1
|
Zhang D, Wang Q, Li D, Chen S, Chen J, Zhu X, Bai F. Gut microbiome composition and metabolic activity in metabolic-associated fatty liver disease. Virulence 2025; 16:2482158. [PMID: 40122128 PMCID: PMC11959907 DOI: 10.1080/21505594.2025.2482158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/24/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Metabolic Associated Fatty Liver Disease (MAFLD) impacts approximately 25% of the global population. Between April 2023 and July 2023, 60 patients with MAFLD, along with 60 age, ethnicity, and sex-matched healthy controls (HCs), were enrolled from the Inner Mongolia Autonomous Region, China. Analysis of gut microbiota composition and plasma metabolic profiles was conducted using metagenome sequencing and LC-MS. LEfSe analysis identified five pivotal species: Eubacterium rectale, Dialister invisus, Pseudoruminococcus massiliensis, GGB3278 SGB4328, and Ruminococcaceae bacteria. In subgroup analysis, Eubacterium rectale tended to increase by more than 2 times and more than double in the non-obese MAFLD group, and MAFLD with moderate hepatic steatosis (HS), respectively. Plasma samples identified 172 metabolites mainly composed of fatty acid metabolites such as propionic acid and butyric acid analogues. Ruminococcaceae bacteria have a strong positive correlation with β-alanine, uric acid, and L-valine. Pseudoruminococcus massiliensis has a strong positive correlation with β-alanine. Combinations of phenomics and metabolomics yielded the highest accuracy (AUC = 0.97) in the MAFLD diagnosis. Combinations of phenomics and metagenomics yielded the highest accuracy (AUC = 0.94) in the prediction of the MAFLD HS progress. Increases in Eubacterium rectale and decreases in Dialister invisus seem to be indicative of MAFLD patients. Eubacterium rectale may predict HS degree of MAFLD and play an important role in the development of non-obese MAFLD. Eubacterium rectale can generate more propionic acid and butyric acid analogues to absorb energy and increase lipid synthesis and ultimately cause MAFLD.
Collapse
Affiliation(s)
- Daya Zhang
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Qi Wang
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Da Li
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Shiju Chen
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Jinrun Chen
- Department of Gastroenterology, Otog Front Banner People 's Hospital, Otog Front Banner, China
| | - Xuli Zhu
- Department of Gastroenterology, Otog Front Banner People 's Hospital, Otog Front Banner, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Gastroenterology, The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China
| |
Collapse
|
2
|
Liang W, Wu H, Long Q, Lin H, Lv X, Ma W, Wu T, Li A, Zheng Q, Guo J, Chen X, Guo J, Sun D. LKB1 activated by NaB inhibits the IL-4/STAT6 axis and ameliorates renal fibrosis through the suppression of M2 macrophage polarization. Life Sci 2025; 370:123564. [PMID: 40097066 DOI: 10.1016/j.lfs.2025.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Renal fibrosis is a critical pathological characteristic of chronic kidney disease, and current antifibrotic therapies has limited efficacy. Sodium butyrate (NaB) has been shown to be highly effective in mitigating bleomycin-induced pulmonary fibrosis; however, its specific impact on renal fibrosis and the underlying mechanisms remain unclear. This study aims to elucidate the role and mechanism of NaB in renal fibrosis by using a mouse model of renal fibrosis induced through Unilateral Ureteral Obstruction (UUO) and folic acid (FA) administration. RESULTS NaB significantly decreased the distribution of collagen fibers in renal tissues and mitigated fibrosis in a dose-dependent manner. Further analysis indicated that NaB inhibited M2 macrophage polarization in the renal tissues of UUO model mice by blocking the phosphorylation of STAT6, hence reducing renal fibrosis. Additionally, in vitro experiments demonstrated that NaB inhibited fibroblast activation induced by M2 macrophages. Mechanistic studies revealed that NaB attenuates fibroblast activation and M2 macrophage polarization by upregulating LKB1 and inhibiting the activation of the STAT6 signaling pathway. CONCLUSION NaB may exert its effects by inhibiting the activation of the IL-4/STAT6 signaling pathway through the upregulation of LKB1, which suppress the polarization of M2 macrophages and consequently reduce renal fibrosis. These findings establish a theoretical foundation for NaB as a novel drug candidate for renal fibrosis and indicate its potential applicability in clinical treatments for this condition.
Collapse
Affiliation(s)
- Weifei Liang
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510180 Guangzhou, Guangdong, China
| | - Haoyu Wu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology Application, Wenzhou 325809, China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Qishan Long
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Hong Lin
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, Guangdong, China
| | - Xiaoyu Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Wen Ma
- Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Tao Wu
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Ai Li
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510000, China
| | - Qingyou Zheng
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Xiangqiu Chen
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| | - Jing Guo
- Center of Oncology, Heyou Hospital, Shunde District, Foshan City 528306, Address:No. 1 of Heren Road, Junlan Community, Beijiao Town, Shunde District, Foshan City, Guangdong Province, China.
| | - Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| |
Collapse
|
3
|
Nehra C, Harshini V, Shukla N, Chavda P, Bhure M, Savaliya K, Patil S, Shah T, Pandit R, Patil NV, Patel AK, Kachhawaha S, Kumawat RN, Joshi M, Joshi CG. Ruminal microbial responses to Moringa oleifera feed in lactating goats (Capra hircus): A metagenomic exploration. N Biotechnol 2025; 86:87-96. [PMID: 39864798 DOI: 10.1016/j.nbt.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/01/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
The purpose of the current study was to explore the effects of Moringa oleifera feed on the taxonomy and function of the rumen microbial community, and further to evaluate its impact on milk yield and body weight in lactating goats. Nineteen goats were divided into moringa leaf diet (ML; n = 10) and masoor straw (MS; n = 9) groups. For each group fortnight milk yield and body weight was recorded. Rumen solid and liquid fraction samples were processed for metagenomic shotgun sequencing and further analysed. The pairwise comparison between the two groups showed a significant increase (p-value- <0.01) in milk yield of the ML goats after the 4th fortnight interval onwards. The metagenomic analysis revealed Bacteroidetes and Firmicutes are the most abundant phyla, with increased Bacteroidetes in response to the moringa diet. The ML group exhibited a reduction in microbial diversity, with an increase in Prevetolla and Bacteroidales populations which are positively associated with carbohydrate, protein, and VFA metabolism, and an increased proportions of Treponema sp., Ruminococcus sp., Ruminobacter amylophilus, and Aeromonas, indicating improved cellulose and nitrogen metabolism. KEGG analysis revealed significant changes in microbial gene pool and metabolic pathways, particularly in carbohydrate metabolism, propanoate metabolism, and fatty acid synthesis genes. These microbial and functional shifts are correlated with improvements in milk yield, growth rates, and potentially reduced methane emissions.This study highlighted the potential benefits of feeding moringa in the animal production system. However, furthermore experimental evidence including genetic and environmental effects is needed for a comprehensive understanding of moringa feed's impact on goat health and productivity.
Collapse
Affiliation(s)
- Chitra Nehra
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Vemula Harshini
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Nitin Shukla
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Minal Bhure
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Kaksha Savaliya
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Sonal Patil
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Tejas Shah
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Niteen V Patil
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342005, India.
| | - Ashutosh K Patel
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342005, India.
| | - Subhash Kachhawaha
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342005, India.
| | - Ram N Kumawat
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342005, India.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| |
Collapse
|
4
|
Chen S, Ling B, Liu X, Liu L, Feng J, Zhang J, Yang Y, Wu D, Guo Q, Liu Y. Structural characterization of β-glucan in Hericium erinaceus pretreated by steam explosion and its effects on human gut microbiota in vitro. Food Chem 2025; 482:144156. [PMID: 40203697 DOI: 10.1016/j.foodchem.2025.144156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
To investigate the impact of steam explosion on the structure of β-glucan and its regulation human gut microbiota (GM), two polysaccharides were prepared from Hericium erinaceus fruit bodies treated by steam explosion and conventional crushing, respectively. Structural analysis indicated that both two fractions were identified as β-(1 → 3)-glucan with different branching ratios attached at O-6 position. Compared with W20E obtained by conventional crushing, Q5E obtained by steam explosion possessed lower molecular weight (Mw, 2.158 × 106 g/mol) and lower branching ratio of 2:7, which influenced its effects on the diversity and metabolites of GM. W20E (Mw, 6.944 × 106 g/mol, branching ratio of 1:3) could promote n-butyrate production by increasing the abundance of Prevotellaceae_NK3B31_group, Lachnospira and Faecalibacterium. Q5E tended to improve the abundance of Lactococcus, as well as the total production of short chain fatty acids, especially for acetic and propionic acids. These findings provide reference for further development of β-glucan in healthy food.
Collapse
Affiliation(s)
- Shuang Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bingqing Ling
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Xiaoyu Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China.
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China.
| |
Collapse
|
5
|
He H, Liu F, Yang L, Fan H, Wan H. Structure changes of starch complexed with green tea catechin or lemon peel caffeic acid under thermomechanical-assist low moisture and their prebiotics during in vitro digestion and fermentation. Int J Biol Macromol 2025; 308:142676. [PMID: 40164251 DOI: 10.1016/j.ijbiomac.2025.142676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/02/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
This paper highlighted the structural changes of rice starch complexed with green tea catechin and lemon peel caffeic acid under thermomechanical-assist low moisture, and their prebiotics during in vitro digestibility and fermentation were further explained. Extruded starch with caffeic acid, characterized by enhanced short-range order, a distinct fractal structure, and a V-amylose helical arrangement, exhibited slower glucose release due to V-type inclusion crystalline structures and strong hydrogen bondings. Additionally, extruded starch with catechin or caffeic acid changed the composition of gut microbiota by increasing the proliferation of good bacteria and reducing pathogenic microorganisms, which led to a greater synthesis of short-chain fatty acids. According to a PICRUSt2 analysis, the extruded starch with caffeic acid may trigger metabolic alterations via altering the gut microbiota and increasing bile acid metabolism. Thus, extruded starch with caffeic acid demonstrates significant potential as a prebiotic for developing nutritionally tailored starch-based foods.
Collapse
Affiliation(s)
- Hai He
- Heinz Mehlhorn Academician Workstation, Key Laboratory of Tropical Translational Medicine of Ministry of Education, International Collaborative Research Center for the Development and Utilization of Tropical Food for Special Medical Purpose, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China; Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, Guangdong Province, China.
| | - Fanrui Liu
- Heinz Mehlhorn Academician Workstation, Key Laboratory of Tropical Translational Medicine of Ministry of Education, International Collaborative Research Center for the Development and Utilization of Tropical Food for Special Medical Purpose, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Lei Yang
- Department of Dermatology, Characteristic Medical Centre of PLA Rocket Force, Beijing 100001, China.
| | - Honghao Fan
- NJUST-YX Artificial Intelligence Biomedical Technology Innovation Center, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Hao Wan
- Department of Medical Laboratory, Qianjiang Central Hospital, Qianjiang 433100, Hubei Province, China
| |
Collapse
|
6
|
Cui Y, Cen Q, Feng J, Wei J, Wang L, Chang C, Pang R, Wang J, Zhang A. Sodium butyrate alleviates spinal cord injury via inhibition of NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Metab Brain Dis 2025; 40:157. [PMID: 40126723 PMCID: PMC11933225 DOI: 10.1007/s11011-025-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
NOD-like receptor protein 3 (NLRP3)/cysteinyl aspartate-specific proteinase 1 (Caspase-1)/gasdermin D (GSDMD)-mediated pyroptosis is linked to spinal cord injury (SCI) pathogenesis. The levels of short-chain fatty acids (SCFAs), especially butyric acid, are significantly altered after SCI. Sodium butyrate (NaB) has anti-inflammatory effects on SCI; however, its effect on pyroptosis is unknown. The aim of this study was to determine the role of NaB in SCI functional recovery and its effect on NLRP3/Caspase-1/GSDMD-mediated pyroptosis. SCI model rats were established using aneurysm clips. After SCI, rats were administered NaB (300 mg/kg) via gavage. SCFAs in faeces were measured using gas chromatography-mass spectrometry. Motor function recovery was assessed using cylinder rearing and grooming tests. Histopathological analysis was performed using haematoxylin-eosin staining, transmission electron microscopy, and terminal deoxynucleotidyl transferase dUTP nick-end labelling. The expression of proteins associated with pyroptosis signalling pathways was analysed using enzyme-linked immunosorbent assay, western blotting, and immunohistochemistry. SCFAs levels, particularly butyric acid, significantly decreased after SCI. NaB treatment promoted forelimb motor function recovery and attenuated pathological SCI. NaB also decreased spinal pro-inflammatory factors (interleukin-18 and interleukin-1β) and downregulated pyroptosis-related proteins, including NLRP3, apoptosis-associated speck-like protein, Caspase-1, and GSDMD. NaB inhibits NLRP3/Caspase-1/GSDMD-mediated neuronal pyroptosis and inflammation, exerting protective and therapeutic effects in SCI, suggesting NaB as an effective SCI treatment.
Collapse
Affiliation(s)
- Yanru Cui
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qiuyu Cen
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Jing Feng
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Juanfang Wei
- College of Physical Education and Health, Geely University of China, Chengdu, China
| | - Linjie Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Cong Chang
- Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China.
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China.
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Luo Z, Ou H, Tan Z, Jiao J. Rumen-protected methionine and lysine supplementation to the low protein diet improves animal growth through modulating colonic microbiome in lambs. J Anim Sci Biotechnol 2025; 16:46. [PMID: 40102971 PMCID: PMC11917156 DOI: 10.1186/s40104-025-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Dietary protein level and amino acid (AA) balance are crucial determinants of animal health and productivity. Supplementing rumen-protected AAs in low-protein diets was considered as an efficient strategy to improve the growth performance of ruminants. The colon serves as a crucial conduit for nutrient metabolism during rumen-protected methionine (RPMet) and rumen-protected lysine (RPLys) supplementation, however, it has been challenging to clarify which specific microbiota and their metabolites play a pivotal role in this process. Here, we applied metagenomic and metabolomic approaches to compare the characteristic microbiome and metabolic strategies in the colon of lambs fed a control diet (CON), a low-protein diet (LP) or a LP diet supplemented with RPMet and RPLys (LR). RESULTS The LP treatment decreased the average daily weight gain (ADG) in lambs, while the LR treatment tended to elicit a remission in ADG. The butyrate molar concentration was greater (P < 0.05), while acetate molar concentration (P < 0.05) was lower for lambs fed the LP and LR diets compared to those fed the CON diet. Moreover, the LP treatment remarkably decreased total AA concentration (P < 0.05), while LR treatment showed an improvement in the concentrations of methionine, lysine, leucine, glutamate, and tryptophan. Metagenomic insights proved that the microbial metabolic potentials referring to biosynthesis of volatile fatty acids (VFAs) and AAs in the colon were remarkably altered by three dietary treatments. Metagenomic binning identified distinct microbial markers for the CON group (Alistipes spp., Phocaeicola spp., and Ruminococcus spp.), LP group (Fibrobacter spp., Prevotella spp., Ruminococcus spp., and Escherichia coli), and LR group (Akkermansia muciniphila and RUG099 spp.). CONCLUSIONS Our findings suggest that RPMet and RPLys supplementation to the low-protein diet could enhance the microbial biosynthesis of butyrate and amino acids, enriche the beneficial bacteria in the colon, and thereby improve the growth performance of lambs.
Collapse
Affiliation(s)
- Zhibin Luo
- State Key Laboratory of Forage Breeding-by-Design and Utilization, CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Huimin Ou
- State Key Laboratory of Forage Breeding-by-Design and Utilization, CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Zhiliang Tan
- State Key Laboratory of Forage Breeding-by-Design and Utilization, CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Jinzhen Jiao
- State Key Laboratory of Forage Breeding-by-Design and Utilization, CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
| |
Collapse
|
8
|
Bai X, Gu Y, Li D, Li M. Gut Metagenome Reveals the Microbiome Signatures in Tibetan and Black Pigs. Animals (Basel) 2025; 15:753. [PMID: 40076036 PMCID: PMC11899681 DOI: 10.3390/ani15050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The harsh conditions of the Qinghai-Tibet Plateau pose significant physiological challenges to local fauna, often resulting in gastrointestinal disorders. However, Tibetan pigs have exhibited remarkable adaptability to the high-altitude stress of the Tibetan Plateau, a phenomenon that remains not fully understood in terms of their gastrointestinal microbiota. This study collected 57 gastrointestinal tract samples from Tibetan pigs (n = 6) and plain black pigs (n = 6) with comparable genetic backgrounds. Samples from the stomach, jejunum, cecum, colon, and rectum, underwent comprehensive metagenomic analysis to elucidate the gut microbiota-related adaptive mechanisms in Tibetan pigs to the extreme high-altitude environment. A predominance of Pseudomonadota was observed within gut microbiome of Tibetan pigs. Significant differences in the microbial composition were also identified across the tested gastrointestinal segments, with 18 genera and 141 species exhibiting differential abundance. Genera such as Bifidobacterium, Megasphaera, Fusobacterium, and Mitsuokella were significantly more abundant in Tibetan pigs than in their lowland counterparts, suggesting specialized adaptations. Network analysis found greater complexity and modularity in the microbiota of Tibetan pigs compared to black pigs, indicating enhanced ecological stability and adaptability. Functional analysis revealed that the Tibetan pig microbiota was particularly enriched with bacterial species involved in metabolic pathways for propionate and butyrate, key short-chain fatty acids that support energy provision under low-oxygen conditions. The enzymatic profiles of Tibetan pigs, characterized by elevated levels of 4-hydroxybutyrate dehydrogenase and glutaconyl-CoA decarboxylase, highlighted a robust fatty acid metabolism and enhanced tricarboxylic acid cycle activity. In contrast, the gut microbiome of plain black pigs showed a reliance on the succinate pathway, with a reduced butyrate metabolism and lower metabolic flexibility. Taken together, these results demonstrate the crucial role of the gastrointestinal microbiota in the adaptation of Tibetan pigs to high-altitude environments by optimizing carbohydrate metabolism and short-chain fatty acid production for efficient energy utilization. This study not only highlights the metabolic benefits conferred by the gut microbiota of Tibetan pigs in extreme environments, but also advances our understanding of the adaptive gastrointestinal mechanisms in plateau-dwelling animals. These insights lay the foundation for exploring metabolic interventions to support health and performance in high-altitude conditions.
Collapse
Affiliation(s)
- Xue Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yiren Gu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China;
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
9
|
Cui B, Luo H, He B, Liu X, Lv D, Zhang X, Su K, Zheng S, Lu J, Wang C, Yang Y, Zhao Z, Liu X, Wang X, Zhao Y, Nie X, Jiang Y, Zhang Z, Liu C, Chen X, Cai A, Lv Z, Liu Z, An F, Zhang Y, Yan Q, Kelley KW, Xu G, Xu L, Liu Q, Peng F. Gut dysbiosis conveys psychological stress to activate LRP5/β-catenin pathway promoting cancer stemness. Signal Transduct Target Ther 2025; 10:79. [PMID: 40038255 DOI: 10.1038/s41392-025-02159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Psychological stress causes gut microbial dysbiosis and cancer progression, yet how gut microbiota determines psychological stress-induced tumor development remains unclear. Here we showed that psychological stress promotes breast tumor growth and cancer stemness, an outcome that depends on gut microbiota in germ-free and antibiotic-treated mice. Metagenomic and metabolomic analyses revealed that psychological stress markedly alters the composition and abundance of gut microbiota, especially Akkermansia muciniphila (A. muciniphila), and decreases short-chain fatty acid butyrate. Supplement of active A. muciniphila, butyrate or a butyrate-producing high fiber diet dramatically reversed the oncogenic property and anxiety-like behavior of psychological stress in a murine spontaneous tumor model or an orthotopic tumor model. Mechanistically, RNA sequencing analysis screened out that butyrate decreases LRP5 expression to block the activation of Wnt/β-catenin signaling pathway, dampening breast cancer stemness. Moreover, butyrate as a HDAC inhibitor elevated histone H3K9 acetylation level to transcriptionally activate ZFP36, which further accelerates LRP5 mRNA decay by binding adenine uridine-rich (AU-rich) elements of LRP5 transcript. Clinically, fecal A. muciniphila and serum butyrate were inversely correlated with tumoral LRP5/β-catenin expression, poor prognosis and negative mood in breast cancer patients. Altogether, our findings uncover a microbiota-dependent mechanism of psychological stress-triggered cancer stemness, and provide both clinical biomarkers and potential therapeutic avenues for cancer patients undergoing psychological stress.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xinyu Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Sijia Zheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuqing Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhuoran Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xianxian Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingrui Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoshan Nie
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuanyuan Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ziyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Congcong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xinyi Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Anqi Cai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhumeng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhihang Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunkun Zhang
- Department of Pathology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Guowang Xu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Lingzhi Xu
- Department of Oncology, the Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
10
|
Zhang X, Chen J, Zhang S, Wei B, Han Y, Zhao Z. Insight into the Potential of Somatostatin Vaccination with Goats as a Model: From a Perspective of the Gastrointestinal Microbiota. Animals (Basel) 2025; 15:728. [PMID: 40076011 PMCID: PMC11899232 DOI: 10.3390/ani15050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Deciphering the gastrointestinal microbial response to oral SS DNA vaccines with different doses is helpful for identifying the mechanism for effective utilization of the vaccine for improving animal production. Here, we conduct a comparative study with different doses of vaccine (control: empty plasmid; low dose: 1 × 107 CFU vaccine; high dose: 1 × 1012 CFU vaccine) using goat as a case to investigate the potential of somatostatin vaccination from the entire gastrointestinal microbiota perspective. Our results show that body weight gain and slaughter rate are greater in the L_SS group than in the C_SS group. Compared with the C_SS group, the GH concentration is reduced, while the SS concentration is elevated in the cecum of L_SS goats. Moreover, the SCFAs concentration is elevated in the L_SS goats, the acetate molar proportion is lower in the rumen, the proportion of the acetate is decreased, and propionate is increased in the cecum of L_SS goats. Our data indicate that the low-dose somatostatin vaccine possesses a more efficient improvement in the productivity of goats, emphasizing that the dosage should be considered to reach its optimal effect on the host. Moreover, we find that different doses of the SS vaccination select distinct microbial communities in the gastrointestinal tract. Beta diversity analysis shows a significant interaction. Microorganisms capable of converting nutrients, including Ruminococcacease, Butyrivibrio, Akkermansia, and Lachnospiraceae are enriched, altering the gastrointestinal fermentation response to SS DNA vaccination of ruminants. Moreover, the correlation analysis results revealing these biomarkers have a close association with the phenotypes of productivity. These results imply that somatostatin immunoneutralization might directly alter the gastrointestinal tract commensal bacterial structure, improving gastrointestinal homeostasis, and, thus, modifying the fermentability and effected hormone level to improve the productivity of goats. Our study extends the understanding of the somatostatin vaccine regulation of ruminants' growth through the entire gastrointestinal microbial perspective.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongquan Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.Z.)
| |
Collapse
|
11
|
Wu Y, Sun J, Xie W, Xue S, Li X, Guo J, Shan J, Peng G, Zheng Y. Immunomodulation of Glycyrrhiza Polysaccharides In Vivo Based on Microbiome and Metabolomics Approaches. Foods 2025; 14:874. [PMID: 40077577 PMCID: PMC11898905 DOI: 10.3390/foods14050874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Glycyrrhiza uralensis Fisch. is a medicinal herb that can be added to food to provide therapeutic effects and reduce the burden of medications. Herein, the immunomodulatory effects of Glycyrrhiza polysaccharides (GPs) were verified and illustrated by intervening immunocompromised rats treated with different doses of GPs, which were reflected for adjusting the composition and structure of the intestinal microbiota and altering the metabolic profile. The immunomodulatory effects of GPs were exerted by regulating the intestinal microenvironment. In particular, GPs could promote the growth of probiotic bacteria Allobaculum, norank__o_Clostridia_UCG-014, Dubosiella, and g__norank_o___RF39 and curb the growth of harmful bacteria Enterococcus. The results showed that GPs had a prebiotic effect, which contributed to improving the intestinal environment and maintaining intestinal health. In addition, the content of beneficial differential metabolites was up-regulated, especially short-chain fatty acids, with alanine, aspartate, and glutamate metabolism; arginine biosynthesis; glyoxylate and dicarboxylate metabolism being the most enriched pathways. These metabolic pathways imply the metabolic process of GPs, and the metabolic pathways and differential effector metabolites of it are focused. Overall, the purpose of this article lies in providing support for the application of GPs for regulating immune function.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Sun
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xie
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Simin Xue
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinli Li
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Guoping Peng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Yunfeng Zheng
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China; (Y.W.); (J.S.); (W.X.); (S.X.); (X.L.); (G.P.)
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 211100, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| |
Collapse
|
12
|
Chen W, Yan X, Song X, Yang Y, Wang X, Xu G, Wang T, Liu Y, Fan Z, Song G. Effects of Fzd6 on intestinal flora and neuroinflammation in lipopolysaccharide-induced depression-like mice. J Affect Disord 2025; 372:160-172. [PMID: 39643213 DOI: 10.1016/j.jad.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The gut microbiome is critical for the pathophysiology of depression, and inflammation is one of the factors contributing to depression. Fzd6 has been implicated in depression. This study aimed to elucidate the effects of the Fzd6 mutation on gut microbiota structure and the possible regulatory mechanisms involved in depression-associated neuroinflammation. METHODS Wild-type (Fzd6WT) and Fzd6 mutant (Fzd6Q152E) male mice were treated with lipopolysaccharide (LPS) for 7 days. Behavioral experiments were used to detect the behavioral changes of mice in each group, and the composition of intestinal flora and systemic inflammation levels of mice were further detected. RESULTS In LPS mice, the Fzd6 mutation enhanced depression-like behavior symptoms, increased the release of pro-inflammatory cytokines, decreased the release of anti-inflammatory cytokines, and caused intestinal flora disturbance. Subsequently, 16SrRNA sequencing revealed significant changes in the relative abundance of the inflammation-associated bacterial groups Ruminococcaceae and Lachnospiraceae in Fzd6Q152E mice. In mice with depression, the levels of G protein-coupled receptors, GPR41 and GPR43, and glucagon-like peptide-1 (GLP-1) in the small intestine were down-regulated, and the expression of GLP-1 receptor (GLP-1R), peroxisome proliferators activated receptors gamma (PPAR-γ), and nuclear factor kappa-B inhibitor alpha (IκBα) in the hippocampus was also down-regulated, while the expression of nuclear factor kappa-B p65 (NF-κB p65) was up-regulated. LIMITATIONS The size of the spleen was not studied in this model, and the Fzd6 mutation itself does not cause systemic inflammation such as IL-6. CONCLUSION These results demonstrate that mutations in Fzd6 regulate the composition of the gut flora, which contributes to depression-associated inflammation.
Collapse
Affiliation(s)
- Wenlu Chen
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Xiaoru Yan
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Xiaona Song
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Yiyan Yang
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Xiaotang Wang
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Guoqiang Xu
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Tian Wang
- School and Hospital of Stomatology, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Yaqi Liu
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Zhao Fan
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Guohua Song
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China.
| |
Collapse
|
13
|
Hu XY, Duan HW, Wang LY, Liu QF, Yao H, Ma DQ, Wang DX, Yang JJ, Ji MH. Associations between oral frailty, oral microbiota composition, and postoperative delirium in older adult patients. J Am Geriatr Soc 2025; 73:812-823. [PMID: 39699025 DOI: 10.1111/jgs.19315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/30/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Poor oral health, prevalent among the older adults, can undermine overall health and contribute to frailty. Older adults experiencing oral frailty and dysbiosis potentially face an elevated risk of postoperative delirium. This study aims to explore the influence of oral frailty and changes in oral microbiota composition on occurrence of postoperative delirium in older adult patients undergoing non-cardiac surgery. METHODS A total of 303 older adult patients undergoing non-cardiac surgeries were recruited in the Second Affiliated Hospital of Nanjing Medical University from July 2023 to December 2023. Oral swabs for oral microbiota analyses were collected before surgery. Subsequently, after propensity score matching, 21 samples from patients with postoperative delirium and 21 samples from patients without postoperative delirium were analyzed for oral microbiota. Our primary objective was to determine the association between oral frailty, changes in oral microbiota composition, and the occurrence of postoperative delirium. RESULTS Oral frailty emerged as an independent risk factor for postoperative delirium [HR = 1.75; 95% CI = (1.04-2.96); p = 0.035]. Additionally, patients with postoperative delirium demonstrated lower oral microbiota diversity, as indicated by a reduced Chao index compared with those without postoperative delirium (p = 0.034). A significant association was also found between the dysbiosis index and postoperative delirium (p < 0.001). ROC analysis revealed a pronounced area under the curve of 0.95 (95% CI: 0.88-1.00) for the dysbiosis index in predicting postoperative delirium. Subsequent Principal Coordinates and Kaplan-Meier analyses affirmed that both beta diversity and the dysbiosis index were significantly correlated with incidence of postoperative delirium, with p-values of 0.002 and <0.001, respectively. Furthermore, the interaction analysis through Cox proportional hazards regression suggested a combined effect of oral frailty and the dysbiosis index on the likelihood of developing postoperative delirium (p = 0.004). CONCLUSIONS Oral frailty and changes in oral microbiota among older adult patients undergoing non-cardiac surgery may influence the incidence of postoperative delirium.
Collapse
Affiliation(s)
- Xiao-Yi Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hua-Wei Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei-Yuan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Quan-Fang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Da-Qing Ma
- Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Dong-Xin Wang
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Wang K, Hu Y, Wu Y, Xu J, Zhao Y, Yang J, Li X. The Therapeutic Potential of Gut-Microbiota-Derived Metabolite 4-Phenylbutyric Acid in Escherichia coli-Induced Colitis. Int J Mol Sci 2025; 26:1974. [PMID: 40076603 PMCID: PMC11901052 DOI: 10.3390/ijms26051974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 03/14/2025] Open
Abstract
Pathogenic Escherichia coli (E. coli) is a widely distributed pathogen that can cause varying degrees of zoonotic diseases, and infected animals often experience intestinal inflammation accompanied by diarrhea and dysbiosis. Previously, for the first time, we isolated Escherichia coli primarily of type B2 from a large-scale dairy farm in Yunnan, China. The 16s rRNA sequencing showed significant differences in the gut microbiota of calves infected with B2 E. coli, with higher abundance of harmful bacteria and lower abundance of beneficial bacteria compared with healthy calves. The metabolomics indicated that the concentrations of oxoadipic acid, 16-oxopalmitate, oerillyl alcohol, palmitoleic acid, and 4-phenylbutyrate (4-PBA) were significantly higher in the healthy group than in the infected group. The mouse model was established to assess the regulatory effect of 4-PBA on E. coli-induced colitis. Both oral administration of 4-PBA and fecal microbiota transplantation (FMT) had strong resistance to E. coli infection, improved survival rate and body weight, reduced intestinal tissue damage, decreased the levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), and restrained TLR4/MyD88/NF-κB pathway. Our study demonstrated that 4-PBA could relieve E. coli-induced colitis by improving gut microbiota structure and inhibiting the expression of pro-inflammatory cytokines through the TLR4/MyD88/NF-κB pathway. The present finding reveals the therapeutic potential of the gut-microbiota-derived metabolite 4-PBA for the treatment of colitis caused by E. coli.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Yang
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming 650201, China; (K.W.); (Y.H.); (Y.W.); (J.X.); (Y.Z.)
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming 650201, China; (K.W.); (Y.H.); (Y.W.); (J.X.); (Y.Z.)
| |
Collapse
|
15
|
Li Y, Feng T, Zhao Y, Zhang X, Chen H, Xia P, Yang D, Liang Z. Medicinal and edible homologous poly/oligo-saccharides: Structural features, effect on intestinal flora and preventing and treating type 2 diabetes, and their applications: A review. Int J Biol Macromol 2025; 305:141031. [PMID: 39965679 DOI: 10.1016/j.ijbiomac.2025.141031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is the third most common chronic metabolic disorder worldwide and seriously dangerous. Novel therapeutics are sought due to the paucity of safe and effective metabolic disorder-related diabetes medicines. Intestinal flora impacts glucose and lipid balance, making it a unique T2DM therapeutic target. Due to gut fermentation, poly/oligo-saccharides are highly beneficial prebiotic carbohydrates for intestinal health. Moreover, supplementation with naturally occurring medicinal and edible homologous traditional Chinese medicines (MEHTCM) poly/oligo-saccharides has significant antidiabetic effects with few side effects. Now, a comprehensive review of research developments of MEHTCM poly/oligo-saccharides was presented to explore their prospects. We outlined the structural characteristics, structure classification, and structure-activity relationships. Notably, structure-activity relationships illustrated that molecular weight, monosaccharide composition, and glycosidic bond type could influence the hypoglycemic activity and prebiotic effect of MEHTCM poly/oligo-saccharides. Additionally, the review systematically summarized the effect and potential mechanism of MEHTCM poly/oligo-saccharide on T2DM, focusing on gut microbiota. The potential applications in formulations for special medical purposes, common food, health care product, agriculture and other fields have also been summarized. This review emphasizes MEHTCM poly/oligo-saccharides' potential as prebiotics for T2DM treatment. This information provides new insights and a theoretical foundation for MEHTCM poly/oligo-saccharide nutritional and medicinal research.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tinghui Feng
- College of Life Sciences, Northwest A & F University, Xi'an 710000, China
| | - Yaxin Zhao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
16
|
Zhang L, Fu X, Li J, Xiao W, Xiong X, Lv H, Zhang Z, Ju J. Treatment of Acute Ulcerative Colitis with Zinc Hyaluronate in Mice. J Microbiol Biotechnol 2025; 35:e2408050. [PMID: 39947703 DOI: 10.4014/jmb.2408.08050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 03/06/2025]
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease arising from numerous factors, while UC patients face insufficient treatment options and a high incidence of adverse reactions to the current therapies. As a functional food additive, hyaluronic acid plays a certain role in intestinal repair. In this study, we constructed a mouse model of dextran sulfate sodium (DSS)-induced UC to examine the effects and underlying mechanisms of action of zinc hyaluronate (ZnHA) on the pathogenesis of UC. ZnHA effectively alleviated key clinical UC symptoms, such as weight loss, loose stools, and bloody stools. Mechanistically, ZnHA attenuated the expression of inflammatory factors, such as tumor necrosis factor-α, interleukin (IL)-6, and myeloperoxidase while upregulating the expression of IL-10. Furthermore, through intestinal flora and short-chain fatty acid analyses, ZnHA was found to promote propionic acid production by enriching beneficial bacteria. ZnHA simultaneously enhanced the expression of tight junction proteins, specifically ZO-1 and occludin, thereby restoring intestinal barrier function. Overall, our findings elucidate the therapeutic potential of ZnHA in treating acute UC by inhibiting intestinal inflammation and regulating flora, while also providing further theoretical support for development of hyaluronic acid to treat this disease.
Collapse
Affiliation(s)
- Lan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xuedan Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Jiazheng Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Wan Xiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Xi Xiong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
17
|
Song Z, Li P, Wu M, Guo S, Wu T, Hou Y, Yi D. Multi-Effects of Natural Plant Bioactive Components on Intestinal Health in Pigs: Promising Feed-Antibiotic Alternatives? J Nutr 2025:S0022-3166(25)00090-2. [PMID: 39954741 DOI: 10.1016/j.tjnut.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
The poor intestinal health induced by management, stress, or infection remains a substantial challenge restricting the rapid development of the pig industry. Some natural plant bioactive components (NPBCs) have garnered considerable interest owing to their multifarious benefits, including enhancing intestinal morphology, digestion and absorption, barrier function, immune function, and regulating the gut microbiota. However, there are critical factors, such as the lack of standardized production technologies, lower stability and bioavailability, and unclear mechanisms of NPBCs, severely limiting their feeding efficacy and their application in animal production. Here, we conducted a comprehensive review of the recent advances regarding the impacts of NPBCs on pig gut health. Additionally, we highlighted the key areas that warrant further in-depth investigation. Taken together, NPBCs could be green, safe, and effective feed additives by constructively overcoming their limitations, and they are expected to have broader applications in animal husbandry.
Collapse
Affiliation(s)
- Zhuan Song
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Ge Z, An Y, Lan W, Li X. Effects of Dietary Supplementation of Omega-3 PUFA Enriched Fish Oil During Late-Pregnancy and Lactation on Reproductive Performance, Immune Activity and Fecal Microbiota Composition in Postpartum Sows. Vet Sci 2025; 12:139. [PMID: 40005899 PMCID: PMC11860538 DOI: 10.3390/vetsci12020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Delayed or failed postpartum estrus can impede the reproductive performance of rebreeding dams. Our study aimed to test whether dietary fish oil can promote estrus return and improve fecal microbiota in multiparous sows. Forty-five sows were randomly allocated into three treatments: a basal diet, or a basal diet plus 30 or 60 g/day of fish oil from gestation day 90 to lactation day 21. Results showed that dietary fish oil significantly elevated circulating DHA in sows, without significant changes in litter size, litter weight, or backfat loss. Supplementation of fish oil (30 or 60 g/day) shortened the interval from weaning to estrus by 1.8 days and 1.67 days, respectively, associated with a significant boost of estradiol. Increases in prolactin and IgA were only significant in the high-dosage group. In addition, plasma MDA and antioxidant activities were up-regulated by fish oil, combined with elevated serum IL-1β and IL-6. Moreover, dietary fish oil significantly reduced serum zonulin, improved the Simpson index of fecal microbiota, and increased the abundance of Lactobacillus and Ruminococcaceae_UCG-014 genera. In conclusion, dietary omega-3 PUFA-enriched fish oil provides a promising approach to aiding estrus return and reshaping fecal microbiota in post-weaning sows.
Collapse
Affiliation(s)
- Zihao Ge
- Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, China
- Key Laboratory of Animal Genetics and Breeding in Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Xianyang 712100, China
| | - Yalong An
- Key Laboratory of Animal Genetics and Breeding in Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Xianyang 712100, China
| | - Wei Lan
- Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Xiao Li
- Key Laboratory of Animal Genetics and Breeding in Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
19
|
Han XQ, Jiang HH, Chen ML, Han DY, Zhou SF, Wang JW, Ji SS, Wang LY, Lou JW, Li MQ. Gut microbiota interacting with vitamin D but not anandamide might contribute to the pathogenesis of preeclampsia: a preliminary study. Front Cell Infect Microbiol 2025; 14:1469054. [PMID: 39973918 PMCID: PMC11835824 DOI: 10.3389/fcimb.2024.1469054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/25/2024] [Indexed: 02/21/2025] Open
Abstract
Introduction Preeclampsia (PE) is a pregnancy-specific multisystem disorder and a leading cause of maternal and perinatal mortality globally. Despite numerous studies highlighting the potential roles of gut microbiota, anandamide (AEA), and Vitamin D (VitD) in PE, none have established them as reliable biomarkers for predicting disease onset. Moreover, their interactions in late-stage pregnancy women remain poorly understood. Methods Thirty-four preeclamptic patients (called PE group) and thirty-nine matched healthy late-pregnant women (called LP group) were involved in this case-control study. Fecal samples, which were used to acquire the diversity and composition of gut microbiota, were analyzed by 16S rRNA gene sequencing. Plasma AEA concentrations and serum VitD levels were determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Results In this study, β diversity but not α diversity significantly differed between the LP and PE groups. Compared with the LP group, the relative abundances of Prevotella, Erysipelotrichaceae_UCG-003, and Dorea were increased dramatically in the PE group, whereas the relative abundances of Subdoligranulum, Parabacteroides, Bacteroides were significantly decreased in the PE group. Furthermore, women with PE had a substantially lower plasma level of AEA and a marked decrease in serum VitD compared to normal late-pregnant women. Lastly, although the serum level of AEA was not significantly correlated with VitD or any of the top 6 marker genera, VitD was significantly negatively correlated with the relative abundance of Dorea, a novel finding in this context. Discussion The gut microbiota profile of the PE group was significantly different from that of the LP group. Although no significant correlations were identified between the plasma AEA levels and serum VitD levels or any of the top 6 identified marker genera, a significant negative correlation was observed between VitD and Dorea, indicating VitD and gut microbiota have the potential to be combined targets for early diagnosis and management of PE.
Collapse
Affiliation(s)
- Xiao-Qiang Han
- Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang, China
| | - Hui-Hui Jiang
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Meng-Ling Chen
- Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang, China
| | - De-Yang Han
- Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang, China
| | - Su-Fen Zhou
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang, China
- Department of Ultrasound, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jin-Wen Wang
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Shu-Shen Ji
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Ling-Yun Wang
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Jing-Wei Lou
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Ming-Qun Li
- Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang, China
| |
Collapse
|
20
|
Grosserichter-Wagener C, Looman KIM, Beth SA, Radjabzadeh D, Gill PA, Smit KN, Duijts L, Kiefte-de Jong JC, Kraaij R, Moll HA, van Zelm MC. A distinct immunophenotype in children carrying the Blautia enterotype: The Generation R study. Clin Immunol 2025; 271:110426. [PMID: 39800090 DOI: 10.1016/j.clim.2025.110426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVE Studies in mouse models and human adults have shown that the intestinal microbiota composition can affect peripheral immune cells. We here examined whether the gut microbiota compositions affect B and T-cell subsets in children. METHODS The intestinal microbiota was characterized from stool samples of 344 10-year-old children from the Generation R Study by performing 16S rRNA sequencing. Bray-Curtis dissimilarity was used to cluster distinct microbiome compositions (enterotypes). B-cell and T-cell phenotypes were defined by 11-color-flow cytometry. Linear regression models with adjustment for lifestyle and child characteristics were performed to determine associations between enterotypes and immune cell numbers. RESULTS Three enterotypes with distinct microbiota composition were found, characterized by high abundance of Prevotella, Bacteroides and Blautia. Children with the Blautia enterotype had decreased numbers of plasmablasts, CD4+ central memory (Tcm) T cells and follicular T-helper cells (Tfh), while Th22 cells and CD4+ effector memory (Tem) T cells, CD27-IgA+ memory B cells and CD27-IgE+ memory B cells, were increased in these children. In addition, in children with the Blautia enterotype CD4+ Tcm cell numbers expressing the β7 integrin, which can pair with α4 to mediate intestinal homing were also lower, while CD4+β7+ Tem cell numbers were higher than in the other enterotypes. CONCLUSION The Blautia enterotype showed features beneficial for human health. Enterotypes were associated with differences in memory B- and T-cell compartments. This study is unique in the detailed analysis of the B and T-cell compartment and the intestinal microbiome in a large generic pediatric cohort, enabling correction for child and maternal covariates. These outcomes could guide further studies about the impact of intestinal microbiome intervention, for instance through diet and microbiota metabolites such as short chain fatty acid production.
Collapse
Affiliation(s)
| | - Kirsten I M Looman
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sanne A Beth
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Paul A Gill
- Department of Immunology, Central Clinical School, Monash University and Alfred Hospital, Commercial Road 89, 3004 Melbourne, Victoria, Australia
| | - Kyra N Smit
- Department of Immunology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Jessica C Kiefte-de Jong
- Department of Public Health and Primary Care/Health Campus The Hague, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Henriëtte A Moll
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; Department of Immunology, Central Clinical School, Monash University and Alfred Hospital, Commercial Road 89, 3004 Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Guan JL, Xu TT, Lin Y, Mo YS, He BY, Han YY, Li JY, Xia SH, Zhou YN, Liao JZ, Li PY. High-dose dual therapy for Helicobacter pylori eradication inducing less impact on the gut microbiota. Gut Pathog 2025; 17:7. [PMID: 39885529 PMCID: PMC11783801 DOI: 10.1186/s13099-025-00682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) eradication regimens may have different effects on the gut microbiota. Few studies have analyzed the safety of high-dose dual therapy (HDDT) from a micro-ecological perspective. This study aimed to compare the impact of H. pylori eradication with HDDT and bismuth quadruple therapy (BQT) on gut microbiota. PATIENTS AND METHODS H. Pylori-infected treatment-naive patients were recruited and screened from September 2023 to April 2024 and randomly assigned to the HDDT group (esomeprazole 20 mg, amoxicillin 750 mg, qid, 14 days) or BQT group (esomeprazole 20 mg, amoxicillin 1000 mg, clarithromycin 500 mg, and bismuth potassium citrate 600 mg, bid, 14 days). Fresh stool specimens were collected and stored before treatment and at week 2 and week 8 after treatment. The diversity and composition of the gut microbiota were compared and analyzed in both groups using 16 S rRNA gene sequencing. RESULTS Forty-nine H. pylori positive patients were enrolled and randomly assigned to either the HDDT (n = 24) or the BQT group (n = 25) group. Compared with baseline, alpha and beta diversities significantly changed at week 2 after receiving BQT and did not recover fully at week 8. However, in the HDDT group, the diversities at week 2 changed mildly without statistical significance, compared to baseline. Additionally, a greater number of species had alterations in their abundances in the BQT group compared to the HDDT group at week 2. However, the abundances of these species were restored to their previous levels at week 8 in both the HDDT and BQT groups. CONCLUSIONS Compared to BQT, HDDT exerted less impact on the diversity and composition of the gut microbiota. CLINICAL TRIAL REGISTRATION ChiCTR2100053268.
Collapse
Affiliation(s)
- Jia-Lun Guan
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ting-Ting Xu
- Department of Gastroenterology, Wenchang People's Hospital, Wenchang, China
| | - Ya Lin
- Department of Gastroenterology, Wenchang People's Hospital, Wenchang, China
| | - Yan-Shuai Mo
- Department of Anesthesiology, Wenchang People's Hospital, Wenchang, China
| | - Bi-Yu He
- Department of Gastroenterology, Wenchang People's Hospital, Wenchang, China
| | - Ying-Ying Han
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ji-Yan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Su-Hong Xia
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ya-Ni Zhou
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jia-Zhi Liao
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Pei-Yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Department of Gastroenterology, Wenchang People's Hospital, Wenchang, China.
| |
Collapse
|
22
|
Tomaszek N, Urbaniak AD, Bałdyga D, Chwesiuk K, Modzelewski S, Waszkiewicz N. Unraveling the Connections: Eating Issues, Microbiome, and Gastrointestinal Symptoms in Autism Spectrum Disorder. Nutrients 2025; 17:486. [PMID: 39940343 PMCID: PMC11819948 DOI: 10.3390/nu17030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by challenges in social communication, restricted interests, and repetitive behaviors. It is also associated with a high prevalence of eating disorders, gastrointestinal (GI) symptoms, and alterations in gut microbiota composition. One of the most pressing concerns is food selectivity. Various eating disorders, such as food neophobia, avoidant/restrictive food intake disorder (ARFID), specific dietary patterns, and poor-quality diets, are commonly observed in this population, often leading to nutrient deficiencies. Additionally, gastrointestinal problems in children with ASD are linked to imbalances in gut microbiota and immune system dysregulation. The aim of this narrative review is to identify previous associations between the gut-brain axis and gastrointestinal problems in ASD. We discuss the impact of the "microbiome-gut-brain axis", a bidirectional connection between gut microbiota and brain function, on the development and symptoms of ASD. In gastrointestinal problems associated with ASD, a 'vicious cycle' may play a significant role: ASD symptoms contribute to the prevalence of ARFID, which in turn leads to microbiota degradation, ultimately worsening ASD symptoms. Current data suggest a link between gastrointestinal problems in ASD and the microbiota, but the amount of evidence is limited. Further research is needed, targeting the correlation of a patient's microbiota status, dietary habits, and disease course.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (N.T.); (A.D.U.); (D.B.); (K.C.); (N.W.)
| | | |
Collapse
|
23
|
Qiu J, Wu S, Huang R, Liao Z, Pan X, Zhao K, Peng Y, Xiang S, Cao Y, Ma Y, Xiao Z. Effects of antibiotic therapy on the early development of gut microbiota and butyrate-producers in early infants. Front Microbiol 2025; 15:1508217. [PMID: 39839108 PMCID: PMC11748296 DOI: 10.3389/fmicb.2024.1508217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Background Antibiotics, as the most commonly prescribed class of drugs in neonatal intensive care units, have an important impact on the developing neonatal gut microbiota. Therefore, comprehending the effects of commonly used antibiotic therapy on the gut microbiota and butyrate-producers in early infants could provide information for therapeutic decision-making in the NICU. Objectives To explore the effects of antibiotic therapy on the early development of gut microbiota and butyrate-producers in early infants. Methods A total of 72 infants were included in the study. We performed 16S rRNA sequencing on stool swab samples collected from neonatal intensive care unit patients who received amoxicillin-clavulanic acid (AC, n = 10), moxalactam (ML, n = 28) and non-antibiotics (NA, n = 34). We then compared the taxonomic composition between treatment regimens, focusing on differences in butyrate-producers. Results Our study showed that there were significant differences in Shannon index (p = 0.033) and Beta diversity (p = 0.014) among the three groups. At the family level, compared with the other two groups, the relative abundance of Clostridiaceae (p < 0.001) and Veillonellaceae (p = 0.004) were significantly higher, while the relative abundance of Enterococcidae (p < 0.001) was significantly lower in the NA group. The relative abundance of Enterobacteriaceae (p = 0.022) in the AC group was greater than that in the other two groups. Additionally, butyrate-producers (p < 0.001), especially Clostridiaceae (p < 0.001), were noticeably more abundant in the NA group. The relative abundance of Clostridiaceae and butyrate-producers were the lowest in the ML group (p < 0.001). Conclusion We found that antibiotic therapy had an adverse impact on the initial development of gut microbiota and leaded to a reduction in the abundance of butyrate-producers, particularly Clostridiaceae. Furthermore, moxalactam had a more pronounced effect on the gut microbiota compared to amoxicillin-clavulanic acid.
Collapse
Affiliation(s)
- Jun Qiu
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Sha Wu
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Ruiwen Huang
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Zhenyu Liao
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Kunyan Zhao
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
- The School of Public Health, University of South China, Hengyang, China
| | - Yunlong Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Yunhui Cao
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, China
| | - Ye Ma
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Zhenghui Xiao
- The School of Pediatrics, Hengyang Medical School, University of South China, Hunan Children’s Hospital, Hengyang, Hunan, China
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
| |
Collapse
|
24
|
Gao Y, Huang B, Qin Y, Qiao B, Ren M, Cao L, Zhang Y, Han M. Dietary supplementation with proanthocyanidins and rutin alleviates the symptoms of type 2 diabetes mice and regulates gut microbiota. Front Microbiol 2025; 15:1513935. [PMID: 39834378 PMCID: PMC11743507 DOI: 10.3389/fmicb.2024.1513935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Background Obesity and high fasting blood glucose (FBG) resulting from high-fat diets (HFDs) have emerged as significant public health concerns, garnering increasing attention. Recently, gut microbiota has been linked with metabolic diseases such as type 2 diabetes (T2DM), and its mediating role in dietary supplements has been confirmed. Seeking various dietary supplements to lose body weight (BW) and decrease FBG and explaining the underlying mechanism have become the research hotspots in T2DM studies. Methods In this study, rutin and proanthocyanidins (PA) were selected as dietary supplements (200 mg/kg × day, oral gavage, 6 weeks) in T2DM mice induced with HFD to assess their efficacy in weight loss, FBG reduction, gut microbiota alterations, and the associated underlying mechanisms. Results Our findings indicate that rutin was more effective than PA in relieving inflammation and fat hypertrophy, although both significantly reduced BW and FBG within 2 weeks after the intervention. Analysis of 16S rRNA amplicons revealed substantial alterations in the gut microbial community composition of mice administered with PA and rutin compared to HFD-fed mice. Importantly, several core microbes, particularly a series of probiotics, such as Akkermansia, Lactococcus, Odoribacter, Faecalibaculum, and Roseburia were identified, which were significantly correlated with the changes in BW and FBG. Conclusion Overall, our study highlights that rutin and PA can reduce BW, FBG, and inflammation by modulating the gut microbiota composition, providing novel perspectives for managing and treating weight and FBG concerns in obesity and T2DM patients through dietary supplements in clinical treatment.
Collapse
Affiliation(s)
- Yue Gao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
- School of Life Sciences, Hefei Normal University, Hefei, Anhui, China
- Microbial Medicinal Resources Development Research Team, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Binbin Huang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yunyi Qin
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bing Qiao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Mengfei Ren
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Liqing Cao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yan Zhang
- School of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
- Microbial Medicinal Resources Development Research Team, Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| |
Collapse
|
25
|
Metras BN, Oba PM, Holt DA, Bauer LL, Miller MJ, Dilger RN, Swanson KS. In vitro fermentation characteristics of dietary fibers using fecal inoculum from dogs consuming commercial or grain kefir. J Anim Sci 2025; 103:skaf022. [PMID: 39901725 PMCID: PMC11912828 DOI: 10.1093/jas/skaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
Traditional grain kefir is produced from the fermentation of milk with yeast- and bacteria-containing cultures. To maintain consistency and adhere to food safety guidelines, commercial kefir products are based on starter bacterial cultures. Bacterial profiles of starter vs. grain kefirs differ, and their influence on health effects is unknown. Our objectives were to determine the in vitro fermentation characteristics of common dietary fibers using fecal inoculum from dogs supplemented with kefir or kefir bacterial culture as inoculum. Healthy adult dogs were allotted to one of 3 treatments and supplemented for 14 d (n = 4/treatment): 1) 2% reduced-fat milk treated with lactase (CNTL), 2) starter kefir (S-Kefir), or 3) grain kefir (G-Kefir). After 14 d, fresh fecal samples were collected and frozen in a 20% glycerol solution. For the in vitro experiment, fecal samples were thawed, diluted in an anaerobic diluting solution, and used to inoculate tubes containing semi-defined medium and either cellulose (CEL), pectin (PC), beet pulp (BP), or chicory pulp (CP). Tubes were incubated for 0, 6, 12, or 18 h, with short-chain fatty acids (SCFA), pH, and microbiota measured at each time point. A second in vitro experiment was conducted using similar methods and measurements but with S-Kefir and G-Kefir as inoculum sources. Effects of treatment (inoculum), time, and treatment*time interactions within the fiber source were analyzed statistically using Mixed Models and repeated measures, with P < 0.05 being significant. Using fecal inoculum, BP and PC were rapidly fermented, leading to large pH reductions, SCFA increases, and microbiota shifts. pH change was of greater (P < 0.05) magnitude (PC) and higher (P < 0.05) kinetic rate (CP) when using feces from dogs fed S-Kefir or G-Kefir than controls. Butyrate increases were greater (P < 0.05) in tubes inoculated with G-Kefir feces than in S-Kefir or control feces. When PC and BP were fermented, tubes with S-Kefir feces had greater (P < 0.05) acetate, propionate, and total SCFA increases than G-Kefir or control feces. Fermentations were slower when using kefir cultures as inoculum, but some differences were noted. Bacterial beta diversity and relative abundances shifted over time within each substrate and were unique to the inoculum source. Our data suggest that the activity of kefir bacterial populations differs and that kefir consumption changes the abundance and activity of the fecal microbiota of dogs, justifying in vivo investigation.
Collapse
Affiliation(s)
- Breanna N Metras
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Dalton A Holt
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura L Bauer
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J Miller
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan N Dilger
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Dou J, Hu X, Liu J, Liu J, Zhang C, Zhang Y, Zhen X, Tao S, Zhang J, Jiang G. Decoding the synergistic potential of herbal medicine and dietary supplements for treating postmenopausal osteoporosis. Exp Gerontol 2025; 199:112648. [PMID: 39645096 DOI: 10.1016/j.exger.2024.112648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
PURPOSE The exploration of the combined effects of FLL and quinoa presents an intriguing opportunity to enhance the efficacy of osteoporosis treatment. METHODS This study aimed to predict the potential anti-osteoporotic effects of FLL and quinoa using network pharmacology and subsequently verify these predictions through experimental investigation. Thirty rats were divided into five groups: sham operation group (SO), ovariectomized group (OVX), FLL group (FLL), quinoa group (Quinoa), and FLL combined with quinoa group (F&Q). The 12-week experiment involved measurements of bone density and microstructure, histological evaluation of femoral trabeculae and bone cortex, quantification of osteoclasts in the femur, assessment of osteoclast differentiation factor expression (NFATc1 and C-Fos), and measurement of collagen I carboxyl-terminal peptide (CTX-1). Additionally, intestinal flora analysis was performed. RESULTS The results demonstrated reduced bone mineral density, compromised bone microarchitecture, increased osteoclast numbers and differentiation, and enhanced bone resorption in the OVX group, which were completely ameliorated by FLL, quinoa and F&Q interventions. F&Q exhibited superior improvement in bone density and microarchitecture compared to FLL and quinoa, although no significant differences were observed in their effects on osteoclasts and bone resorption. Gut flora analysis revealed that F&Q was more effective than FLL and quinoa in alleviating OVX-induced intestinal flora disorders, particularly in terms of enhancing intestinal flora diversity and function. CONCLUSION The combo of FLL and quinoa was more effective in treating ovariectomy-induced osteoporosis and gut flora dysbiosis than FLL alone.
Collapse
Affiliation(s)
- Jinfang Dou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuehong Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Junchang Liu
- Xinjiang Medical University, Urumqi, China; Traditional Chinese Medicine Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jiaxian Liu
- Beijing Zhongli Biological Technology Co., Ltd, Beijing, China; Gansu Chunjie Plateau Agricultural Technology Co., Ltd., Wuwei, China
| | - Chuyue Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xianjie Zhen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinghua Zhang
- Tangshan Maternal and Child Health Care Hospital, Tangshan, China.
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
27
|
Tian Y, Gu M, Chen D, Dong Q, Wang Y, Sun W, Kong X. Causal Associations Between the Gut Microbiota and Hypertension-Related Traits Through Mendelian Randomization: A Cross-Sectional Cohort Study. J Clin Hypertens (Greenwich) 2025; 27:e14925. [PMID: 39468693 PMCID: PMC11771804 DOI: 10.1111/jch.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Previous studies have suggested a link between the gut microbiome and hypertension-related traits like blood pressure. However, these reports are often limited by weak causal evidence. This study investigates the potential causal association between gut microbiota and hypertension-related traits using Mendelian randomization with summary data from genome-wide association studies. The inverse-variance weighted method revealed that the Clostridium innocuum group (Odds ratio [OR]: 1.0047, 95% confidence interval [CI]: 1.0004-1.0090, p = 0.0336), Eubacterium fissicatena group (OR: 1.0047, 95% CI: 1.0005-1.0088, p = 0.0266), Lachnospiraceae FCS020 group (OR: 1.0063, 95% CI: 1.0004-1.0122, p = 0.0361), and Olsenella (OR: 1.0044, 95% CI: 1.0001-1.0088, p = 0.0430) were associated with an increased risk of hypertension. Conversely, Flavonifractor (OR: 0.9901, 95% CI: 0.9821-0.9982, p = 0.0166), Parabacteroides (OR: 0.9874, 95% CI: 0.9776-0.9972, p = 0.0121), and Senegalimassilia (OR: 0.9907, 95% CI: 0.9842-0.9974, p = 0.0063) were associated with a decreased risk of hypertension. External validation with the Guangdong Gut Microbiome Project confirmed a negative correlation between Parabacteroides and hypertension, potentially through metabolic pathways. These findings provide further evidence supporting the hypothesis that microbes and their metabolites play a role in blood pressure regulation.
Collapse
Affiliation(s)
- Yunfan Tian
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mingxia Gu
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Dazhong Chen
- Department of pharmacy920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Quanbin Dong
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yifeng Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei Sun
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiangqing Kong
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
28
|
Guzowska M, Dziendzikowska K, Kopiasz Ł, Gajewska M, Wilczak J, Harasym J, Czerwińska M, Gromadzka-Ostrowska J. Oat Beta-Glucans Modulate the Gut Microbiome, Barrier Function, and Immune Responses in an In Vivo Model of Early-Stage Colorectal Cancer. Int J Mol Sci 2024; 25:13586. [PMID: 39769349 PMCID: PMC11677220 DOI: 10.3390/ijms252413586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Oat beta-glucans (OBGs) are known for their beneficial effects on gut health, including anti-inflammatory and prebiotic effects. The aim of this study was to evaluate the impact of two doses (1% or 3% w/w) of dietary low-molar-mass OBG supplementation on colorectal cancer (CRC) development, immune cell profiles, intestinal barrier protein expression, and microbiota composition in a rat model of CRC induced by azoxymethane (AOM). Microbiome analysis revealed significant differences between the control and CRC groups. OBG supplementation influenced microbial diversity and abundance, particularly increasing the population of beneficial bacteria, such as Lachnospiraceae and Ruminococcaceae, associated with butyrate production. However, higher doses of OBG (3%) led to a decrease in butyrate-producing bacteria and a shift toward higher levels of Akkermansia muciniphila and Enterococcus faecalis. Immune cell profiling showed a higher percentage of T lymphocytes (CD3+) in rats fed a diet supplemented with 3% OBG, both in the intraepithelial (IEL) and lamina propria lymphocytes (LPLs). Immunohistochemical analysis of the large intestine revealed a significantly elevated expression of intestinal barrier proteins, i.e., claudin 3 and 4 in rats receiving 1% OBG, while claudin 7 expression was reduced in early-stage CRC. Gene expression analysis also revealed a significant downregulation of Cldn1 in CRC rats. These findings suggest that dietary OBG supplementation modulates the gut microbiota, immune response, and intestinal barrier integrity, with potential implications for nutritional CRC development prevention and treatment strategies.
Collapse
Affiliation(s)
- Magdalena Guzowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (J.W.)
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (Ł.K.); (M.C.); (J.G.-O.)
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (Ł.K.); (M.C.); (J.G.-O.)
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (J.W.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (J.W.)
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland;
| | - Malwina Czerwińska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (Ł.K.); (M.C.); (J.G.-O.)
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (Ł.K.); (M.C.); (J.G.-O.)
| |
Collapse
|
29
|
Benslimane FM, Mohammed LI, Abu-Hijleh H, Suleiman S, Boughattas S, Zakaria ZZ, Fthenou E, Al-Asmakh M. Metabarcoding analysis of oral microbiome during pregnancy. Front Cell Infect Microbiol 2024; 14:1477703. [PMID: 39742335 PMCID: PMC11685078 DOI: 10.3389/fcimb.2024.1477703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 01/03/2025] Open
Abstract
Pregnancy is a dynamic physiological process involving significant hormonal, immune, and metabolic changes to support fetal growth and development. This study investigates the changes in salivary microbiome and biochemical markers from the second to the third trimester of pregnancy. Saliva samples were collected from 45 pregnant women enrolled in the Qatar Birth Cohort study at two time points (second and third trimesters). DNA was extracted and subjected to 16S rRNA gene sequencing using Oxford Nanopore Technology. Microbial diversity and taxonomic analyses were performed, along with correlation analyses between microbial abundance and clinical parameters. Biochemically, significant increases in BMI, pulse rate, HbA1c, LDL, total cholesterol, and triglycerides were observed in the third trimester compared to the second. Microbial diversity analysis revealed significant changes in microbial richness and composition. Taxonomy analysis showed a significant 3-fold increase in Bacteroidota. Also, a significant decline in Selenomonas and a significant increase in Veillonella, specifically Veillonella dispar and Veillonella atypica, as well as an increase in Granulicatella were observed in the third trimester, along with a significant decrease in Streptococcus sanguinis. Correlation analysis during the second trimester revealed positive associations between BMI, cholesterol, LDL, and Selenomonas, and negative correlations with Streptococcus and Gemella. In the third trimester, BMI was negatively correlated with Campylobacter, glucose levels were negatively correlated with Neisseria, and triglyceride levels were negatively correlated with Prevotella. These findings highlight significant biochemical and microbial shifts during pregnancy, underscoring the importance of monitoring oral health and metabolic changes in pregnant women.
Collapse
Affiliation(s)
| | - Layla I. Mohammed
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Haya Abu-Hijleh
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Sara Suleiman
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | | | - Zain Zaki Zakaria
- Vice President for Medical and Health Sciences Office, QU Health, Qatar University, Doha, Qatar
| | - Eleni Fthenou
- Qatar Biobank for Medical Research, Qatar Foundation, Doha, Qatar
| | - Maha Al-Asmakh
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
30
|
Huang Y, Lu Z, Liu F, Lane JA, Chen J, Huang Q, Hu R, Zhang B. Osteopontin associated Bifidobacterium bifidum microencapsulation modulates infant fecal fermentation and gut microbiota development. Food Res Int 2024; 197:115211. [PMID: 39593296 DOI: 10.1016/j.foodres.2024.115211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/22/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Probiotic supplementation is an effective method for improving infant gut health, and probiotic encapsulation can enhance probiotic viability under adverse environmental conditions while ensuring an adequate amount of probiotic is delivered to the target site to confer a health benefit for the host. In this study, Bifidobacterium bifidum R0071 was microencapsulated using pectin or alginate, combined bovine milk osteopontin (OPN) as an excipient during the microencapsulation process. The microencapsulated probiotics were subjected to in vitro simulated infant gastrointestinal digestion and a fecal fermentation model to assess survival capacity and their impact on gas and organic acid production, as well as the development of gut microbiota. The results demonstrated that microencapsulation in the presence of osteopontin increased simulated gastrointestinal survival. During infant fecal fermentation, a significant increase in total gas production (5.5-9.1 mL) was observed for the microencapsulated probiotic with even higher level of gas production observed for osteopontin associated microencapsulated probiotic during the late stage of fermentation (8-24 h). Infant fecal fermentation of the microencapsulated probiotic also produced substantial amounts of acetate (8-17 mM) and lactate (12-35 mM), along with minor amounts of succinate (1-2 mM) and propionate (0.5-2 mM). A positive correlation was observed between metabolite production and the number of viable B. bifidum R0071 entering colon fermentation, which significantly increased with the use of OPN in the microencapsulation process. The osteopontin associated microencapsulated probiotic also significantly elevated the relative abundance of Veillonella, which, along with Bifidobacterium, influenced gas and metabolite production. Overall, our findings demonstrate that incorporating OPN as an excipient in the microencapsulation of Bifidobacterium bifidum R0071 enhances probiotic viability and positively influences the development of infant gut microbiota, highlighting its potential application in promoting infant health.
Collapse
Affiliation(s)
- Yuqin Huang
- South China University of Technology, School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China
| | - Zerong Lu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou 510700, China
| | - Feitong Liu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou 510700, China
| | - Jonathan A Lane
- H&H Group, H&H Research, Global Research and Technology Center, P61 K202 Co. Cork, Ireland
| | - Juchun Chen
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou 510700, China
| | - Qiang Huang
- South China University of Technology, School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China
| | - Ruibiao Hu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou 510700, China.
| | - Bin Zhang
- South China University of Technology, School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China; Sino-Singapore International Research Institute, Guangzhou 510555, China.
| |
Collapse
|
31
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
32
|
Ni J, Wang Y, Sun H, Chang Z, Wang R, Jiang Y, Qin J, Gao M, Li Z. Comparative study on static and dynamic digest characteristics of oat β-Glucan and β-Gluco-Oligosaccharides. Food Res Int 2024; 197:115153. [PMID: 39593365 DOI: 10.1016/j.foodres.2024.115153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 11/28/2024]
Abstract
Both oat β-glucans (OGs) and their hydrolyzed counterparts, oat β-gluco-oligosaccharides (OGOs), are dietary fibers indigestible by humans. They serve as substrates for the colonic intestinal flora, exhibiting potential prebiotic properties. This study, through in vitro digestion simulation, found that OGs and OGOs are not degraded and can safely pass through the upper digestive tract to reach the colon. Anaerobic fermentation was conducted using fecal microbiota in an anaerobic tube and gastrointestinal reactor to investigate their impact on the structure and metabolism of intestinal flora. The research revealed that OGs and OGOs distinctly influence the fermentation characteristics and the intestinal flora's metabolic profile. Specifically, in static fermentation, OGs notably increased butyric acid production in both healthy individuals and those with type 2 diabetes, whereas OGOs more effectively enhanced acetic and propionic acid production in type 2 diabetics. Moreover, OGs and OGOs variably affected the composition of intestinal flora. In dynamic fermentation, there was a marked improvement in the production of short-chain fatty acids (SCFAs), with OGs significantly boosting butyric acid and OGOs enhancing acetic acid production. This study lays a theoretical foundation for employing specific dietary fibers to selectively improve intestinal flora and supports the development of functional ingredients that modulate intestinal microorganisms, utilizing in vitro research methodologies.
Collapse
Affiliation(s)
- Jialin Ni
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haoqing Sun
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zepeng Chang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ruyue Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yun Jiang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Qin
- Wuxi Vocational Institute of Arts & Technology, Wuxi 214206, China
| | - Minjie Gao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Zhitao Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
33
|
Cheng J, Ye K, Fu C, Zhou Y, Chen Y, Ma G, Chen S, Tu J, Xiao H. Comprehensive assessment of rice bran dietary fiber on gut microbiota composition and metabolism during in vitro fermentation. Food Res Int 2024; 197:115231. [PMID: 39577956 DOI: 10.1016/j.foodres.2024.115231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
Rice bran, a by-product of rice processing, is rich in various nutrients. As one of the main components of rice bran, dietary fiber has a variety of potential health benefits, especially its probiotic effects on gut health. This study involved the preparation and characterization of soluble rice bran dietary fibers (RB-SDF) and insoluble rice bran dietary fibers (RB-IDF), followed by an investigation into their gastrointestinal probiotic impact and principal metabolites. These results showed that rice bran dietary fiber could promote the production of short-chain fatty acids and the growth of probiotics during the fermentation in vitro. Specifically, RB-SDF significantly stimulated the growth of Bacteroides, Parabacteroides, and Acinetobacter, while RB-IDF encouraged the expansion of Tyzzerella, Pseudoflavonifractor, and Lachnospiraceae_UCG_004. Both dietary fibers could reduce the relative abundance of Escherichia_Shigella and Fusobacterium. The differential metabolites identified by untargeted metabolomics were l-pyroglutamic acid, d-(+)-tryptophan, indole-3-lactic acid, sulfolithocholic acid, 4-hydroxybenzaldehyde, indicating that different carbohydrates could significantly affect the metabolic profile of gut microbiota. Our finding indicated that rice bran dietary fiber can produce beneficial metabolites and modulate microbial ecosystems, which deserve further development for health applications.
Collapse
Affiliation(s)
- Jingni Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chujing Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang 212008, China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Tu
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang 212008, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Science, University of Massachusetts, Amherst 01003, USA.
| |
Collapse
|
34
|
Wu XQ, Zhao L, Zhao YL, He XY, Zou L, Zhao YY, Li X. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:423-435. [PMID: 38757785 PMCID: PMC11104709 DOI: 10.1080/13880209.2024.2351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Lei Zhao
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yan-Long Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Xin-Yao He
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
35
|
Yang D, Lv G, Wu Y, Guo W, Wang Y, Hu J, Li N, Zheng F, Dai Y, Pi Z, Yue H. Licorice-regulated gut-joint axis for alleviating collagen-induced rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156203. [PMID: 39510013 DOI: 10.1016/j.phymed.2024.156203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is partially affected by the integrity of the intestinal barrier. Licorice (GC), a medicinal and food-related herb, exhibits potent anti-inflammatory activity; however, studies on its mechanisms of action in RA are limited. METHOD Using a bovine type-II collagen-induced arthritis rat model, this study examined how GC influences the gut-joint axis to decrease RA. The Th17/Treg cell ratios in the blood, colon, and joints were also measured. Metabolomics and 16S rRNA sequencing were applied to explore the effects of variations in gut flora and metabolites. RESULTS The arthropathological slices, inflammation markers, and joint inflammation index scores in the GC treatment group significantly differed from those in the CIA group. Studies on the effect of GC on the gut-joint axis showed changes in the levels of lipopolysaccharide and diamine oxidase, both directly associated with intestinal permeability. ZO-1, occludin, and claudin-1, three intestinal tight-junction proteins, may express themselves more when exposed to GC. By maintaining an appropriate Th17/Treg cell ratio in the blood, colon, and joints, GC may reduce impaired to the intestinal barrier. An imbalance in the intestinal microenvironment, caused by modifications in gut flora and endogenous substances, can damage the intestinal barrier. GC may modify the relative abundances of Papillibacter, Clostridium, Eubacterium, Helicobacter, Provotella, and Barnesiella during RA treatment by repairing the intestinal barrier. The metabolic differences were mainly related to primary bile acid biosynthesis, pyrimidine metabolism, steroid biosynthesis, biotin metabolism, and sphingolipid metabolism. A fecal microbiota transplantation experiment confirmed the involvement of the gut microbiota and its metabolites in GC-mediated RA therapy. CONCLUSION The results demonstrated that GC repairs the intestinal barrier and adjusts the gut-joint axis to manage immunological imbalance in RA.
Collapse
Affiliation(s)
- Di Yang
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Guangfu Lv
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yongxi Wu
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Wentao Guo
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yuchen Wang
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Jiannan Hu
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Nian Li
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Yulin Dai
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China.
| | - Hao Yue
- Changchun University of Chinese Medicine, No. 1035 Boshuo Rd, Nanguan District, Changchun 130117, China.
| |
Collapse
|
36
|
Domínguez-Pino M, Mellado S, Cuesta CM, Grillo-Risco R, García-García F, Pascual M. Metagenomics Reveals Sex-Based Differences in Murine Fecal Microbiota Profiles Induced by Chronic Alcohol Consumption. Int J Mol Sci 2024; 25:12534. [PMID: 39684246 DOI: 10.3390/ijms252312534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic ethanol exposure induces an inflammatory response within the intestinal tract, compromising mucosal and epithelial integrity and leading to dysbiosis of the gut microbiome. However, the specific roles of the gut microbiota in mediating ethanol-induced effects, as well as their interactions with the immune system, remain poorly characterized. This study aimed to evaluate sex-based differences in fecal microbiota profiles induced by chronic alcohol consumption and to assess whether TLR4 is involved in these effects. We analyzed the 16S rRNA gene sequencing of fecal samples from male and female wild-type (WT) and TLR4-knockout (TLR4-KO) mice with and without chronic ethanol exposure over a three-month period. Our findings provide evidence, for the first time, that male mice are more susceptible to the effects of ethanol on the fecal microbiota, since ethanol exposure induced greater alterations in the Gram-negative and -positive bacteria with immunogenic capacity in the WT male mice than in the female mice. We also demonstrate that the absence of immune receptor TLR4 leads to different microbiota in both sexes, showing anti-inflammatory and protective properties for intestinal barrier function and resulting in a phenotype more resistant to ethanol's effects. These findings may open new avenues for understanding the relationship between gut microbiota profiles and inflammation in the digestive system induced by chronic alcohol consumption.
Collapse
Affiliation(s)
- Manuel Domínguez-Pino
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Carlos M Cuesta
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Rubén Grillo-Risco
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| |
Collapse
|
37
|
Cui J, Li X, Zhang Q, Du B, Ding Z, Yan C, Xue G, Gan L, Feng J, Fan Z, Xu Z, Yu Z, Fu T, Feng Y, Zhao H, Kong Y, Cui X, Tian Z, Liu Q, Yuan J. Existence and distribution of the microbiome in tumour tissues of children with hepatoblastoma. Heliyon 2024; 10:e39547. [PMID: 39553581 PMCID: PMC11564952 DOI: 10.1016/j.heliyon.2024.e39547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/18/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer microbiota have recently been demonstrated in several cancer types. The microbiome enhances inflammation in the cancer microenvironment and affects the disease pathology by regulating tumourigenesis, cancer progression, and chemotherapy resistance. Hepatoblastoma (HB), the most common childhood malignant tumour, is a malignant embryonic tumour. However, the pathogenesis and molecular basis of HB remain poorly understood. In this study, to explore the existence and distribution of the microbiome in tumour tissues and adjacent non-tumour tissues of children with HB, we mainly performed 16S rDNA sequencing, and the results showed that the diversity and abundance of the microbiome in children with HB were significantly different between HB tumours and adjacent non-tumour tissues (p < 0.01). At the phylum level, the dominant microbiome in the tumour tissues were Proteobacteria, Bacteroidetes, and Firmicutes. At the genus level, Ruminococcus was more abundant in HB tumours than in the adjacent non-tumour tissues. Simultaneously, the abundances of Bacteroides, Parabacteroides, Lachnospiracea-NK4A136, and Alistipes in HB tumours were lower than those in the adjacent non-tumour tissues. In addition, Romboutsia strongly correlated with alpha-fetoprotein, an important indicator of HB. Sphingomonas was abundant in primary HB tumours, whereas Oscillibacter and Pandoraea were abundant in metastatic HB tumours. However, whether these bacteria are associated with HB needs further evaluation. Therefore, we identified the microbiome that correlated with the occurrence and development of HB. Ruminococcus and Romboutsia were identified as potential bacterial markers of HB tumours. To conclude, we found that HB also contains cancer microbiome, and it is necessary to shed light on the microbiome characteristics of HB in the future.
Collapse
Affiliation(s)
- Jinghua Cui
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaoran Li
- Postgraduate Base of the PLA Rocket Force Medical Center, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
- Department of Hematology and Oncology, 155th Hospital of Kaifeng, Kaifeng, 475003, Henan Province, China
| | - Qun Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Bing Du
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zanbo Ding
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chao Yan
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Guanhua Xue
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Gan
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Junxia Feng
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zheng Fan
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziying Xu
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zihui Yu
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Tongtong Fu
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yanling Feng
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hanqing Zhao
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yiming Kong
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaohu Cui
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziyan Tian
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Quanda Liu
- Postgraduate Base of the PLA Rocket Force Medical Center, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
- Department of General Surgery, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing, 100020, China
| |
Collapse
|
38
|
Xu J, Wang X, Xu W, Zhang Y, Pan L, Gao J. The protective effect of S-adenosylmethionine on chronic adolescent stress-induced depression-like behaviors by regulating gut microbiota. Eur J Pharmacol 2024; 982:176939. [PMID: 39182548 DOI: 10.1016/j.ejphar.2024.176939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The efficacy and tolerability of current antidepressants for adolescent depression are inadequate. S-adenosylmethionine (SAMe), known for its effectiveness and minimal side effects in adult depression, remains unstudied in adolescents. This study explored the potential of SAMe to address depression-like behaviors in juvenile rats induced by chronic unpredictable mild stress (CUMS), with a focus on gut microbiome interactions. Adolescent male Wistar rats were subjected to a 4-week CUMS regimen and received daily intraperitoneal injections of 300 mg/kg SAMe. Behavioral assessments included the sucrose preference test, elevated plus maze test, open field test, and Y-maze test. Histopathological changes of the hippocampus and colon were observed by Nissl staining and hematoxylin and eosin staining, respectively. Gut microbiome composition was analyzed using Accurate 16S absolute quantification sequencing. The results showed that SAMe significantly improved behavioral outcomes, reduced histopathological damages in hippocampal neurons and colon tissues, and modulated the gut microbiota of depressed rats. It favorably altered the ratio of Bacteroidetes to Firmicutes, decreased the absolute abundance of Deferribacteres, and adjusted levels of key microbial genera associated with depression-like behaviors. These results suggested that SAMe could effectively counter depression-like behaviors in CUMS-exposed adolescent rats by mitigating hippocampal neuronal and colon damage and modulating the gut microbiota. This supports SAMe as a viable and tolerable treatment option for adolescent depression, highlighting the importance of the gut-brain axis in therapeutic strategies.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Xinqi Wang
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Wangwang Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Yang Zhang
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Liangke Pan
- Qingdao No.9 High School, Shandong Province, Qingdao, Shandong, 266000, China
| | - Jin Gao
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China.
| |
Collapse
|
39
|
Pansai N, Wungsintaweekul J, Wichienchot S. The effects of Mitragyna speciosa extracts on intestinal microbiota and their metabolites in vitro fecal fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8500-8510. [PMID: 38923512 DOI: 10.1002/jsfa.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Kratom (Mitragyna speciosa) has a long history of traditional use. It contains various alkaloids and polyphenols. The properties of kratom's alkaloids have been well-documented. However, the property of kratom's polyphenols in water-soluble phase have been less frequently reported. This study assessed the effects of water-soluble Mitragyna speciosa (kratom) extract (MSE) on gut microbiota and their metabolite production in fecal batch culture. RESULTS The water-soluble kratom extract (MSE0) and the water-soluble kratom extract after partial sugar removal (MSE50) both contained polyphenols, with total phenolic levels of 2037.91 ± 51.13 and 3997.95 ± 27.90 mg GAE/g extract, respectively and total flavonoids of 81.10 ± 1.00 and 84.60 ± 1.43 mg CEQ/g extract. The gut microbiota in fecal batch culture was identified by 16S rRNA gene sequencing at 0 and 24 h of fermentation. After fermentation, MSE50 stimulated the growth of Bifidobacterium more than MSE0. MSE0 gave the highest total fatty acids level among the treatments. The phenolic metabolites produced by some intestinal microbiota during fecal fermentation at 24 h were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major metabolite of biotransformation of both water-soluble MSEs by intestinal microbiota was pyrocatechol (9.85-11.53%). CONCLUSION The water-soluble MSEs and their produced metabolites could potentially be used as ingredients for functional and medicinal food production that supports specific gut microbiota. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nattha Pansai
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Juraithip Wungsintaweekul
- Pharmacognosy and Pharmaceutical Botany Program, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Santad Wichienchot
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
- Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
40
|
Lou Y, Wen X, Song S, Zeng Y, Huang L, Xie Z, Shao T, Wen C. Dietary pectin and inulin: A promising adjuvant supplement for collagen-induced arthritis through gut microbiome restoration and CD4 + T cell reconstitution. J Nutr Biochem 2024; 133:109699. [PMID: 38972609 DOI: 10.1016/j.jnutbio.2024.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Dietary strategies rich in fiber have been demonstrated to offer benefits to individuals afflicted with rheumatoid arthritis (RA). However, the specific mechanisms through which a high-fiber diet (HFD) mitigates RA's autoimmunity remain elusive. Herein, we investigate the influence of pectin- and inulin-rich HFD on collagen-induced arthritis (CIA). We establish that HFD significantly alleviates arthritis in CIA mice by regulating the Th17/Treg balance. The rectification of aberrant T cell differentiation by the HFD is linked to the modulation of gut microbiota, augmenting the abundance of butyrate in feces. Concurrently, adding butyrate to the drinking water mirrors the HFD's impact on ameliorating CIA, encompassing arthritis mitigation, regulating intestinal barrier integrity, and restoring the Th17/Treg equilibrium. Butyrate reshapes the metabolic profile of CD4+ T cells in an AMPK-dependent manner. Our research underscores the importance of dietary interventions in rectifying gut microbiota for RA management and offers an explanation of how diet-derived microbial metabolites influence RA's immune-inflammatory-reaction.
Collapse
Affiliation(s)
- Yu Lou
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianghui Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Department of Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siyue Song
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Zeng
- Department of Clinical Medicine, The 2ND Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Huang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tiejuan Shao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chengping Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
41
|
Liu W, Zhang Y, Zheng M, Ye Y, Shi M, Wang X, Cao L, Wang L. Polysaccharides in Medicinal and Food Homologous Plants regulate intestinal flora to improve type 2 diabetes: Systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156027. [PMID: 39270592 DOI: 10.1016/j.phymed.2024.156027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Medicinal and food homologous plants (MFHPs) which can improve Type 2 Diabetes Mellitus (T2DM) draw significant attention among the public due to their low toxicity and more safety. Polysaccharides, one of the various active components of MFHPs, are recognized as effective modulators of the intestinal flora. By altering the composition of intestinal flora and affecting their metabolic products, polysaccharides can improve T2DM, making them a central focus of anti-diabetic research. PURPOSE The purpose of this study is to systematically review the mechanism by which polysaccharides from MFHPs (MFHPPs) regulate the composition of intestinal flora and its metabolic products to improve T2DM. METHODS This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and conducts a comprehensive search on the PubMed, Web of Science and Embase databases. All experimental articles published up to March 4, 2024, are included in the search. RESULTS Among the 5733 articles reviewed, 29 were selected, covering 22 different MFHPs. MFHPPs can improve T2DM, particularly in lowering blood glucose levels, with consistent results. MFHPPs can regulate the diversity of intestinal flora in T2DM animal models, primarily affecting four phyla: decreasing Firmicutes and Proteobacteria while increasing Bacteroidetes and Actinobacteriota. At the genus level, the improvement of T2DM by MFHPPs is associated with the modulation of 12 key genera: Allobaculum, Akkermansia, Bifidobacterium, Lactobacillus, Helicobacter, Halomonas, Olsenella, Oscillospira, Shigella, Escherichia-Shigella, Romboutsia and Bacteroides. At the molecular level, MFHPPs primarily act by modulating the intestinal flora to increase short-chain fatty acid levels, promote the secretion of glucagon-like peptide-1, influence the IGF1/PI3K/AKT signaling pathway, or the PI3K/AKT/GSK-3β pathway, to lower blood glucose levels. They may also improve T2DM by working in glucose metabolism through the "microbiota-gut-organ" axis. MFHPPs can also alleviate T2DM by mitigating inflammation and oxidative stress: MFHPPs regulate intestinal flora to reduce lipopolysaccharide "leakage" and enhance intestinal mucosal permeability to tackle the inflammation associated with T2DM; MFHPPs enhance the expression of oxidative stress-related enzymes to alleviate oxidative stress and improve T2DM. Lastly, from a metabolic pathway perspective, MFHPPs are primarily involved in the metabolism of amino acids and their derivatives, carbohydrate metabolism and glutathione metabolism. CONCLUSION MFHPPs can improve T2DM by enhancing the composition of intestinal flora, regulating its metabolic products to promote insulin secretion, inhibiting glucagon-like peptide secretion, facilitating glycogen synthesis, reducing inflammation levels and alleviating oxidative stress. Furthermore, MFHPPs demonstrate potential protective effects on critical organs such as the pancreas, liver, kidneys and heart. Therefore, MFHPPs demonstrate significant clinical potential. However, most studies can only indicate the potential of MFHPPs intervention in improving T2DM through the intestinal flora. The causality between MFHPPs regulating the intestinal flora and T2DM requires further investigation.
Collapse
Affiliation(s)
- Wanting Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yikai Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingze Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yixiao Ye
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mujia Shi
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao Wang
- Xianghu Laboratory, Hangzhou, Zhejiang, 311231, China.
| | - Lingyong Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
42
|
Ren X, Cai S, Zhong Y, Tang L, Xiao M, Li S, Zhu C, Li D, Mou H, Fu X. Marine-Derived Fucose-Containing Carbohydrates: Review of Sources, Structure, and Beneficial Effects on Gastrointestinal Health. Foods 2024; 13:3460. [PMID: 39517244 PMCID: PMC11545675 DOI: 10.3390/foods13213460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Fucose, fucose-containing oligosaccharides, and fucose-containing polysaccharides have been widely applied in the fields of food and medicine, including applications in Helicobacter pylori eradication and renal function protection. Fucose-containing carbohydrates (FCCs) derived from marine organisms such as seaweed, invertebrates, microalgae, fungi, and bacteria have garnered growing attention due to their diverse bioactivities and potential therapeutic applications. Marine-derived FCCs characterized by high fucose residue content and extensive sulfate substitution, including fucoidan, fucosylated chondroitin sulfate, and fucose-rich microbial exopolysaccharides, have demonstrated significant potential in promoting gastrointestinal health. This review describes the unique structural features of FCCs and summarizes their health benefits, including regulation of gut microbiota, modulation of microbial metabolism, anti-adhesion activities against H. pylori and gut pathogens, protection against inflammatory injuries, and anti-tumor activities. Additionally, this review discusses the structural characteristics that influence the functional properties and the limitations related to the activity research and preparation processes of FCCs, providing a balanced perspective on the application potential and challenges of FCCs with specific structures for the regulation of gastrointestinal health and diseases.
Collapse
|
43
|
Wang Z, Chang N, Lun X, Wang L, Wang Z, Guo C, Wang X, Ji H, Liu P, Liu Q. Impacts of ectoparasite flea infestation on gut microbiota of the Meriones unguiculatus in a rodent-flea system. Parasitol Res 2024; 123:361. [PMID: 39453579 DOI: 10.1007/s00436-024-08384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Fleas, along with one of their host species, Meriones unguiculatus, possess the capability to act as vectors in the transmission of plague. Parasitism by fleas may markedly influence the physiology and immune system of their hosts. Gut microbiota plays an important role in the growth and development of rodents. However, few studies have explored the impacts of ectoparasitic flea on the gut microbiome of rodents. This study investigated the immunological responses and changes in the gut microbial diversity and composition in both wild and laboratory rodents infested with fleas and laboratory rodents infested with Ctenocephalides felis. We measured immune reactions post-infestation by enzyme-linked immunosorbent assay (ELISA) and explored the effects of ectoparasitic infestation on the diversity and composition of the rodent gut microbiota in microbiome studies by 16S rRNA gene sequencing techniques. After flea infestation, results from 16S rRNA gene sequencing techniques indicated a significant increase in alpha diversity, affecting the composition of the gut microbiota. At the genus level, the abundance of the harmful bacterium Desulfovibrio increased. Beta diversity analyses showed significant differences between the gut microbiota of the experimental and control groups. ELISA results revealed significantly elevated levels of IgG in parasitized mice, while the differences in IgA levels were not significant. Flea infections affect the composition and diversity of the gut microbiota in the M. unguiculatu, and it has been found that the biomarker Desulfovibrio increases following flea infection in these rodents. Our results indicate that the gut microbiota can regulate the stability of the rodent-flea system. These findings may provide a foundation for exploring preventive measures against plague and aid in developing more effective treatments for the infection.
Collapse
Affiliation(s)
- Zihao Wang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Chang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, China
| | - Lu Wang
- School of Public Health, Cheeloo College Medicine, Shandong University, Jinan, China
| | - Zhenxu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, China
| | - Chenran Guo
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoxu Wang
- School of Public Health, Cheeloo College Medicine, Shandong University, Jinan, China
| | - Haoqiang Ji
- School of Public Health, Cheeloo College Medicine, Shandong University, Jinan, China
| | - Pengbo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, China
| | - Qiyong Liu
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, China.
- School of Public Health, Cheeloo College Medicine, Shandong University, Jinan, China.
| |
Collapse
|
44
|
Connolly D, Minj J, Murphy KM, Solverson PM, Rust BM, Carbonero F. Impact of quinoa and food processing on gastrointestinal health: a narrative review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39422522 DOI: 10.1080/10408398.2024.2416476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Due to exceptional nutritional quality, quinoa is an ideal candidate to solve food insecurity in many countries. Quinoa's profile of polyphenols, essential amino acids, and lipids make it ideal for digestive health. How the nutrient profile and bioavailability of quinoa metabolites differs across cooking methods such as heat, pressure, and time employed has yet to be elucidated. The objective of this review is to compile available research pertaining to the impact of various cooking methods on quinoa's nutritional properties with specific emphasis on how those properties affect gut health. Replacing small percentages of wheat flour with quinoa flour in baked bread increases the antioxidant activity, essential amino acids, fiber, minerals, and polyphenols. Extruding quinoa flour reduces amino acid, lipid, and polyphenol content of the raw seed, however direct quinoa and cereal grain extrudate comparisons are absent. Boiling quinoa leads to an increase of dietary fiber as well as exceptional retention of amino acids, lipids, and polyphenols. Baking and extruding with quinoa flour results in less optimal texture due to higher density, however minor substitutions can retain acceptable texture and even improve taste. Future research on quinoa's substitution in common processing methods will create equally desirable, yet more nutritious food products.
Collapse
Affiliation(s)
- Devin Connolly
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Jagrani Minj
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Kevin M Murphy
- Department of Crop and Soil Science, Washington State University, Pullman, Washington, USA
| | - Patrick M Solverson
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Bret M Rust
- Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- School of Food Science, Washington State University, Spokane, Washington, USA
| |
Collapse
|
45
|
Moon H, Kang K, Kim M. Potential Prebiotic Effects of Artemisia capillaris-Derived Transglycosylated Product. Foods 2024; 13:3267. [PMID: 39456329 PMCID: PMC11507088 DOI: 10.3390/foods13203267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the impact of a transglycosylated product (ACOD) catalyzed by Leuconostoc mesenteroides MKSR dextransucrase using sucrose as a glucosyl donor and both maltose and Artemisia capillaris as acceptors on gut microbiota through fecal fermentation. ACOD promoted the growth of probiotics such as Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lacticaseibacillus rhamnosus GG, and Leuconostoc mesenteroides MKSR, while inhibiting the growth of pathogenic bacteria such as Escherichia coli, E. coli O157:H7, Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, Shigella flexneri, Streptococcus mutans, Pseudomonas aeruginosa, and Bacillus cereus during independent cultivation. Fecal fermentation for 24 h revealed that ACOD significantly increased the production of short-chain fatty acids (SCFAs) compared to the blank and fructoooligosaccharide (FOS) groups. Specifically, ACOD led to a 4.5-fold increase in acetic acid production compared to FOSs and a 3.3-fold increase in propionic acid production. Both the ACOD and FOS groups exhibited higher levels of butyric acid than the blank. Notably, ACOD significantly modulated the composition of the gut microbiota by increasing the relative abundances of Lactobacillus and decreasing Escherichia/Shigella and Salmonella. In contrast, FOSs remarkably promoted the growth of Salmonella. These findings suggest that ACOD is a potential candidate for prebiotics that improve the intestinal environment by being actively used by beneficial bacteria.
Collapse
Affiliation(s)
- Heewon Moon
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea;
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Misook Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
46
|
Wu Q, Yang Y, Xu Y, Wang B, Liu X, Wang Y, Zhang G, Bian X, Ma C, Zhang N. Impact of butyric acid modification on the structural and functional properties of rice starch. Curr Res Food Sci 2024; 9:100874. [PMID: 39435453 PMCID: PMC11491674 DOI: 10.1016/j.crfs.2024.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Rice is a food with a high starch content, comprising over 75% of its composition. However, prolonged and excessive consumption of this cereal may lead to elevated blood glucose levels, which can increase the risk of obesity, type 2 diabetes, and cardiovascular disease. Butyric acid (BA), the primary energy source for colonic epithelial cells, exhibits the highest utilization rate among short-chain fatty acids, underscoring its importance for human health. In this study, rice starch butyrate (RSB) samples were synthesized using the aqueous phase process, with broken rice starch (RS) and butyric anhydride serving as the substrate. RSB samples with different degrees of substitution (DS) were produced by modulating the addition amount of butyric anhydride. The crystal structures, morphology of starch granules, pasting properties, thermal stability, and in vitro digestibilities of the RSB were investigated and compared with those of native rice starch. Fourier transform infrared (FTIR) spectroscopy confirmed the successful incorporation of butyryl into the starch molecules. With the increase in DS, the roughness of the RSB material's surface gradually increased, leading to the deterioration of the smooth structure on certain surfaces, which resulted in the appearance of cracks and collapses. Additionally, the crystallinity diminished from 24.77% to 7.41% with increasing DS. Concurrently, in vitro digestive characterisation revealed that the percentage of resistant starch increased from 24.33% to 47.72%. Thus, this study can provide a theoretical basis for the development of novel products of amyl butyrate.
Collapse
Affiliation(s)
| | | | - Yue Xu
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, China
| |
Collapse
|
47
|
Ma Y, Zhao Y, Zhang X. Factors affecting neutrophil functions during sepsis: human microbiome and epigenetics. J Leukoc Biol 2024; 116:672-688. [PMID: 38734968 DOI: 10.1093/jleuko/qiae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a severe disease that occurs when the body's immune system reacts excessively to infection. The body's response, which includes an intense antibacterial reaction, can damage its tissues and organs. Neutrophils are the major components of white blood cells in circulation, play a vital role in innate immunity while fighting against infections, and are considered a feature determining sepsis classification. There is a plethora of basic research detailing neutrophil functioning, among which, the study of neutrophil extracellular traps is providing novel insights into mechanisms and treatments of sepsis. This review explores their functions, dysfunctions, and influences in the context of sepsis. The interplay between neutrophils and the human microbiome and the impact of DNA methylation on neutrophil function in sepsis are crucial areas of study. The interaction between neutrophils and the human microbiome is complex, particularly in the context of sepsis, where dysbiosis may occur. We highlight the importance of deciphering neutrophils' functional alterations and their epigenetic features in sepsis because it is critical for defining sepsis endotypes and opening up the possibility for novel diagnostic methods and therapy. Specifically, epigenetic signatures are pivotal since they will provide a novel implication for a sepsis diagnostic method when used in combination with the cell-free DNA. Research is exploring how specific patterns of DNA methylation in neutrophils, detectable in cell-free DNA, could serve as biomarkers for the early detection of sepsis.
Collapse
Affiliation(s)
- Yina Ma
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Xin Zhang
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| |
Collapse
|
48
|
Rong X, Shu Q. Enhancing immunomodulation in cyclophosphamide-induced immunosuppressed mice through targeted modulation of butyrate-producing gut microbiota via oral administration of astragalus polysaccharides. Food Sci Nutr 2024; 12:7683-7695. [PMID: 39479666 PMCID: PMC11521734 DOI: 10.1002/fsn3.4386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 11/02/2024] Open
Abstract
Astragalus polysaccharide is one of the most extensively studied traditional Chinese medicinal polysaccharides because of its immunomodulatory activity and has attracted considerable attention. Existing evidence suggests that its potential immunomodulatory mechanism is related to the modulation of intestinal microbiota. However, current research methods on the gut microbiota mainly focus on 16S rRNA sequencing, providing limited evidence of specific changes in functional bacterial groups in the intestine. Butyrate is a class of short-chain fatty acids among the microbial metabolites in the gut and is most closely associated with immunomodulatory activity. Thus, in this study, we extracted and purified a polysaccharide from astragalus composed of a main chain of →4)-α-D-Glcp-(1 → and →4,6)-α-D-Glcp-(1→, with side chains of →6)-α-D-Glcp-(1→ and aggregated arabinose, and investigated the changes in butyrate-producing bacterial groups in mice during the immunomodulation process of astragalus polysaccharide, using two butyrate-producing bacterial-specific primers. The results showed that oral administration of astragalus polysaccharide significantly increased butyrate production in the mouse intestine, restoring the disrupted butyrate-producing bacterial abundance and diversity caused by immunosuppression. In conclusion, our study provides the first evidence of the targeted modulation of the butyrate-producing gut microbiota by astragalus polysaccharide, offering insights into its pharmacological activity.
Collapse
Affiliation(s)
- XinQian Rong
- College of Traditional Chinese MedicineJiangxi University of Chinese MedicineNanchangChina
| | - QingLong Shu
- College of Traditional Chinese MedicineJiangxi University of Chinese MedicineNanchangChina
| |
Collapse
|
49
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and beneficial metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:367-409. [PMID: 39396841 DOI: 10.1016/bs.adgen.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. In recent years, the impact of the gut microbiota on the development of CRC has become clear. The gut microbiota is the community of microorganisms living in the gut symbiotic relationship with the host. These microorganisms contribute to the development of CRC through various mechanisms that are not yet fully understood. Increasing scientific evidence suggests that metabolites produced by the gut microbiota may influence CRC development by exerting protective and deleterious effects. This article reviews the metabolites produced by the gut microbiota, which are derived from the intake of complex carbohydrates, proteins, dairy products, and phytochemicals from plant foods and are associated with a reduced risk of CRC. These metabolites include short-chain fatty acids (SCFAs), indole and its derivatives, conjugated linoleic acid (CLA) and polyphenols. Each metabolite, its association with CRC risk, the possible mechanisms by which they exert anti-tumour functions and their relationship with the gut microbiota are described. In addition, other gut microbiota-derived metabolites that are gaining importance for their role as CRC suppressors are included.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
50
|
Sun M, Liu Y, Tang S, Li Y, Zhang R, Mao L. Characterization of Intestinal Flora in Osteoporosis Patients Based on 16S rDNA Sequencing. Int J Gen Med 2024; 17:4311-4324. [PMID: 39346630 PMCID: PMC11430314 DOI: 10.2147/ijgm.s468654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Aim This study investigated differences in gut flora between osteoporosis (OP) patients and healthy individuals using 16S rDNA sequencing. The correlation between differential flora abundance and bone mineral density (BMD) was analyzed, and key flora and potential mechanisms associated with OP were explored. Methods Forty-three OP patients and twenty-four healthy volunteers were recruited. Gender, age, height, weight, and BMD data were collected. DNA from fecal samples was extracted for 16S rDNA sequencing. The Kruskal-Wallis test assessed differences in gut flora composition, while LEfSe analysis identified significant flora. Spearman correlation analysis examined the relationship between differential flora and BMD, and PICRUSt predicted pathways involved in OP. Results Significant differences in microbial composition were found between the two groups. Klebsiella, Escherichia-Shigella, and Akkermansia were biomarkers in OP patients, with Faecalibacterium in the healthy group. Akkermansia abundance negatively correlated with lumbar BMD, while Klebsiella and Escherichia-Shigella negatively correlated with femoral neck and hip BMD. Faecalibacterium showed a positive correlation with BMD. Functional predictions indicated differences in metabolism-related pathways between the groups. Conclusion Gut flora differed significantly between OP patients and healthy individuals. Akkermansia, Klebsiella, and Escherichia-Shigella could serve as diagnostic biomarkers for OP, highlighting the potential of gut flora in OP diagnosis and treatment.
Collapse
Affiliation(s)
- Mengyue Sun
- Department of Geratology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Shan Tang
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Yiming Li
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Ridong Zhang
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Li Mao
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| |
Collapse
|