1
|
Hossain KM, Khan U, Mahbubur Rahman S, Khan MS. Potential antimicrobial and fruit juice clarification activity of amylase enzyme from Bacillus strains. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00861. [PMID: 39435337 PMCID: PMC11491680 DOI: 10.1016/j.btre.2024.e00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/06/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024]
Abstract
The hydrolytic enzyme, amylase possesses wide industrial applications and its production from bacterial sources by submerged fermentation is much simplified and economical. The research aimed to characterize amylase-producing bacteria and evaluate their potential for amylase activity regarding antimicrobial and fruit juice clarification. In current study, Bacillus licheniformis, Bacillus amyloliquifaciens, Bacillus cereus, Bacillus subtilis and Bacillus paramycoides was identified by 16S rRNA sequencing. After submerged fermentation, amylase activity of bacteria was measured by 3, 5-dinitro salicylic acid (DNS) assay. A substantial amount of amylase (423.47 mg/ml) in crude extract was measured by Bradford protein assay. Later, ammonium sulfate (80 %) precipitated partially purified amylase showed 1.6 times enhanced amylase activity (1484.94 U/ml) compared to crude amylase (973.23 U/ml). For highest amylase production, 72 h of optimum fermentation period was recorded at pH 7 with 2 % starch as substrate. Potent thermophilic amylase activity was observed at 65 °C. In apple juice clarification activity of amylase, turbidity of juice was reduced to 54.18 %. Potential antimicrobial property of amylase was detected with largest zone of inhibition against Escherichia coli ATCC 25922 (22.36 mm) and Mucor sp. ATCC 48559 (22.45 mm). Considering promising amylase properties, amylase-producing Bacillus strains from rice mill soil can be fermented for large scale amylase production providing application for industrial purposes including fruit juice clarification and antimicrobial activities. It will also overthrow the requirement of employing expensive and harmful chemicals in fruit juice clarification and combating pathogens.
Collapse
Affiliation(s)
- Khondoker Moazzem Hossain
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh
| | - Umama Khan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore-7408, Bangladesh
| | - S.M. Mahbubur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh
| | - Md. Salauddin Khan
- Statistics Discipline, Science, Engineering and Technology School, Khulna University, Khulna-9208, Bangladesh
| |
Collapse
|
2
|
Khafaga DSR, Muteeb G, Elgarawany A, Aatif M, Farhan M, Allam S, Almatar BA, Radwan MG. Green nanobiocatalysts: enhancing enzyme immobilization for industrial and biomedical applications. PeerJ 2024; 12:e17589. [PMID: 38993977 PMCID: PMC11238728 DOI: 10.7717/peerj.17589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Nanobiocatalysts (NBCs), which merge enzymes with nanomaterials, provide a potent method for improving enzyme durability, efficiency, and recyclability. This review highlights the use of eco-friendly synthesis methods to create sustainable nanomaterials for enzyme transport. We investigate different methods of immobilization, such as adsorption, ionic and covalent bonding, entrapment, and cross-linking, examining their pros and cons. The decreased environmental impact of green-synthesized nanomaterials from plants, bacteria, and fungi is emphasized. The review exhibits the various uses of NBCs in food industry, biofuel production, and bioremediation, showing how they can enhance effectiveness and eco-friendliness. Furthermore, we explore the potential impact of NBCs in biomedicine. In general, green nanobiocatalysts are a notable progression in enzyme technology, leading to environmentally-friendly and effective biocatalytic methods that have important impacts on industrial and biomedical fields.
Collapse
Affiliation(s)
- Doaa S. R. Khafaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, Suez, Egypt
| | - Batool Abdulhadi Almatar
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | |
Collapse
|
3
|
Pihen C, López-Malo A, Ramírez-Corona N. Effect of UV LED and Pulsed Light Treatments on Polyphenol Oxidase Activity and Escherichia coli Inactivation in Apple Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14294-14301. [PMID: 38874060 PMCID: PMC11212052 DOI: 10.1021/acs.jafc.3c08888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Enzymatic browning in fruits and vegetables, driven by polyphenol oxidase (PPO) activity, results in color changes and loss of bioactive compounds. Emerging technologies are being explored to prevent this browning and ensure microbial safety in foods. This study assessed the effectiveness of pulsed light (PL) and ultraviolet light-emitting diodes (UV-LED) in inhibiting PPO and inactivating Escherichia coli ATTC 25922 in fresh apple juice (Malus domestica var. Red Delicious). Both treatments' effects on juice quality, including bioactive compounds, color changes, and microbial inactivation, were examined. At similar doses, PL-treated samples (126 J/cm2) showed higher 2,2- diphenyl-1-picrylhydrazyl inhibition (9.5%) compared to UV-LED-treated samples (132 J/cm2), which showed 1.06%. For microbial inactivation, UV-LED achieved greater E. coli reduction (>3 log cycles) and less ascorbic acid degradation (9.4% ± 0.05) than PL. However, increasing PL doses to 176 J/cm2 resulted in more than 5 log cycles reduction of E. coli, showing a synergistic effect with the final temperature reached (55 °C). The Weibull model analyzed survival curves to evaluate inactivation kinetics. UV-LED was superior in preserving thermosensitive compounds, while PL excelled in deactivating more PPO and achieving maximal microbial inactivation more quickly.
Collapse
Affiliation(s)
- Christelle Pihen
- Departamento de Ingeniería
Química, Alimentos y Ambiental, Universidad
de las Américas Puebla, ExHda Santa Catarina Mártir s/n, San Andrés
Cholula, Puebla 72810, México
| | - Aurelio López-Malo
- Departamento de Ingeniería
Química, Alimentos y Ambiental, Universidad
de las Américas Puebla, ExHda Santa Catarina Mártir s/n, San Andrés
Cholula, Puebla 72810, México
| | - Nelly Ramírez-Corona
- Departamento de Ingeniería
Química, Alimentos y Ambiental, Universidad
de las Américas Puebla, ExHda Santa Catarina Mártir s/n, San Andrés
Cholula, Puebla 72810, México
| |
Collapse
|
4
|
Veiga GCD, Mafaldo ÍM, Barão CE, Baú TR, Magnani M, Pimentel TC. Supercritical carbon dioxide technology in food processing: Insightful comprehension of the mechanisms of microbial inactivation and impacts on quality and safety aspects. Compr Rev Food Sci Food Saf 2024; 23:e13345. [PMID: 38638070 DOI: 10.1111/1541-4337.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Supercritical carbon dioxide (SC-CO2) has emerged as a nonthermal technology to guarantee food safety. This review addresses the potential of SC-CO2 technology in food preservation, discussing the microbial inactivation mechanisms and the impact on food products' quality parameters and bioactive compounds. Furthermore, the main advantages and gaps are denoted. SC-CO2 technology application causes adequate microbial reductions (>5 log cfu/mL) of spoilage and pathogenic microorganisms, enzyme inactivation, and improvements in the storage stability in fruit and vegetable products (mainly fruit juices), meat products, and dairy derivatives. SC-CO2-treated products maintain the physicochemical, technological, and sensory properties, bioactive compound concentrations, and biological activity (antioxidant and angiotensin-converting enzyme-inhibitory activities) similar to the untreated products. The optimization of processing parameters (temperature, pressure, CO2 volume, and processing times) is mandatory for achieving the desired results. Further studies should consider the expansion to different food matrices, shelf-life evaluation, bioaccessibility of bioactive compounds, and in vitro and in vivo studies to prove the benefits of using SC-CO2 technology. Moreover, the impact on sensory characteristics and, mainly, the consumer perception of SC-CO2-treated foods need to be elucidated. We highlight the opportunity for studies in postbiotic production. In conclusion, SC-CO2 technology may be used for microbial inactivation to ensure food safety without losing the quality parameters.
Collapse
Affiliation(s)
- Géssica Cristina da Veiga
- Department of Food Science and Technology, Post-Graduation Program in Food Science, State University of Londrina, Londrina, Brazil
| | - Ísis Meireles Mafaldo
- Department of Food Engineering, Laboratory of Microbial Process in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Tahis Regina Baú
- Food Technology Coordination, Federal Institute of Santa Catarina, São Miguel do Oeste, Santa Catarina, Brazil
| | - Marciane Magnani
- Department of Food Engineering, Laboratory of Microbial Process in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatiana Colombo Pimentel
- Department of Food Science and Technology, Post-Graduation Program in Food Science, State University of Londrina, Londrina, Brazil
- Federal Institute of Paraná (IFPR), Campus Paranavaí, Paranavaí, Paraná, Brazil
| |
Collapse
|
5
|
Bezerra M, Ribeiro M, Cosme F, Nunes FM. Overview of the distinctive characteristics of strawberry, raspberry, and blueberry in berries, berry wines, and berry spirits. Compr Rev Food Sci Food Saf 2024; 23:e13354. [PMID: 38682687 DOI: 10.1111/1541-4337.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Red berries have gained popularity as functional and nutritious food due to their health benefits, leading to increased consumer demand and higher production, totaling over 11,000 ktons for strawberries, raspberries, and blueberries combined in 2021. Nutritionally, strawberries, raspberries, and blueberries present high levels of vitamin C (9.7-58.8 mg/100 g dry weight [dw]), folates (6-24 µg/100 g dw), and minerals (96-228 mg/100 g dw). Due to their perishable nature, producers have utilized alcoholic fermentation to extend their shelf life, not only increasing the lifespan of red berries but also attracting consumers through the production of novel beverages. Strawberry, blueberry, and raspberry wines possess low alcohol (5.5-11.1% v/v), high acidity (3.2-17.6 g/L), and interesting bioactive molecules such as phenolic compounds, carotenoids, polysaccharides, and melatonin. Distillation holds tremendous potential for reducing food waste by creating red berry spirits of exceptional quality. Although research on red berry spirits is still in the early stages, future studies should focus on their production and characterization. By incorporating these factors, the production chain would become more sustainable, profitable, and efficient by reducing food waste, capitalizing on consumer acceptance, and leveraging the natural health-promoting characteristics of these products. Therefore, this review aims to provide a comprehensive overview of the characteristics of strawberry, blueberry, and red raspberry in berries, wines, and spirits, with a focus on their chemical composition and production methods.
Collapse
Affiliation(s)
- Mário Bezerra
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Miguel Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Genetics and Biotechnology Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernando M Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
6
|
Hashemi SMB, Roohi R, Abedi E. Thermodynamics, kinetics, and computational fluid dynamics modeling of Escherichia coli and Salmonella Typhi inactivation during the thermosonication process of celery juice. ULTRASONICS SONOCHEMISTRY 2024; 104:106820. [PMID: 38401356 PMCID: PMC10906503 DOI: 10.1016/j.ultsonch.2024.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
In this study, thermosonication (37 KHz, 300 W; 50, 60, and 70 °C) of celery juice was performed to inactivate Escherichia coli and Salmonella Typhi in 6 min. The inactivation of pathogens and the process were modeled using mathematical, thermodynamic, and computational fluid dynamics models. The findings indicated that the distribution of power dissipation density was not uniform across the entire domain, including the beaker area, with a maximum value of 27.8 × 103 W/m3. At lower temperatures, E. coli showed a 9.4 % higher resistance to sonication, while at higher temperatures, S. Typhi had a 5.4 % higher durability than E. coli. Increasing the temperature decreased the maximum inactivation rate of both S. Typhi and E. coli by 15.5 % and 20.5 % respectively, while increasing the thermal level by 20 °C reduced the log time to achieve the maximum inactivation rate by 20.3 % and 34.9 % for S. Typhi and E. coli respectively, highlighting the stronger effect of sonication at higher temperatures. According to the results, the positive magnitudes of ΔG were observed in both E. coli and S. Typhi, indicating a similar range of variations. Additionally, the magnitude of ΔG increased by approximately 5.2 to 5.5 % for both microorganisms which suggested the inactivation process was not spontaneous.
Collapse
Affiliation(s)
| | - Reza Roohi
- Department of Mechanical Engineering, Faculty of Engineering, Fasa University, Fasa, Iran.
| | - Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| |
Collapse
|
7
|
Pimenta FC, Moraes TCK, Dacanal GC, Oliveira ALD, Petrus RR. The potential use of supercritical carbon dioxide in sugarcane juice processing. NPJ Sci Food 2024; 8:6. [PMID: 38218984 PMCID: PMC10787823 DOI: 10.1038/s41538-023-00242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/08/2023] [Indexed: 01/15/2024] Open
Abstract
Sugarcane juice is a nutritious and energetic drink. For its processing, the use of supercritical carbon dioxide (SC-CO2) technology as an intervention potentially capable of rendering a high quality product can be considered. This study evaluated the combined effect of SC-CO2 and mild temperatures, primarily aiming for the reduction of endogenous microorganisms and enzymes in sugarcane juice (pH~5.5). Pressures (P) ranging from 74 to 351 bar, temperatures (T) between 33 and 67 °C, and holding times (t) between 20 and 70 min were tested in a central composite rotational design. Seventeen trials were performed, comprising three replicates at the central points. Counts of aerobic mesophiles, molds and yeasts, lactic acid bacteria and coliforms at 45 °C, determination of polyphenol oxidase (PPO) and peroxidase (POD) activities, and measurement of color parameters in freshly extracted and processed juice's samples were carried out. The pH of fresh and processed juice varied between 4.6 and 6.0, and between 4.6 and 6.3, respectively. The number of decimal reductions achieved in mesophiles, molds and yeasts, lactic acid bacteria and coliforms varied between 0.1 and 3.9, 2.1 and 4.1, 0.0 and 2.1, and 0.3 to 2.5, respectively. The percentages of PPO reduction ranged from 3.51% to 64.18%. Regarding the POD, reductions between 0.27% and 41.42% were obtained. Color variations between fresh and processed samples varied between 2.0 and 12.3. As for mesophiles, molds and yeasts reduction, and soluble solids variation, none of the variables or their interactions were significant. In terms of polyphenol oxidase (PPO) reduction, only t was significant; however, T, t, and the interaction between them significantly affected the peroxidase (POD) reduction. In regards to pH variation, P, and the interaction between T and t were significant. P, T, t, and the interaction between T and t played a significant effect on color. The combination of mild temperatures and SC-CO2 can be potentially used for cane juice preservation.
Collapse
Affiliation(s)
- Fernanda Cristina Pimenta
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga/SP, São Paulo, Brasil
| | | | - Gustavo Cesar Dacanal
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga/SP, São Paulo, Brasil
| | | | - Rodrigo Rodrigues Petrus
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga/SP, São Paulo, Brasil.
| |
Collapse
|
8
|
Ahmad H, Islam T, Islam Z, Jubayer F, Rana R. Sonication results in variable quality and enhanced sensory attributes of Adajamir ( Citrus assamensis) juice: A study on an underutilized fruit. Heliyon 2023; 9:e23074. [PMID: 38125547 PMCID: PMC10731235 DOI: 10.1016/j.heliyon.2023.e23074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
Citrus assamensis, commonly known as Adajamir, is an underutilized fruit with distinctive sensory and nutritional properties. The limited amount of research on this particular citrus type was recognized as one of the research gaps for this study. The objective of this study was to evaluate and compare the impacts of sonication, pasteurization, and thermosonication techniques on the quality and sensory attributes of Adajamir juice. A randomized experimental design was used in the study, wherein the juice underwent three different treatments. The results indicate that there were no significant changes in pH or titratable acidity following all treatments. Yet, notable differences in juice color were observed. The use of sonication and thermosonication resulted in an increase in β-carotenoid levels. Additionally, total phenolic content and antioxidant activities were observed to increase. All three treatments led to a reduction in ascorbic acid levels relative to the control. However, the complete elimination of microbial growth was observed during the thermal treatment. Compared to other approaches, sonication has been shown to be notably more efficacious in enhancing both the flavor and aroma. Sonication has been observed to improve the perceived bitterness to a certain degree. These findings support the potential of sonication as an alternative preservation method for Adajamir juice, offering enhanced quality and sensory acceptance.
Collapse
Affiliation(s)
- Hasan Ahmad
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet-3100, Bangladesh
| | - Tariqul Islam
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet-3100, Bangladesh
| | - Zohurul Islam
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet-3100, Bangladesh
| | - Fahad Jubayer
- Department of Food Engineering and Technology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Rahmatuzzaman Rana
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet-3100, Bangladesh
| |
Collapse
|
9
|
Wang F, Xu H, Wang M, Yu X, Cui Y, Xu L, Ma A, Ding Z, Huo S, Zou B, Qian J. Application of Immobilized Enzymes in Juice Clarification. Foods 2023; 12:4258. [PMID: 38231709 DOI: 10.3390/foods12234258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking. Different immobilization methods are adopted for different enzymes to accommodate their different characteristics. This article systematically reviews the methods of enzyme immobilization and the use of immobilized supports in juice clarification. In addition, the mechanisms and effects of clarification with immobilized pectinase, immobilized laccase, and immobilized xylanase in fruit juice are elaborated upon. Furthermore, suggestions and prospects are provided for future studies in this area.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miaomiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolei Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Li J, Zhang G, Zhang Z, Zhang Y, Zhang D. Synergistic Microbial Inhibition and Quality Preservation for Grapes through High-Voltage Electric Field Cold Plasma and Nano-ZnO Antimicrobial Film Treatment. Foods 2023; 12:4234. [PMID: 38231691 DOI: 10.3390/foods12234234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
To ensure their quality and safety, harvested grapes should be protected from microbial contamination before reaching consumers. For the first time, this study combined high-voltage electric field cold plasma (HVEF-CP) and nano-ZnO antimicrobial film to inhibit microbial growth on grapes. Using the response surface method, the optimal processing parameters of HVEF-CP (a voltage of 78 kV, a frequency of 110 Hz, and a time of 116 s) were identified to achieve 96.29% sterilization. The effects of co-processing with HVEF-CP and nano-ZnO antimicrobial film on the quality and safety of grapes during storage were explored. When stored at 4 °C and 20 °C, the co-processing extended the shelf life of grapes to 14 and 10 days, respectively. The co-processing increased the sterilization rate to 99.34%, demonstrating a synergistic effect between the two methods to ensure not only the safety of grapes but also their nutrient retention during storage. This novel approach is promising for the efficient, safe, and scalable preservation of grapes as well as other foods.
Collapse
Affiliation(s)
- Juan Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Guantao Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zitong Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuan Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
11
|
Tchonkouang RD, Lima AR, Quintino AC, Cristofoli NL, Vieira MC. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods 2023; 12:3227. [PMID: 37685160 PMCID: PMC10486447 DOI: 10.3390/foods12173227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A variety of bioactive substances present in fruit- and vegetable-processed products have health-promoting properties. The consumption of nutrient-rich plant-based products is essential to address undernutrition and micronutrient deficiencies. Preservation is paramount in manufacturing plant-based nonsolid foods such as juices, purees, and sauces. Thermal processing has been widely used to preserve fruit- and vegetable-based products by reducing enzymatic and microbial activities, thereby ensuring safety and prolonged shelf life. However, the nutritional value of products is compromised due to the deleterious effects of thermal treatments on essential nutrients and bioactive compounds. To prevent the loss of nutrients associated with thermal treatment, alternative technologies are being researched extensively. In studies conducted on nonsolid food, UV-C treatment has been proven to preserve quality and minimize nutrient degradation. This review compiles information on the use of UV-C technology in preserving the nutritional attributes of nonsolid foods derived from fruit and vegetables. The legislation, market potential, consumer acceptance, and limitations of UV-C are reviewed.
Collapse
Affiliation(s)
- Rose Daphnee Tchonkouang
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Alexandre R. Lima
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Andreia C. Quintino
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Nathana L. Cristofoli
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Margarida C. Vieira
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
- Department of Food Engineering, High Institute of Engineering, Universidade do Algarve, Campus da Penha, 8000-139 Faro, Portugal
| |
Collapse
|
12
|
Pan X, Bi S, Lao F, Wu J. Factors affecting aroma compounds in orange juice and their sensory perception: A review. Food Res Int 2023; 169:112835. [PMID: 37254409 DOI: 10.1016/j.foodres.2023.112835] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Orange juice is the most widely consumed fruit juice globally because of its pleasant aromas and high nutritional value. Aromas, contributed by free and bound aroma compounds, are an important attribute and determine the quality of orange juice and consumer choices. Aldehydes, alcohols, esters, and terpenoids have been shown to play important roles in the aroma quality of orange juice. Many factors affect the aroma compounds in orange juice, such as genetic makeup, maturity, processing, matrix compounds, packaging, and storage. This paper reviews identified aroma compounds in free and bound form, the biosynthetic pathways of aroma-active compounds, and factors affecting aroma from a molecular perspective. This review also outlines the effect of variations in aroma on the sensory profile of orange juice and discusses the sensory perception pathways in human systems. Sensory perception of aromas is affected by aroma variations but also converges with taste perception. This review could provide critical information for further research on the aromas of orange juice and their manipulation during the development of products.
Collapse
Affiliation(s)
- Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Shuang Bi
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China; College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
13
|
Sevenich R, Gratz M, Hradecka B, Fauster T, Teufl T, Schottroff F, Chytilova LS, Hurkova K, Tomaniova M, Hajslova J, Rauh C, Jaeger H. Differentiation of sea buckthorn syrups processed by high pressure, pulsed electric fields, ohmic heating, and thermal pasteurization based on quality evaluation and chemical fingerprinting. Front Nutr 2023; 10:912824. [PMID: 36866052 PMCID: PMC9971502 DOI: 10.3389/fnut.2023.912824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Impact of processing on product characteristics, sustainability, traceability, authenticity, and public health along the food chain becomes more and more important not only to the producer but also to the customer and the trust of a consumer toward a brand. In recent years, the number of juices and smoothies containing so called super foods or fruits, which have been "gently pasteurized," has increased significantly. However, the term "gentle pasteurization" related to the application of emerging preservation technologies such as pulsed electric fields (PEF), high pressure processing (HPP) or ohmic heating (OH) is not clearly defined. Methods Therefore, the presented study investigated the influence of PEF, HPP, OH, and thermal treatment on quality characteristics and microbial safety of sea buckthorn syrup. Syrups from two different varieties were investigated under the following conditions HPP (600 MPa 4-8 min), OH (83°C and 90°C), PEF (29.5 kV/cm, 6 μs, 100 Hz), and thermal (88°C, hot filling). Analyses to test the influence on quality parameters like ascorbic acid (AA), flavonoids, carotenoids, tocopherols, antioxidant activity; metabolomical/chemical profiling (fingerprinting) via U-HPLC-HRMS/MS (here especially flavonoids and fatty acids); sensory evaluation, as well as microbial stability including storage, were conducted. Results and discussion Independent from the treatment, the samples were stable over 8 weeks of storage at 4°C. The influence on the nutrient content [Ascorbic acid (AA), total antioxidant activity (TAA), total phenolic compounds (TPC), tocopherols (Vit E)] was similar for all tested technologies. Employing statistical evaluation Principal Component Analysis (PCA) a clear clustering based on the processing technologies was observed. Flavonoids as well as fatty acids were significantly impacted by the type of used preservation technology. This was obvious during the storage time of PEF and HPP syrups, where enzyme activity was still active. The color as well as taste of the syrups were found to be more fresh-like for the HPP treated samples.
Collapse
Affiliation(s)
- Robert Sevenich
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), Berlin, Germany,Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany,*Correspondence: Robert Sevenich,
| | - Maximilian Gratz
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Beverly Hradecka
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Czechia
| | - Thomas Fauster
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Thomas Teufl
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Felix Schottroff
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria,BOKU Core Facility Food and Bio Processing, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lucie Souckova Chytilova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Czechia
| | - Kamila Hurkova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Czechia
| | - Monika Tomaniova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Czechia
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Czechia
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), Berlin, Germany
| | - Henry Jaeger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
14
|
Manzoor MF, Hussain A, Goksen G, Ali M, Khalil AA, Zeng XA, Jambrak AR, Lorenzo JM. Probing the impact of sustainable emerging sonication and DBD plasma technologies on the quality of wheat sprouts juice. ULTRASONICS SONOCHEMISTRY 2023; 92:106257. [PMID: 36508892 PMCID: PMC9763752 DOI: 10.1016/j.ultsonch.2022.106257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 06/05/2023]
Abstract
Sonication and dielectric barrier discharge (DBD) plasma are sustainable emerging food processing technologies. The study investigates the impact of sonication, DBD-plasma, and thermal treatment (TT) on wheat sprout juice. The obtained results indicated a significant (p < 0.05) increase in chlorophyll, total phenolics, flavonoids, DPPH assay, and ORAC assay after DBD-plasma (40 V) and sonication (30 mins) treatment as compared to TT and untreated samples. Both emerging technologies significantly (p < 0.05) reduce the polyphenol oxidase and peroxidase activities, but the TT sample had the highest reduction. Moreover, the synergistic application of both technologies significantly reduced the E. coli/Coliform, aerobics, yeast and mold up to the 2 log reduction, but the TT sample had a complete reduction. DBD-plasma and sonication processing significantly decreased (p < 0.05) the particle size, reducing apparent viscosity (η) and consistency index (K); while increasing the flow behavior (n), leading to higher stability of wheat sprout juice. To assess the impact of emerging techniques on nutrient concentration, we used surface-enhance Raman spectroscopy (SERS) as an emerging method. Silver-coated gold nano-substrates were used to compare the nutritional concentration of wheat sprout juice treated with sonication, DBD-plasma, and TT-treated samples. Results showed sharp peaks for samples treated with DBD-plasma followed by sonication, untreated, and TT. The obtained results, improved quality of wheat sprout juice, and lower microbial and enzymatic loads were confirmed, showing the suitability of these sustainable processing techniques for food processing and further research.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Abid Hussain
- Karakoram International University, Faculty of Life Science, Department of Agriculture and Food Technology, Gilgit-Baltistan, Pakistan
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, 54000, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
15
|
Singh SV, Singh R, Verma K, Kamble MG, Tarafdar A, Chinchkar AV, Pandey AK, Sharma M, Kumar Gupta V, Sridhar K, Kumar S. Effect of microfluidization on quality characteristics of sapodilla (Manilkara achras L.) juice. Food Res Int 2022; 162:112089. [PMID: 36461397 DOI: 10.1016/j.foodres.2022.112089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Various oxidative enzymes account for the quality degradation of sapodilla (Manilkara achras L.) juice and need to be inactivated through emerging and continuous green pressure processing technology. In this study, pressurization of sapodilla juice was attempted via microfluidization (MF) at pressure range of 10,000-30,000 pound per square inch (psi) with 1-3 passes or cycles. The impact of microfluidization on the activity of polyphenol oxidase (PPO), peroxidase (POD), color, total soluble solid (TSS), viscosity, serum cloudiness along with particle size, and microbial load of sapodilla juice was assessed. Results showed that microfluidization (MF) decreased the residual PPO activity from 100 to 80.78 % and POD activity from 100 to 40.57%. However, TSS (18.81-19.01 %), viscosity (2.64-2.06 cP), serum cloudiness (2.19-1.22 %) and total color change (3.19-18.54) was also significantly affected. Most of these changes were observed due to particle size (PS) reduction that varied from 65.19 to 8.13 μm. Microfluidized juice revealed color improvement at particular MF pressure and pass due to enzyme inactivation. Moreover, lowest microbial load (2.89 Log CFU/ mL) was found at 30,000 psi/3 pass of MF as compared to control sample (unprocessed juice) (7.57 Log CFU/ mL). Consequently, MF can be potential candidate in processing of juices against spoilage.
Collapse
Affiliation(s)
- Sukh Veer Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028, India
| | - Rakhi Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028, India.
| | - Kiran Verma
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028, India
| | - Meenatai G Kamble
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ajay V Chinchkar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028, India
| | - Arun Kumar Pandey
- MMICT & BM (HM), Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Minaxi Sharma
- Laboratoire de Chimie verte et Produits Biobases, Département AgroBioscience et Chimie, Haute Ecole Provinciale de Hainaut - Condorcet, 11 Rue de la Sucrerie, 7800 Ath, Belgium
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food & Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), UK
| | - Kandi Sridhar
- UMR1253, Science et Technologie du Lait et de l'œuf, INRAE, L'Institut Agro Rennes-Angers, 65 Rue de Saint Brieuc, F-35042 Rennes, France.
| | - Shiv Kumar
- MMICT & BM (HM), Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India.
| |
Collapse
|
16
|
Vilas-Boas AA, Magalhães D, Campos DA, Porretta S, Dellapina G, Poli G, Istanbullu Y, Demir S, San Martín ÁM, García-Gómez P, Mohammed RS, Ibrahim FM, El Habbasha ES, Pintado M. Innovative Processing Technologies to Develop a New Segment of Functional Citrus-Based Beverages: Current and Future Trends. Foods 2022; 11:foods11233859. [PMID: 36496667 PMCID: PMC9735808 DOI: 10.3390/foods11233859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The food industries are interested in developing functional products due to their popularity within nutritional and healthy circles. Functional fruit-based beverages represent one of the fast-growing markets due to the high concentrations of bioactive compounds (BCs), which can be health promoters. Hence, functional beverages based on citrus fruits are a potential way to take advantage of their nutritional and bioactive properties that could attract the interest of consumers. In order to ensure microbial and quality stability, the beverages are subjected to preservation treatment; however, the application of high temperatures leads to the loss of thermolabile BCs. Nowadays, innovative processing technologies (IPT) such as pulsed electric field (PEF), high-pressure processing (HPP), ultrasound processing (US), ohmic heating (OH), and microwave (MW) are a promising alternative due to their efficiency and low impact on juice BCs. The available literature concerning the effects of these technologies in functional fruit-based beverages is scarce; thus, this review gathers the most relevant information about the main positive and negative aspects of the IPT in functional properties, safety, and consumer acceptance of functional citrus-based beverages, as well as the use of citrus by-products to promote the circular economy in citrus processing.
Collapse
Affiliation(s)
- Ana A. Vilas-Boas
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Daniela Magalhães
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Débora A. Campos
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Sebastiano Porretta
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Dellapina
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Poli
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Yildiray Istanbullu
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Sema Demir
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Ángel Martínez San Martín
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Presentación García-Gómez
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Reda S. Mohammed
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - El Sayed El Habbasha
- Field Crops Research Department, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
- Correspondence:
| |
Collapse
|
17
|
Basumatary B, Nayak M, Nayak PK, Kesavan RK. Assessment of quality changes of tangor fruit juice after pasteurization and thermosonication treatments. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Birhang Basumatary
- Department of Food Engineering and Technology Central Institute of Technology, Deemed to be University Kokrajhar Assam India
| | - Mahendra Nayak
- Division of Advanced Analytics Principal, IQVIA Bangalore India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology Central Institute of Technology, Deemed to be University Kokrajhar Assam India
| | - Radha krishnan Kesavan
- Department of Food Engineering and Technology Central Institute of Technology, Deemed to be University Kokrajhar Assam India
| |
Collapse
|
18
|
Jia X, Ren J, Fan G, Reineccius GA, Li X, Zhang N, An Q, Wang Q, Pan S. Citrus juice off-flavor during different processing and storage: Review of odorants, formation pathways, and analytical techniques. Crit Rev Food Sci Nutr 2022; 64:3018-3043. [PMID: 36218250 DOI: 10.1080/10408398.2022.2129581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the most widespread juice produced and consumed globally, citrus juice (mandarin juice, orange juice, and grapefruit juice) is appreciated for its attractive and distinct aroma. While the decrease of characteristic aroma-active compounds and the formation of off-flavor compounds are easy to occur in processing and storage conditions. This review provides a comprehensive literature of recent research and discovery on citrus juice off-flavor, primarily focusing on off-flavor compounds induced during processing and storage (i.e., thermal, storage, light, oxygen, package, fruit maturity, diseases, centrifugal pretreatment, and debittering process), formation pathways (i.e., terpene acid-catalyzed hydration, caramelization reaction, Maillard reaction, Strecker degradation, and other oxidative degradation) of the off-flavor compounds, effective inhibitor pathway to off-flavor (i.e., electrical treatments, high pressure processing, microwave processing, ultrasound processing, and chemical treatment), as well as odor assessment techniques based on molecular sensory science. The possible precursors (terpenes, sulfur-containing amino acids, carbohydrates, carotenoids, vitamins, and phenolic acids) of citrus juice off-flavor are listed and are also proposed. This review intends to unravel the regularities of aroma variations and even off-flavor formation of citrus juice during processing and storage. Future aroma analysis techniques will evolve toward a colorimetric sensor array for odor visualization to obtain a "marker" of off-flavor in citrus juice.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gary A Reineccius
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qingshan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
19
|
Ma T, Wang J, Lan T, Bao S, Zhao Q, Sun X, Liu X. How to comprehensively improve juice quality: a review of the impacts of sterilization technology on the overall quality of fruit and vegetable juices in 2010-2021, an updated overview and current issues. Crit Rev Food Sci Nutr 2022; 64:2197-2247. [PMID: 36106453 DOI: 10.1080/10408398.2022.2121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruit and vegetable juices (FVJ) are rich in nutrients, so they easily breed bacteria, which cause microbial pollution and rapid deterioration of their quality and safety. Sterilization is an important operation in FVJ processing. However, regardless of whether thermal sterilization or non-thermal sterilization is used, the effect and its impact on the overall quality of FVJ are strongly dependent on the processing parameters, microbial species, and FVJ matrix. Therefore, for different types of FVJ, an understanding of the impacts that different sterilization technologies have on the overall quality of the juice is important in designing and optimizing technical parameters to produce value-added products. This article provides an overview of the application of thermal and non-thermal technique in the field of FVJ processing over the past 10 years. The operating principle and effects of various technologies on the inactivation of microorganisms and enzymes, nutritional and functional characteristics, physicochemical properties, and sensory quality of a wide range of FVJ are comprehensively discussed. The application of different combinations of hurdle technology in the field of FVJ sterilization processing are also discussed in detail. Additionally, the advantages, limitations, and current application prospects of different sterilization technologies are summarized.
Collapse
Affiliation(s)
- Tingting Ma
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Jiaqi Wang
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Tian Lan
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Shihan Bao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Qinyu Zhao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Modupalli N, Krisshnan A, C K S, D V C, Natarajan V, Koidis A, Rawson A. Effect of novel combination processing technologies on extraction and quality of rice bran oil. Crit Rev Food Sci Nutr 2022; 64:1911-1933. [PMID: 36106441 DOI: 10.1080/10408398.2022.2119367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rice bran, a primary by-product from the rice processing industries, containing 10-15% oil, attracts significant attention from consumers due to its many health-promoting effects. The extraction methodology used is one of the most critical factors affecting the quality and yield of oil from rice bran. Using solvents is the current commercial process for rice bran oil extraction, which has its setbacks. It is challenging and expensive, and there is a risk of traces of solvent residue in the oil. Emerging combination extraction technologies offer zero to minimal solvent residues or chemical deformation while considering increasing environmental and energy footprint. Emerging combination processing technologies include new-age methods like supercritical fluid extraction, sub-critical fluid extraction, ultrasound-assisted enzymatic extraction, ohmic heating, and microwave-assisted extraction. These techniques have been reported to extract oil from rice bran, improving extraction efficiency and quality. These techniques demonstrate solid prospects for future applications. The present review discusses and compares these emerging technologies for oil extraction from rice bran commercially.
Collapse
Affiliation(s)
- Nikitha Modupalli
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Anitha Krisshnan
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Sunil C K
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Chidanand D V
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | | | - Anastasios Koidis
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Ashish Rawson
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| |
Collapse
|
21
|
Impacts of Thermal Processing, High Pressure, and CO 2-Assisted High Pressure on Quality Characteristics and Shelf Life of Durian Fruit Puree. Foods 2022; 11:foods11172717. [PMID: 36076902 PMCID: PMC9455942 DOI: 10.3390/foods11172717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
Durian fruit puree (DFP) is a nutrient-dense food, but it has a short shelf life. Presently, little research has been undertaken on extending the shelf life of DFP. Hence, it is necessary to develop treatment methods that can prolong the shelf life of DFP. In the present study, thermal processing (TP), high-pressure processing (HPP), and CO2-assisted HPP (CO2 + HPP) treatments are used for DFP, and their influences on quality properties of DFP during storage (35 days, 4 °C) are investigated. Compared to other treatments, the CO2 + HPP treatment had a lower pressure and a shorter time to achieve the same effect of inactivating the microorganisms of DFP. During storage, CO2 + HPP treated DFP showed higher retention rates of sugars, total soluble solids, color, bioactive components, and antioxidant capacity in comparison with other treated DFPs. Moreover, after 35 days of storage, the microbial count of (CO2 + HPP)-treated DFP (3.80 × 103 CFU/g) was much lower than those of TP (4.77 × 105 CFU/g) and HPP (8.53 × 103 CFU/g)-treated DFPs. The results of this study reveal that CO2 + HPP treatment could not only better preserve the quality of DFP, but also effectively extend the shelf life of DFP, providing an effective method for the processing of DFP.
Collapse
|
22
|
Lyngdoh Nonglait D, Chukan SM, Arya SS, Bhat MS, Waghmare R. Emerging non‐thermal technologies for enhanced quality and safety of fruit juices. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Donald Lyngdoh Nonglait
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India 400019
| | | | - S. S. Arya
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India 400019
| | - Mohmad Sayeed Bhat
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India 400019
| | - Rosy Waghmare
- Department of Food Engineering College of Food Technology Dr. Punjabrao Deshmukh Krishi Vidyapeeth Yavatmal Maharashtra India 445001
| |
Collapse
|
23
|
Wang J, Fu T, Sang X, Liu Y. Effects of high voltage atmospheric cold plasma treatment on microbial diversity of tilapia (Oreochromis mossambicus) fillets treated during refrigeration. Int J Food Microbiol 2022; 375:109738. [DOI: 10.1016/j.ijfoodmicro.2022.109738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
|
24
|
AlYammahi J, Hai A, Krishnamoorthy R, Arumugham T, Hasan SW, Banat F. Ultrasound-assisted extraction of highly nutritious date sugar from date palm (Phoenix dactylifera) fruit powder: Parametric optimization and kinetic modeling. ULTRASONICS SONOCHEMISTRY 2022; 88:106107. [PMID: 35926278 PMCID: PMC9356216 DOI: 10.1016/j.ultsonch.2022.106107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Alternative sweeteners to white sugar with a lower calorie content and glycemic index obtained through date palm fruits is of great interest to the food industry. In this study, ultrasound-assisted extraction of nutritive sugar from date fruit powder was investigated through Box-Behnken design. A maximum total sugar content (TSC) of 812 mg glucose eq./g of DFP was obtained with a sugar extraction yield (SEY) of 81.40 ± 0.27 % under the following optimal extraction conditions: extraction temperature of 60 °C, extraction time of 30 min, and L/S ratio of 7.6 mL/g. Various modern techniques were used to characterize the obtained extracts and associated residues. The results showed that the extract contained fructose, glucose, and sucrose and had good thermal stability. Furthermore, SEM and TSC analysis revealed that ultrasonic treatment of the biomass improved mass transfer diffusion due to acoustic or ultrasonic cavitation, resulting in a higher sugar yield.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
25
|
Russo G, Gut JAW. Study of heat transfer coefficients and temperature distribution in a continuous flow pasteurizer with helical tubes using model fluids in laminar flow. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Modeling of continuous pasteurization is useful for predicting time-temperature history of the product and lethality. The use of helical tubes in the heat exchangers and holding tube can simplify modeling in laminar flow due to the narrowing of the residence time distribution. To present this approach, three model fluids (water, 80% glycerol/water and 1% carboxymethylcellulose) were processed in 25 conditions in a pilot scale unit and the overall heat transfer coefficients of the heater, cooler and holding tube were correlated with Reynolds and Prandtl numbers. For heater and cooler, 3–7 parameters were needed for a fair adjustment, while in the holding tube an average value was obtained. Using these correlations, a simple unidimensional model was simulated to predict the time-temperature history and lethality distribution. Simulation examples for processing at 90 °C provided the F-value contribution of each step showing that this model can be useful for process analysis and design.
Collapse
Affiliation(s)
- Guilherme Russo
- Department of Chemical Engineering , Universidade de São Paulo , Escola Politécnica, Av. Prof. Luciano Gualberto, trav.3, n.380 , São Paulo , SP 05508-010 , Brazil
| | - Jorge Andrey Wilhelms Gut
- Department of Chemical Engineering , Universidade de São Paulo , Escola Politécnica, Av. Prof. Luciano Gualberto, trav.3, n.380 , São Paulo , SP 05508-010 , Brazil
- Food Research Center (FoRC) , Universidade de São Paulo , São Paulo , SP , Brazil
| |
Collapse
|
26
|
Sharma K, Modupalli N, Venkatachalapathy N, Mahendran R, Vidyalakshmi R. Light emitting diode assisted non‐thermal pasteurization of
Punica granatum L
. juice. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kulbhushan Sharma
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (formerly Indian Institute of Food Processing Technology) Thanjavur India
| | - Nikitha Modupalli
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (formerly Indian Institute of Food Processing Technology) Thanjavur India
| | - N. Venkatachalapathy
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (formerly Indian Institute of Food Processing Technology) Thanjavur India
| | - R. Mahendran
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology Entrepreneurship and Management (formerly Indian Institute of Food Processing Technology) Thanjavur India
| | - R. Vidyalakshmi
- Department of Food Safety and Quality Testing National Institute of Food Technology Entrepreneurship and Management (formerly Indian Institute of Food Processing Technology) Thanjavur India
| |
Collapse
|
27
|
Vignali G, Gozzi M, Pelacci M, Stefanini R. Non-conventional Stabilization for Fruit and Vegetable Juices: Overview, Technological Constraints, and Energy Cost Comparison. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02772-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThis study will provide an overview and a description of the most promising alternatives to conventional thermal treatments for juice stabilization, as well as a review of the literature data on fruit and vegetable juice processing in terms of three key parameters in juice production, which are microbial reduction, enzyme inactivation, and nutrient-compound retention. The alternatives taken into consideration in this work can be divided, according to the action mechanism upon which these are based, in non-conventional thermal treatments, among which microwave heating (MWH) and ohmic heating (OH), and non-thermal treatments, among which electrical treatments, i.e., pulsed electric fields (PEF), high-pressure processing (HPP), radiation treatments such as ultraviolet light (UVL) and high-intensity pulsed light (PL), and sonication (HIUS) treatment, and inert-gas treatments, i.e., the pressure change technology (PCT) and supercritical carbon dioxide (SC-CO2) treatments. For each technology, a list of the main critical process parameters (CPP), advantages (PROS), and disadvantages (CONS) will be provided. In addition, for the non-thermal technologies, a summary of the most relevant published result of their application on fruit and vegetable juices will be presented. On top of that, a comparison of typical specific working energy costs for the main effective and considered technologies will be reported in terms of KJ per kilograms of processed product.
Collapse
|
28
|
Thermal, High Pressure, and Ultrasound Inactivation of Various Fruit Cultivars’ Polyphenol Oxidase: Kinetic Inactivation Models and Estimation of Treatment Energy Requirement. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polyphenol oxidase (PPO) catalyses the browning reaction during fruit processing and storage. It is considered a threat to clean labels and minimally processed fruit products. Unwanted changes in fruits’ appearance and quality represent a cost to the industry. High pressure and ultrasound, in addition to thermal treatment, are effective in reducing PPO activity and producing high-quality products. PPO from different fruit cultivars behaves differently when submitted to different treatments. A systematic review was conducted, where treatment parameters, PPO inactivation data (≥80% inactivation), and kinetic inactivation parameters (rate constant (k), activation energy (Ea), D-value, and z-value) by different treatments were collected. Additionally, the estimated energy requirements for the inactivation of PPO (≥80%) by different treatments were calculated and compared. Resistance to various treatments varies between fruit cultivars. For the same temperature, the inactivation of PPO by ultrasound combined with heat is more effective than thermal treatment alone, and the high pressure combined thermal process. The majority of the thermal, HPP, and ultrasound inactivation of PPO in fruits followed first-order behaviour. Some fruit cultivars, however, showed biphasic inactivation behaviour. The estimated specific energy requirements calculated based on the mass of processed fruit sample to inactivate ≥80% polyphenol oxidase for the thermal process was 87 to 255 kJ/kg, while for high pressure processing it was 139 to 269 kJ/kg and for ultrasound it was 780 to 10,814 kJ/kg.
Collapse
|
29
|
Halali MA, de Lannoy CF. Quantifying the Impact of Electrically Conductive Membrane-Generated Hydrogen Peroxide and Extreme pH on the Viability of Escherichia coli Biofilms. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mohamad Amin Halali
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | | |
Collapse
|
30
|
Gottardi D, Siroli L, Braschi G, Rossi S, Ferioli F, Vannini L, Patrignani F, Lanciotti R. High-Pressure Homogenization and Biocontrol Agent as Innovative Approaches Increase Shelf Life and Functionality of Carrot Juice. Foods 2021; 10:2998. [PMID: 34945548 PMCID: PMC8701166 DOI: 10.3390/foods10122998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, application of high-pressure homogenization (HPH) treatments has been widely studied to improve shelf life and rheological and functional properties of vegetable and fruit juices. Another approach that has drawn the attention of researchers is the use of biocontrol cultures. Nevertheless, no data on their possible combined effect on fruit juices shelf life and functionality have been published yet. In this work, the microbial, organoleptic, and technological stability of extremely perishable carrot juice and its functionality were monitored for 12 and 7 days (stored at 4 and 10 °C, respectively) upon HPH treatment alone or in combination with a fermentation step using the biocontrol agent L. lactis LBG2. HPH treatment at 150 MPa for three passes followed by fermentation with L. lactis LBG2 extended the microbiological shelf life of the products of at least three and seven days when stored at 10 °C and 4 °C, respectively, compared to untreated or only HPH-treated samples. Moreover, the combined treatments determined a higher stability of pH and color values, and a better retention of β-carotene and lutein throughout the shelf-life period when compared to unfermented samples. Eventually, use of combined HPH and LBG2 resulted in the production of compounds having positive sensory impact on carrot juice.
Collapse
Affiliation(s)
- Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Federico Ferioli
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| |
Collapse
|
31
|
Lalou S, Ordoudi SA, Mantzouridou FT. On the Effect of Microwave Heating on Quality Characteristics and Functional Properties of Persimmon Juice and Its Residue. Foods 2021; 10:2650. [PMID: 34828930 PMCID: PMC8624191 DOI: 10.3390/foods10112650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, it was investigated whether integration of microwave-heating into the pretreatment step of persimmon juice processing allows the concomitant production of both functional juice and added-value solid residue from the Diospyros Kaki "Jiro" cultivar. In this direction, persimmon pulp was treated under three different microwave-heating conditions (0.7, 4.2, and 8.4 kJ/g) prior to enzymatic maceration and compared to the non-heated material. Irrespective of microwave energy employed, the proposed hybrid treatment was highly efficient in terms of juice yield (70% w/w). The mildest heating conditions resulted in juice and residue that were both of inferior quality. Intensification of the microwave energy reduced the microbial load of the juice up to 2-log without compromising the content in total soluble solids, sugars, and L-ascorbic acid. Under the most drastic conditions, the juice was enriched in gallic acid, polyphenols, and potent DPPH● scavengers, but its orange color faded and was more acidic. In parallel, the solid juice residue retained pro-vitamin A carotenoids (~278 µg retinol activity equivalents) and low-methoxy pectin (9 g/100 g DW). Overall, our findings can assist the efforts of the local juice processing industry to utilize persimmon fruits through energy-efficient technologies in a sustainable approach.
Collapse
Affiliation(s)
- Sofia Lalou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stella A. Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Fani Th. Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
32
|
Reshmy R, Philip E, Sirohi R, Tarafdar A, Arun KB, Madhavan A, Binod P, Kumar Awasthi M, Varjani S, Szakacs G, Sindhu R. Nanobiocatalysts: Advancements and applications in enzyme technology. BIORESOURCE TECHNOLOGY 2021; 337:125491. [PMID: 34320770 DOI: 10.1016/j.biortech.2021.125491] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Nanobiocatalysts are one of the most promising biomaterials produced by synergistically integrating advanced biotechnology and nanotechnology. These have a lot of potential to improve enzyme stability, function, efficiencyand engineering performance in bioprocessing. Functional nanostructures have been used to create nanobiocatalystsbecause of their specific physicochemical characteristics and supramolecular nature. This review covers a wide range of nanobiocatalysts including polymeric, metallic, silica and carbon nanocarriers as well as their recent developments in controlling enzyme activity. The enormous potential of nanobiocatalysts in bioprocessing in designing effective laboratory trials forapplications in various fields such as food, pharmaceuticals, biofuel, and bioremediation is also discussed extensively.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690 110, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690 110, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - K B Arun
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, Kerala 695 014, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, Kerala 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India.
| |
Collapse
|
33
|
Ahmed Z, Faisal Manzoor M, Hussain A, Hanif M, Zia-Ud-Din, Zeng XA. Study the impact of ultra-sonication and pulsed electric field on the quality of wheat plantlet juice through FTIR and SERS. ULTRASONICS SONOCHEMISTRY 2021; 76:105648. [PMID: 34182313 PMCID: PMC8250445 DOI: 10.1016/j.ultsonch.2021.105648] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 08/01/2023]
Abstract
Pulsed electric field (PEF) and Ultrasound (US) are commonly used in food processing. We investigated the combined impact of pulsed electric field (PEF) and ultrasound (US) on the wheat plantlet juice. When compared with the individual treatments, the highest values of total phenolics, total flavonoids, chlorophyll, ORAC assay, and DPPH activities were obtained using the combined (US + PEF) methods. The US + PEF significantly decreased the peroxidase and polyphenol oxidase activities from 0.87 to 0.27 Abs min-1 and 0.031-0.016 Abs min-1. Also, the synergistic application significantly lowered the yeast and mold (3.92 to 2.11 log CFU/mL), E. coli/Coliform (1.95 to 0.96 log CFU/mL), and aerobics (4.41 to 2.01 log CFU/mL). Furthermore, Fourier Transform Infrared (FT-IR) and surface-enhanced Raman spectroscopy (SERS) was used to analyzing juice quality. Gold nanoparticles (AuNPs) were used as the SERS substrates, which provided stronger Raman peaks for the samples treated with US + PEF methods. The FT-IR analysis showed significant enhancement of the nutritional molecules. The enhanced quality of wheat plantlet juice combined with lower yeast and mold suggests the suitability of integrated methods for further research and applications.
Collapse
Affiliation(s)
- Zahoor Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| | - Abid Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Department of Agriculture and Food Science, Karakorum International University, Gilgit, Pakistan
| | - Muddasir Hanif
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Zia-Ud-Din
- Department of Human Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
34
|
Chacha JS, Zhang L, Ofoedu CE, Suleiman RA, Dotto JM, Roobab U, Agunbiade AO, Duguma HT, Mkojera BT, Hossaini SM, Rasaq WA, Shorstkii I, Okpala COR, Korzeniowska M, Guiné RPF. Revisiting Non-Thermal Food Processing and Preservation Methods-Action Mechanisms, Pros and Cons: A Technological Update (2016-2021). Foods 2021; 10:1430. [PMID: 34203089 PMCID: PMC8234293 DOI: 10.3390/foods10061430] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022] Open
Abstract
The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.
Collapse
Affiliation(s)
- James S. Chacha
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Liyan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Rashid A. Suleiman
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Joachim M. Dotto
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447 Arusha, Tanzania;
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Technology, University of Ibadan, Ibadan 200284, Nigeria
| | - Haile Tesfaye Duguma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 378 Jimma, Ethiopia
| | - Beatha T. Mkojera
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Sayed Mahdi Hossaini
- DIL German Institute of Food Technologies, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Ivan Shorstkii
- Department of Technological Equipment and Life-Support Systems, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Malgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
35
|
Mahanta BP, Bora PK, Kemprai P, Borah G, Lal M, Haldar S. Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality. Food Res Int 2021; 145:110404. [PMID: 34112407 DOI: 10.1016/j.foodres.2021.110404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/05/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Plant-based aroma chemicals, constituting the essential oils play a great role as the natural flavours and preservatives in the food industries. Many of these metabolites are susceptible to degradation under heat (i.e. thermolabile aroma chemicals) which may influence the organoleptic properties of the end-products e.g. essential oil, oleoresin, dry herb, tea and packaged juice. The current review identified in total 42 thermolabile aroma and/or flavour molecules belonging to monoterpenoids, sesquiterpenoids and phenolics. The probable pathway of their degradation and its promoting conditions were also described. Degradation pathways were categorized into five major classes including oxidation, C-C bond cleavage, elimination, hydrolysis and rearrangement. Numerous evidences were cited in support of the thermosensitivity of these phytochemicals under pyrolytic, thermal heating or gas chromatographic conditions. Various post-harvest processes involved in the manufacturing such as drying and distillation of the crops or thermal treatment of the food-products for storage were highlighted as the root cause of degradation. The influence of thermolabile aroma chemicals to maintain the sensory quality of the end-products such as citrus juices, floral oils and thermally cooked foods was discussed in detail. In the present article, detailed insight into the chemical and sensory aspects of thermosensitive aromas and flavours was provided, covering the period from 1990 up to 2020.
Collapse
Affiliation(s)
- Bhaskar Protim Mahanta
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Pranjit Kumar Bora
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Phirose Kemprai
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Gitasree Borah
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Mohan Lal
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
36
|
Negri Rodríguez LM, Arias R, Soteras T, Sancho A, Pesquero N, Rossetti L, Tacca H, Aimaretti N, Rojas Cervantes ML, Szerman N. Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Kernou O, Belbahi A, Amir A, Bedjaoui K, Kerdouche K, Dairi S, Aoun O, Madani K. Effect of sonication on microwave inactivation of
Escherichia coli
in an orange juice beverage. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ourdia‐Nouara Kernou
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Amine Belbahi
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
- Department of Microbiology and Biochemistry, Faculty of Sciences University of M' Sila M' Sila Algeria
| | - Akila Amir
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Kenza Bedjaoui
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Kamelia Kerdouche
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Sofiane Dairi
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
- Département de Microbiologie Appliquée et Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie Université de Jijel Jijel Algeria
| | - Omar Aoun
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
- Department of Microbiology and Biochemistry, Faculty of Sciences University of M' Sila M' Sila Algeria
| | - Khodir Madani
- Centre de recherche en technologie agro‐alimentaire Route de targua‐ouzemour Bejaia Algeria
| |
Collapse
|
38
|
Cubeddu A, Fava P, Pulvirenti A, Haghighi H, Licciardello F. Suitability Assessment of PLA Bottles for High-Pressure Processing of Apple Juice. Foods 2021; 10:foods10020295. [PMID: 33540544 PMCID: PMC7912795 DOI: 10.3390/foods10020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study is to assess the use of polylactic acid (PLA) bottles as an alternative to polyethylene terephthalate (PET) ones for high-pressure processing (HPP) of apple juice. The treatment of PLA bottles at 600 MPa for 3 min did not cause alterations in the packaging shape and content, confirming the suitability of PLA bottles to withstand HPP conditions as well as PET bottles. Quantification of total mesophilic bacterial and fungal load suggested HPP treatment can be effectively applied as an alternative to pasteurization for apple juice packed in PLA bottles since it guarantees microbial stability during at least 28 days of refrigerated storage. The headspace gas level did not change significantly during 28 days of refrigerated storage, irrespective of the bottle material. Color parameters (L*, a*, and b*) of the HPP-treated juice were similar to those of the fresh juice. Irrespective of the packaging type, the total color variation significantly changed during storage, showing an exponential increase in the first 14 days, followed by a steady state until the end of observations. Overall, PLA bottles proved to offer comparable performances to PET both in terms of mechanical resistance and quality maintenance.
Collapse
Affiliation(s)
- Arianna Cubeddu
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
| | - Patrizia Fava
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Hossein Haghighi
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
| | - Fabio Licciardello
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
- Correspondence:
| |
Collapse
|
39
|
Del Arco J, Alcántara AR, Fernández-Lafuente R, Fernández-Lucas J. Magnetic micro-macro biocatalysts applied to industrial bioprocesses. BIORESOURCE TECHNOLOGY 2021; 322:124547. [PMID: 33352394 DOI: 10.1016/j.biortech.2020.124547] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The use of magnetic biocatalysts is highly beneficial in bioprocesses technology, as it allows their easy recovering and enhances biocatalyst lifetime. Thus, it simplifies operational processing and increases efficiency, leading to more cost-effective processes. The use of small-size matrices as carriers for enzyme immobilization enables to maximize surface area and catalysts loading, also reducing diffusion limitations. As highly expensive nanoparticles (nm size) usually aggregate, their application at large scale is not recommended. In contrast, the use of magnetic micro-macro (µm-mm size) matrices leads to more homogeneous biocatalysts with null or very low aggregation, which facilitates an easy handling and recovery. The present review aims to highlight recent trends in the application of medium-to-high size magnetic biocatalysts in different areas (biodiesel production, food and pharma industries, protein purification or removal of environmental contaminants). The advantages and disadvantages of these above-mentioned magnetic biocatalysts in bioprocess technology will be also discussed.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
| | - Roberto Fernández-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55 - 66, Barranquilla, Colombia.
| |
Collapse
|
40
|
Influences of Postharvest Storage and Processing Techniques on Antioxidant and Nutraceutical Properties of Rubus idaeus L.: A Mini-Review. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The growth of agricultural mechanization has promoted an increase in raspberry production, and for this reason, the best postharvest storage and processing techniques capable of maintaining the health beneficial properties of these perishable berry fruits have been widely studied. Indeed, raspberries are a rich source of bioactive chemical compounds (e.g., ellagitannins, anthocyanins, and ascorbic acid), but these can be altered by postharvest storage and processing techniques before consumption. Although there are clear differences in storage times and techniques, the content of bioactive chemical compounds is relatively stable with some minor changes in ascorbic acid or anthocyanin content during cold (5 °C) or frozen storage. In the literature, processing techniques such as juicing or drying have negatively affected the content of bioactive chemical compounds. Among drying techniques, hot air (oven) drying is the process that alters the content of bioactive chemical compounds the most. For this reason, new drying technologies such as microwave and heat pumps have been developed. These novel techniques are more successful in retaining bioactive chemical compounds with respect to conventional hot air drying. This mini-review surveys recent literature concerning the effects of postharvest storage and processing techniques on raspberry bioactive chemical compound content.
Collapse
|
41
|
Jiang Q, Zhang M, Xu B. Application of ultrasonic technology in postharvested fruits and vegetables storage: A review. ULTRASONICS SONOCHEMISTRY 2020; 69:105261. [PMID: 32702635 DOI: 10.1016/j.ultsonch.2020.105261] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 05/09/2023]
Abstract
It has been an important research topic and a serious applicable issue to extend storage time of fruits and vegetables using advanced scientific and effective technology. Among various approaches, ultrasound has been regarded as one of the most pollution-free and effective technical means to significantly improve the preservation of fruits and vegetables. This paper summarizes the application of ultrasonic technology in fruits and vegetables storage in recent years, including removal of pesticide residues and cleaning, sterilization, enzyme inactivation, effect on physico-chemical indexes. Additionally, we also discussed limitations and negative effects of ultrasonic treatment on fruits and vegetables such as damages to tissues and cells. Furthermore, a proper application of ultrasonic technology has been proven to effectively extend the storage period of postharvest fruits and vegetables and maintain the quality. Moreover, the combination of ultrasound and other conventional preservation technologies can further improve the preservation in a coordinate manner and even have a broader application prospect.
Collapse
Affiliation(s)
- Qiyong Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| |
Collapse
|
42
|
Kharazmi S, Taheri-Kafrani A, Soozanipour A, Nasrollahzadeh M, Varma RS. Xylanase immobilization onto trichlorotriazine-functionalized polyethylene glycol grafted magnetic nanoparticles: A thermostable and robust nanobiocatalyst for fruit juice clarification. Int J Biol Macromol 2020; 163:402-413. [DOI: 10.1016/j.ijbiomac.2020.06.273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022]
|
43
|
Kakagianni M, Chatzitzika C, Koutsoumanis KP, Valdramidis VP. The impact of high power ultrasound for controlling spoilage by Alicyclobacillus acidoterrestris: A population and a single spore assessment. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
44
|
Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr 2020; 61:3160-3196. [PMID: 32715740 DOI: 10.1080/10408398.2020.1793726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Collapse
Affiliation(s)
- Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parisa Etedali
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Samaneh Mahmoudi-Gom Yek
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
45
|
Novoseltseva MA, Borodulin DM, Gutova SG, Safonova EA, Kagan ES, Milenkiy IO. Structural and parametric identification of the model for the process of obtaining hop extract at the rotary pulsation machine. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marina A. Novoseltseva
- Department of Applied Mathematics Institute of Fundamental Sciences Kemerovo State University Kemerovo Russia
| | - Dmitry M. Borodulin
- Department of Technological Design of Food Production Institute of Engineering Technology Kemerovo State University Kemerovo Russia
| | - Svetlana G. Gutova
- Department of Applied Mathematics Institute of Fundamental Sciences Kemerovo State University Kemerovo Russia
| | - Elena A. Safonova
- Department of Technological Design of Food Production Institute of Engineering Technology Kemerovo State University Kemerovo Russia
| | - Elena S. Kagan
- Department of Applied Mathematics Institute of Fundamental Sciences Kemerovo State University Kemerovo Russia
| | - Ilya O. Milenkiy
- Department of Technological Design of Food Production Institute of Engineering Technology Kemerovo State University Kemerovo Russia
| |
Collapse
|
46
|
Kharazmi S, Taheri-Kafrani A, Soozanipour A. Efficient immobilization of pectinase on trichlorotriazine-functionalized polyethylene glycol-grafted magnetic nanoparticles: A stable and robust nanobiocatalyst for fruit juice clarification. Food Chem 2020; 325:126890. [PMID: 32387928 DOI: 10.1016/j.foodchem.2020.126890] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 11/23/2022]
Abstract
Developing an effective strategy to economically exploitation of pectinase, as one of the most widely used enzymes in food industry, is of utmost importance. Herein, pectinase was covalently immobilized onto polyethylene glycol grafted magnetic nanoparticles via trichlorotriazine with high loading efficiency. The generated immobilized pectinase showed enhanced catalytic activity, improved operational stability, and easily reusability. Thermal and pH stabilities studies showed improved performance of immobilized pectinase especially at extreme points. Compared to free enzyme, the noticeably lower Km and higher vmax values of immobilized pectinase demonstrated the enhanced catalytic activity of this enzyme after immobilization. Besides, the immobilized enzyme exhibited excellent reusability and stability by retaining up to 55 and 94% of its initial activity after 10 recycles and 125 days storage at 25 °C, respectively. Moreover, turbidity reduction occurred up to 59% in treated pineapple juice with immobilized pectinase, suggesting applicability of this system in juice and food-processing industries.
Collapse
Affiliation(s)
- Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
47
|
Ayeni KI, Sulyok M, Krska R, Ezekiel CN. Fungal and plant metabolites in industrially-processed fruit juices in Nigeria. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 13:155-161. [PMID: 32207373 DOI: 10.1080/19393210.2020.1741691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is scarce data on the mycotoxin profile in retailed fruit juices in Nigeria. Thirty-five industrially-processed fruit juice samples randomly purchased from retailers in Ogun state, Nigeria, were analysed for the presence of > 650 toxic fungal and plant metabolites using a liquid chromatography tandem mass spectrometric method. Only 18 metabolites, including 3-nitropropionic acid, alternariol methylether and emodin, but excluding citrinin, fumonisin B2, ochratoxin A and patulin, were detected in trace levels in at least one juice sample. Amygdalin, a plant cyanogen, was quantified (2.05-359 µg/L) in 40% of the samples. Although the levels of mycotoxins and toxic plant metabolites found in the juice may be relatively low, daily consumption of juices containing such low levels may contribute to dietary exposures to these natural chemical contaminants in consumers. Fruit juice processors should be encouraged to adhere strictly to good manufacturing practices in order to keep mycotoxins away from the final products.
Collapse
Affiliation(s)
- Kolawole I Ayeni
- Department of Microbiology, Babcock University , Ilishan Remo, Nigeria
| | - Michael Sulyok
- Institute for Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU) , Tulln, Austria
| | - Rudolf Krska
- Institute for Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU) , Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast , Belfast, Northern Ireland
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University , Ilishan Remo, Nigeria.,Institute for Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU) , Tulln, Austria
| |
Collapse
|
48
|
Comparison of high temperature-short time and sonication on selected parameters of strawberry juice during room temperature storage. Journal of Food Science and Technology 2020; 57:1462-1468. [PMID: 32180642 DOI: 10.1007/s13197-019-04181-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/05/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
The purpose of current research was to explore the effect of high temperature-short time (HTST) and different ultrasound times intervals on the strawberry juice for a period of 14 days. Strawberry fruits were treated at 72 °C for 15 s by HTST and also sonicated at 20 kHz and 100% amplitude for 5, 10, and 15 min. The main objective is to evaluate the effect of treatments and storage time on color, total antioxidants, total phenolics, ascorbic acid and microbial content of strawberry juice. Results showed that the increase in the sonication treatment time (from 5 to 15 min) showed a higher total phenolics, antioxidant capacity and ascorbic acid content. In addition, 15 min sonicated-strawberry juices showed a higher lightness values as compared to HTST treated strawberry juice. Sonication treatment showed a potential as a method to preserve and improve the phytochemical quality of strawberry juice during room temperature storage.
Collapse
|
49
|
Baboli ZM, Williams L, Chen G. Design of a batch ultrasonic reactor for rapid pasteurization of juices. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109736] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Dal Magro L, Kornecki JF, Klein MP, Rodrigues RC, Fernandez-Lafuente R. Pectin lyase immobilization using the glutaraldehyde chemistry increases the enzyme operation range. Enzyme Microb Technol 2020; 132:109397. [DOI: 10.1016/j.enzmictec.2019.109397] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023]
|