1
|
Graça JS, Furtado MM, Freire L, Watanabe CA, Rocha RS, Sant'Ana AS. Impact of pre-exposure stress on the growth and viability of Lactobacillus acidophilus in regular, buriti pulp and orange byproduct fermented milk products. Food Microbiol 2025; 125:104660. [PMID: 39448144 DOI: 10.1016/j.fm.2024.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/18/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
The loss of probiotics viability in yogurts and fermented milk is a significant challenge in producing yogurt and fermented milk. Thus, pre-exposure of probiotics to stress conditions can be a viable alternative to increase the probiotic viability. Moreover, the use of fruit pulp and agro-industrial residues in these products has demonstrated promising results in promoting growth and improving the viability of probiotics. Thus, this study aimed to evaluate the effects of pre-exposure to acid, oxidative and osmotic stress on the growth and viability of Lactobacillus acidophilus in yogurts and naturally fermented milk containing buriti (Mauritia flexuosa Mart.) pulp or orange byproduct. L. acidophilus was individually pre-exposed to acid, oxidative, and osmotic stress and used in the production of yogurts and fermented milk to determine both the acidification profile and growth of the cultures. Furthermore, during cold storage, the post-acidification profiles and viability of microbial cultures added to the yogurts and fermented milk were monitored. Results showed that pre-exposure to stress conditions influenced the growth parameters as the growth rate (μ) and lag phase (λ) of L. acidophilus and the starter cultures of S. thermophilus and L. delbrueckii subsp. bulgaricus. Moreover, an increase in the viability of L. acidophilus - pre-exposed to acid stress - was observed on the 21st day of storage of natural yogurts containing orange byproduct compared with non-stressful conditions. This study reports new data on the growth of probiotic cultures pre-exposed to stress conditions in products added of pulps and agro-industrial residues, which have not yet been shown in the literature.
Collapse
Affiliation(s)
- Juliana S Graça
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Marianna M Furtado
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luísa Freire
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Carolina A Watanabe
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Ramon S Rocha
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Nutrição Experimental (FBA), 05508-000, São Paulo, SP, Brazil; Food Research Center (FoRC), Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas, São Paulo, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
2
|
Habib H, Kumar A, Amin T, Bhat TA, Aziz N, Rasane P, Ercisli S, Singh J. Process optimization, growth kinetics, and antioxidant activity of germinated buckwheat and amaranth-based yogurt mimic. Food Chem 2024; 457:140138. [PMID: 38901337 DOI: 10.1016/j.foodchem.2024.140138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
This study aimed to investigate the integration of cereal and germinated pseudocereals into set-type yogurt mimic, resulting in a novel and nutritious product. Four groups of yogurts mimic, namely CPY-1, CPY-2, CPY-3, and CPY-4, were prepared using different probiotic cultures, including L. acidophilus 21, L. plantarum 14, and L. rhamnosus 296 along with starter cultures. Notably, CPY-2 cultured with L. plantarum and L. rhamnosus and incubated for 12 h exhibited the most desirable attributes. The resulting yogurt demonstrated an acidity of 0.65%, pH of 4.37 and a probiotic count of 6.38 log CFU/mL. The logistic growth model fit revealed maximum growth rates (k, 1/h) and maximum bacterial counts (Nm log CFU/mL) for each CPY variant. The results revealed that CPY-2 significantly improved protein, dietary fiber, phenols and antioxidant capacities compared to the control. Scanning electron microscopy showed more structured and compact casein network in CPY-2, highlighting its superior textural characteristics. Overall, this study demonstrates the incorporation of cereal and germinated pseudocereals into set-type yogurt mimic offers health benefits through increased dietary fiber and β-glucan.
Collapse
Affiliation(s)
- Huraiya Habib
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ashwani Kumar
- Institute of Food Technology, Bundelkhand University Jhansi, 284128, India
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, 190025, India
| | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, 190025, India
| | - Nargis Aziz
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Jyoti Singh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
3
|
Zhang Y, Chen Z, Xiao Y, Wu T, Yang H, Liu Y, Zhou R, Xiong Y, Xiong Y, Yang X, Zhou J, Zhou H, Zhang W, Shu Y, Li X, Guo F, Yin J, Liao S, Li Q, Zhu P. Effects of Compound Probiotics on Pharmacokinetics of Cytochrome 450 Probe Drugs in Rats. Drug Metab Dispos 2024; 52:1297-1312. [PMID: 39214665 DOI: 10.1124/dmd.124.001837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Compound probiotics have been widely used and commonly coadministered with other drugs for treating various chronic illnesses, yet their effects on drug pharmacokinetics remain underexplored. This study elucidated the impact of VSL#3 on the metabolism of probe drugs for cytochrome P450 enzymes (P450s), specifically omeprazole, tolbutamide, midazolam, metoprolol, phenacetin, and chlorzoxazone. Male Wistar rats were administered drinking water containing VSL#3 or not for 14 days and then intragastrically administered a P450 probe cocktail; this was done to investigate the host P450's metabolic phenotype. Stool, liver/jejunum, and serum samples were collected for 16S ribosomal RNA sequencing, RNA sequencing, and bile acid profiling. The results indicated significant differences in both α and β diversity of intestinal microbial composition between the probiotic and vehicle groups in rats. In the probiotic group, the bioavailability of omeprazole increased by 269.9%, whereas those of tolbutamide and chlorpropamide decreased by 28.1% and 27.4%, respectively. The liver and jejunum exhibited 1417 and 4004 differentially expressed genes, respectively, between the two groups. In the probiotic group, most of P450 genes were upregulated in the liver but downregulated in the jejunum. The expression of genes encoding metabolic enzymes and drug transporters also changed. The serum-conjugated bile acids in the probiotic group were significantly reduced. Shorter duodenal villi and longer ileal villi were found in the probiotic group. In summary, VSL#3 administration altered the gut microbiota, host drug-processing gene expression, and intestinal structure in rats, which could be reasons for pharmacokinetic changes. SIGNIFICANCE STATEMENT: This study focused on the effects of the probiotic VSL#3 on the pharmacokinetic profile of cytochrome P450 probe drugs and the expression of host drug metabolism genes. Compared with previous studies, the present study provides a comprehensive explanation for the host drug metabolism profile modified by probiotics, combined here with the bile acid profile and histopathological analysis.
Collapse
Affiliation(s)
- Yanjuan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Zhi Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yayi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Haijun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Rong Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xuechun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yan Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xiong Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Fugang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jianhui Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Shang Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| |
Collapse
|
4
|
de Rijk MG, Boesveldt S, Feskens EJ, de Vries JH. The Effect of Meal Frequency and Glycemic Index During the Night Shift on Alertness, Hunger, and Gastrointestinal Complaints in Female Health Care Workers-A Two-Armed Randomized Crossover Trial. J Nutr 2024:S0022-3166(24)01044-7. [PMID: 39343301 DOI: 10.1016/j.tjnut.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Nutrition strategies for night-shift workers could optimize alertness and minimize hunger and reduce gastrointestinal complaints, enhancing safety and well-being. OBJECTIVES This study aimed to investigate the effects of 1 or 3 small meals, with either low or high glycemic index (GI), compared with no meal, on alertness, hunger, and gastrointestinal complaints during the night shift. METHODS Fifty-one female health care workers, aged 18 to 61 y, participated in a 2-armed randomized crossover design. In 1 study arm, participants received 1 yogurt meal during the night shift, AND in the other, they received 3. Each study arm involved 3 intervention periods during night shifts, with participants consuming yogurt with low GI (1LGI or 3LGI) OR high GI (1HGI or 3HGI) carbohydrates, or no meal (0NGI). Objective alertness was assessed using a validated brief psychomotor vigilance task (PVT-B), subjective alertness with the Samn-Perelli scale, and hunger and gastrointestinal complaints through questionnaires. RESULTS Participants in the 1LGI (β: -4.6; 95% CI: 0.0, 9.3) and 3LGI (β: -3.4; 95% CI: 0.0, 6.8) conditions had fewer lapses during the PVT-B than those in the 3HGI condition. No differences were found between meal conditions for median and reciprocal reaction time or subjective alertness. All 4 conditions reported less hunger (β: from -0.6 to -1.2) compared with no meal. The 3LGI condition resulted in more rumbling intestines than the 3HGI (β: 1.1; 95% CI: 0.4, 1.7) and 0NGI (β: 0.74; 95% CI: 0.11, 1.37) conditions. CONCLUSIONS Our study suggests that consuming 3 small low GI meals during the night shift helps maintain alertness and reduces lapses compared with 3 high GI meals. It also minimizes hunger but may cause mild gastrointestinal complaints. This trial was registered at International Clinical Trial Registry (https://trialsearch.who.int/Trial2.aspx?TrialID%3dNL-OMON25574).
Collapse
Affiliation(s)
- Mariëlle G de Rijk
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Sanne Boesveldt
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Edith Jm Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands.
| | - Jeanne Hm de Vries
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
5
|
Tsifintaris M, Kiousi DE, Repanas P, Kamarinou CS, Kavakiotis I, Galanis A. Probio-Ichnos: A Database of Microorganisms with In Vitro Probiotic Properties. Microorganisms 2024; 12:1955. [PMID: 39458265 PMCID: PMC11509836 DOI: 10.3390/microorganisms12101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Probiotics are live microorganisms that, when consumed in adequate amounts, exert health benefits on the host by regulating intestinal and extraintestinal homeostasis. Common probiotic microorganisms include lactic acid bacteria (LAB), yeasts, and Bacillus species. Here, we present Probio-ichnos, the first manually curated, literature-based database that collects and comprehensively presents information on the microbial strains exhibiting in vitro probiotic characteristics (i.e., resistance to acid and bile, attachment to host epithelia, as well as antimicrobial, immunomodulatory, antiproliferative, and antioxidant activity), derived from human, animal or plant microbiota, fermented dairy or non-dairy food products, and environmental sources. Employing a rigorous methodology, we conducted a systematic search of the PubMed database utilizing the keyword 'probiotic' within the abstracts or titles, resulting in a total of 27,715 studies. Upon further manual filtering, 2207 studies presenting in vitro experiments and elucidating strain-specific probiotic attributes were collected and used for data extraction. The Probio-ichnos database consists of 12,993 entries on the in vitro probiotic characteristics of 11,202 distinct strains belonging to 470 species and 143 genera. Data are presented using a binary categorization approach for the presence of probiotic attributes according to the authors' conclusions. Additionally, information about the availability of the whole-genome sequence (WGS) of strains is included in the database. Overall, the Probio-ichnos database aims to streamline the navigation of the available literature to facilitate targeted validation and comparative investigation of the probiotic properties of the microbial strains.
Collapse
Affiliation(s)
- Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Panagiotis Repanas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Christina S. Kamarinou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece
| | - Ioannis Kavakiotis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| |
Collapse
|
6
|
Miao M, Li S, Yang S, Yan Q, Xiang Z, Jiang Z. Engineering the β-galactosidase from Aspergillus oryzae for making lactose-free and no-sugar-added yogurt. J Dairy Sci 2024; 107:6602-6613. [PMID: 38670341 DOI: 10.3168/jds.2023-24310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Yogurt usually contains 5% to 7% sugar and 3% to 5% lactose. As β-galactosidases can hydrolyze lactose and improve sweetness, they have the potential to produce lactose-free (LF) and no-sugar-added (NSA) yogurt. In this study, the β-galactosidase AoBgal35A from Aspergillus oryzae was engineered by site-saturation mutagenesis. Results of 19 variants of T955 residue showed that the lactose hydrolysis rate of T955R-AoBgal35A was up to 90.7%, which is much higher than the 78.5% of the wild type. Moreover, the optimal pH of T955R-AoBgal35A was shifted from pH 4.5 to pH 5.5, and the optimal temperature decreased from 60°C to 50°C. The mutant T955R-AoBgal35A was successfully expressed in Komagataella pastoris, which produced extracellularly 4,528 U/mL of β-galactosidase activity. The mutant T955R-AoBgal35A was used to produce LF yogurt. The Streptococcus thermophilus count of LF yogurt increased from 7.9 to 9.5 log cfu/g, which is significantly higher than that of the control group (8.9 log cfu/g). The residual lactose content of LF yogurt was 0.13%, meeting the requirements of the national standard in China for the "lactose-free" label (<0.5%). Furthermore, sugar in yogurt was replaced by whey powder to produce LF-NSA yogurt. The optimal addition content of whey powder was 7.5%. The texture, water-holding capacity, and titratable acidity of LF and LF-NSA yogurt achieved good shelf life stability. Therefore, this study provides an insight for technological implications of β-galactosidases in the dairy industry.
Collapse
Affiliation(s)
- Miao Miao
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shusen Li
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Shaoqing Yang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhixuan Xiang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
7
|
Han Z, Ran Y, Li J, Zhang X, Yang H, Liu J, Dong S, Jia H, Yang Z, Li Y, Guo L, Zhou S, Bao S, Yuan W, Wang B, Zhou L. Association of gut microbiota with lactose intolerance and coeliac disease: a two-sample Mendelian randomization study. Front Nutr 2024; 11:1395801. [PMID: 39166131 PMCID: PMC11333455 DOI: 10.3389/fnut.2024.1395801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Background and objectives Lactose intolerance and coeliac disease are common clinical nutrient malabsorption disorders, with an unclear pathogenesis and limited therapeutic options. It is widely believed that the gut microbiota plays an important role in many digestive disorders, but its role in lactose intolerance and coeliac disease is not yet clear. This study aimed to investigate the correlation between gut microbiota and lactose intolerance and coeliac disease. Materials and methods This study utilized the genome-wide association study database to investigate the association between gut microbiota and lactose intolerance and coeliac disease using Mendelian randomization (MR). The robustness of our findings was confirmed through subsequent analyses including Cochrane's Q statistic, MR-Egger Intercept Regression, MR-PRESSO Global Test and Leave-one-out methods. Results By employing the inverse variance weighted method, we identified that family Veillonellaceae, genus Oxalobacter and Senegalimassilia were protective against lactose intolerance, whereas genus Anaerotruncus, Eubacterium rectale group and Ruminococcus2 were found to be risk factors for lactose intolerance. Regarding coeliac disease, class Bacilli and Gammaproteobacteria, family FamilyXIII and Veillonellaceae, genus Eisenbergiella, Lachnoclostridium, RuminococcaceaeUCG014 and Ruminococcus2 were identified as protective factors, while class Betaproteobacteria, genus Eubacterium xylanophilum group and Blautia were risk factors. Furthermore, reverse the MR analysis did not reveal any evidence of a causal relationship between lactose intolerance or coeliac disease and the bacteria identified in our study. Conclusion This study provides novel insights into exploring the role of gut microbiota in lactose intolerance and coeliac disease; however, further experiments investigations are required to elucidate the specific underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Shaikh SS, Kumar S. Role of Bacillus coagulans (Heyndrickxia coagulans)BCP92 in managing irritable bowel syndrome: A randomized, double-blind, multicenter, placebo-controlled clinical trial. Medicine (Baltimore) 2024; 103:e39134. [PMID: 39093754 PMCID: PMC11296456 DOI: 10.1097/md.0000000000039134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a major global healthcare burden that requires effective and well-tolerated intervention. This study aimed to investigate the effectiveness and safety of Bacillus coagulans BCP92, a probiotic, in managing IBS symptoms. METHODS This randomized controlled trial included 100 participants who strictly adhered to the protocol. Various parameters such as IBS severity, digestive symptom frequency, gastrointestinal symptom frequency, stool consistency, interleukin-6 levels, stress relief, and anxiety levels were evaluated over 12 weeks. RESULTS B. coagulans BCP92 significantly improved IBS severity (P < .001), and gastrointestinal symptom frequency (P < .001) compared with that in the control group. The stool consistency significantly improved (P < .001). Mental stress relief was remarkable (P = .001), differentiating the test and control groups. No significant change in interleukin-6 levels was observed; however, the safety assessment revealed an excellent profile with no reported severe adverse events. CONCLUSION B. coagulans BCP92 is one of the most promising therapeutic options for the management of IBS because it has shown significant efficacy in alleviating symptoms among patients suffering from this condition, resulting in improved stool consistency changes in addition to improving overall mental well-being for its users, thereby foreseeing the elimination of any potential side effects experienced during the implementation of this approach strategy within our health care system, thereby improving patient outcomes and leading to individualization of treatment plans among all individuals diagnosed with this disease entity who may have symptoms, including abdominal pain or discomfort associated with changes in bowel habits.
Collapse
Affiliation(s)
| | - Sanjay Kumar
- Gastrocare, Liver & Digestive Disease Center, Bhopal, India
| |
Collapse
|
9
|
Kizilbash SJ, Connolly H, Bartosh S, Zahr R, Al-Akash S, Chishti A, Mansuri A, Tawadrous H, Jain NG. Probiotic use in pediatric kidney transplant recipients: What are current practices, and are they evidence-based? A pediatric nephrology research consortium study. Pediatr Transplant 2024; 28:e14790. [PMID: 38837638 DOI: 10.1111/petr.14790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Probiotics are living microorganisms that may confer health benefits to their host if administered in sufficient quantities. However, data on the use of probiotics in transplant recipients are scarce. METHOD This multi-center survey of pediatric nephrologists aimed to examine variations in practice regarding the use of probiotics in pediatric kidney transplant recipients. The survey was conducted via a 10-item questionnaire (developed in Survey Monkey) administered to pediatric nephrologists participating in the Pediatric Nephrology Research Consortium meeting in April 2023. RESULTS Sixty-four pediatric nephrologists completed the survey. Twenty-seven (42.2%) respondents reported having prescribed probiotics to pediatric kidney transplant recipients. The primary reason for probiotic use was the treatment of antibiotic-associated diarrhea (n = 20), with other reasons including recurrent Clostridium difficile infection (n = 15), general gut health promotion (n = 12), recurrent urinary tract infections (n = 8), and parental request (n = 1). Of those who prescribed probiotics, 48.1% held them during periods of neutropenia and 14.8% during central venous line use. Of the 64 respondents, 20 reported the lack of safety data as a concern for using probiotics in kidney transplant recipients. CONCLUSION Pediatric nephrologists are increasingly prescribing probiotics to pediatric kidney transplant recipients; nevertheless, substantial practice variations exist. The paucity of safety data is a significant deterrent to probiotic use in this population.
Collapse
Affiliation(s)
- S J Kizilbash
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - H Connolly
- Department of Pediatrics, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - S Bartosh
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - R Zahr
- Department of Pediatrics, University of Tennessee Health Science Center Memphis, Memphis, Tennessee, USA
| | - S Al-Akash
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - A Chishti
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, USA
| | - A Mansuri
- Department of Pediatrics, Children's Hospital of Georgia, Medical college of Georgia, Augusta University, Augusta, Georgia, USA
| | - H Tawadrous
- Department of Pediatrics, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - N G Jain
- Department of Pediatrics, Hackensack University Medical Center, Hackensack, New Jersey, USA
| |
Collapse
|
10
|
Balendra V, Rosenfeld R, Amoroso C, Castagnone C, Rossino MG, Garrone O, Ghidini M. Postbiotics as Adjuvant Therapy in Cancer Care. Nutrients 2024; 16:2400. [PMID: 39125280 PMCID: PMC11314502 DOI: 10.3390/nu16152400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Postbiotics are defined as a preparation of inanimate microorganisms and/or their components that confers a health benefit to the host. They range from cell wall fragments to metabolites, bacterial lysates, extracellular vesicles, and short-chain fatty acids (SCFAs). Postbiotics may influence carcinogenesis via a variety of mechanisms. They can promote homeostatic immune responses, reduce inflammation, induce selective cytotoxicity against tumor cells, as well as the enabling the control of tumor cell proliferation and enhancing intestinal epithelial barrier function. Therefore, probiotics can serve as an adjunct strategy in anticancer treatment together with chemotherapy and immunotherapy. Up to now, the only relevant postbiotics used as interventions in oncological patients remain vitamin K molecules, with few phase-II and III trials available. In fact, postbiotics' levels are strictly dependent on the gut microbiota's composition, which may vary between individuals and can be altered under different physiological and pathological conditions. Therefore, the lack of consistent clinical evidence supporting postbiotics' efficacy is due to their poor bioavailability, short half-life, and fluctuating levels. Synbiotics, a mixture of prebiotics and probiotics, are expected to have a more homogeneous bioavailability with respect to postbiotics and may have greater potential for future development. In this review, we focus on the role of postbiotics as an adjuvant therapy in cancer treatment.
Collapse
Affiliation(s)
| | - Roberto Rosenfeld
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.R.); (M.G.R.); (O.G.)
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | | | - Maria Grazia Rossino
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.R.); (M.G.R.); (O.G.)
| | - Ornella Garrone
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.R.); (M.G.R.); (O.G.)
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.R.); (M.G.R.); (O.G.)
| |
Collapse
|
11
|
Wang K, Duan F, Sun T, Zhang Y, Lu L. Galactooligosaccharides: Synthesis, metabolism, bioactivities and food applications. Crit Rev Food Sci Nutr 2024; 64:6160-6176. [PMID: 36632761 DOI: 10.1080/10408398.2022.2164244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prebiotics are non-digestible ingredients that exert significant health-promoting effects on hosts. Galactooligosaccharides (GOS) have remarkable prebiotic effects and structural similarity to human milk oligosaccharides. They generally comprise two to eight sugar units, including galactose and glucose, which are synthesized from substrate lactose by microbial β-galactosidase. Enzyme sources from probiotics have received particular interest because of their safety and potential to synthesize specific structures that are particularly metabolized by intestinal probiotics. Owing to advancements in modern analytical techniques, many GOS structures have been identified, which vary in degree of polymerization, glycosidic linkage, and branch location. After intake, GOS adjust gut microbiota which produce short chain fatty acids, and exhibit excellent biological activities. They selectively stimulate the proliferation of probiotics, inhibit the growth and adhesion of pathogenic bacteria, alleviate gastrointestinal, neurological, metabolic and allergic diseases, modulate metabolites production, and adjust ion storage and absorption. Additionally, GOS are safe and stable, with high solubility and clean taste, and thus are widely used as food additives. GOS can improve the appearance, flavor, taste, texture, viscosity, rheological properties, shelf life, and health benefits of food products. This review systemically covers GOS synthesis, structure identifications, metabolism mechanisms, prebiotic bioactivities and wide applications, focusing on recent advances.
Collapse
Affiliation(s)
- Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Sun
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Nasreen S, Ali S, Andleeb S, Summer M, Hussain T, Imdad K, Ara C, Tahir HM. Mechanisms of medicinal, pharmaceutical, and immunomodulatory action of probiotics bacteria and their secondary metabolites against disease management: an overview. Folia Microbiol (Praha) 2024; 69:549-565. [PMID: 38532057 DOI: 10.1007/s12223-024-01155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Probiotics or bacteriotherapy is today's hot issue for public entities (Food and Agriculture Organization, and World Health Organization) as well as health and food industries since Metchnikoff and his colleagues hypothesized the correlation between probiotic consumption and human's health. They contribute to the newest and highly efficient arena of promising biotherapeutics. These are usually attractive in biomedical applications such as gut-related diseases like irritable bowel disease, diarrhea, gastrointestinal disorders, fungal infections, various allergies, parasitic and bacterial infections, viral diseases, and intestinal inflammation, and are also worth immunomodulation. The useful impact of probiotics is not limited to gut-related diseases alone. Still, these have proven benefits in various acute and chronic infectious diseases, like cancer, human immunodeficiency virus (HIV) diseases, and high serum cholesterol. Recently, different researchers have paid special attention to investigating biomedical applications of probiotics, but consolidated data regarding bacteriotherapy with a detailed mechanistically applied approach is scarce and controversial. The present article reviews the bio-interface of probiotic strains, mainly (i) why the demand for probiotics?, (ii) the current status of probiotics, (iii) an alternative to antibiotics, (iv) the potential applications towards disease management, (v) probiotics and industrialization, and (vi) futuristic approach.
Collapse
Affiliation(s)
- Sundas Nasreen
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Summer
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Kaleem Imdad
- Department of Bioscience, COMSATS Institute of Information Technology (CIIT), Islamabad, 45550, Pakistan
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
13
|
Derebasi BN, Davran Bulut S, Aksoy Erden B, Sadeghian N, Taslimi P, Celebioglu HU. Effects of p-coumaric acid on probiotic properties of Lactobacillus acidophilus LA-5 and lacticaseibacillus rhamnosus GG. Arch Microbiol 2024; 206:223. [PMID: 38642150 DOI: 10.1007/s00203-024-03957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Probiotics are defined as "live microorganisms that provide health benefits to the host when administered in adequate amounts." Probiotics have beneficial effects on human health, including antibacterial activity against intestinal pathogens, regulation of blood cholesterol levels, reduction of colitis and inflammation incidence, regulation of the immune system, and prevention of colon cancer. In addition to probiotic bacteria, some phenolic compounds found in foods we consume (both food and beverages) have positive effects on human health. p-coumaric acid (p-CA) is one of the most abundant phenolic compounds in nature and human diet. The interactions between these two different food components (phenolics and probiotics), resulting in more beneficial combinations called synbiotics, are not well understood in terms of how they will affect the gut microbiota by promoting the probiotic properties and growth of probiotic bacteria. Thus, this study aimed to investigate synbiotic relationship between p-CA and Lactobacillus acidophilus LA-5 (LA-5), Lacticaseibacillus rhamnosus GG (LGG). Probiotic bacteria were grown in the presence of p-CA at different concentrations, and the effects of p-CA on probiotic properties, as well as its in vitro effects on AChE and BChE activities, were investigated. Additionally, Surface analysis was conducted using FTIR. The results showed that treatment with p-CA at different concentrations did not exhibit any inhibitory effect on the growth kinetics of LA-5 and LGG probiotic bacteria. Additionally, both probiotic bacteria demonstrated high levels of antibacterial properties. It showed that it increased the auto-aggregation of both probiotics. While p-CA increased co-aggregation of LA-5 and LGG against Escherichia coli, it decreased co-aggregation against Staphylococcus aureus. Probiotics grown with p-CA were more resistant to pepsin. While p-CA increased the resistance of LA-5 to bile salt, it decreased the resistance of LGG. The combinations of bacteria and p-CA efficiently suppressed AChE and BChE with inhibition (%) 11.04-68.43 and 13.20-65.72, respectively. Furthermore, surface analysis was conducted using FTIR to investigate the interaction of p-coumaric acid with LA-5 and LGG, and changes in cell components on the bacterial surface were analyzed. The results, recorded in range of 4000 -600 cm-1 with resolution of 4 cm-1, demonstrated that p-CA significantly affected only the phosphate/CH ratio for both bacteria. These results indicate the addition of p-CA to the probiotic growth may enhance the probiotic properties of bacteria.
Collapse
Affiliation(s)
- Buse Nur Derebasi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Sena Davran Bulut
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Busra Aksoy Erden
- Central Research Laboratory Application and Research Center, Bartin University, Bartin, Turkey
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | | |
Collapse
|
14
|
Comerford K, Lawson Y, Young M, Knight M, McKinney K, Mpasi P, Mitchell E. The role of dairy food intake for improving health among black Americans across the life continuum: A summary of the evidence. J Natl Med Assoc 2024; 116:292-315. [PMID: 38378307 DOI: 10.1016/j.jnma.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/22/2024]
Abstract
Decades of health data show major health disparities occurring at every life stage between Black and White Americans. These disparities include greater mortality rates among Black mothers and their offspring, higher levels of malnutrition and obesity among Black children and adolescents, and a higher burden of chronic disease and lower life expectancy for Black adults. Although nutrition is only one of many factors that influence human health and well-being across the life continuum, a growing body of research continues to demonstrate that consuming a healthy dietary pattern is one of the most dominant factors associated with increased longevity, improved mental health, improved immunity, and decreased risk for obesity and chronic disease. Unfortunately, large percentages of Black Americans tend to consume inadequate amounts of several essential nutrients such as vitamin A, vitamin D, calcium, and magnesium; and simultaneously consume excessive amounts of fast foods and sugar-sweetened beverages to a greater degree than other racial/ethnic groups. Therefore, strategies that can help improve dietary patterns for Black Americans could make up a major public health opportunity for reducing nutrition-related diseases and health disparities across the life course. A key intervention strategy to improve diet quality among Black Americans is to focus on increasing the intake of nutrient-rich dairy foods, which are significantly underconsumed by most Black Americans. Compared to other food group, dairy foods are some of the most accessible and affordable sources of essential nutrients like vitamin A, D, and B12, calcium, magnesium, potassium, selenium, and zinc in the food supply, as well as being some of the primary sources of several health-promoting bioactive compounds, including polar lipids, bioactive proteins and peptides, oligosaccharides, and live and active cultures in fermented products. Given the complex relationships that many Black Americans have with dairy foods, due to issues with lactose intolerance, and/or negative perceptions about the health effects of dairy foods, there is still a need to examine the role that dairy foods play in the health and well-being of Black Americans of all ages and life stages. Therefore, the National Medical Association and its partners have produced multiple reports on the value of including adequate dairy in the diet of Black Americans. This present summary paper and its associated series of evidence reviews provide an examination of an immense amount of research focused on dairy intake and health outcomes, with an emphasis on evidence-based strategies for improving the health of Black Americans. Overall, the findings and conclusions from this body of research continue to indicate that higher dairy intake is associated with reduced risk for many of the most commonly occurring deficiencies and diseases impacting each life stage, and that Black Americans would receive significantly greater health benefits by increasing their daily dairy intake levels to meet the national recommendations than they would from continuing to fall short of these recommendations. However, these recommendations must be considered with appropriate context and nuance as the intake of different dairy products can have different impacts on health outcomes. For instance, vitamin D fortified dairy products and fermented dairy products like yogurt - which are low in lactose and rich in live and active cultures - tend to show the greatest benefits for improved health. Importantly, there are significant limitations to these research findings for Black Americans, especially as they relate to reproductive and child health, since most of the research on dairy intake and health has failed to include adequate representation of Black populations or to sufficiently address the role of dairy intake during the most vulnerable life stages, such as pregancy, lactation, fetal development, early childhood, and older age. This population and these life stages require considerably more research and policy attention if health equity is ever to be achieved for Black Americans. Sharing and applying the learnings from this summary paper and its associated series of evidence reviews will help inform and empower nutrition and health practitioners to provide more evidence-based dietary recommendations for improving the health and well-being of Black Americans across the life course.
Collapse
Affiliation(s)
- Kevin Comerford
- OMNI Nutrition Science, California Dairy Research Foundation, Davis, CA, United States.
| | - Yolanda Lawson
- Associate Attending, Baylor University Medical Center, Dallas, TX, United States
| | - Michal Young
- Emeritus, Department of Pediatrics and Child Health, Howard University College of Medicine, Washington D.C., United States
| | - Michael Knight
- The George Washington University School of Medicine and Health Sciences, Washington D.C., United States
| | - Kevin McKinney
- Department of Internal Medicine, Division of Endocrinology, University of Texas Medical Branch, Galveston, TX, United States
| | - Priscilla Mpasi
- ChristianaCare Health System, Assistant Clinical Director Complex Care and Community Medicine, Wilmington, DE, United States
| | - Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, Philadelphia, PA, United States
| |
Collapse
|
15
|
Mei S, Yao S, Mo J, Wang Y, Tang J, Li W, Wu T. Integration of cloud-based molecular networking and docking for enhanced umami peptide screening from Pixian douban. Food Chem X 2024; 21:101098. [PMID: 38229673 PMCID: PMC10790023 DOI: 10.1016/j.fochx.2023.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
This study presents an innovative cloud-based approach, using Pixian Douban, a well-known Chinese fermented seasoning, as a case study, to improve the identification of umami peptides and explore their interactions with the T1R1/T1R3 receptor. A feature-based molecular networking method was utilized to rapidly identify a total of eighteen peptides, including seven previously unrecorded ones. Notably, the umami threshold of QIVK in an aqueous solution was determined to be 0.3215 mmol/L, surpassing the majority of peptides reported in the past three years. Molecular docking analysis further revealed the strong binding of QIVK to T1R3 receptor residues through hydrogen bonds, as well as interactions via salt bridges and electrostatic attractions. As a result, this research significantly contributes to the efficient screening of umami peptides and the elucidation of the molecular basis of umami sensory perception in complex food systems.
Collapse
Affiliation(s)
- Sen Mei
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, No.999 Guangchang Road, Chengdu 610039, China
| | - Shanshan Yao
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, No.999 Guangchang Road, Chengdu 610039, China
| | - Jingjing Mo
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, No.999 Guangchang Road, Chengdu 610039, China
| | - Yi Wang
- Xi'an Jiaotong University, No. 28 Xinning West Road, Xi'an, Shaanxi, 710049, China
| | - Jie Tang
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, No.999 Guangchang Road, Chengdu 610039, China
| | - Weili Li
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, No.999 Guangchang Road, Chengdu 610039, China
| | - Tao Wu
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, No.999 Guangchang Road, Chengdu 610039, China
| |
Collapse
|
16
|
Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, Lisa EL. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024; 12:234. [PMID: 38399637 PMCID: PMC10891645 DOI: 10.3390/microorganisms12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Probiotics, known to be live microorganisms, have been shown to improve or restore the gut microbiota, which in turn has been linked to improved health. It is believed that probiotics are the modern equivalent of a panacea, with claims that they may treat or prevent different diseases both in children and adults (e.g., from colic in babies to cardiovascular disease, respiratory infection, and cancer in adults). Ever since the early 2000s, probiotic-based fermented foods have had a resurgence in popularity, mostly due to claims made regarding their health benefits. Fermented foods have been associated with the prevention of irritable bowel syndrome, lactose intolerance, gastroenteritis, and obesity, but also other conditions such as chronic diarrhea, allergies, dermatitis, and bacterial and viral infections, all of which are closely related to an unhealthy lifestyle. Recent and ongoing developments in microbiome/microbiota science have given us new research directions for probiotics. The new types, mechanisms, and applications studied so far, and those currently under study, have a great potential to change scientific understanding of probiotics' nutritional applications and human health care. The expansion of fields related to the study of the microbiome and the involvement of probiotics in its improvement foreshadow an era of significant changes. An expanding range of candidate probiotic species is emerging that can address newly elucidated data-driven microbial niches and host targets. In the probiotic field, new variants of microbiome-modulating interventions are being developed, including prebiotics, symbiotics, postbiotics, microbial consortia, live biotherapeutic products, and genetically modified organisms, with renewed interest in polyphenols, fibers, and fermented foods to ensure human health. This manuscript aims to analyze recent, emerging, and anticipated trends in probiotics (sources, doses, mechanism of action, diseases for which probiotics are administered, side effects, and risks) and create a vision for the development of related areas of influence in the field.
Collapse
Affiliation(s)
- Nicoleta-Maricica Maftei
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Cosmin Raducu Raileanu
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Alexia Anastasia Balta
- Medical Department Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania;
| | - Lenuta Ambrose
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Denisa Batîr Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Elena Lacramioara Lisa
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| |
Collapse
|
17
|
Pratelli G, Tamburini B, Badami GD, Lo Pizzo M, De Blasio A, Carlisi D, Di Liberto D. Cow's Milk: A Benefit for Human Health? Omics Tools and Precision Nutrition for Lactose Intolerance Management. Nutrients 2024; 16:320. [PMID: 38276558 PMCID: PMC10819418 DOI: 10.3390/nu16020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Cow's milk (CM) is a healthy food consumed worldwide by individuals of all ages. Unfortunately, "lactase-deficient" individuals cannot digest milk's main carbohydrate, lactose, depriving themselves of highly beneficial milk proteins like casein, lactoalbumin, and lactoglobulin due to lactose intolerance (LI), while other individuals develop allergies specifically against these proteins (CMPA). The management of these conditions differs, and an inappropriate diagnosis or treatment may have significant implications for the patients, especially if they are infants or very young children, resulting in unnecessary dietary restrictions or avoidable adverse reactions. Omics technologies play a pivotal role in elucidating the intricate interactions between nutrients and the human body, spanning from genetic factors to the microbiota profile and metabolites. This comprehensive approach enables the precise delineation and identification of distinct cohorts of individuals with specific dietary requirements, so that tailored nutrition strategies can be developed. This is what is called personalized nutrition or precision nutrition (PN), the area of nutrition that focuses on the effects of nutrients on the genome, proteome, and metabolome, promoting well-being and health, preventing diseases, reducing chronic disease incidence, and increasing life expectancy. Here, we report the opinion of the scientific community proposing to replace the "one size fits all" approach with tailor-made nutrition programs, designed by integrating nutrigenomic data together with clinical parameters and microbiota profiles, taking into account the individual lactose tolerance threshold and needs in terms of specific nutrients intake. This customized approach could help LI patients to improve their quality of life, overcoming depression or anxiety often resulting from the individual perception of this condition as different from a normal state.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (G.P.); (D.C.)
| | - Bartolo Tamburini
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy; (G.D.B.); (M.L.P.)
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy; (G.D.B.); (M.L.P.)
| | - Marianna Lo Pizzo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy; (G.D.B.); (M.L.P.)
| | - Anna De Blasio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy;
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (G.P.); (D.C.)
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (G.P.); (D.C.)
| |
Collapse
|
18
|
Qiu J, Xiang S, Sun M, Tan M. Preparation of Polysaccharide-Protein Hydrogels with an Ultrafast Self-Healing Property as a Superior Oral Delivery System of Probiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18842-18856. [PMID: 37978937 DOI: 10.1021/acs.jafc.3c05898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Oral administration of probiotic supplements can effectively regulate intestinal disorders. However, harsh gastrointestinal conditions greatly limit the bioavailability of probiotics. In this work, biomass-derived polysaccharide-protein hydrogels (Dex-sBSA hydrogels) were constructed as an oral probiotic delivery system. The hydrogel encapsulation significantly promoted the growth and proliferation of probiotics and protected them from gastric acid, bile salts, reactive oxygen species, and antibiotics. In vivo experiments demonstrated that the hydrogel encapsulation significantly enhanced the bioavailability of probiotics, of which the cell number in the intestine, colon, and cecum was 35 times, 8 times, and 203 times higher than the free one, respectively. Attributed to the superior ultrafast self-healing property, the Dex-sBSA hydrogel successfully prevented the probiotics from quick elimination and prolonged the retention time in the gut, providing great possibilities for colonization and proliferation. These results clearly indicate the great potential of the Dex-sBSA hydrogel as a superior oral delivery system for probiotics.
Collapse
Affiliation(s)
- Jiaqi Qiu
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, P. R. China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Siyuan Xiang
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, P. R. China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Miyao Sun
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, P. R. China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Mingqian Tan
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, P. R. China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
19
|
Gallo A, Pellegrino S, Lipari A, Pero E, Ibba F, Cacciatore S, Marzetti E, Landi F, Montalto M. Lactose malabsorption and intolerance: What is the correct management in older adults? Clin Nutr 2023; 42:2540-2545. [PMID: 37931373 DOI: 10.1016/j.clnu.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
Lactose malabsorption is a very common condition due to intestinal lactase deficiency. Post weaning, a genetically programmed and irreversible reduction of lactase activity occurs in the majority of the world's population. Lactose malabsorption does not necessarily result in gastrointestinal symptoms, i.e. lactose intolerance, which occurs in approximately one third of those with lactase deficiency. In the absence of well-established guidelines, the common therapeutic approach tends to exclude milk and dairy products from the diet. However, this strategy may have serious nutritional disadvantages. Mainly in particular categories, such as the older adults, the approach to lactose malabsorption may deserve careful considerations. Milk and dairy products are an important supply of a wide range of nutrients that contribute to meet the nutritional needs in different life stages. Dietary composition can significantly impact the mechanisms leading to age-related loss of bone mineral density, skeletal muscle mass or function and overall risk of sarcopenia. Moreover, in the latest years, different lines of evidence have highlighted an association between dairy intake and prevention of chronic diseases as well as all-cause mortality. The aim of this opinion paper is to provide an overview of lactose malabsorption and intolerance in the older adults and their implications in clinical practice.
Collapse
Affiliation(s)
- Antonella Gallo
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
| | - Simona Pellegrino
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alice Lipari
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Erika Pero
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Ibba
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Cacciatore
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Montalto
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
20
|
Schweiger D, Myers J, Clark S. Whey permeate powder is a suitable ingredient for ice cream. JDS COMMUNICATIONS 2023; 4:439-442. [PMID: 38045891 PMCID: PMC10692353 DOI: 10.3168/jdsc.2023-0382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/14/2023] [Indexed: 12/05/2023]
Abstract
The objective of this research was to evaluate the suitability of whey permeate powder for ice cream. Three white mixes were formulated with equivalent total solids, fat, and carbohydrates, but different concentrations of lactose and added sugar. Vanilla ice creams contained either reduced lactose (RL, 3.8% lactose and 17% added sugar), standard lactose (SL, 5.8%; 15%), or high lactose (HL, 7.8%; 13%). Trained panelists evaluated 8 body and texture, and 6 flavor characteristics through 10 mo of storage. All ice creams maintained low mean scores (<4.0/15.0 cm) for crumbly, lacks freshness, nonfat dry milk flavor, and whey, and moderate mean scores (5.0-8.3/15.0 cm) for gummy, melt rate, melt viscosity, sweet, and vanilla flavor for 10 mo. In mo 1 and 10, consumers in Iowa (n = 94, n = 55) and in mo 4 and 6, consumers in Kansas (n = 44; n = 56) rated the acceptability of the ice creams. Overall acceptability, flavor, and texture acceptability for products did not significantly differ until mo 10, when HL mean scores decreased lower than SL ice cream mean scores. The lower scores are attributed to crumbly and sandy texture defects, noted by trained panelists, only for HL ice cream stored 10 mo. The research demonstrates that whey permeate powder can be used to produce ice creams of acceptable quality for up to 10 mo.
Collapse
Affiliation(s)
- Derek Schweiger
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011
| | - Jack Myers
- Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville, AR 72701
| | - Stephanie Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011
| |
Collapse
|
21
|
Teichenné J, Catalán Ú, Mariné-Casadó R, Domenech-Coca C, Mas-Capdevila A, Alcaide-Hidalgo JM, Chomiciute G, Rodríguez-García A, Hernández A, Gutierrez V, Puiggròs F, Del Bas JM, Caimari A. Bacillus coagulans GBI-30, 6086 (BC30) improves lactose digestion in rats exposed to a high-lactose meal. Eur J Nutr 2023; 62:2649-2659. [PMID: 37249602 DOI: 10.1007/s00394-023-03183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Bacillus coagulans GBI-30, 6086 (BC30) was previously shown to improve nutrient digestibility and amino acid absorption from milk protein in vitro. However, the effect of supplementation with this probiotic on lactose digestibility has not yet been evaluated in vivo. METHODS Wistar female rats were exposed to an acute high-lactose diet (LD; 35% lactose) meal challenge after 7 days of administration of BC30 (LD-BC; n = 10) or vehicle (LD-C; n = 10). Rats treated with vehicle and exposed to control diet (CD; 35% corn starch) meal were used as controls (CD-C; n = 10). Carbohydrate oxidation (CH_OX) and lipid oxidation (L_OX) were monitored by indirect calorimetry before and after lactose challenge. After the challenge, rats were treated daily with vehicle or probiotic for an additional week and were fed with CD or LD ad libitum to determine the effects of BC30 administration in a lactose-induced diarrhoea and malnutrition model. RESULTS LD-C rats showed lower CH_OX levels than CD rats, while LD-BC rats showed similar CH_OX levels compared to CD rats during the lactose challenge, suggesting a better digestion of lactose in the rats supplemented with BC30. BC30 completely reversed the increase in the small intestine length of LD-C animals. LD-BC rats displayed increased intestinal mRNA Muc2 expression. No significant changes were observed due to BC30 administration in other parameters, such as serum calprotectin, intestinal MPO activity, intestinal A1AT and SGLT1 levels or intestinal mRNA levels of Claudin2 and Occludin. CONCLUSION Treatment with BC30 improved the digestibility of lactose in an acute lactose challenge and ameliorated some of the parameters associated with lactose-induced malnutrition.
Collapse
Affiliation(s)
- Joan Teichenné
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain.
| | - Úrsula Catalán
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Cristina Domenech-Coca
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Anna Mas-Capdevila
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Juan María Alcaide-Hidalgo
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | | | - Ana Hernández
- Delafruit SLU, 43470, La Selva del Camp, Catalonia, Spain
| | | | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| |
Collapse
|
22
|
Li A, Zheng J, Han X, Yang S, Cheng S, Zhao J, Zhou W, Lu Y. Advances in Low-Lactose/Lactose-Free Dairy Products and Their Production. Foods 2023; 12:2553. [PMID: 37444291 PMCID: PMC10340681 DOI: 10.3390/foods12132553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
With increasing health awareness worldwide, lactose intolerance has become a major concern of consumers, creating new market opportunities for low-lactose/lactose-free dairy foods. In recent years, through innovating processes and technologies, dairy manufacturers have significantly improved the variety, and functional and sensory qualities of low-lactose and lactose-free dairy products. Based on this, this paper first covers the pathology and epidemiology of lactose intolerance and market trends. Then, we focus on current advantages and disadvantages of different lactose hydrolysis technologies and improvements in these technologies to enhance nutritional value, and functional, sensory, and quality properties of lactose-free dairy products. We found that more and more cutting-edge technologies are being applied to the production of lactose-free dairy products, and that these technologies greatly improve the quality and production efficiency of lactose-free dairy products. Hopefully, our review can provide a theoretical basis for the marketing expansion and consumption guidance for low-lactose/lactose-free dairy products.
Collapse
Affiliation(s)
- Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Jie Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Xueting Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Sijia Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Shihui Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Jingwen Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Wenjia Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Yan Lu
- National Research Center of Dairy Engineering and Technology, Green Food Research Institute of Heilongjiang, Northeast Agricultural University, Harbin 150086, China
| |
Collapse
|
23
|
Porras-García E, Fernández-Espada Calderón I, Gavala-González J, Fernández-García JC. Potential neuroprotective effects of fermented foods and beverages in old age: a systematic review. Front Nutr 2023; 10:1170841. [PMID: 37396132 PMCID: PMC10313410 DOI: 10.3389/fnut.2023.1170841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose Numerous articles have recently studied the involvement of the gut microbiota in neurological diseases. Aging is associated with changes in the microbiome, which implies a reduction in microbial biodiversity among other changes. Considering that the consumption of a fermented-food diet improves intestinal permeability and barrier function, it seems of interest to study its participation in the prevention of neurodegenerative diseases. This article reviews existing studies to establish whether the consumption of fermented foods and fermented beverages prevents or ameliorates neurodegenerative decline in old age. Methods The protocol used was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Details of the protocol for this systematic review are registered on PROSPERO (CRD42021250921). Results Out of 465 articles identified in the Pubmed, Scopus, and Cochrane Library databases, a total of 29 that examined the relationship of the consumption of fermented products with cognitive impairment in old people were selected (22 cohort, 4 case-control, and 3 cross-sectional studies). The results suggest that low-to-moderate alcohol consumption and daily intake of coffee, soy products, and fermented-food diets in general are associated with a lower risk of dementia and Alzheimer's disease. Conclusion Daily consumption of fermented foods and beverages, either alone or as part of a diet, has neuroprotective effects and slows cognitive decline in old people. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=250921, identifier: CRD42021250921.
Collapse
Affiliation(s)
- Elena Porras-García
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | | | - Juan Gavala-González
- Department of Physical Education and Sports, University of Seville, Seville, Spain
| | - José Carlos Fernández-García
- Department of Didactics of Languages, Arts and Sport, University of Malaga, Andalucía-Tech, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| |
Collapse
|
24
|
Meradji M, Bachtarzi N, Mora D, Kharroub K. Characterization of Lactic Acid Bacteria Strains Isolated from Algerian Honeybee and Honey and Exploration of Their Potential Probiotic and Functional Features for Human Use. Foods 2023; 12:2312. [PMID: 37372522 DOI: 10.3390/foods12122312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Using culture enrichment methods, 100 strains of bacilli of lactic acid bacteria (LAB) were isolated from honeybee Apis mellifera intermissa and fresh honey, collected from apiaries located in the north-east of Algeria. Amongst all of the isolated LAB, 19 selected strains were closely affiliated to four species-Fructobacillus fructosus (10), Apilactobacillus kunkeei (5), Lactobacillus kimbladii and/or Lactobacillus kullabergensis (4)-using phylogenetic and phenotypic approaches. The in vitro probiotic characteristics (simulated gastrointestinal fluids tolerance, autoaggregation and hydrophobicity abilities, antimicrobial activity and cholesterol reduction) and safety properties (hemolytic activity, antibiotic resistance and absence of biogenic amines) were evaluated. The results indicated that some strains showed promising potential probiotic properties. In addition, neither hemolytic activity nor biogenic amines were produced. The carbohydrate fermentation test (API 50 CHL) revealed that the strains could efficiently use a broad range of carbohydrates; additionally, four strains belonging to Apilactobacillus kunkeei and Fructobacillus fructosus were found to be exopolysaccharides (EPS) producers. This study demonstrates the honeybee Apis mellifera intermissa and one of her products as a reservoir for novel LAB with potential probiotic features, suggesting suitability for promoting host health.
Collapse
Affiliation(s)
- Meriem Meradji
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| | - Nadia Bachtarzi
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
| | - Karima Kharroub
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| |
Collapse
|
25
|
Horvathova K, Modrackova N, Splichal I, Splichalova A, Amin A, Ingribelli E, Killer J, Doskocil I, Pechar R, Kodesova T, Vlkova E. Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium. Microorganisms 2023; 11:microorganisms11041007. [PMID: 37110429 PMCID: PMC10146858 DOI: 10.3390/microorganisms11041007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A balanced microbiota is a main prerequisite for the host's health. The aim of the present work was to develop defined pig microbiota (DPM) with the potential ability to protect piglets against infection with Salmonella Typhimurium, which causes enterocolitis. A total of 284 bacterial strains were isolated from the colon and fecal samples of wild and domestic pigs or piglets using selective and nonselective cultivation media. Isolates belonging to 47 species from 11 different genera were identified by MALDI-TOF mass spectrometry (MALDI-TOF MS). The bacterial strains for the DPM were selected for anti-Salmonella activity, ability to aggregate, adherence to epithelial cells, and to be bile and acid tolerant. The selected combination of 9 strains was identified by sequencing of the 16S rRNA gene as Bacillus sp., Bifidobacterium animalis subsp. lactis, B. porcinum, Clostridium sporogenes, Lactobacillus amylovorus, L. paracasei subsp. tolerans, Limosilactobacillus reuteri subsp. suis, and Limosilactobacillus reuteri (two strains) did not show mutual inhibition, and the mixture was stable under freezing for at least 6 months. Moreover, strains were classified as safe without pathogenic phenotype and resistance to antibiotics. Future experiments with Salmonella-infected piglets are needed to test the protective effect of the developed DPM.
Collapse
Affiliation(s)
- Kristyna Horvathova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Ahmad Amin
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Eugenio Ingribelli
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Radko Pechar
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Tereza Kodesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| |
Collapse
|
26
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
27
|
Urrutia-Baca V, Hernández-Hernández S, Martínez L, Dávila-Vega J, Chuck-Hernández C. The Role of Probiotics in Dairy Foods and Strategies to Evaluate Their Functional Modifications. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- V.H Urrutia-Baca
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, México
| | | | - L.M. Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, NL, México
| | - J.P Dávila-Vega
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, México
| | - C. Chuck-Hernández
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, México
| |
Collapse
|
28
|
Ahlawat A, Basak S, Ananthanarayan L. Formulation of a probiotic buttermilk powder using cell protectants by spray drying and estimation of its shelf-stability. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
29
|
Li H, Peng F, Lin JX, Xiong T, Huang T. Preparation of probiotic microcapsules using gelatin-xylooligosaccharides conjugates by spray drying: Physicochemical properties, survival, digestion resistance and colonization. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Li A, Zheng J, Han X, Jiang Z, Yang B, Yang S, Zhou W, Li C, Sun M. Health implication of lactose intolerance and updates on its dietary management. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Lee M, Kim MS, Jang SH, Kim H, Kim GS, Lee H, Park HM, Yang J. Cera-Glow, ferment lysates of Lacticaseibacillus rhamnosus IDCC 3201, improves skin barrier function in clinical study. J Cosmet Dermatol 2023; 22:1879-1886. [PMID: 36718839 DOI: 10.1111/jocd.15642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Ceramides are essential lipids in stratum corneum for skin permeability barrier function in that they retain the skin moisture and protect from the invasion of foreign pathogens. Previously, we demonstrated that ferment lysates of Lacticaseibacillus rhamnosus IDCC 3201 enhanced ceramide production in human epidermal keratinocytes. Furthermore, for comprehensive knowledge of this effect, in vitro experiments and multi-omics analysis were conducted to explore the underlying mechanisms. AIMS This study was designed to identify whether a cosmetic sample (i.e., Cera-Glow) containing the lysates improves the skin barrier function in clinical trials. PATIENTS/METHODS Twenty-four female participants (45.46 ± 9.78 years) had been enrolled in the transepidermal water loss (TEWL) measurement for 5 days and 21 female participants (50.33 ± 5.74 years) had undergone a skin hydration evaluation for 4 weeks. TEWL and skin hydration were evaluated using a Tewameter and the Epsilon Permittivity Imaging System, respectively. After applying the Cera-Glow sample, all participants recorded a satisfaction survey questionnaire (e.g., satisfaction, efficacy, and adverse reactions). RESULTS Application of Cera-Glow significantly improved transepidermal water loss induced by 1% (w/v) sodium lauryl sulfate (p < 0.05-0.01) and increased skin hydration (p < 0.01). Metabolic analysis suggested that Cera-Glow should contain beneficial gradients for skin barrier function. According to the questionnaire, most of participants were satisfied with the skin hydration improvement and efficacy of Cera-Glow. CONCLUSIONS Cera-Glow, ferment lysates of Lacticaseibacillus rhamnosus IDCC 3201, can significantly improve skin barrier function.
Collapse
Affiliation(s)
- Minjee Lee
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| | - Myun Soo Kim
- Future Technology Research Center, ICBIO, Cheonan, Republic of Korea
| | - Sung Hee Jang
- Future Technology Research Center, ICBIO, Cheonan, Republic of Korea
| | - Hayoung Kim
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| | - Gwang Seob Kim
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| | - Hyerin Lee
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| | - Hyun Min Park
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| | - Jungwoo Yang
- IBS Research Center, Ildong Bioscience, Pyeongtaek, Republic of Korea
| |
Collapse
|
32
|
Probiotic properties and safety aspect of three antifungal lactic acid bacteria strains isolated from wheat and camel milk. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023; 12:cells12010184. [PMID: 36611977 PMCID: PMC9818925 DOI: 10.3390/cells12010184] [Citation(s) in RCA: 119] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.T.); (J.C.R.); Tel.: +39-053-2455-557 (E.T.); +39-053-245-5536 (J.C.R.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Correspondence: (E.T.); (J.C.R.); Tel.: +39-053-2455-557 (E.T.); +39-053-245-5536 (J.C.R.)
| |
Collapse
|
34
|
Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E. In vitro assessment of probiotic attributes for strains contained in commercial formulations. Sci Rep 2022; 12:21640. [PMID: 36517529 PMCID: PMC9751119 DOI: 10.1038/s41598-022-25688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Although probiotics are often indiscriminately prescribed, they are not equal and their effects on the host may profoundly differ. In vitro determination of the attributes of probiotics should be a primary concern and be performed even before clinical studies are designed. In fact, knowledge on the biological properties a microbe possesses is crucial for selecting the most suitable bacteriotherapy for each individual. Herein, nine strains (Bacillus clausii NR, OC, SIN, T, Bacillus coagulans ATCC 7050, Bifidobacterium breve DSM 16604, Limosilactobacillus reuteri DSM 17938, Lacticaseibacillus rhamnosus ATCC 53103, and Saccharomyces boulardii CNCM I-745) declared to be contained in six commercial formulations were tested for their ability to tolerate simulated intestinal conditions, adhere to mucins, and produce β-galactosidase, antioxidant enzymes, riboflavin, and D-lactate. With the exception of B. breve, all microbes survived in simulated intestinal fluid. L. rhamnosus was unable to adhere to mucins and differences in mucin adhesion were evidenced for L. reuteri and S. boulardii depending on oxygen levels. All microorganisms produced antioxidant enzymes, but only B. clausii, B. coagulans, B. breve, and L. reuteri synthesize β-galactosidase. Riboflavin secretion was observed for Bacillus species and L. rhamnosus, while D-lactate production was restricted to L. reuteri and L. rhamnosus. Our findings indicate that the analyzed strains possess different in vitro biological properties, thus highlighting the usefulness of in vitro tests as prelude for clinical research.
Collapse
Affiliation(s)
- Diletta Mazzantini
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy ,grid.5395.a0000 0004 1757 3729Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Oliveira LSD, Wendt GW, Crestani APJ, Casaril KBPB. The use of probiotics and prebiotics can enable the ingestion of dairy products by lactose intolerant individuals. Clin Nutr 2022; 41:2644-2650. [PMID: 36308983 DOI: 10.1016/j.clnu.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To investigate, through a systematic review, the efficiency of the clinical application of probiotic and prebiotic supplements in reducing the symptoms of lactose intolerance (LI). METHODS This systematic review was conducted without limits for publication time and followed the PRISMA 2020 guidelines. The study was registered at the PROSPERO platform (CRD42022295691). The inclusion criteria were: studies addressing the issue of LI associated with the use of probiotics and prebiotics of any nature; studies performed with adults; randomized, placebo-controlled trials; and open access scientific articles, theses, or dissertations. The studies were retrieved from the following databases: SciELO, PubMed, LILACS, ScienceDirect, and gray literature, with no restrictions imposed regarding the years of publication of the investigations. To document the risk of bias, the RoB 2.0 tool was adopted, and to assess the certainty of the evidence, the GRADE tool was used. RESULTS A total of 830 studies were found; however, after applying the inclusion and exclusion criteria, only five studies remained. Two studies used the prebiotic GOS (RP-G28) for the treatment of LI and, together, included 462 subjects. The results of these studies showed improvement of LI symptoms during treatment phase and up to 30 days after cessation of GOS use (RP-G28). Three studies used the probiotics Bifidobacterium bifidum 900791, Limosilactobacillus reuteri DSM 17938 (Lactobacillus reuteri), and Lactobacillus acidophilus DDS-1 to evaluate their effects on LI and comprised 117 subjects. The results showed that B. bifidum 900791 did not significantly improve LI symptoms, and only Limosilactobacillus reuteri DSM 17938 showed significant improvement in symptoms and in reduction of expired hydrogen, while Lactobacillus acidophilus DDS-1 showed significant improvement for LI symptoms. The risk of bias for studies on probiotics suggested concerns in all studies, whereas the risk of bias was low in investigations evaluating prebiotics, with only one study classified as concerning. The certainty of evidence was high for the studies using the GOS (RP-G28) prebiotic and low for the probiotics. Pooling for meta-analysis could not be performed due to the lack of similar probiotic strains or lack of common outcomes. CONCLUSION In summary, the probiotics Limosilactobacillus reuteri DSM 17938 and Lactobacillus acidophilus DDS-1 showed the best results in the management of LI symptoms. The prebiotic GOS (RP-G28) appeared to be more efficient in reducing post-treatment symptoms. However, it is noteworthy that evidence regarding the use of probiotics for the management of LI is considerably scarce; as for prebiotics, data are limited. Studies adopting robust methodologies, especially regarding the complete reporting of data, are therefore warranted.
Collapse
Affiliation(s)
| | - Guilherme Welter Wendt
- Center for Health Sciences, Western Paraná State University, Francisco Beltrão, PR, Brazil.
| | | | | |
Collapse
|
36
|
Czyżak-Runowska G, Wójtowski JA, Łęska B, Bielińska-Nowak S, Pytlewski J, Antkowiak I, Stanisławski D. Lactose Content and Selected Quality Parameters of Sheep Milk Fermented Beverages during Storage. Animals (Basel) 2022; 12:ani12223105. [PMID: 36428333 PMCID: PMC9686720 DOI: 10.3390/ani12223105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of the research was to evaluate lactose content and rheological, physical, chemical, and organoleptic parameters during the storage of fermented beverages made from sheep's milk. The research was carried out on natural, probiotic, and Greek-type yogurts, as well as kefir. The products were made using the thermostat method from the milk of 42 East Frisian sheep in the middle lactation period, in duplicate. Lactose contents, active and titratable acidity, color by the L*a*b*C*h* system, and rheological parameters (hardness, consistency, consistency, and viscosity) were tested, and organoleptic assessments were carried out on the first, seventh, fourteenth, and twenty-first days of storing the drinks at 4 °C. Of all drinks, the highest reduction in lactose after 21 days of storage was found to occur in kefir (52% reduction) and, among the yogurts, in the Greek yogurt (41% reduction). The product with the lowest lactose content, regardless of the storage period, was kefir. This indicates that kefir is more suitable than yogurt for people with partial lactose intolerance. Effects of both inoculation type and beverage storage time were shown to exist for all parameters. It was also found that kefirs suffered deterioration in most rheological parameters and, in general organoleptic evaluation in the final period of storage. Based on our analysis, the optimal storage time for natural yogurts and sheep's milk kefirs at 4 °C was 21 and 14 days, respectively.
Collapse
Affiliation(s)
- Grażyna Czyżak-Runowska
- Department of Animal Breeding and Product Quality Assessment, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Science, ul. Słoneczna 1, Złotniki, 62–002 Suchy Las, Poland
| | - Jacek Antoni Wójtowski
- Department of Animal Breeding and Product Quality Assessment, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Science, ul. Słoneczna 1, Złotniki, 62–002 Suchy Las, Poland
- Correspondence:
| | - Bogusława Łęska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska 89b, 61–614 Poznań, Poland
| | - Sylwia Bielińska-Nowak
- Department of Animal Breeding and Product Quality Assessment, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Science, ul. Słoneczna 1, Złotniki, 62–002 Suchy Las, Poland
| | - Jarosław Pytlewski
- Department of Animal Breeding and Product Quality Assessment, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Science, ul. Słoneczna 1, Złotniki, 62–002 Suchy Las, Poland
| | - Ireneusz Antkowiak
- Department of Animal Breeding and Product Quality Assessment, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Science, ul. Słoneczna 1, Złotniki, 62–002 Suchy Las, Poland
| | - Daniel Stanisławski
- Computer Lab, Poznań University of Life Sciences, ul. Wołyńska 33, 60–637 Poznań, Poland
| |
Collapse
|
37
|
Upgrading the Functional Potential of Apple Pomace in Value-Added Ingredients with Probiotics. Antioxidants (Basel) 2022; 11:antiox11102028. [PMID: 36290751 PMCID: PMC9598324 DOI: 10.3390/antiox11102028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging customized designs to upgrade the functional potential of freeze-dried apple pomace was used in this study, in order to transform the industrial by-products into ingredients containing probiotics, for a better and healthier food composition. The freeze-dried apple pomace was analyzed for free and bounded phenolic contents, highlighting a significant level of caffeic acid (4978.00 ± 900.00 mg/100 g dry matter (DM)), trans-cinnamic acid (2144.20 ± 37.60 mg/100 g DM) and quercetin 3-β-D-glucoside (236.60 ± 3.12 mg/100 g DM). The pectin extraction yield was approximatively 24%, with a degree of esterification of 37.68 ± 1.74%, and a methoxyl content of 5.58 ± 0.88%. The freeze-dried apple pomace was added in a different ratio as a supplement to cultural medium of Loigolactobacillus bifermentans MIUG BL 16, suggesting a significant prebiotic effect (p < 0.05) at concentration between 1% and 2%. The apple pomace was used to design three freeze-dried ingredients containing probiotic, with a high level of polyphenolic content (6.38 ± 0.14 mg gallic acid equivalents/g DM) and antioxidant activity (42.25 ± 4.58 mMol Trolox/g DM) for the powder containing apple pomace ethanolic extract. When inulin was used as a prebiotic adjuvant, the obtained powder showed a 6 log/g DM viable cell count. The ingredients were added to fermented vegetable soy milk-based products, allowing us to improve the polyphenolic content, antioxidant activity and viable cell counts. The approach designed in this study allowed us to obtain ingredients suitable to add value to food, whereas premises to align with the current circular economy premises, by reintegrating the industrial waste as sources of high added value compounds, are also provided.
Collapse
|
38
|
You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C. The promotion mechanism of prebiotics for probiotics: A review. Front Nutr 2022; 9:1000517. [PMID: 36276830 PMCID: PMC9581195 DOI: 10.3389/fnut.2022.1000517] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Prebiotics and probiotics play a positive role in promoting human nutrition and health. Prebiotics are compounds that cannot be digested by the host, but can be used and fermented by probiotics, so as to promote the reproduction and metabolism of intestinal probiotics for the health of body. It has been confirmed that probiotics have clinical or health care functions in preventing or controlling intestinal, respiratory, and urogenital infections, allergic reaction, inflammatory bowel disease, irritable bowel syndrome and other aspects. However, there are few systematic summaries of these types, mechanisms of action and the promotion relationship between prebiotics and probiotic. Therefore, we summarized the various types of prebiotics and probiotics, their individual action mechanisms, and the mechanism of prebiotics promoting probiotics in the intestinal tract. It is hoped this review can provide new ideas for the application of prebiotics and probiotics in the future.
Collapse
Affiliation(s)
- Siyong You
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yuchen Ma
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Qiming Wu
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Chao Ding
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Caoxing Huang
| |
Collapse
|
39
|
Zhou K, Peng M, Deng N, Tan Z, Xiao N. Lactase bacteria in intestinal mucosa are associated with diarrhea caused by high-fat and high-protein diet. BMC Microbiol 2022; 22:226. [PMID: 36171559 PMCID: PMC9516839 DOI: 10.1186/s12866-022-02647-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Excessive fat and protein in food can cause diarrhea by disturbing the intestinal microecology. Lactase is a functional enzyme strongly associated with diarrhea, while lactase bacteria in the intestine are an important source of microbial lactase. Therefore, we reconnoiter the relationship between diarrhea induced by a high-fat and high-protein diet (HFHPD) and intestinal mucosal lactase bacteria from the perspective of functional genes. Result Operational Taxonomic Units (OTUs) were 23 and 31 in the normal group (NM) and model group (MD), respectively, and 11 of these were identical. The Chao1 and Observed specie indexes in the MD were higher than those in the NM, but this was not significant (P > 0.05). Meanwhile, the Principal coordinate analysis (PCoA) and Adonis test showed that the community structures of lactase bacteria in NM and MD were significantly different (P < 0.05). In taxonomic composition, lactase bacteria on the intestinal mucosa were sourced from Actinobacteria and Proteobacteria. Where Actinobacteria were higher in NM, and Proteobacteria were higher in MD. At the genus level, Bifidobacterium was the dominant genus (over 90% of the total). Compared to NM, the abundance of Bifidobacterium were lower in MD, while MD added sources for lactase bacteria of Rhizobium, Amycolatopsis, and Cedecea. Conclusions Our data demonstrate that HFHPD altered the community structure of lactase bacteria in the intestinal mucosa, decreased the abundance of the critical lactase bacteria, and promoted the occurrence of diarrhea.
Collapse
Affiliation(s)
- Kang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhoujin Tan
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China.,College of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
40
|
Rasinkangas P, Forssten SD, Marttinen M, Ibarra A, Bothe G, Junnila J, Uebelhack R, Donazzolo Y, Ouwehand AC. Bifidobacterium animalis subsp. lactis Bi-07 supports lactose digestion in vitro and in randomized, placebo- and lactase-controlled clinical trials. Am J Clin Nutr 2022; 116:1580-1594. [PMID: 36149331 PMCID: PMC9761758 DOI: 10.1093/ajcn/nqac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Probiotics may alleviate lactose maldigestion. OBJECTIVES The objective was to select a probiotic with high lactase activity and compare it with lactase and placebo in clinical trials. METHODS Bacterial cultures were screened for lactase activity in a model of the upper gastrointestinal (GI) tract. Bifidobacterium animalis subsp. lactis Bi-07 (Bi-07) counts were adjusted in subsequent experiments to correspond to 4500 Food Chemicals Codex (FCC) units of lactase, the amount in the European Food Safety Authority (EFSA)-approved health claim. Two crossover clinical trials, Booster Alpha and Booster Omega, were performed in participants with lactose intolerance, where 2 × 1012 CFUs Bi-07, 4662 FCC lactase, or placebo was consumed simultaneously with a lactose challenge, with 1-wk washouts between challenges. The trial designs were identical except for the source of lactose. Breath hydrogen concentration (BHC) was measured to assess the effect of the investigational products on lactose digestion, for which incremental area under the curve (iAUC) was the primary outcome. Peak BHC, cumulative BHC, and GI symptoms were secondary outcomes. RESULTS Bi-07 was superior to placebo in reducing BHC [iAUC, parts per million (ppm) ∙ h] in both trials (Booster Alpha: geometric least square mean ratio: 0.462; 95% CI: 0.249, 0.859; P = 0.016; Booster Omega: 0.227; 95% CI: 0.095, 0.543; P = 0.001). Lactase was superior to placebo in Booster Alpha (0.190; 95% CI: 0.102, 0.365; P < 0.001) but not Booster Omega (0.493; 95% CI: 0.210, 1.156; P = 0.102). Noninferiority of Bi-07 compared with lactase was observed in Booster Omega (0.460; 95% CI: 0.193, 1.096; P = 0.079; CI upper limit < 1.25 noninferiority margin). Odds of abdominal pain (compared with placebo: 0.32, P = 0.036) and flatulence (compared with placebo: 0.25, P = 0.007) were lower with lactase in Booster Alpha. Increased odds of nausea were seen with Bi-07 (compared with placebo: 4.0, P = 0.005) in Booster Omega. CONCLUSIONS Bi-07 has high lactase activity, and in 2 clinical trials, it supported lactose digestion in individuals with lactose intolerance.These trials were registered at clinicaltrials.gov as NCT03659747 (Booster Alpha) and NCT03814668 (Booster Omega).
Collapse
Affiliation(s)
| | - Sofia D Forssten
- Health & Biosciences, International Flavors & Fragrances Inc. (IFF), Kantvik, Finland
| | - Maija Marttinen
- Health & Biosciences, International Flavors & Fragrances Inc. (IFF), Kantvik, Finland
| | - Alvin Ibarra
- Health & Biosciences, International Flavors & Fragrances Inc. (IFF), Kantvik, Finland
| | | | | | | | | | - Arthur C Ouwehand
- Health & Biosciences, International Flavors & Fragrances Inc. (IFF), Kantvik, Finland
| |
Collapse
|
41
|
Niacin inhibits post-acidification of yogurt based on the mining of LDB_RS00370 biomarker gene. Food Res Int 2022; 162:111929. [DOI: 10.1016/j.foodres.2022.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022]
|
42
|
Afzaal M, Saeed F, Hussain M, Ismail Z, Siddeeg A, AL-Farga A, Aljobair MO. Influence of encapsulation on the survival of probiotics in food matrix under simulated stress conditions. Saudi J Biol Sci 2022; 29:103394. [PMID: 35942164 PMCID: PMC9356273 DOI: 10.1016/j.sjbs.2022.103394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Zoria Ismail
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Ammar AL-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Moneera O. Aljobair
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Corresponding author.
| |
Collapse
|
43
|
Zhou K, Deng N, Yi X, Cai Y, Peng M, Xiao N. Baohe pill decoction for diarrhea induced by high-fat and high-protein diet is associated with the structure of lactase-producing bacterial community. Front Cell Infect Microbiol 2022; 12:1004845. [PMID: 36093186 PMCID: PMC9458856 DOI: 10.3389/fcimb.2022.1004845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023] Open
Abstract
Background This study investigated the effects of Baohe pill decoction on the diversity and community composition of lactase-producing bacteria in the intestinal contents of mice with diarrhea induced by high-fat and high-protein diet, which provided an experimental basis for the study on the therapeutic mechanism of Baohe pill decoction. Materials and methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP), DisGeNET, UniProt, National Center for Biotechnology Information (NCBI), and GeneCards databases were used to collect the potential targets with active ingredients of Baohe pill decoction, diarrhea, and lactase, and then construct correlation networks. Fifteen Kunming mice were randomly divided into the control group (CN), natural recovery group (NR), and Baohe pill decoction treatment group (BHP), with five mice in each group. After constructing a mouse diarrhea model by HFHPD induction, BHP was gavaged with Baohe pill decoction, and the other groups were gavaged with distilled water of equal. The intestinal contents were collected from ileal to jejunal and analyzed using metagenomic sequencing to characterize the intestinal content of lactase-producing bacteria in mice. Results The core active ingredients related to diarrhea in Baohe pill decoction were quercetin, luteolin, kaempferol, forsythin, and wogonin. And there was no intersection between the potential targets with the active ingredient of Baohe pill, lactase, and diarrhea. After the intervention of Baohe pill decoction, the Observed species, Chao1 index, and Operational Taxonomic Units (OTU) number increased in BHP (P > 0.05), while the Pielous evenness and Shannon index decreased (P > 0.05). In Beta diversity, the community structure of the NR was significantly different from CN and BHP (P < 0.05), and the community structure of the CN was not significant difference from BHP (P > 0.05). Compared to NR, the relative abundance of Bifidobacterium and Amycolatopsis increased, while the relative abundance of Lachnoclostridium, Sinorhizobium, Cedecea, and Escherichia decreased in BHP, but none of the significant differences (P > 0.05). Conclusion The therapeutic effect of Baohe pill decoction on diarrhea induced by HFHPD does not appear to involve the body’s lactase gene targets directly, but is associated with the change of the construction of lactase-producing bacterial communities.
Collapse
Affiliation(s)
- Kang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Maijiao Peng, ; Nenqun Xiao,
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Maijiao Peng, ; Nenqun Xiao,
| |
Collapse
|
44
|
He J, Li W, Deng J, Lin Q, Bai J, Zhang L, Fang Y. An insight into the health beneficial of probiotics dairy products: a critical review. Crit Rev Food Sci Nutr 2022; 63:11290-11309. [PMID: 35730254 DOI: 10.1080/10408398.2022.2090493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotic dairy products satisfy people's pursuit of health, and are widely favored because of their easy absorption, high nutritional value, and various health benefits. However, its effectiveness and safety are still controversial. This proposal aims to analyze the effect of probiotics on the quality characteristics of dairy products, clarify a series of physiological functions of probiotic dairy products and critically evaluate the effectiveness and safety of probiotic dairy products. Also, dairy products containing inactivated microorganisms were compared with probiotic products. The addition of probiotics enables dairy products to obtain unique quality characteristics, and probiotic dairy products have better health-promoting effects. This review will promote the further development of probiotic dairy products, provide directions for the research and development of probiotic-related products, and help guide the general public to choose and purchase probiotic fermentation products.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Jie Bai
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| |
Collapse
|
45
|
Functional Foods, Nutraceuticals and Probiotics: A Focus on Human Health. Microorganisms 2022; 10:microorganisms10051065. [PMID: 35630507 PMCID: PMC9143759 DOI: 10.3390/microorganisms10051065] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Functional foods are classified as traditional or staple foods that provide an essential nutritional level and share potentially positive effects on host health, including the reduction of disease by optimizing the immune system’s ability to prevent and control infections by pathogens, as well as pathologies that cause functional alterations in the host. This chapter reviews the most recent research and advances in this area and discusses some perspectives on what the future holds in this area.
Collapse
|
46
|
Escribano BM, Muñoz-Jurado A, Luque E, Conde C, Feijóo M, LaTorre M, Valdelvira ME, Buendía P, Giraldo AI, Caballero-Villarraso J, Santamaría A, Agüera E, Túnez I. Lactose and Casein Cause Changes on Biomarkers of Oxidative Damage and Dysbiosis in an Experimental Model of Multiple Sclerosis. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:680-692. [PMID: 34875994 DOI: 10.2174/1871527320666211207101113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Experimental Autoimmune Encephalomyelitis (EAE) in rats closely reproduces Multiple Sclerosis (MS), a disease characterized by neuroinflammation and oxidative stress that also appears to extend to other organs and their compartments. The origin of MS is a matter for discussion, but it would seem that altering certain bacterial populations present in the gut may lead to a proinflammatory condition due to the bacterial Lipopolysaccharides (LPS) in the so-called brain-gut axis. The casein and lactose in milk confer anti-inflammatory properties and immunomodulatory effects. The objectives of this study were to evaluate the effects of administration of casein and lactose on the oxidative damage and the clinical status caused by EAE and to verify whether both casein and lactose had any effect on the LPS and its transport protein -LBP-. METHODS Twenty male Dark Agouti rats were divided into control rats (control), EAE rats, and EAE rats, to which casein and lactose, EAE+casein, and EAE+lactose, respectively, were administered. Fifty-one days after casein and lactose administration, the rats were sacrificed, and different organs were studied (brain, spinal cord, blood, heart, liver, kidney, small, and large intestine). In the latter, products derived from oxidative stress were studied (lipid peroxides and carbonylated proteins) as well as the glutathione redox system, various inflammation factors (total nitrite, Nuclear Factor-kappa B p65, the Rat Tumour Necrosis Factor-α), and the LPS and LBP values. RESULTS AND CONCLUSION Casein and lactose administration improved the clinical aspect of the disease at the same time as reducing inflammation and oxidative stress, exerting its action on the glutathione redox system, or increasing GPx levels.
Collapse
Affiliation(s)
- Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain.,Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
| | - Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Evelio Luque
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Cristina Conde
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Montse Feijóo
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Medical and Surgery Sciences, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Manuel LaTorre
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Mathematics, Campus of Rabanales, University of Cordoba, Cordoba, Spain
| | - Manuel E Valdelvira
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Paula Buendía
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Canvax Biotech S.L., Cordoba, Spain
| | - Ana I Giraldo
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Clinical Analysis Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Abel Santamaría
- Laboratory of Exciting Amino Acids, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM) Ministery of Economy, Industry of Competitiveness, 28046 Madrid, Spain
| |
Collapse
|
47
|
Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022; 14:nu14091918. [PMID: 35565885 PMCID: PMC9105997 DOI: 10.3390/nu14091918] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting a mutual association between nutrition and female fertility. Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak correlations are often reported, probably because of the individual variations in genome, proteome, metabolome, and microbiome and the extent of exposure to different environmental conditions. In this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile patients than applying a generic nutritional approach. In this review, we report on new insights into the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic, and microbiomic aspects that should be investigated to achieve effective personalized nutritional interventions. Specifically, we will focus on the management of low-grade chronic inflammation, which is associated with several infertility-related diseases.
Collapse
|
48
|
Leszkowicz J, Plata-Nazar K, Szlagatys-Sidorkiewicz A. Can Lactose Intolerance Be a Cause of Constipation? A Narrative Review. Nutrients 2022; 14:1785. [PMID: 35565753 PMCID: PMC9105309 DOI: 10.3390/nu14091785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Lactose intolerance and constipation are common in children and impact everyday life, not only for patients but also their families. Both conditions can be comorbid with other diseases or form a part of their clinical presentation, but constipation is not usually associated with lactose intolerance. The typical symptoms of lactose intolerance include abdominal pain, bloating, flatus, diarrhoea, borborygmi, and less frequently nausea and vomiting. In approximately 30% of cases, constipation can be a symptom of lactose intolerance. Constipation is characterized by infrequent bowel movements, hard and/or large stools, painful defecation, and faecal incontinence, and is often accompanied by abdominal pain. This paper provides a narrative review on lactose intolerance, its epidemiology, pathogenesis, the correlation between lactose intolerance and constipation in children, and potential mechanisms of such association.
Collapse
Affiliation(s)
- Julia Leszkowicz
- Department of Paediatrics, Gastroenterology, Allergology and Paediatric Nutrition, Faculty of Medicine, Medical University of Gdańsk, Nowe Ogrody 1-6, 80-803 Gdańsk, Poland; (K.P.-N.); (A.S.-S.)
| | | | | |
Collapse
|
49
|
Mekky AF, Hassanein WA, Reda FM, Elsayed HM. Anti-biofilm potential of Lactobacillus plantarum Y3 culture and its cell-free supernatant against multidrug-resistant uropathogen Escherichia coli U12. Saudi J Biol Sci 2022; 29:2989-2997. [PMID: 35531251 PMCID: PMC9073023 DOI: 10.1016/j.sjbs.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Uropathogens develop biofilms on urinary catheters, resulting in persistent and chronic infections that are associated with resistance to antimicrobial therapy. Therefore, the current study was performed to control biofilm-associated urinary tract infections through assaying the anti-biofilm ability of lactic acid bacteria (LAB) against multidrug-resistant (MDR) uropathogens. Twenty LAB were obtained from pickles and fermented dairy products, and screened for their anti-biofilm and antimicrobial effects against MDR Escherichia coli U12 (ECU12). Lactobacillus plantarum Y3 (LPY3) (MT498405), showed the highest inhibitory effect and biofilm production. Pre-coating of a microtitre plate with LPY3 culture was more potent than co-incubation. Pre-coating with LPY3 culture generated a higher anti-biofilm effect with an adherence of 14.5% than cell free supernatant (CFS) (31.2%). Anti-biofilm effect of CFS was heat stable up to 100 °C with higher effect at pH 4-6. Pre-coating urinary catheter with LPY3 culture reduced the CFU/cm2 of ECU12 attached to the catheter for up to seven days. Meanwhile, CFS reduced the ECU12 CFU/cm2 for up to four days. Scanning electron microscope confirmed the reduction of ECU12 adherence to catheters after treatment with CFS. Therefore, Lactobacillus plantarum can be applied in medical devices as prophylactic agent and as a natural biointervention to treat urinary tract infections.
Collapse
Key Words
- Adherence
- BHI, brain heart infusion
- Biofilms
- CAUTI, catheter associated urinary tract infection
- CFU, colony forming unit
- CRA, congo red agar
- CV, crystal violet
- LAB, Lactic acid bacteria
- LPY3, Lactobacillus plantarum Y3
- Lactic acid bacteria
- MRS, De Man, Rogosa, and Sharpe
- PBS, phosphate-buffered saline
- SEM, scanning electron microscope
Collapse
Affiliation(s)
- Asmaa F. Mekky
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Wesam A. Hassanein
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fifi M. Reda
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Hanan M. Elsayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
50
|
Sabahi S, Homayouni Rad A, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A. Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr 2022; 63:8375-8402. [PMID: 35348016 DOI: 10.1080/10408398.2022.2056727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food is the essential need of human life and has nutrients that support growth and health. Gastrointestinal tract microbiota involves valuable microorganisms that develop therapeutic effects and are characterized as probiotics. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. The probiotics must maintain their survival against inappropriate lethal conditions of the processing, storage, distribution, preparation, and digestion system so that they can exhibit their most health effects. Conversely, probiotic metabolites (postbiotics) have successfully overcome these unfavorable conditions and may be an appropriate alternative to probiotics. Due to their specific chemical structure, safe profile, long shelf-life, and the fact that they contain various signaling molecules, postbiotics may have anti-inflammatory, immunomodulatory, antihypertensive properties, inhibiting abnormal cell proliferation and antioxidative activities. Consequently, present scientific literature approves that postbiotics can mimic the fundamental and clinical role of probiotics, and due to their unique characteristics, they can be applied in an oral delivery system (pharmaceutical/functional foods), as a preharvest food safety hurdle, to promote the shelf-life of food products and develop novel functional foods or/and for developing health benefits, and therapeutic aims. This review addresses the latest postbiotic applications with regard to pharmaceutical formulations and commercial food-based products. Potential postbiotic applications in the promotion of host health status, prevention of disease, and complementary treatment are also reviewed.
Collapse
Affiliation(s)
- Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Sangtarash
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Karimi
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|