1
|
German IJS, Barbalho SM, Andreo JC, Zutin TLM, Laurindo LF, Rodrigues VD, Araújo AC, Guiguer EL, Direito R, Pomini KT, Shinohara AL. Exploring the Impact of Catechins on Bone Metabolism: A Comprehensive Review of Current Research and Future Directions. Metabolites 2024; 14:560. [PMID: 39452941 PMCID: PMC11509841 DOI: 10.3390/metabo14100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Degenerative musculoskeletal diseases represent a global health problem due to the progressive deterioration of affected individuals. As a bioactive compound, catechins have shown osteoprotective properties by stimulating osteoblastic cells and inhibiting bone resorption. Thus, this review aimed to address the mechanism of action of catechins on bone tissue. Methods: The search was applied to PubMed without limitations in date, language, or article type. Fifteen articles matched the topic and objective of this review. Results: EGCG (epigallocatechin gallate) and epicatechin demonstrated action on the osteogenic markers RANKL, TRAP, and NF-κβ and expression of BMPs and ALP, thus improving the bone microarchitecture. Studies on animals showed the action of EGCG in increasing calcium and osteoprotegerin levels, in addition to regulating the transcription factor NF-ATc1 associated with osteoclastogenesis. However, it did not show any effect on osteocalcin and RANK. Regarding human studies, EGCG reduced the risk of fracture in a dose-dependent manner. In periodontal tissue, EGCG reduced IL-6, TNF, and RANKL in vitro and in vivo. Human studies showed a reduction in periodontal pockets, gingival index, and clinical attachment level. The action of EGCG on membranes and hydrogels showed biocompatible and osteoinductive properties on the microenvironment of bone tissue by stimulating the expression of osteogenic growth factors and increasing osteocalcin and alkaline phosphate levels, thus promoting new bone formation. Conclusions: EGCG stimulates cytokines related to osteogenes, increasing bone mineral density, reducing osteoclastogenesis factors, and showing great potential as a therapeutic strategy for reducing the risk of bone fractures.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Research Coordination, UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| | - Tereza Lais Menegucci Zutin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, Brazil; (L.F.L.)
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, Brazil; (L.F.L.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed. ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| |
Collapse
|
2
|
Qiao R, Guo J, Zhang C, Wang S, Fang J, Geng R, Kang SG, Huang K, Tong T. Diabetes-induced muscle wasting: molecular mechanisms and promising therapeutic targets. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39049742 DOI: 10.1080/10408398.2024.2382348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Diabetes has become a serious public health crisis, presenting significant challenges to individuals worldwide. As the largest organ in the human body, skeletal muscle is a significant target of this chronic disease, yet muscle wasting as a complication of diabetes is still not fully understood and effective treatment methods have yet to be developed. Here, we discuss the targets involved in inducing muscle wasting under diabetic conditions, both validated targets and emerging targets. Diabetes-induced skeletal muscle wasting is known to involve changes in various signaling molecules and pathways, such as protein degradation pathways, protein synthesis pathways, mitochondrial function, and oxidative stress inflammation. Recent studies have shown that some of these present potential as promising therapeutic targets, including the neuregulin 1/epidermal growth factor receptor family, advanced glycation end-products, irisin, ferroptosis, growth differentiation factor 15 and more. This study's investigation and discussion of such pathways and their potential applications provides a theoretical basis for the development of clinical treatments for diabetes-induced muscle wasting and a foundation for continued focus on this disease.
Collapse
Affiliation(s)
- Ruixue Qiao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Chengmei Zhang
- Guizhou Academy of Testing and Analysis, Guiyang, The People's Republic of China
| | - Sirui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, The People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, The People's Republic of China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, The People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, The People's Republic of China
| |
Collapse
|
3
|
Zhao D, Shen S, Guo Y, Wang Y, Gu C, Guo B, Jiang T. Flavan-3-ol monomers intake is associated with osteoarthritis risk in Americans over 40 years of age: results from the National Health and Nutritional Examination Survey database. Food Funct 2024; 15:6966-6974. [PMID: 38845387 DOI: 10.1039/d3fo04687g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objectives: Osteoarthritis (OA) stands as the prevailing progressive musculoskeletal disease, serving as the primary cause of chronic pain and activity limitations among adults over 40. Flavan-3-ols, common polyphenolic compounds, are believed to harbor anti-inflammatory and anti-aging properties. This study explores the relationship between flavan-3-ol intake and osteoarthritis risk in individuals over the age of 40 in the US. Methods: This study included 7452 participants over the age of 40 from three cycles (2007-2008, 2009-2010, and 2017-2018) of the National Health and Nutrition Examination Survey. Information on OA history was obtained via home surveys. Information on flavan-3-ol monomers intake was obtained using a survey from the Food and Nutrient Database for Dietary Studies. We used a logistic regression model and restricted cubic spline to analyze the relationships between flavan-3-ol monomers and OA. Stratified analyses were also conducted in this study. Results: There were 1056 participants with OA and 6396 without OA. Compared to the first tertile (T1) group, the adjusted odds ratio with a 95% confidence interval (CI) of logistic regression model 2 for the flavan-3-ol T2 group was 1.296 (0.979-1.715) (p = 0.068), the OR for (-)-epigallocatechin was 1.292 (1.025-1.629) (p = 0.032), and the OR for (-)-epicatechin 3-gallate was 1.348 (1.013, 1.793) (p = 0.042). A dose-response curve indicated a non-linear association (p for non-linearity <0.05) between OA and total flavan-3-ol monomers (nadir point: 483.29 mg, 95% CI: 0.61-0.90). No interaction effects were found in the subgroup analysis. Conclusions: In individuals over 40 in the US, the average daily dietary intake of flavan-3-ol monomers manifests a J-shaped relationship with OA risk.
Collapse
Affiliation(s)
- Donghui Zhao
- Nanjing University Of Chinese Medicine, Nanjing, China
| | - Shasha Shen
- Nanjing University Of Chinese Medicine, Nanjing, China
| | - Yi Guo
- Nanjing University Of Chinese Medicine, Nanjing, China
| | - Yu Wang
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University Of Chinese Medicine, Changzhou, China.
| | - Chonghao Gu
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University Of Chinese Medicine, Changzhou, China.
| | - Bingqing Guo
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University Of Chinese Medicine, Changzhou, China.
| | - Tao Jiang
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University Of Chinese Medicine, Changzhou, China.
| |
Collapse
|
4
|
Singh N, Nandy SK, Jyoti A, Saxena J, Sharma A, Siddiqui AJ, Sharma L. Protein Kinase C (PKC) in Neurological Health: Implications for Alzheimer's Disease and Chronic Alcohol Consumption. Brain Sci 2024; 14:554. [PMID: 38928554 PMCID: PMC11201589 DOI: 10.3390/brainsci14060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C (PKC) is a diverse enzyme family crucial for cell signalling in various organs. Its dysregulation is linked to numerous diseases, including cancer, cardiovascular disorders, and neurological problems. In the brain, PKC plays pivotal roles in synaptic plasticity, learning, memory, and neuronal survival. Specifically, PKC's involvement in Alzheimer's Disease (AD) pathogenesis is of significant interest. The dysregulation of PKC signalling has been linked to neurological disorders, including AD. This review elucidates PKC's pivotal role in neurological health, particularly its implications in AD pathogenesis and chronic alcohol addiction. AD, characterised by neurodegeneration, implicates PKC dysregulation in synaptic dysfunction and cognitive decline. Conversely, chronic alcohol consumption elicits neural adaptations intertwined with PKC signalling, exacerbating addictive behaviours. By unravelling PKC's involvement in these afflictions, potential therapeutic avenues emerge, offering promise for ameliorating their debilitating effects. This review navigates the complex interplay between PKC, AD pathology, and alcohol addiction, illuminating pathways for future neurotherapeutic interventions.
Collapse
Affiliation(s)
- Nishtha Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Shouvik Kumar Nandy
- School of Pharmacy, Techno India University, Sector-V, Kolkata 700091, West Bengal, India;
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara 391760, Gujarat, India;
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| |
Collapse
|
5
|
Shi Y, Guo S, Zhou J, Xu P, Wang Y. Black tea preserves intestinal homeostasis through balancing barriers and microbiota in mice. Front Nutr 2024; 11:1367047. [PMID: 38835958 PMCID: PMC11148374 DOI: 10.3389/fnut.2024.1367047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Black tea, a beverage consumed worldwide, possesses favorable effects on gastrointestinal tract, including nourishing stomach and promoting digestion. Nevertheless, its specific effects on intestinal homeostasis remains inconclusive. Methods We applied black tea to mice prior to inducing colitis with DSS and then monitored their body weight and disease activity index (DAI) daily. When sacrificed, we measured intestinal permeability and conducted analyses of mucin and tight junction proteins. We detected inflammatory cytokines, immune cells, and related inflammatory signaling pathways. In addition, the gut microbiota was analyzed through 16S rRNA sequencing, and the concentrations of short-chain fatty acids (SCFAs) were also measured. Results The results showed that black tea-treated group significantly rescued the DSS-disrupted intestinal structure. It reduced the relative abundance of the pathogenic bacterium Turicibacter, while increased the abundance of beneficial bacteria norank_f_Muribaculaceae and restored the contents of SCFAs such as acetate, propionate, and butyrate. It also protected the intestinal barrier by reducing the levels of immune response-related factors (e.g., TNF-α, IL-6, IL-1β) and increasing the expression of tight junction proteins (TJs) (e.g., ZO-1, occludin). Furthermore, black tea exhibited the capacity to suppress the expression of MMP-9 and ICAM-1, as well as to inhibit the activation of NF-κB signaling pathway. Discussion Our findings provide a theoretical framework that elucidates the mechanisms by which black tea preserves intestinal homeostasis, highlighting its potential as a preventive strategy against intestinal disruptions. This study contributes to the understanding of the dietary effects of black tea on gastrointestinal health.
Collapse
Affiliation(s)
- Yuxuan Shi
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Jihong Zhou
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
6
|
Ji X, Zhang C, Yang J, Tian Y, You L, Yang H, Li Y, Liu H, Pan D, Liu Z. Kaempferol Improves Exercise Performance by Regulating Glucose Uptake, Mitochondrial Biogenesis, and Protein Synthesis via PI3K/AKT and MAPK Signaling Pathways. Foods 2024; 13:1068. [PMID: 38611372 PMCID: PMC11011654 DOI: 10.3390/foods13071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Kaempferol is a natural flavonoid with reported bioactivities found in many fruits, vegetables, and medicinal herbs. However, its effects on exercise performance and muscle metabolism remain inconclusive. The present study investigated kaempferol's effects on improving exercise performance and potential mechanisms in vivo and in vitro. The grip strength, exhaustive running time, and distance of mice were increased in the high-dose kaempferol group (p < 0.01). Also, kaempferol reduced fatigue-related biochemical markers and increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) related to antioxidant capacity. Kaempferol also increased the glycogen and adenosine triphosphate (ATP) content in the liver and skeletal muscle, as well as glucose in the blood. In vitro, kaempferol promoted glucose uptake, protein synthesis, and mitochondrial function and decreased oxidative stress in both 2D and 3D C2C12 myotube cultures. Moreover, kaempferol activated the PI3K/AKT and MAPK signaling pathways in the C2C12 cells. It also upregulated the key targets of glucose uptake, mitochondrial function, and protein synthesis. These findings suggest that kaempferol improves exercise performance and alleviates physical fatigue by increasing glucose uptake, mitochondrial biogenesis, and protein synthesis and by decreasing ROS. Kaempferol's molecular mechanism may be related to the regulation of the PI3K/AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiaoning Ji
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Chaozheng Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Jing Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Yaru Tian
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Lijuan You
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Yongning Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Haibo Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Deng Pan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| | - Zhaoping Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China (H.Y.); (Z.L.)
| |
Collapse
|
7
|
German IJS, Pomini KT, Andreo JC, Shindo JVTC, de Castro MVM, Detregiachi CRP, Araújo AC, Guiguer EL, Fornari Laurindo L, Bueno PCDS, de Souza MDSS, Gabaldi M, Barbalho SM, Shinohara AL. New Trends to Treat Muscular Atrophy: A Systematic Review of Epicatechin. Nutrients 2024; 16:326. [PMID: 38276564 PMCID: PMC10818576 DOI: 10.3390/nu16020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Epicatechin is a polyphenol compound that promotes skeletal muscle differentiation and counteracts the pathways that participate in the degradation of proteins. Several studies present contradictory results of treatment protocols and therapeutic effects. Therefore, the objective of this systematic review was to investigate the current literature showing the molecular mechanism and clinical protocol of epicatechin in muscle atrophy in humans, animals, and myoblast cell-line. The search was conducted in Embase, PubMed/MEDLINE, Cochrane Library, and Web of Science. The qualitative analysis demonstrated that there is a commonness of epicatechin inhibitory action in myostatin expression and atrogenes MAFbx, FOXO, and MuRF1. Epicatechin showed positive effects on follistatin and on the stimulation of factors related to the myogenic actions (MyoD, Myf5, and myogenin). Furthermore, the literature also showed that epicatechin can interfere with mitochondrias' biosynthesis in muscle fibers, stimulation of the signaling pathways of AKT/mTOR protein production, and amelioration of skeletal musculature performance, particularly when combined with physical exercise. Epicatechin can, for these reasons, exhibit clinical applicability due to the beneficial results under conditions that negatively affect the skeletal musculature. However, there is no protocol standardization or enough clinical evidence to draw more specific conclusions on its therapeutic implementation.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Patrícia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Maricelma da Silva Soares de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Marcia Gabaldi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| |
Collapse
|
8
|
Xu J, Wei Y, Huang Y, Weng X, Wei X. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Crit Rev Food Sci Nutr 2023; 63:11522-11544. [PMID: 35770615 DOI: 10.1080/10408398.2022.2093327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the aggravating aging of modern society, the sarcopenia-based aging syndrome poses a serious potential threat to the health of the elderly. Natural dietary supplements show great potential to reduce muscle wasting and enhance muscle performance. Tea has been widely recognized for its health-promoting effects. which contains active ingredients such as tea polyphenols, tea pigments, tea polysaccharides, theanine, caffeine, and vitamins. In different tea production processes, the oxidative condensation and microbial transformation of catechins and other natural substances from tea promotes the production of various tea pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). Tea pigments have shown a positive effect on maintaining muscle health. Nevertheless, the relationship between tea pigments and skeletal muscle function has not been comprehensively elucidated. In addition, the numerous research on the extraction and purification of tea pigments is disordered with the limited recent progress due to the complexity of species and molecular structure. In this review, we sort out the strategies for the separation of tea pigments, and discuss the structures of tea pigments. On this basis, the regulation mechanisms of tea pigments on muscle functional were emphasized. This review highlights the current understanding on the extraction methods, molecular structures and regulation mechanisms of muscle function of tea pigments. Furthermore, main limitations and future perspectives are proposed to provide new insights into broadening theoretical research and industrial applications of tea pigments in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Wu C, Suzuki K. The Effects of Flavonoids on Skeletal Muscle Mass, Muscle Function, and Physical Performance in Individuals with Sarcopenia: A Systematic Review of Randomized Controlled Trials. Nutrients 2023; 15:3897. [PMID: 37764681 PMCID: PMC10537400 DOI: 10.3390/nu15183897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Sarcopenia has become a significant obstacle to healthy aging in older adults. Flavonoids may contribute to treating sarcopenia, and attenuate the age-related loss of skeletal muscle mass, muscle strength, and physical function, however, their benefits in sarcopenic individuals remain unclear. This systematic review aimed to evaluate the effect of flavonoids on muscle mass, muscle strength, and physical performance in adults with sarcopenia based on randomized controlled trials (RCTs). This review was conducted in conformity with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the risk of bias was assessed using the Cochrane risk of bias tool. The article search was conducted using PubMed, Scopus, Embase, Cochrane, Web of Science databases, and Google Scholar for the period until June 2023. RCTs that assessed the effects of flavonoids/flavonoids combined with other supplementation/flavonoid-rich supplementations on skeletal muscle mass, muscle strength, and physical performance in adults diagnosed with sarcopenia before intervention were included. From the 309 articles found, a total of 6 RCTs met the inclusion criteria. RCTs evaluated the main outcomes of tea catechins, epicatechin, and isoflavones intervention. Skeletal muscle mass significantly increased in three studies, muscle strength significantly elevated in two studies, and physical performance significantly improved in two studies. The majority of studies (five in six) found at least one of the main outcomes is elevated by flavonoids intervention. Flavonoids may have a great potential to treat sarcopenia.
Collapse
Affiliation(s)
- Cong Wu
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
10
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
11
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
12
|
Wang L, Li P, Feng K. EGCG adjuvant chemotherapy: Current status and future perspectives. Eur J Med Chem 2023; 250:115197. [PMID: 36780831 DOI: 10.1016/j.ejmech.2023.115197] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The resistance of cancer cells to chemotherapeutic drugs greatly reduces the therapeutic effect in cancer patients, and the toxic side effects caused by chemotherapy also seriously affect the quality of life of patients. The combination of epigallocatechin-3-gallate (EGCG), the main active ingredient in tea, with cisplatin, 5-FU, doxorubicin and paclitaxel enhances their sensitizing effect on tumors and combats the drug resistance of cancer cells. These effects seem to be mediated by a variety of mechanisms, including combating drug resistance mediated by cancer stem cells, enhancing drug sensitivity, inducing cell cycle arrest and apoptosis, and blocking angiogenesis. In addition, EGCG can suppress a series of adverse effects caused by chemotherapy, such as gastrointestinal disorders, nephrotoxicity and cardiotoxicity, through its anti-inflammatory and antioxidant effects and improve the quality of life of patients. However, the low bioavailability and off-target effects of EGCG and its reactivity with some chemotherapeutic agents limit its clinical application. The nanomodification of EGCG and chemotherapeutic drugs not only enhances the antitumor activity but also prolongs the survival time of tumor-bearing mice, and has the advantage of low toxicity. Therefore, this review aims to discuss the current status and challenges regarding the use of EGCG in combination with chemotherapy drugs in the treatment of cancer. In general, EGCG is a promising adjuvant for chemotherapy.
Collapse
Affiliation(s)
- Lin Wang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China
| | - Penghui Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Feng
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China.
| |
Collapse
|
13
|
Dong T, Liu H, Sha Y, Sun L. A Comparative Study of Phytochemical Metabolites and Antioxidant Properties of Rhodiola. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Chen B, Zhang W, Lin C, Zhang L. A Comprehensive Review on Beneficial Effects of Catechins on Secondary Mitochondrial Diseases. Int J Mol Sci 2022; 23:ijms231911569. [PMID: 36232871 PMCID: PMC9569714 DOI: 10.3390/ijms231911569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are the main sites for oxidative phosphorylation and synthesis of adenosine triphosphate in cells, and are known as cellular power factories. The phrase "secondary mitochondrial diseases" essentially refers to any abnormal mitochondrial function other than primary mitochondrial diseases, i.e., the process caused by the genes encoding the electron transport chain (ETC) proteins directly or impacting the production of the machinery needed for ETC. Mitochondrial diseases can cause adenosine triphosphate (ATP) synthesis disorder, an increase in oxygen free radicals, and intracellular redox imbalance. It can also induce apoptosis and, eventually, multi-system damage, which leads to neurodegenerative disease. The catechin compounds rich in tea have attracted much attention due to their effective antioxidant activity. Catechins, especially acetylated catechins such as epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), are able to protect mitochondria from reactive oxygen species. This review focuses on the role of catechins in regulating cell homeostasis, in which catechins act as a free radical scavenger and metal ion chelator, their protective mechanism on mitochondria, and the protective effect of catechins on mitochondrial deoxyribonucleic acid (DNA). This review highlights catechins and their effects on mitochondrial functional metabolic networks: regulating mitochondrial function and biogenesis, improving insulin resistance, regulating intracellular calcium homeostasis, and regulating epigenetic processes. Finally, the indirect beneficial effects of catechins on mitochondrial diseases are also illustrated by the warburg and the apoptosis effect. Some possible mechanisms are shown graphically. In addition, the bioavailability of catechins and peracetylated-catechins, free radical scavenging activity, mitochondrial activation ability of the high-molecular-weight polyphenol, and the mitochondrial activation factor were also discussed.
Collapse
|
15
|
Ultrasound-Assisted Extraction of Phenolic Compounds from Adenaria floribunda Stem: Economic Assessment. Foods 2022; 11:foods11182904. [PMID: 36141034 PMCID: PMC9498893 DOI: 10.3390/foods11182904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Adenaria floribunda is a native species found in tropical regions of South America used as a traditional medicine. Ultrasound-assisted extraction (UAE) is an extraction process known to increase the extraction yield, reduce extraction times, and use low temperatures. This study aims to obtain water-based extracts from A. floribunda stems using UAE, hot water extraction (HWE), and Soxhlet extraction and perform an economic analysis. The global extraction yield (GEY) and total phenolic compounds (TPC) of extracts ranged from 5.24% to 10.48% and from 1.9 ± 0.44 mg GAE g−1 DW to 6.38 ± 0.28 mg GAE g−1, respectively. Gallic acid, catechin, and ferulic acid were identified in the extract using HPLC-UV. Results indicate that Soxhlet extraction has the best performance regarding GEY and TPC. However, after performing an economic assessment, the cost of manufacturing (COM) of Soxhlet extraction (US$ 5.8 flask−1) was higher than the UAE (US$ 3.86 flask−1) and HWE (US$ 3.92 flask−1). The sensitivity results showed that obtaining extracts from A. floribunda by UAE and HWE is economically feasible when the selling price is above US$ 4 flask−1. Soxhlet extraction is a feasible technique when the selling price is above US$ 7 flask−1.
Collapse
|
16
|
Bioactive Components in Whole Grains for the Regulation of Skeletal Muscle Function. Foods 2022; 11:foods11182752. [PMID: 36140879 PMCID: PMC9498156 DOI: 10.3390/foods11182752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has become an effective approach to improving muscle health and function. Evidence shows that whole grains possess multiple health benefits compared with refined grains. Importantly, there is growing evidence demonstrating that bioactive substances derived from whole grains such as polyphenols, γ-oryzanol, β-sitosterol, betaine, octacosanol, alkylresorcinols and β-glucan could contribute to enhancing myogenesis, muscle mass and metabolic function. In this review, we discuss the potential role of whole-grain-derived bioactive components in the regulation of muscle function, emphasizing the underlying mechanisms by which these compounds regulate muscle biology. This work will contribute toward increasing awareness of nutraceutical supplementation of whole grain functional ingredients for the prevention and treatment of muscle dysfunctions.
Collapse
|
17
|
Xiang J, Du M, Wang H. Dietary Plant Extracts in Improving Skeletal Muscle Development and Metabolic Function. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2087669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
18
|
De los Santos S, Coral‐Vázquez RM, Menjivar M, Ángeles Granados‐Silvestre M, De la Rosa S, Reyes‐Castro LA, Méndez JP, Zambrano E, Canto P. (−)‐Epicatechin improves body composition of male rats descendant of obese mothers postnatally fed with a high‐fat diet. Fundam Clin Pharmacol 2022; 36:526-535. [DOI: 10.1111/fcp.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/03/2021] [Accepted: 12/30/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Sergio De los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México Mexico
- Subdirección de Investigación Clínica, Dirección de Investigación Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| | - Ramón Mauricio Coral‐Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina Instituto Politécnico Nacional Ciudad de México Mexico
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional “20 de Noviembre” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado Ciudad de México Mexico
| | - Marta Menjivar
- Departamento de Biología, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
- Unidad Académica de Ciencias y Tecnología Universidad Nacional Autónoma de México‐Yucatán Mérida Mexico
| | | | - Sebastián De la Rosa
- Unidad de Investigación en Obesidad, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México Mexico
- Subdirección de Investigación Clínica, Dirección de Investigación Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| | - Luis Antonio Reyes‐Castro
- Departamento de Biología de Reproducción Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México Mexico
- Subdirección de Investigación Clínica, Dirección de Investigación Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| | - Elena Zambrano
- Departamento de Biología de Reproducción Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México Mexico
- Subdirección de Investigación Clínica, Dirección de Investigación Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| |
Collapse
|
19
|
Yi X, Tao J, Qian Y, Feng F, Hu X, Xu T, Jin H, Ruan H, Zheng HF, Tong P. Morroniside ameliorates inflammatory skeletal muscle atrophy via inhibiting canonical and non-canonical NF-κB and regulating protein synthesis/degradation. Front Pharmacol 2022; 13:1056460. [PMID: 36618945 PMCID: PMC9816435 DOI: 10.3389/fphar.2022.1056460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
No drug options exist for skeletal muscle atrophy in clinical, which poses a huge socio-economic burden, making development on drug interventions a general wellbeing need. Patients with a variety of pathologic conditions associated with skeletal muscle atrophy have systemically elevated inflammatory factors. Morroniside, derived from medicinal herb Cornus officinalis, possesses anti-inflammatory effect. However, whether and how morroniside combat muscle atrophy remain unknown. Here, we identified crucial genetic associations between TNFα/NF-κB pathway and grip strength based on population using 377,807 European participants from the United Kingdom Biobank dataset. Denervation increased TNFα in atrophying skeletal muscles, which inhibited myotube formation in vitro. Notably, morroniside treatment rescued TNFα-induced myotube atrophy in vitro and impeded skeletal muscle atrophy in vivo, resulting in increased body/muscles weights, No. of satellite cells, size of type IIA, IIX and IIB myofibers, and percentage of type IIA myofibers in denervated mice. Mechanistically, in vitro and/or in vivo studies demonstrated that morroniside could not only inhibit canonical and non-canonical NF-κB, inflammatory mediators (IL6, IL-1b, CRP, NIRP3, PTGS2, TNFα), but also down-regulate protein degradation signals (Follistatin, Myostatin, ALK4/5/7, Smad7/3), ubiquitin-proteasome molecules (FoxO3, Atrogin-1, MuRF1), autophagy-lysosomal molecules (Bnip3, LC3A, and LC3B), while promoting protein synthesis signals (IGF-1/IGF-1R/IRS-1/PI3K/Akt, and BMP14/BMPR2/ALK2/3/Smad5/9). Moreover, morroniside had no obvious liver and kidney toxicity. This human genetic, cells and mice pathological evidence indicates that morroniside is an efficacious and safe inflammatory muscle atrophy treatment and suggests its translational potential on muscle wasting.
Collapse
Affiliation(s)
- Xiangjiao Yi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jianguo Tao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Feng Feng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xueqin Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Taotao Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hongting Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hongfeng Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| |
Collapse
|
20
|
Nutrient weight against sarcopenia: regulation of the IGF-1/PI3K/Akt/FOXO pathway in quinoa metabolites. Curr Opin Pharmacol 2021; 61:136-141. [PMID: 34801804 DOI: 10.1016/j.coph.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/14/2023]
Abstract
Sarcopenia is characterized by the loss of muscle mass and strength, and one of its major molecular mechanisms is muscle protein turnover. Quinoa, the grain-like food crop, is a health nutrient used to treat diseases that predispose individuals to muscle wasting, including cardiovascular disorders, diabetes mellitus, and cancer. Quinoa secondary metabolites have recently been demonstrated to regulate protein turnover (including protein synthesis and degradation), a main biological process within muscle cells, through diverse signals (such as the p38 MAPK, TNF-α, and IGF-1/PI3K/Akt/FOXO pathways). Here, we describe how quinoa functions in the main pathway of protein synthesis and degradation, screen promising pharmacological components in nutritional applications, and provide guidance for the effects of quinoa products in sarcopenia.
Collapse
|
21
|
Pharmacologic approaches to prevent skeletal muscle atrophy after spinal cord injury. Curr Opin Pharmacol 2021; 60:193-199. [PMID: 34461564 PMCID: PMC9190029 DOI: 10.1016/j.coph.2021.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022]
Abstract
Skeletal muscle atrophy is a hallmark of severe spinal cord injury (SCI) that is precipitated by the neural insult and paralysis. Additionally, other factors may influence muscle loss, including systemic inflammation, low testosterone, low insulin-like growth factor (IGF)-1, and high-dose glucocorticoid treatment. The signaling cascades that drive SCI-induced muscle loss are common among most forms of disuse atrophy and include ubiquitin-proteasome signaling and others. However, differing magnitudes and patterns of atrophic signals exist after SCI versus other disuse conditions and are accompanied by endogenous inhibition of IGF-1/PI3K/Akt signaling, which combine to produce exceedingly rapid atrophy. Several well-established anabolic agents, including androgens and myostatin inhibitors, display diminished ability to prevent SCI-induced atrophy, while ursolic acid and β2-agonists more effectively attenuate muscle loss. Strategies combining physical rehabilitation regimens to reload the paralyzed limbs with drugs targeting the underlying molecular pathways hold the greatest potential to improve muscle recovery after severe SCI.
Collapse
|
22
|
Wang Z, Zhao J, Wang Y, Zhang T, Liu R, Chang M, Wang X. Advances in EPA-GPLs: Structural features, mechanisms of nutritional functions and sources. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Seo H, Lee SH, Park Y, Lee HS, Hong JS, Lim CY, Kim DH, Park SS, Suh HJ, Hong KB. (-)-Epicatechin-Enriched Extract from Camellia sinensis Improves Regulation of Muscle Mass and Function: Results from a Randomized Controlled Trial. Antioxidants (Basel) 2021; 10:1026. [PMID: 34202133 PMCID: PMC8300738 DOI: 10.3390/antiox10071026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Loss of skeletal muscle mass and function with age represents an important source of frailty and functional decline in the elderly. Antioxidants from botanical extracts have been shown to enhance the development, mass, and strength of skeletal muscle by influencing age-related cellular and molecular processes. Tannase-treated green tea extract contains high levels of the antioxidants (-)-epicatechin (EC) and gallic acid that may have therapeutic benefits for age-related muscle decline. The aim of this study was to investigate the effect of tannase-treated green tea extract on various muscle-related parameters, without concomitant exercise, in a single-center, randomized, double-blind, placebo-controlled study. Administration of tannase-treated green tea extract (600 mg/day) for 12 weeks significantly increased isokinetic flexor muscle and handgrip strength in the treatment group compared with those in the placebo (control) group. In addition, the control group showed a significant decrease in arm muscle mass after 12 weeks, whereas no significant change was observed in the treatment group. Blood serum levels of follistatin, myostatin, high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-6, IL-8, insulin-like growth factor-1 (IGF-1), and cortisol were analyzed, and the decrease in myostatin resulting from the administration of tannase-treated green tea extract was found to be related to the change in muscle mass and strength. In summary, oral administration of tannase-treated green tea extract containing antioxidants without concomitant exercise can improve muscle mass and strength and may have therapeutic benefits in age-related muscle function decline.
Collapse
Affiliation(s)
- Hyeyeong Seo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea;
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Korea; (S.-H.L.); (Y.P.)
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Korea; (S.-H.L.); (Y.P.)
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Jeong Sup Hong
- Animal Center and Preclinical Evaluation Research Institute, Yonam College, Cheonan 31005, Korea;
| | - Cho Young Lim
- R&D Center, BTC Corporation, Ansan 15588, Korea; (C.Y.L.); (D.H.K.)
| | - Dong Hyeon Kim
- R&D Center, BTC Corporation, Ansan 15588, Korea; (C.Y.L.); (D.H.K.)
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea;
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea;
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Korea
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea;
| |
Collapse
|
24
|
Dos Santos AN, de L Nascimento TR, Gondim BLC, Velo MMAC, de A Rêgo RI, do C Neto JR, Machado JR, da Silva MV, de Araújo HWC, Fonseca MG, Castellano LRC. Catechins as Model Bioactive Compounds for Biomedical Applications. Curr Pharm Des 2021; 26:4032-4047. [PMID: 32493187 DOI: 10.2174/1381612826666200603124418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
Abstract
Research regarding polyphenols has gained prominence over the years because of their potential as pharmacological nutrients. Most polyphenols are flavanols, commonly known as catechins, which are present in high amounts in green tea. Catechins are promising candidates in the field of biomedicine. The health benefits of catechins, notably their antioxidant effects, are related to their chemical structure and the total number of hydroxyl groups. In addition, catechins possess strong activities against several pathogens, including bacteria, viruses, parasites, and fungi. One major limitation of these compounds is low bioavailability. Catechins are poorly absorbed by intestinal barriers. Some protective mechanisms may be required to maintain or even increase the stability and bioavailability of these molecules within living organisms. Moreover, novel delivery systems, such as scaffolds, fibers, sponges, and capsules, have been proposed. This review focuses on the unique structures and bioactive properties of catechins and their role in inflammatory responses as well as provides a perspective on their use in future human health applications.
Collapse
Affiliation(s)
- Adriana N Dos Santos
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Tatiana R de L Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna L C Gondim
- Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraiba, Campina Grande, PB, Brazil
| | - Marilia M A C Velo
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, SP, Brazil
| | - Renaly I de A Rêgo
- Post-Graduation Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Paraiba, Campina Grande, PB, Brazil
| | - José R do C Neto
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Juliana R Machado
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Marcos V da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Helvia W C de Araújo
- Department of Chemistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Maria G Fonseca
- Research Center for Fuels and Materials (NPE - LACOM), Department of Chemistry, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Lúcio R C Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
25
|
Kim C, Hwang JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 2020; 29:1619-1640. [PMID: 33282430 PMCID: PMC7708614 DOI: 10.1007/s10068-020-00816-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle plays a vital role in the conversion of chemical energy into physical force. Muscle atrophy, characterized by a reduction in muscle mass, is a symptom of chronic disease (cachexia), aging (sarcopenia), and muscle disuse (inactivity). To date, several trials have been conducted to prevent and inhibit muscle atrophy development; however, few interventions are currently available for muscle atrophy. Recently, food ingredients, plant extracts, and phytochemicals have received attention as treatment sources to prevent muscle wasting. Flavonoids are bioactive polyphenol compounds found in foods and plants. They possess diverse biological activities, including anti-obesity, anti-diabetes, anti-cancer, anti-oxidation, and anti-inflammation. The effects of flavonoids on muscle atrophy have been investigated by monitoring molecular mechanisms involved in protein turnover, mitochondrial activity, and myogenesis. This review summarizes the reported effects of flavonoids on sarcopenia, cachexia, and disuse muscle atrophy, thus, providing an insight into the understanding of the associated molecular mechanisms.
Collapse
Affiliation(s)
- Changhee Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
26
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
27
|
Cohen S, Koltai H, Selvaraj G, Mazuz M, Segoli M, Bustan A, Guy O. Assessment of the Nutritional and Medicinal Potential of Tubers from Hairy Stork's-Bill ( Erodium crassifolium L 'Hér), a Wild Plant Species Inhabiting Arid Southeast Mediterranean Regions. PLANTS 2020; 9:plants9091069. [PMID: 32825348 PMCID: PMC7570100 DOI: 10.3390/plants9091069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
Emerging needs for diversifying human diet and to explore novel therapeutic procedures have led to increasing attempts to retrieve traditional nourishments and recruit beneficial wild plant species. Species of the genus Erodium (Geraniaceae) harbor medicinal indications and substances known from folklore and scientific research. Hairy stork's bill (Erodium crassifolium L'Hér), is a small hemicryptophyte that inhabits arid southeast Mediterranean regions. E. crassifolium is among the very few Geraniaceae species known to produce tubers. Traditional knowledge holds that the tubers are edible and used by Bedouin tribes. However, no scientific information was found regarding nutrition or medicinal properties of these tubers. The objectives of our project are to unravel potential nutritional and medicinal benefits of the tubers, conduct initial steps towards domestication and develop agricultural practices enhancing E. crassifolium tuber yield and quality. Tubers show high water content (90%), low caloric value (23 Kcal 100-1 g) and considerable contents of minerals and vitamins. In addition, the tubers contain significant amounts of catechins and epigallocatechin, polyphenolic compounds known for their antioxidative, anti-inflammatory and antiproliferative activities. Furthermore, in vitro experiments demonstrated significant anti-inflammatory effects on human cell cultures. E. crassifolium is highly responsive to environmental changes; fertigation (700 mm) increased tuber yield by 10-fold, compared to simulated wild conditions (50-200 mm). These results indicate a significant potential of E. crassifolium becoming a valuable crop species. Therefore, there is a need for continued efforts in domestication, including ecotype selection, breeding, development of suitable agricultural practices and further exploration of its medicinal benefits.
Collapse
Affiliation(s)
- Shabtai Cohen
- Ramat Negev Desert Agro-Research Center (RN-DARC), Ramat Negev Works Ltd., D.N. Halutza 8551500, Israel; (S.C.); (M.S.); (A.B.)
| | - Hinanit Koltai
- Department of Ornamental Horticulture and Biotechnology, Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (H.K.); (G.S.); (M.M.)
| | - Gopinath Selvaraj
- Department of Ornamental Horticulture and Biotechnology, Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (H.K.); (G.S.); (M.M.)
| | - Moran Mazuz
- Department of Ornamental Horticulture and Biotechnology, Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7528809, Israel; (H.K.); (G.S.); (M.M.)
| | - Moran Segoli
- Ramat Negev Desert Agro-Research Center (RN-DARC), Ramat Negev Works Ltd., D.N. Halutza 8551500, Israel; (S.C.); (M.S.); (A.B.)
| | - Amnon Bustan
- Ramat Negev Desert Agro-Research Center (RN-DARC), Ramat Negev Works Ltd., D.N. Halutza 8551500, Israel; (S.C.); (M.S.); (A.B.)
| | - Ofer Guy
- Ramat Negev Desert Agro-Research Center (RN-DARC), Ramat Negev Works Ltd., D.N. Halutza 8551500, Israel; (S.C.); (M.S.); (A.B.)
- Correspondence: ; Tel.: +972-50-3699001
| |
Collapse
|
28
|
Qu Z, Liu A, Li P, Liu C, Xiao W, Huang J, Liu Z, Zhang S. Advances in physiological functions and mechanisms of (-)-epicatechin. Crit Rev Food Sci Nutr 2020; 61:211-233. [PMID: 32090598 DOI: 10.1080/10408398.2020.1723057] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
(-)-Epicatechin (EC) is a flavanol easily obtained through the diet and is present in tea, cocoa, vegetables, fruits, and cereals. Recent studies have shown that EC protects human health and exhibits prominent anti-oxidant and anti-inflammatory activities, enhances muscle performance, improves symptoms of cardiovascular and cerebrovascular diseases, prevents diabetes, and protects the nervous system. With the development of modern medical and biotechnology research, the mechanisms of action associated with EC toward various chronic diseases are becoming more apparent, and the pharmacological development and utilization of EC has been increasingly clarified. Currently, there is no comprehensive systematic introduction to the effects of EC and its mechanisms of action. This review presents the latest research progress and the role of EC in the prevention and treatment of various chronic diseases and its protective health effects and provides a theoretical basis for future research on EC.
Collapse
Affiliation(s)
- Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
29
|
Li P, Liu A, Liu C, Qu Z, Xiao W, Huang J, Liu Z, Zhang S. Role and mechanism of catechin in skeletal muscle cell differentiation. J Nutr Biochem 2019; 74:108225. [DOI: 10.1016/j.jnutbio.2019.108225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
|
30
|
Dzik KP, Kaczor JJ. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. Eur J Appl Physiol 2019; 119:825-839. [PMID: 30830277 PMCID: PMC6422984 DOI: 10.1007/s00421-019-04104-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE This review provides a current perspective on the mechanism of vitamin D on skeletal muscle function with the emphasis on oxidative stress, muscle anabolic state and muscle energy metabolism. It focuses on several aspects related to cellular and molecular physiology such as VDR as the trigger point of vitamin D action, oxidative stress as a consequence of vitamin D deficiency. METHOD The interaction between vitamin D deficiency and mitochondrial function as well as skeletal muscle atrophy signalling pathways have been studied and clarified in the last years. To the best of our knowledge, we summarize key knowledge and knowledge gaps regarding the mechanism(s) of action of vitamin D in skeletal muscle. RESULT Vitamin D deficiency is associated with oxidative stress in skeletal muscle that influences the mitochondrial function and affects the development of skeletal muscle atrophy. Namely, vitamin D deficiency decreases oxygen consumption rate and induces disruption of mitochondrial function. These deleterious consequences on muscle may be associated through the vitamin D receptor (VDR) action. Moreover, vitamin D deficiency may contribute to the development of muscle atrophy. The possible signalling pathway triggering the expression of Atrogin-1 involves Src-ERK1/2-Akt- FOXO causing protein degradation. CONCLUSION Based on the current knowledge we propose that vitamin D deficiency results from the loss of VDR function and it could be partly responsible for the development of neurodegenerative diseases in human beings.
Collapse
Affiliation(s)
- Katarzyna Patrycja Dzik
- Department of Neurobiology of Muscle, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland
| | - Jan Jacek Kaczor
- Department of Neurobiology of Muscle, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland.
| |
Collapse
|
31
|
Tai PA, Hsu YJ, Huang WC, Chang CH, Chen YH, Huang CC, Wei L. Congenital exercise ability ameliorates muscle atrophy but not spinal cord recovery in spinal cord injury mouse model. Int J Med Sci 2019; 16:1549-1556. [PMID: 31839742 PMCID: PMC6909809 DOI: 10.7150/ijms.37442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) can cause loss of mobility in the limbs, and no drugs, surgical procedures, or rehabilitation strategies provide a complete cure. Exercise capacity is thought to be associated with the causes of many diseases. However, no studies to date have assessed whether congenital exercise ability is related to the recovery of spinal cord injury. High congenital exercise ability (HE) and low congenital exercise ability (LE) mice were artificially bred from the same founder ICR mice. The HE and LE groups still exhibited differences in exercise ability after 13 generations of breeding. Histological staining and immunohistochemistry staining indicated no significant differences between the HE and LE groups on recovery of the spinal cord. In contrast, after SCI, the HE group exhibited better mobility in gait analysis and longer endurance times in the exhaustive swimming test than the LE group. In addition, after SCI, the HE group also exhibited less atrophy than the LE group, and no inflammatory cells appeared. In conclusion, we found that high congenital exercise ability may reduce the rate of muscle atrophy. This result can be applied to sports science and rehabilitation science as a reference for preventive medicine research.
Collapse
Affiliation(s)
- Po-An Tai
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.,Department of Surgery, School of Medicine, Buddhist Tzu Chi University, Hualien County 97004, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| | - Chun-Hao Chang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Yi-Hsun Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsin University, Taichung, 402, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Li Wei
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.,Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|