paterna, Spain
| | | | - Isidra Recio
- Institute of Food
Science Research CIAL (CSIC-UAM), C/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Beatriz Miralles
- Institute of Food
Science Research CIAL (CSIC-UAM), C/Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
13
|
Ballegaard ASR, Sancho AI, Zhou C, Knudsen NPH, Rigby NM, Bang-Berthelsen CH, Gupta S, Mackie AR, Lübeck M, Pilegaard K, Bøgh KL. Allergenicity evaluation of quinoa proteins - A study in Brown Norway rats. Food Chem Toxicol 2023; 182:114118. [PMID: 37863384 DOI: 10.1016/j.fct.2023.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The popularity of quinoa seeds has increased in the last decade due to their high nutritional value and natural gluten-free composition. Consumption of new proteins may pose a risk of introducing new allergies. In the present study the immunogenicity and sensitising capacity of quinoa proteins were assessed in a dose-response experiment in Brown Norway rats in comparison to proteins from spinach and peanut. Cross-reactivity between quinoa proteins and known allergens was evaluated by in silico analyses followed by analyses with 11 selected protein extracts and their anti-sera by means of ELISAs and immunoblotting. Further, an in vitro simulated gastro-duodenal digestion was performed. Quinoa proteins were found to have an inherent medium to high immunogenicity and sensitising capacity, being able to induce specific IgG1 and IgE levels higher than spinach but lower than peanut and elicit reactions of clinical relevance similar to peanut. Quinoa proteins were generally shown to resist digestion and retain capacity to bind quinoa-specific antibodies. Quinoa proteins were shown to be cross-reactive with peanut and tree nut allergens as high sequence homology and antibody cross-binding were demonstrated. Present study suggests that quinoa pose a medium to high level of allergenicity that should be further investigated in human studies.
Collapse
Affiliation(s)
- Anne-Sofie Ravn Ballegaard
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| | - Ana Isabel Sancho
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| | - Cui Zhou
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| | | | - Neil Marcus Rigby
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Claus Heiner Bang-Berthelsen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| | - Shashank Gupta
- Immunology, ALK, Bøge Allé 1, DK-2970, Hørsholm, Denmark
| | - Alan Robert Mackie
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Mette Lübeck
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9100, Aalborg, Denmark
| | - Kirsten Pilegaard
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Liu WL, Wang H, Hu YM, Wang XM, Chen HQ, Tu ZC. Mechanism of the Allergenicity Reduction of Ovalbumin by Microwave Pretreatment-Assisted Enzymolysis through Biological Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15363-15374. [PMID: 37797215 DOI: 10.1021/acs.jafc.3c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Ovalbumin (OVA) is a major allergen in hen eggs. Enzymolysis has been demonstrated as an efficient method for reducing OVA allergenicity. This study demonstrates that microwave pretreatment (MP) at 400 W for 20 s assisting bromelain enzymolysis further decreases the allergenicity of OVA, which was attributed to the increase in the degree of hydrolysis and promoted the destruction of IgE-binding epitopes. The results showed that MP could promote OVA unfolding, expose hydrophobic domains, and disrupt tightly packed α-helical structures and disulfide bonds, which increased the degree of hydrolysis by 7.28% and the contents of peptides below 1 kDa from 43.55 to 85.06% in hydrolysates compared with that for untreated OVA. Biological mass spectrometry demonstrated that the number of intact IgE-binding epitope peptides in MP-assisted OVA hydrolysates decreased by 533 compared to that in hydrolysis without MP; consequently, their IgG/IgE binding rates decreased more significantly. Therefore, MP-assisted enzymolysis may provide an alternative method for decreasing the OVA allergenicity.
Collapse
Affiliation(s)
- Wen Li Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yue Ming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xu Mei Wang
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- College of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hai Qi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Zong Cai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
15
|
Carlson AB, Mathesius CA, Gunderson TA, Hession A, Bruyere R, Mirsky HP, Zhang J, Sandmann M, Fallers MN, Herman RA. Protein familiarity is a fundamental but rarely operationalized concept in the safety assessment of genetically modified crops: example of phosphomannose isomerase (PMI). Transgenic Res 2023; 32:423-435. [PMID: 37415055 PMCID: PMC10602950 DOI: 10.1007/s11248-023-00358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Fundamental to the safety assessment of genetically modified (GM) crops is the concept of negligible risk for newly expressed proteins for which there is a history of safe use. Although this simple concept has been stated in international and regional guidance for assessing the risk of newly expressed proteins in GM crops, its full implementation by regulatory authorities has been lacking. As a result, safety studies are often repeated at a significant expenditure of resources by developers, study results are repeatedly reviewed by regulators, and animals are sacrificed needlessly to complete redundant animal toxicity studies. This situation is illustrated using the example of the selectable marker phosphomannose isomerase (PMI) for which familiarity has been established. Reviewed is the history of safe use for PMI and predictable results of newly conducted safety studies including bioinformatic comparisons, resistance to digestion, and acute toxicity that were repeated to gain regulatory reapproval of PMI expressed from constructs in recently developed GM maize. As expected, the results of these newly repeated hazard-identification and characterization studies for PMI indicate negligible risk. PMI expressed in recently developed GM crops provides an opportunity to use the concept of familiarity by regulatory authorities to reduce risk-disproportionate regulation of these new events and lessen the resulting waste of both developer and regulator resources, as well as eliminate unnecessary animal testing. This would also correctly imply that familiar proteins like PMI have negligible risk. Together, such modernization of regulations would benefit society through enabling broader and faster access to needed technologies.
Collapse
Affiliation(s)
- Anne B Carlson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | | | - Tim A Gunderson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Aideen Hession
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Reba Bruyere
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Henry P Mirsky
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - John Zhang
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Mat Sandmann
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Melissa N Fallers
- Corteva Agriscience, Haskell R&D Center, P.O. Box 30, Newark, DE, 19714, USA
| | - Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| |
Collapse
|
16
|
Yue W, Huang S, Lin S, He K, He W, Chen J, Li L, Chai W, Wu X. Purification, Immunological Identification, and Characterization of the Novel Silkworm Pupae Allergen Bombyx mori Lipoprotein 3 (Bomb m 6). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13527-13534. [PMID: 37638798 DOI: 10.1021/acs.jafc.3c04706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Allergic reactions caused by silkworm pupae greatly limit their utilization, and studies suggest that silkworm pupae proteins of 25-30 kDa may be the principal allergens. To further understand these allergens, we attempted to purify a protein of about 30 kDa by ammonium sulfate salting, pH-graded precipitation, and ion-exchange chromatography. The protein was identified by mass spectrometry and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blot, enzyme-linked immunosorbent assays, circular dichroism, and fluorescence spectroscopy analyses. We identified the purified protein as Bombyx mori lipoprotein 3 (Bmlp3), which has high IgE reactivity and is a novel uncharacterized allergen that we named Bomb m 6 according to the WHO/IUIS Allergen Nomenclature Sub-Committee. This allergen is stable against heat, acids, bases, and digestion. In conclusion, we successfully purified and characterized a novel silkworm pupa allergen, which may inform the diagnosis and treatment of silkworm pupa allergies.
Collapse
Affiliation(s)
- Wenqi Yue
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Songyuan Huang
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Shiwen Lin
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Kan He
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Weiyi He
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Jiamin Chen
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Liuying Li
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Wenxiang Chai
- Department of Cardiothoracic, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P. R. China
| | - Xuli Wu
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
17
|
Kang W, Zhang J, Yu N, He L, Chen Y. Effect of ultrahigh-pressure treatment on the structure and allergenicity of peach allergenic proteins. Food Chem 2023; 423:136227. [PMID: 37201255 DOI: 10.1016/j.foodchem.2023.136227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023]
Abstract
Peach is a common plant-derived allergenic food and ultrahigh-pressure treatment is often used in peach products. In our study, an in-depth analysis of the structural and allergenicity changes of peach allergenic proteins after UHP treatment was performed by spectroscopy, mass spectrometry combined with serology and cytology. The results indicated that UHP treatment could reduce the content of peach soluble proteins and cause changes in secondary and tertiary structures. In addition, more hydrophobic residues were exposed and proteins tended to polymerize after UHP-treatment. The results of immunological assays showed that UHP treatment could reduce the IgE binding capacity of peach proteins and affect the ability of basophil degranulation, the upregulation of some cytokines may contribute to the reduction of peach protein allergenicity. Notably, UHP treatment may lead to the masking of some digestion sites in Pru p 3 epitopes, thus impeding human digestion and increasing the potential risk of allergenicity.
Collapse
Affiliation(s)
- Wenhan Kang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China.
| |
Collapse
|
18
|
Wang K, Crevel RWR, Mills ENC. An in vitro protocol to characterise the resistance of food proteins to intestinal digestion. Food Chem Toxicol 2023; 173:113590. [PMID: 36584934 DOI: 10.1016/j.fct.2022.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
In vitro digestion tests provide data on the form in which dietary proteins maybe presented to the gut mucosal immune system, one of many strands of evidence used in allergenicity risk assessment. A 96-well plate format in vitro intestinal digestion protocol has been developed with a high and low enzyme activity test executed at pH 6.5 and 8.0. It was applied to the systematic analysis of test proteins (including six allergens and one non-allergenic comparator) which were either completely resistant to pepsinolysis or gave rise to large persistent fragments following in vitro gastric digestion. Digestion was monitored using SDS-PAGE and densitometry. Proteins resistant to pepsin were also resistant to intestinal digestion irrespective of the protocol applied and gave rise to large persistent digestion fragments. In contrast persistent fragments from pepsin digestion were readily digested. Bile salts enhanced the digestibility of two highly resistant proteins, lysozyme ad β-lactoglobulin, changing the rank order of protein digestibility. Intestinal digestion tests that include bile salts provide a more physiologically relevant system for future investigation into how digestion products may influence the balance between tolerance and sensitization - and hence contribute to future development of a more effective allergenicity risk assessment process.
Collapse
Affiliation(s)
- Kai Wang
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Rene W R Crevel
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK; René Crevel Consulting Ltd, 3 Woodlands Close, Cople, Bedford, MK44 3UE, UK.
| | - E N Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK; School of Biosciences and Medicine, The University of Surrey, Guildford, UK.
| |
Collapse
|
19
|
Li T, Han K, Feng G, Guo J, Wang J, Wan Z, Wu X, Yang X. Bile Acid Profile Influences Digestion Resistance and Antigenicity of Soybean 7S Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2999-3009. [PMID: 36723618 DOI: 10.1021/acs.jafc.2c07687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Soybean 7S storage protein (β-conglycinin) is the most important allergen, exhibits resistance in gastrointestinal (GI) digestion, and causes allergies in humans and animals. A previous study has demonstrated that 7S proteins contained innate amyloid aggregates, but the fate of these specific protein aggregates in intestinal digestion and correlation to allergenicity are unclear. In this study, via a modified INFOGEST static in vitro digestion and IgE binding test, we illustrate that the survived amyloid aggregates of soybean 7S protein in GI digestion might be dominant IgE epitopes of soybean protein in humans. The impact of conjugated primary bile acid salt (BS) profile on digestion resistance and immunogenicity of soybean protein is assessed, regarding the binding affinity of BS to protein aggregates with consideration of the BS composition and the physiologically relevant colloidal structure. The results show that chenodeoxycholate-containing colloidal structures exhibit high affinity and unfolding capacity to protein amyloid aggregates, promoting proteolysis by pancreatic enzymes and thus mitigating the antigenicity of soybean protein. This study presents a novel understanding of bile acid profile and colloidal structure influence on the digestibility and antigenicity of dietary proteins. It should be helpful to design in vitro digestion protocol and accurately replicate physiologically relevant digestion conditions.
Collapse
Affiliation(s)
- Tanghao Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Kaining Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Guangxin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jinmei Wang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
20
|
Ballegaard ASR, Bøgh KL. Intestinal protein uptake and IgE-mediated food allergy. Food Res Int 2023; 163:112150. [PMID: 36596102 DOI: 10.1016/j.foodres.2022.112150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Food allergy is affecting 5-8% of young children and 2-4% of adults and seems to be increasing in prevalence. The cause of the increase in food allergy is largely unknown but proposed to be influenced by both environmental and lifestyle factors. Changes in intestinal barrier functions and increased uptake of dietary proteins have been suggested to have a great impact on food allergy. In this review, we aim to give an overview of the gastrointestinal digestion and intestinal barrier function and provide a more detailed description of intestinal protein uptake, including the various routes of epithelial transport, how it may be affected by both intrinsic and extrinsic factors, and the relation to food allergy. Further, we give an overview of in vitro, ex vivo and in vivo techniques available for evaluation of intestinal protein uptake and gut permeability in general. Proteins are digested by gastric, pancreatic and integral brush border enzymes in order to allow for sufficient nutritional uptake. Absorption and transport of dietary proteins across the epithelial layer is known to be dependent on the physicochemical properties of the proteins and their digestion fragments themselves, such as size, solubility and aggregation status. It is believed, that the greater an amount of intact protein or larger peptide fragments that is transported through the epithelial layer, and thus encountered by the mucosal immune system in the gut, the greater is the risk of inducing an adverse allergic response. Proteins may be absorbed across the epithelial barrier by means of various mechanisms, and studies have shown that a transcellular facilitated transport route unique for food allergic individuals are at play for transport of allergens, and that upon mediator release from mast cells an enhanced allergen transport via the paracellular route occurs. This is in contrast to healthy individuals where transcytosis through the enterocytes is the main route of protein uptake. Thus, knowledge on factors affecting intestinal barrier functions and methods for the determination of their impact on protein uptake may be useful in future allergenicity assessments and for development of future preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
21
|
Herman RA, Song P. Comprehensive COMPARE database reduces allergenic risk of novel food proteins. GM CROPS & FOOD 2022; 13:112-118. [PMID: 35674136 PMCID: PMC9196780 DOI: 10.1080/21645698.2022.2079180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The comprehensiveness of the allergen database used to bioinformatically compare a novel food protein with known allergens is critical to the ability to assess the allergenic risk of newly expressed proteins in genetically engineered crops. The strength of the relationship between a candidate GE protein's amino acid sequence and that of known allergens is used to predict cross-reactive risk. The number of truly novel allergen sequences added annually to the COMPARE database reflects on the comprehensiveness of our knowledge of allergen amino acid sequence diversity. Here, we investigated the most recent five years of updates to the COMPARE allergen database for truly novel entries. Results indicate that few truly novel sequences are added each year, suggesting that the database and our knowledge of allergen sequence diversity is currently quite comprehensive, and that current in silico prediction of allergenic risk for novel food proteins is robust.
Collapse
Affiliation(s)
- Rod A. Herman
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA,CONTACT Rod A. Herman Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana46268
| | - Ping Song
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Herman RA, Zhang JXQ, Roper JM. Slow alignment of GMO allergenicity regulations with science on protein digestibility. GM CROPS & FOOD 2022; 13:126-130. [PMID: 35762305 PMCID: PMC9245576 DOI: 10.1080/21645698.2022.2093552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The current science on food allergy supports the dual allergen exposure hypothesis where sensitization to allergenic proteins is favored by dermal and inhalation exposure, and tolerization against allergy is favored by exposure in the gut. This hypothesis is bolstered by the epidemiological evidence showing that regions where children are exposed early in life to allergenic foods have lower rates of allergy. This led medical experts to replace the previous recommendation to exclude commonly allergenic foods from the diets of young children with the current recommendation that such foods be introduced to children early in life. Past beliefs that lowering gut exposure would reduce the likelihood that a protein would be allergenic led regulators and risk assessors to consider digestively stable proteins to be of greater allergenic risk. This resulted in international guidance and government regulations for newly expressed proteins in genetically engineered crops that aligned with this belief. Despite empirical results showing that allergens are no more digestively stable than non-allergens, and that gut exposure favors tolerization over sensitization, regulations have not come into alignment with the current science prompting developers to continue to engineer proteins for increased digestibility. In some rare cases, this could potentially increase sensitization risk.
Collapse
Affiliation(s)
- Rod A Herman
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA
| | - John X Q Zhang
- Regulatory and Stewardship, Corteva Agriscience, Johnston, Iowa, USA
| | - Jason M Roper
- Regulatory and Stewardship, Corteva Agriscience, Newark Delaware, USA
| |
Collapse
|
23
|
Gastrointestinal digestion products of shrimp (Penaeus vannamei) proteins retain an allergenic potential. Food Res Int 2022; 162:111916. [DOI: 10.1016/j.foodres.2022.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
|
24
|
Caco-2 Cell Response Induced by Peptides Released after Digestion of Heat-Treated Egg White Proteins. Foods 2022; 11:foods11223566. [PMID: 36429158 PMCID: PMC9689089 DOI: 10.3390/foods11223566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
The heat treatment of food proteins induces structural modifications that influence their interaction with human fluids and cells. We aimed to evaluate the Caco-2 cell response induced by peptides produced after digestion of heat-treated egg white proteins. In vitro digestion of ovalbumin (OVA), ovomucoid (OM), and lysozyme (LYS), untreated or previously heated, was performed. The digestibility of proteins and the response of Caco-2 cells exposed to peptides (<10 kDa) generated during digestion were evaluated. Intact OVA and LYS persisted after the digestion of native proteins, whereas OM was completely hydrolysed. A heat treatment at 65 °C for 30 min did not alter the digestibility of OVA, whereas at 90 °C for 3 min, protein degradation was favoured. The digestibility of OM and LYS was not affected by heat treatment. Peptides derived from OVA and OM digestion induced IL-6 and IL-8 production. OVA and LYS digestion promoted the expression of Tslp, and Il6 and Il33, respectively. A heat treatment prior to OVA digestion reduced IL-6 production and Tslp expression. It was concluded that heat treatments can reduce the release of OVA-derived peptides, but not OM and LYS, with proinflammatory activity during digestion.
Collapse
|
25
|
Nanoparticles Containing Tamarind Isolate Protein Potentiate the Satiety without Promoting the Anti-Inflammatory Effect in a Preclinical Model of Diet-Induced Obesity. Foods 2022; 11:foods11213526. [PMID: 36360138 PMCID: PMC9658257 DOI: 10.3390/foods11213526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The study aimed to evaluate the nanoparticles (ECW) containing tamarind trypsin inhibitor (TTI) concerning the storage effect under different conditions on antitrypsin activity and the bioactive potential in a preclinical model. ECW was exposed to different pH and temperatures to evaluate the interaction between TTI and its encapsulating agents, monitored by antitrypsin activity. Wistar rats (n = 25) with obesity induced by diet were divided into groups: untreated; treatment with nutritionally adequate diet; treatment with nutritionally adequate diet and ECW/12.5 mg/kg; treatment with ECW/12.5 mg/kg; and treatment with TTI/25 mg/kg. The groups were evaluated over ten days with regards to satiety, zoometric, biochemical, and inflammatory parameters, using ten times less TTI (2.5 mg/kg) contained in ECW. TTI was protected and encapsulated in ECW without showing residual inhibitory activity. Only at gastric pH did ECW show antitrypsin activity. At different temperatures, it showed high antitrypsin activity, similar to TTI. The animals treated with ECW had significantly reduced body weight variation (p < 0.05), and only TTI treatment reduced the inflammatory parameters significantly (p < 0.05). The study showed that by using lower concentrations of TTI in ECW it was possible to perceive promising effects with perspectives of use in functional products for managing obesity and its complications.
Collapse
|
26
|
Comparative digestion of thermally treated vertebrates and invertebrates allergen pairs in real food matrix. Food Chem 2022; 405:134981. [DOI: 10.1016/j.foodchem.2022.134981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022]
|
27
|
Herman RA, Zhang JXQ. Simulated gastric fluid assay for estimating the digestibility of newly expressed proteins in GE crops: Missteps in development and interpretation. Food Chem Toxicol 2022; 169:113436. [PMID: 36165819 DOI: 10.1016/j.fct.2022.113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Digestive stability of a food protein in simulated gastric fluid (SGF) continues to be considered a risk factor for allergy, even though the current science does not support this belief. Methodological shortcomings of the adaption of the SGF assay for use with purified proteins has been cited as a reason to discount results that do not conform to this belief. Missteps in conducting and interpreting the results of SGF assays are reviewed here. However, these methodological shortcomings do not invalidate the conclusion that allergenic proteins are not systematically more stable to digestion than non-allergens. The growing evidence for the dual allergen exposure hypothesis, whereby sensitization to food allergens is primarily caused by dermal and inhalation exposure to food dust, and tolerization against food allergy is primarily induced by gut exposure in food, likely explains why the digestive stability of a protein is not a risk factor for allergenicity.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, Regulatory and Stewardship, Indianapolis, IN, 46268, USA.
| | - John X Q Zhang
- Corteva Agriscience, Regulatory and Stewardship, Johnston, IA, USA
| |
Collapse
|
28
|
Assessing protein digestibility in allergenicity risk assessment: A comparison of in silico and high throughput in vitro gastric digestion assays. Food Chem Toxicol 2022; 167:113273. [PMID: 35809717 DOI: 10.1016/j.fct.2022.113273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
The susceptibility of a novel food protein to digestion in the pepsin resistance test is widely used to inform the allergenicity risk assessment process. However, it does not model the variation in the intragastric environment found in vivo. Consequently a 96-well plate format in vitro gastric digestion protocol has been developed with a high and low pepsin activity test executed at pH 1.2, 2.5, 5.5 and 6.5. It was used to analyse seven allergens (from milk, egg, peach and peanut) and two non-allergens (cytochrome c and zein). Digestion was monitored using SDS-PAGE and densitometry. In silico predictions were not confirmed experimentally for most of the proteins studied. Proteins were ranked according to half-life and showed susceptibility to digestion was related to the stability of protein structure and protein solubility rather than allergenicity per se. Highly digestible proteins, such as β-casein and Ara h 1, generated abundant resistant fragments Mr > 3.5 kDa in the low pepsin activity test which could be immunologically significant within the context of allergenicity risk assessment for susceptible groups such as infants. The high- and low pepsin activity tests used in this study provided complementary data to support allergenicity risk assessment and used only 10 mg protein.
Collapse
|
29
|
Sun N, Liu Y, Liu K, Wang S, Liu Q, Lin S. Gastrointestinal fate of food allergens and its relationship with allergenicity. Compr Rev Food Sci Food Saf 2022; 21:3376-3404. [PMID: 35751399 DOI: 10.1111/1541-4337.12989] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023]
Abstract
Food allergens are closely related to their gastrointestinal digestion fate, but the changes in food allergens during digestion and related mechanisms are quite complicated. This review presents in detail digestion models for predicting allergenicity, the fates of food allergens in oral, gastric and duodenal digestion, and the applications of digestomics in mapping IgE-binding epitopes of digestion-resistant peptides. Moreover, this review highlights the structure-activity relationships of food allergens during gastrointestinal digestion. Digestion-labile allergens may share common structural characteristics, such as high flexibility, rendering them easier to be hydrolyzed into small fragments with decreased or eliminated allergenicity. In contrast, the presence of disulfide bonds, tightly wound α-helical structures, or hydrophobic domains in food allergens helps them resist gastrointestinal digestion, stabilizing IgE-binding epitopes, thus maintaining their sensitization. In rare cases, digestion leads to increased allergenicity due to exposure of new epitopes. Finally, the action of the food matrix and processing on the digestion and allergenicity of food allergens as well as the underlying mechanisms was overviewed. The food matrix can directly act on the allergen by forming complexes or new epitopes to affect its gastrointestinal digestibility and thereby alter its allergenicity or indirectly affect the allergenicity by competing for enzymatic cleavage or influencing gastrointestinal pH and microbial flora. Several processing techniques attenuate the allergenicity of food proteins by altering their conformation to improve susceptibility to degradation by digestive enzymes. Given the complexity of food components, the food itself rather than a single allergen should be used to obtain more accurate data for allergenicity assessment. PRACTICAL APPLICATION: The review article will help to understand the relationship between food protein digestion and allergenicity, and may provide fundamental information for evaluating and reducing the allergenicity of food proteins.
Collapse
Affiliation(s)
- Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Yao Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Kexin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Shan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Qiaozhen Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
30
|
Garciarena IN, Poulsen M, Lindholm Bøgh K. Risk–benefit assessment of seaweed Allergenicity risk assessment of novel protein. EFSA J 2022; 20:e200414. [PMID: 35634551 PMCID: PMC9131616 DOI: 10.2903/j.efsa.2022.e200414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As the world population rapidly grows, there is a clear need for alternative food sources, particularly for the provision of protein. Seaweed is one such alternative source of protein that requires greater investigation. In this context, a working programme within the European Food Risk Assessment (EU‐FORA) Fellowship Programme framework was developed at National Food Institute – Technical University of Denmark. This Programme is an initiative of the EFSA with the aim to build a European risk assessment community. The purpose of this technical report is to describe the activities in which the fellow was involved. As part of the Research Group for Risk–Benefit, the fellow performed a risk–benefit assessment of seaweed Palmaria palmata gaining an in‐depth expertise in all the steps. The health impact of Palmaria palmata consumption was estimated, considering its high nutritional value but also highlighting concerns towards some components. Simultaneous to the work on the risk–benefit, the fellow also worked within the Research Group for Food Allergy, specifically on the allergenicity risk assessment of a plant‐based novel protein (seaweed protein) using different laboratory assays. Seaweed protein digestibility was assessed, and its digestion products were characterised and assessed for immunogenicity. Finally, the fellow collaborated with the Research Group for Microbial Biotechnology and Biorefining in the development of a novel food (alfalfa protein) application dossier to be submitted to EFSA, gaining expertise in the risk assessment of a novel food. In conclusion, the present working programme, together with additional activities and training provided by different institutions, enabled the fellow to gain a broader perspective in food safety, particularly concerning seaweed, novel foods and the safety assessment of novel proteins.
Collapse
Affiliation(s)
| | - Morten Poulsen
- National Food Institute ‐ Technical University of Denmark Denmark
| | | |
Collapse
|
31
|
Patil PJ, Usman M, Zhang C, Mehmood A, Zhou M, Teng C, Li X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf 2022; 21:1732-1776. [PMID: 35142435 DOI: 10.1111/1541-4337.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Food-derived bioactive peptides (BAPs) are recently utilized as functional food raw materials owing to their potential health benefits. Although there is a huge amount of scientific research about BAPs' identification, purification, characterization, and physiological functions, and subsequently, many BAPs have been marketed, there is a paucity of review on the regulatory requirements, bioavailability, and safety of BAPs. Thus, this review focuses on the toxic peptides that could arise from their primary proteins throughout protein extraction, protein pretreatment, and BAPs' formulation. Also, the influences of BAPs' length and administration dosage on safety are summarized. Lastly, the challenges and possibilities in BAPs' bioavailability and regulatory requirements in different countries were also presented. Results revealed that the human studies of BAPs are essential for approvals as healthy food and to prevent the consumers from misinformation and false promises. The BAPs that escape the gastrointestinal tract epithelium and move to the stomach are considered good peptides and get circulated into the blood using different pathways. In addition, the hydrophobicity, net charge, molecular size, length, amino acids composition/sequences, and structural characteristics of BAPs are critical for bioavailability, and appropriate food-grade carriers can enhance it. The abovementioned features are also vital to optimize the solubility, water holding capacity, emulsifying ability, and foaming property of BAPs in food products. In the case of safety, the possible allergenic and toxic peptides often exhibit physiological functions and could be produced during the hydrolysis of food proteins. It was also noted that the production of iso-peptides bonds and undesirable Maillard reaction might occur during protein extraction, sample pretreatments, and peptide synthesis.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Mingchun Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
32
|
Murbach TS, Glávits R, Maragheh NM, Endres JR, Hirka G, Goodman RE, Lu G, Vértesi A, Béres E, Szakonyiné IP. Evaluation of the genotoxic potential of protoporphyrin IX and the safety of a protoporphyrin IX-rich algal biomass. J Appl Toxicol 2022; 42:1253-1275. [PMID: 35104912 DOI: 10.1002/jat.4293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Chlamydomonas reinhardtii is a nonpathogenic, nontoxigenic green algae used as a sustainable source of protein in foods. In order to mimic meat-like qualities, a strain rich in protoporphyrin IX (PPIX), an endogenous heme/chlorophyll precursor, was developed using an evolution and selection strategy, and investigations were carried out to evaluate the safety of the novel strain, C. reinhardtii (red), strain TAI114 (TAI114). Digestibly and proteomic evaluations were conducted to determine whether any potentially allergenic or toxic proteins occurred as the result of the mutation process. The genotoxic potential of pure PPIX was evaluated using a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and an in vivo mammalian micronucleus test. Finally, the novel TAI114 biomass was evaluated for general toxicity and identification of target organs in a 90-day repeated-dose oral toxicity study in rats. All proteins were rapidly degraded in pepsin at pH 2.0 suggesting low allergenic potential. The proteomic evaluation indicated that TAI114 biomass contains typical C. reinhardtii proteins. PPIX was unequivocally negative for genotoxic potential and no target organs or adverse effects were observed in rats up to the maximum feasible dose of 4000 mg/kg bw/day TAI114 biomass, which was determined to be the no-observed-adverse-effect-level (NOAEL). These results support the further development and risk characterization of TAI114 biomass as a novel ingredient for use in the meat analogue category of food.
Collapse
Affiliation(s)
- Timothy S Murbach
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, USA
| | - Róbert Glávits
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary
| | - Niloofar Moghadam Maragheh
- Goodman Laboratory, Food Allergy Research and Resource Program (FARRP), University of Nebraska, Dept. of Food Science & Technology, Lincoln, NE, USA
| | - John R Endres
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, USA
| | - Gábor Hirka
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary.,Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Richard E Goodman
- Goodman Laboratory, Food Allergy Research and Resource Program (FARRP), University of Nebraska, Dept. of Food Science & Technology, Lincoln, NE, USA
| | - Guihua Lu
- Triton Algae Innovations, 11760 Sorrento Valley Road, Suite R, San Diego, California, USA
| | - Adél Vértesi
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Erzsébet Béres
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | | |
Collapse
|
33
|
Tang X, Meng X, Wang H, Wang T, Li Q, Jiang S. Egg allergy was alleviated after baking and frying cooking by weakening Jagged2-Notch induced Th2 immunity in a mice model. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, George Firbank L, Guerche P, Hejatko J, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Fernandez Dumont A, Moreno FJ. Scientific Opinion on development needs for the allergenicity and protein safety assessment of food and feed products derived from biotechnology. EFSA J 2022; 20:e07044. [PMID: 35106091 PMCID: PMC8787593 DOI: 10.2903/j.efsa.2022.7044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This Scientific Opinion addresses the formulation of specific development needs, including research requirements for allergenicity assessment and protein safety, in general, which is urgently needed in a world that demands more sustainable food systems. Current allergenicity risk assessment strategies are based on the principles and guidelines of the Codex Alimentarius for the safety assessment of foods derived from 'modern' biotechnology initially published in 2003. The core approach for the safety assessment is based on a 'weight-of-evidence' approach because no single piece of information or experimental method provides sufficient evidence to predict allergenicity. Although the Codex Alimentarius and EFSA guidance documents successfully addressed allergenicity assessments of single/stacked event GM applications, experience gained and new developments in the field call for a modernisation of some key elements of the risk assessment. These should include the consideration of clinical relevance, route of exposure and potential threshold values of food allergens, the update of in silico tools used with more targeted databases and better integration and standardisation of test materials and in vitro/in vivo protocols. Furthermore, more complex future products will likely challenge the overall practical implementation of current guidelines, which were mainly targeted to assess a few newly expressed proteins. Therefore, it is timely to review and clarify the main purpose of the allergenicity risk assessment and the vital role it plays in protecting consumers' health. A roadmap to (re)define the allergenicity safety objectives and risk assessment needs will be required to inform a series of key questions for risk assessors and risk managers such as 'what is the purpose of the allergenicity risk assessment?' or 'what level of confidence is necessary for the predictions?'.
Collapse
|
35
|
Gasparini A, Benedé S, Tedeschi T, Sforza S, Recio I, Miralles B. In vitro simulated semi-dynamic gastrointestinal digestion: evaluation of the effects of processing on whey proteins digestibility and allergenicity. Food Funct 2022; 13:1593-1602. [DOI: 10.1039/d1fo04102a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of thermal processing on digestibility of milk proteins should be better understood as this can greatly affect their immunoreactivity. The aim of this study was to evaluate the...
Collapse
|
36
|
Herman RA, Roper JM. Erroneous Belief that Digestive Stability Predicts Allergenicity May Lead to Greater Risk for Novel Food Proteins. Front Bioeng Biotechnol 2021; 9:747490. [PMID: 34604192 PMCID: PMC8484781 DOI: 10.3389/fbioe.2021.747490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
There continues to be an erroneous belief that allergens (especially food allergens) are more resistant to gastrointestinal digestion than non-allergens. Government regulations based on this erroneous belief may result in technology developers altering the amino acid sequences of digestively stable native proteins to create digestively unstable modified versions for expression in genetically engineered crops. However, an investigation where a known stable allergen was modified to make it more digestible eliminated the protein’s ability to tolerize against allergy in a mouse model, which is consistent with the dual allergen exposure hypothesis. Thus, the false belief that digestive stability increases the allergenic risk of novel food proteins (e.g., such as expressed in genetically engineered crops) could, in some cases, lead to introduction of digestively unstable modified protein versions with greater sensitization risk. However, it is noteworthy that developers have historically been very effective at preventing allergens from being introduced into crops based on the other components of the weight-of-evidence assessment of allergenic risk such that no newly expressed protein in any commercialized genetically engineered crop has ever been documented to cause allergy in anyone.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, Indianapolis, IN, United States
| | | |
Collapse
|
37
|
Torcello-Gómez A, Dupont D, Jardin J, Briard-Bion V, Deglaire A, Risse K, Mechoulan E, Mackie A. The pattern of peptides released from dairy and egg proteins is highly dependent on the simulated digestion scenario. Food Funct 2021; 11:5240-5256. [PMID: 32458959 DOI: 10.1039/d0fo00744g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Evaluating the gastrointestinal (GI) fate of proteins is part of the assessment to determine whether proteins are safe to consume. In vitro digestion tests are often used for screening purposes in the evaluation of potential allergenicity. However, the current pepsin resistant test used by the European Food Safety Authority, only corresponds to fasted gastric conditions representative of a late phase adult stomach. In addition, these tests are performed on isolated proteins and the effect of the food matrix and processing are not systematically considered. The aim of this research is to compare three different static in vitro GI scenarios that are physiologically relevant. Namely, an infant, early phase (fed state) adult and late phase (fasted state) adult model. These protocols are applied to well-characterised isolated dairy (β-lactoglobulin and β-casein) and egg (lysozyme and ovalbumin) proteins and the impact of food matrix/processing on their proteolysis is also investigated. A combination of SDS-PAGE, LC-MS/MS and spectrophotometric assay was used for the evaluation of the proteolysis. Results highlight differences across the three GI scenarios whether on isolated proteins or within food matrices. The infant model led to incomplete digestion, leaving intact egg proteins, either isolated or in the food matrix, and intact β-lactoglobulin in the milk. In addition, peptides greater than 9 amino acids were found throughout the intestinal phase for all proteins studied, regardless of the scenario. This reinforces the difficulty of linking protein digestibility to potential allergenicity because many other factors are involved that need further investigation.
Collapse
Affiliation(s)
| | - Didier Dupont
- INRAE Institut Agro, STLO, 65 Rue St Brieuc, 35042 Rennes, France
| | - Julien Jardin
- INRAE Institut Agro, STLO, 65 Rue St Brieuc, 35042 Rennes, France
| | | | - Amélie Deglaire
- INRAE Institut Agro, STLO, 65 Rue St Brieuc, 35042 Rennes, France
| | - Kerstin Risse
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK. and Institute of Food Technology and Food Chemistry, Faculty III Process Sciences, Technical University of Berlin, Koenigin-Luise-Str. 22, 14195 Berlin, Germany
| | - Elodie Mechoulan
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK. and Institut Universitaire de Technologie, University of Angers, 4 Boulevard de Lavoisier, 49000 Angers, France
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
38
|
Herman RA, Bauman PA, Goodwin L, Islamovic E, Ma EH, Serrano H, Silvanovich A, Simmons AR, Song P, Tetteh AO, Wang R. Mass spectrometric analysis of digesta does not improve the allergenicity assessment of GM crops. Transgenic Res 2021; 30:283-288. [PMID: 33864193 PMCID: PMC8169501 DOI: 10.1007/s11248-021-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 11/23/2022]
Abstract
An investigation of the potential allergenicity of newly expressed proteins in genetically modified (GM) crops comprises part of the assessment of GM crop safety. However, allergenicity is not completely predictable from a definitive assay result or set of protein characteristics, and scientific opinions regarding the data that should be used to assess allergenicity are continuously evolving. Early studies supported a correlation between the stability of a protein exposed to digestive enzymes such as pepsin and the protein’s status as a potential allergen, but over time the conclusions of these earlier studies were not confirmed. Nonetheless, many regulatory authorities, including the European Food Safety Authority (EFSA), continue to require digestibility analyses as a component of GM crop risk assessments. Moreover, EFSA has recently investigated the use of mass spectrometry (MS), to make digestion assays more predictive of allergy risk, because it can detect and identify small undigested peptides. However, the utility of MS is questionable in this context, since known allergenic peptides are unlikely to exist in protein candidates intended for commercial development. These protein candidates are pre-screened by the same bioinformatics processes that are normally used to identify MS targets. Therefore, MS is not a standalone allergen identification method and also cannot be used to predict previously unknown allergenic epitopes. Thus, the suggested application of MS for analysis of digesta does not improve the poor predictive power of digestion assays in identifying allergenic risk.
Collapse
Affiliation(s)
| | | | | | | | - Eric H Ma
- Syngenta Crop Protection, LLC., Research Triangle Park, NC, USA
| | | | | | | | - Ping Song
- Corteva Agriscience, Indianapolis, IN, USA
| | | | - Rong Wang
- Bayer, Crop Science Division, Chesterfield, MO, USA
| |
Collapse
|
39
|
Martín-Pedraza L, Mayorga C, Gomez F, Bueno-Díaz C, Blanca-Lopez N, González M, Martínez-Blanco M, Cuesta-Herranz J, Molina E, Villalba M, Benedé S. IgE-Reactivity Pattern of Tomato Seed and Peel Nonspecific Lipid-Transfer Proteins after in Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3511-3518. [PMID: 33719421 PMCID: PMC9134490 DOI: 10.1021/acs.jafc.0c06949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The influence of gastrointestinal digestion on the immunological properties of three different nonspecific lipid-transfer proteins (nsLTPs) described in tomato fruit has been assessed using an in vitro system mimicking the stomach and intestine digestion conditions. Tomato peel/pulp nsLTP, Sola l 3, was degraded after digestion, although the immunoglobulin E (IgE) recognition of intact protein and a 10 kDa band were still observed after 30 min of duodenal digestion in the presence of phosphatidylcholine. The tomato seed nsLTP, Sola l 7, showed a higher stability than the other seed allergen, Sola l 6, during digestion. Sola l 7 showed an IgE immunoreactive 6.5 kDa band in immunoblotting analysis, retaining up to 7% of its IgE-binding capacity in inhibition ELISA test after 60 min of duodenal digestion and keeping intact its ability to activate basophils after digestion. These results suggest that the tomato seed allergen Sola l 7 might be considered as an important allergen in the induction of allergic responses to tomato due to its high stability against gastrointestinal digestion.
Collapse
Affiliation(s)
- Laura Martín-Pedraza
- Department
of Biochemistry and Molecular Biology, Universidad
Complutense de Madrid, 28040 Madrid, Spain
| | - Cristobalina Mayorga
- Allergy
Research Laboratory, IBIMA, Regional University
Hospital of Málaga, UMA, 29009 Málaga, Spain
| | - Francisca Gomez
- Allergy
Research Laboratory, IBIMA, Regional University
Hospital of Málaga, UMA, 29009 Málaga, Spain
| | - Cristina Bueno-Díaz
- Department
of Biochemistry and Molecular Biology, Universidad
Complutense de Madrid, 28040 Madrid, Spain
| | | | - Miguel González
- Allergy
Research Laboratory, IBIMA, Regional University
Hospital of Málaga, UMA, 29009 Málaga, Spain
| | - Mónica Martínez-Blanco
- Instituto
de Investigación en Ciencias de la Alimentación (CIAL,
CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | | | - Elena Molina
- Instituto
de Investigación en Ciencias de la Alimentación (CIAL,
CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Mayte Villalba
- Department
of Biochemistry and Molecular Biology, Universidad
Complutense de Madrid, 28040 Madrid, Spain
| | - Sara Benedé
- Instituto
de Investigación en Ciencias de la Alimentación (CIAL,
CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
40
|
Milk Ingredients in Meat Products: Can Autoclaving and In Vitro Gastroduodenal Digestion Mitigate Their IgE-Binding Capacity? Nutrients 2021; 13:nu13030931. [PMID: 33805703 PMCID: PMC8000631 DOI: 10.3390/nu13030931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 12/03/2022] Open
Abstract
The food industry commonly uses milk ingredients as technological aids in an uncounted number of products. On the other hand, milk contains allergenic proteins causing adverse allergic reactions in sensitized/allergic individuals. This work intends to evaluate the effect of autoclaving and in vitro digestion on the allergenicity of milk proteins incurred in meat products. Protein profiles of raw and autoclaved sausages without and with the addition of 10% of milk protein concentrates were analyzed by gel electrophoresis and liquid chromatography–mass spectrometry. Additionally, residual IgE-reactivity was evaluated by immunoblot analysis using pooled sera of cow’s-milk-allergic individuals followed by bioinformatic analysis. Results showed that autoclaving led to an increase in protein fragmentation (higher number of short peptides) and consequently to a higher digestion rate, that was found to be more pronounced in β-casein. The IgE-binding capacity of milk proteins seems to be reduced after autoclaving prior to digestion, with a residual reactivity in caseins, but was eliminated following digestion. This study highlights the importance of autoclaving as a processing strategy to produce hypoallergenic formulas.
Collapse
|
41
|
Bredariol P, Vanin FM. Bread baking Review: Insight into Technological Aspects in order to Preserve Nutrition. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1878211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Priscila Bredariol
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Pirassununga, SP, Brazil
| | - Fernanda Maria Vanin
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Pirassununga, SP, Brazil
| |
Collapse
|
42
|
Ogrodowczyk AM, Dimitrov I, Wróblewska B. Two Faces of Milk Proteins Peptides with Both Allergenic and Multidimensional Health Beneficial Impact- Integrated In Vitro/ In Silico Approach. Foods 2021; 10:163. [PMID: 33466712 PMCID: PMC7828788 DOI: 10.3390/foods10010163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
The main food-origin antigens that the infant's body is in contact with are cow's milk proteins (CMP). Still, CMP are one of the main sources of beneficial biologically active peptides that play a role in treatment of non-communicable diseases. Safe methods to quickly predict the sensitizing potential of food proteins among their range of health-promoting properties are essential. The aim of study was to adapt an integrated approach combining several in silico (IS) studies and in vitro (IV) assays to screen the multifunctionality of CMP-derived peptides. Major histocompatability complex type II MHC II-binders, interleukin-4 and -10 inducers, interferon γ -inducers and immunobioactivity tools were used to predict the peptide-power of inducing allergies or tolerance. A comparison of the peptide profiless revealed the presence of one identical and one overlapping sequence in IS and IV hydrolysate. By IS analysis, four of 24 peptides were found to have high affinity and stimulate IL-4 expression, and by IV, one of seven peptides had this potential (Bos d9 peptide DIPNPIGSENSEK (195-208)). Three IV peptides may induce IL-10 expression. The IV/IS assessment seems promising agents for peptides' potential determination dedicated only to preliminary screening of peptides. The IV verification is still crucial in further steps of studies.
Collapse
Affiliation(s)
- Anna Maria Ogrodowczyk
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Ivan Dimitrov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland;
| |
Collapse
|
43
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Dumont AF. Statement on in vitro protein digestibility tests in allergenicity and protein safety assessment of genetically modified plants. EFSA J 2021; 19:e06350. [PMID: 33473251 PMCID: PMC7801955 DOI: 10.2903/j.efsa.2021.6350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This statement supplements and updates the GMO Panel guidance document on allergenicity of genetically modified (GM) plants published in 2017. In that guidance document, the GMO Panel considered that additional investigations on in vitro protein digestibility were needed before providing any additional recommendations in the form of guidance to applicants. Thus, an interim phase was proposed to assess the utility of an enhanced in vitro digestion test, as compared to the classical pepsin resistance test. Historically, resistance to degradation by pepsin using the classical pepsin resistance test has been considered as additional information, in a weight-of-evidence approach, for the assessment of allergenicity and toxicity of newly expressed proteins in GM plants. However, more recent evidence does not support this test as a good predictor of allergenic potential for hazard. Furthermore, there is a need for more reliable systems to predict the fate of the proteins in the gastrointestinal tract and how they interact with the relevant human cells. Nevertheless, the classical pepsin resistance test can still provide some information on the physicochemical properties of novel proteins relating to their stability under acidic conditions. But other methods can be used to obtain data on protein's structural and/or functional integrity. It is acknowledged that the classical pepsin resistance test is embedded into international guidelines, e.g. Codex Alimentarius and Regulation (EU) No 503/2013. For future development, a deeper understanding of protein digestion in the gastrointestinal tract could enable the framing of more robust strategies for the safety assessment of proteins. Given the high complexity of the digestion and absorption process of dietary proteins, it is needed to clarify and identify the aspects that could be relevant to assess potential risks of allergenicity and toxicity of proteins. To this end, a series of research questions to be addressed are also formulated in this statement.
Collapse
|
44
|
Comparison of digestibility and potential allergenicity of raw shrimp (Litopenaeus vannamei) extracts in static and dynamic digestion systems. Food Chem 2020; 345:128831. [PMID: 33326890 DOI: 10.1016/j.foodchem.2020.128831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 11/23/2022]
Abstract
In this work, a simplified dynamic digestion system was developed, and used for comparing the digestibility and potential allergenicity of raw shrimp extracts (RSE) in static and dynamic digestion systems. Protein hydrolysis was analyzed by electrophoresis, and the potential allergenicity was reflected in IgG/IgE binding ability and activation of basophils. In comparison with static digestion, protein hydrolysis indicated different kinetic behaviors, especially tropomyosin (TM) showed better digestion stability during dynamic digestion. The potential allergenicity of RSE exhibited different changing trends with digestion in the two systems. However, the apparent molecular weight (Mw) of immune fragments (>11 kDa) showed good approximation, and the IgE-binding fragment near 70 kDa revealed outstanding digestion stability than primordial protein in both systems. In conclusion, the dynamic conditions had a significant impact on the assessment of the persistence and potential allergenicity of digestion-resistant allergens, while the apparent Mw of IgG/IgE binding hydrolysate was not affected.
Collapse
|
45
|
Bredariol P, Carvalho RAD, Vanin FM. The effect of baking conditions on protein digestibility, mineral and oxalate content of wheat breads. Food Chem 2020; 332:127399. [PMID: 32645676 DOI: 10.1016/j.foodchem.2020.127399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Abstract
Different baking conditions were used in order to evaluate its effects on bread aspects. Doughs were baked at 160, 190 and 220 °C, during 9, 12, 15 and 20 min, and characterized in relation to color change, oxalate and mineral concentration, and protein digestibility. The higher the baking temperature and time, the higher the crust color change, the lower the oxalate concentration, and the higher the amount of some macro minerals. Protein digestibility may also be favored, however it does not follow a linear correlation. Although it is not possible to obtain a condition that favors the content of all minerals, protein digestibility and reduces oxalate content, the use of high temperatures and times is important as it can reduce oxalate and thereby prevent its associated problems. Understanding how to optimize it during baking could be used to produce breads with a higher mineral bioavailability, an important strategy for food industry and also when using alternative flours.
Collapse
Affiliation(s)
- Priscila Bredariol
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av., Duque de Caxias Norte 225, 13635-900 Pirassununga, SP, Brazil
| | - Rosemary Aparecida de Carvalho
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av., Duque de Caxias Norte 225, 13635-900 Pirassununga, SP, Brazil
| | - Fernanda Maria Vanin
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av., Duque de Caxias Norte 225, 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
46
|
Pavlicevic M, Maestri E, Marmiroli M. Marine Bioactive Peptides-An Overview of Generation, Structure and Application with a Focus on Food Sources. Mar Drugs 2020; 18:E424. [PMID: 32823602 PMCID: PMC7460072 DOI: 10.3390/md18080424] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The biggest obstacles in the application of marine peptides are two-fold, as in the case of non-marine plant and animal-derived bioactive peptides: elucidating correlation between the peptide structure and its effect and demonstrating its stability in vivo. The structures of marine bioactive peptides are highly variable and complex and dependent on the sources from which they are isolated. They can be cyclical, in the form of depsipeptides, and often contain secondary structures. Because of steric factors, marine-derived peptides can be resistant to proteolysis by gastrointestinal proteases, which presents an advantage over other peptide sources. Because of heterogeneity, amino acid sequences as well as preferred mechanisms of peptides showing specific bioactivities differ compared to their animal-derived counterparts. This review offers insights on the extreme diversity of bioactivities, effects, and structural features, analyzing 253 peptides, mainly from marine food sources. Similar to peptides in food of non-marine animal origin, a significant percentage (52.7%) of the examined sequences contain one or more proline residues, implying that proline might play a significant role in the stability of bioactive peptides. Additional problems with analyzing marine-derived bioactive peptides include their accessibility, extraction, and purification; this review considers the challenges and proposes possible solutions.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11070 Belgrade, Serbia;
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
- Consorzio Italbiotec, Via Fantoli 16/15, 20138 Milan, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
| |
Collapse
|
47
|
Di Stasio L, d'Acierno A, Picariello G, Ferranti P, Nitride C, Mamone G. In vitro gastroduodenal and jejunal brush border membrane digestion of raw and roasted tree nuts. Food Res Int 2020; 136:109597. [PMID: 32846622 DOI: 10.1016/j.foodres.2020.109597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Heat treatments induce chemical/physical modifications, which may affect the stability to enzymatic digestion and consequently the allergenicity of food proteins to a varying extent, depending on the time/temperature regimen. Herein, we evaluated the stability to digestion of whole tree nut (walnuts, hazelnuts and almonds) allergens in a food digestion model reflecting the real one by, taking into consideration the allergen-containing processed (roasted) food. To this aim, whole raw and roasted tree nuts were subjected to in vitro digestion combining the harmonized oral-gastric-duodenal digestion models with brush border membrane enzymes (BBM) to simulate the jejunal degradation of peptides. The degradation of allergens was monitored by integrated proteomic/peptidomic and bio-informatic tools. Roasting increased digestibility of tree nuts, since very few peptides were detected in digested samples (<6.5 kDa fraction). After BBM digestion step, the degradation of peptides was enhanced in roasted walnuts and hazelnuts compared to the raw counterpart. Conversely, almond allergens showed a different behaviour, since the presence of resistant peptides was more evident for roasted almonds, probably because of the hydrolysis of high molecular weight aggregates generated during roasting. Our results provide new insight into the relationship between thermal processing and metabolic fate of tree nut allergens, highlighting the importance of investigating the digestion stability of whole allergenic food, rather than purified proteins.
Collapse
Affiliation(s)
- Luigia Di Stasio
- Institute of Food Sciences - National Research Council, Avellino, Italy; Department of Agriculture - University of Naples - Federico II, Portici (NA), Italy
| | - Antonio d'Acierno
- Institute of Food Sciences - National Research Council, Avellino, Italy
| | | | - Pasquale Ferranti
- Department of Agriculture - University of Naples - Federico II, Portici (NA), Italy
| | - Chiara Nitride
- Department of Agriculture - University of Naples - Federico II, Portici (NA), Italy
| | - Gianfranco Mamone
- Institute of Food Sciences - National Research Council, Avellino, Italy.
| |
Collapse
|
48
|
Bøgh KL, Andreasen MS, Madsen CB. The use of aluminium hydroxide as adjuvant modulates the specific antibody response—A Brown Norway rat study with native and denatured cow's milk allergens. Scand J Immunol 2020; 92:e12891. [DOI: 10.1111/sji.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/22/2020] [Accepted: 04/12/2020] [Indexed: 11/29/2022]
|
49
|
Wang R, Wang Y, Edrington TC, Liu Z, Lee TC, Silvanovich A, Moon HS, Liu ZL, Li B. Presence of small resistant peptides from new in vitro digestion assays detected by liquid chromatography tandem mass spectrometry: An implication of allergenicity prediction of novel proteins? PLoS One 2020; 15:e0233745. [PMID: 32542029 PMCID: PMC7295189 DOI: 10.1371/journal.pone.0233745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
The susceptibility of newly expressed proteins to digestion by gastrointestinal proteases (e.g., pepsin) has long been regarded as one of the important endpoints in the weight-of-evidence (WOE) approach to assess the allergenic risk of genetically modified (GM) crops. The European Food Safety Authority (EFSA) has suggested that current digestion study protocols used for this assessment should be modified to more accurately reflect the diverse physiological conditions encountered in human populations and that the post-digestion analysis should include analytical methods to detect small peptide digestion products.The susceptibility of two allergens (beta-lactoglobin (β-Lg) and alpha-lactalbumin (α-La)) and two non-allergens (hemoglobin (Hb) and phosphofructokinase (PFK)) to proteolytic degradation was investigated under two pepsin digestion conditions (optimal pepsin digestion condition: pH 1.2, 10 U pepsin/μg test protein; sub-optimal pepsin digestion condition: pH 5.0, 1 U pepsin/10 mg test protein), followed by 34.5 U trypsin/mg test protein and 0.4 U chymotrypsin/mg test protein digestion in the absence or presence of bile salts. All samples were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in conjunction with Coomassie Blue staining and, in parallel, liquid chromatography tandem mass spectrometry (LC-MS) detection. The results provide following insights: 1) LC-MS methodology does provide the detection of small peptides; 2) Peptides are detected in both allergens and non-allergens from all digestion conditions; 3) No clear differences among the peptides detected from allergen and non-allergens; 4) The differences observed in SDS-PAGE between the optimal and sub-optimal pepsin digestion conditions are expected and align with kinetics and properties of the specific enzymes; 5) The new methodology with new digestion conditions and LC-MS detection does not provide any differentiating information for prediction whether a protein is an allergen. The classic pepsin resistance assay remains the most useful assessment of the potential exposure of an intact newly expressed protein as part of product safety assessment within a WOE approach.
Collapse
Affiliation(s)
- Rong Wang
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Yanfei Wang
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | | | - Zhenjiu Liu
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Thomas C. Lee
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | | | - Hong S. Moon
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Zi L. Liu
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Bin Li
- Bayer CropScience, Chesterfield, Missouri, United States of America
| |
Collapse
|
50
|
Graversen KB, Ballegaard AR, Kræmer LH, Hornslet SE, Sørensen LV, Christoffersen HF, Jacobsen LN, Untersmayr E, Smit JJ, Bøgh KL. Cow’s milk allergy prevention and treatment by heat‐treated whey—A study in Brown Norway rats. Clin Exp Allergy 2020; 50:708-721. [DOI: 10.1111/cea.13587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Louise H. Kræmer
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | - Sofie E. Hornslet
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | - Laila V. Sørensen
- Research & Development Arla Foods Ingredients Group P/S Videbæk Denmark
| | | | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Joost J. Smit
- Institute for Risk Assessment Sciences Utrecht University Utrecht The Netherlands
| | - Katrine L. Bøgh
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| |
Collapse
|