1
|
Li W, Antoniadi L, Zhou H, Chen H, Angelis A, Halabalaki M, Skaltsounis LA, Qi Z, Wang C. Sodium cholate-coated Olea europaea polyphenol nanoliposomes: Preparation, stability, release, and bioactivity. Food Chem 2024; 469:142580. [PMID: 39721438 DOI: 10.1016/j.foodchem.2024.142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Ultra-flexible nanoliposomes (UNL) coated with sodium cholate were fabricated using the thin film hydration technique to encapsulate oleocanthal (OLEO), oleacein (OLEA), oleuropein (OLEU), and hydroxytyrosol (HT) for improving their stability and bioactivity. Their physicochemical properties were further validated through DLS, FTIR, XRD, TGA, and DSC analyses. Negative-staining TEM imaging revealed well-dispersed UNL with laminar vesicles inside. Additionally, their transdermal studies in vitro demonstrated that UNL enhanced the cumulative release of OLEO, OLEA, OLEU, and HT by 3.13, 2.76, 2.59, and 2.83 times, respectively. Furthermore, their release mechanisms were better approximated the Peppas-Sahlin model rather than the Korsmeyer-Peppas and Higuchi models, which governed by Fickian diffusion. Moreover, comparing to their compounds, UNL structure exhibited improved their antioxidant and cytotoxicity properties, highlighting their potential as effective delivery agents in humans. These results offer a novel approach for stabilizing biologically active polyphenols from Olea europaea, paving the way for enhanced human health applications.
Collapse
Affiliation(s)
- Wenjun Li
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Lemonia Antoniadi
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece; Pharmagnose S.A., 57th km Athens-lamia National Road, Oinofyta 32011, Greece
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China.
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
2
|
Mehany T, González-Sáiz JM, Martínez J, Pizarro C. Evaluation of Sensorial Markers in Deep-Fried Extra Virgin Olive Oils: First Report on the Role of Hydroxytyrosol and Its Derivatives. Foods 2024; 13:3953. [PMID: 39683025 DOI: 10.3390/foods13233953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Extra virgin olive oil (EVOO) is one of the main daily food items consumed around the world, particularly in the Mediterranean region, and it has unique organoleptic properties. This study aims to determine the best frying conditions of EVOO supplemented with natural exogenous antioxidants enriched in hydroxytyrosol (HTyr) and its derivatives from olive fruit extract (OFE) to conserve its positive sensorial attributes while minimizing its sensorial defects, in particular, rancidity under high thermal processes. In this study, an experienced panel assessed the sensory attributes of nine EVOO varieties, olive oil 0.4° (mixed virgin olive oil (VOO) with refined olive oil (ROO)), Orujo olive oil, and olive oil 1° (EVOO mixed with ROO), compared with two sunflower oil types, performed using a deep-frying (D-F) process with numerous variables, i.e., frying time, frying temperature, and the addition of polyphenols enriched with HTyr. Results showed that most EVOO samples were stable under D-F at 170 °C for 3 h, with added polyphenols (∼650 mg/kg). Moreover, at these best values, the results stated that Arbequina, Picual, Royuella, Hojiblanca, Arbosana, and Manzanilla oils have low rancidity scores with values of 0, 1.7, 1.8, 2.3, 3.1, and 3.7, respectively, and stable/higher positive sensorial attributes, i.e., fruity, bitter, and pungent properties; however, olive oil 1° and olive oil 0.4° have high rancidity and low positive sensorial attributes. Notably, OFE helps maintain bitterness close to control in Picual, Koroneiki, Empeltre, and Arbosana oils. Furthermore, amongst the 19 tested sensory descriptors, only 8 descriptors-namely, fusty/muddy sediment, winey/vinegary/acid/sour, frostbitten olives (wet wood), rancid, fruity (green), fruity (ripe), bitter, and pungent-were successfully developed to allow characterization of the sensory quality of various olive oil categories under D-F. The present research confirmed that OFE may be used to provide stable EVOOs with higher positive sensorial qualities and lower defects and could be used as a natural antioxidant and promising strategy during the D-F process with EVOOs, not only for domestic practices but also at the industrial level.
Collapse
Affiliation(s)
- Taha Mehany
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain
| | | | - Jorge Martínez
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain
| | - Consuelo Pizarro
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain
| |
Collapse
|
3
|
Ros E, Pérez-Martínez P, Estruch R, López-Miranda J, Ferrer CS, Delgado-Lista J, Gómez-Delgado F, Solà R, Pascual V. Recommendations of the Spanish Arteriosclerosis Society: The diet in cardiovascular prevention - 2024 Update. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024:S0214-9168(24)00102-5. [PMID: 39578128 DOI: 10.1016/j.arteri.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Affiliation(s)
- Emilio Ros
- Institut d'Investigacions Biomèdiqiues August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| | - Pablo Pérez-Martínez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Unidad de Lípidos y Arterioesclerosis, Universidad de Córdoba/Hospital Universitario Reina Sofía/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Ramón Estruch
- Institut d'Investigacions Biomèdiqiues August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Servicio de Medicina Interna, Hospital Clínic, Universidad de Barcelona, Barcelona, España
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Unidad de Lípidos y Arterioesclerosis, Universidad de Córdoba/Hospital Universitario Reina Sofía/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Cristina Soler Ferrer
- Servicio de Medicina Interna, Unidad de Lípidos y Riesgo Vascular, Hospital de Santa Caterina de Salt, Salt, Girona, España
| | - Javier Delgado-Lista
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España; Unidad de Lípidos y Arterioesclerosis, Universidad de Córdoba/Hospital Universitario Reina Sofía/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Francisco Gómez-Delgado
- Unidad de Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario, Jaén, España
| | - Rosa Solà
- Grupo de Nutrición Funcional, Oxidación y Enfermedades Cardiovasculares (NFOCSalut), Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Hospital Universitario Sant Joan, Reus, Tarragona, España
| | - Vicente Pascual
- Centro Salud Palleter, Universidad CEU-Cardenal Herrera, Castellón, España
| |
Collapse
|
4
|
Katsa ME, Gil APR, Makri EM, Papadogiannis S, Ioannidis A, Kalliostra M, Ketselidi K, Diamantakos P, Melliou E, Magiatis P, Nomikos T. Effect of oleocanthal-rich olive oil on postprandial oxidative stress markers of patients with type 2 diabetes mellitus. Food Nutr Res 2024; 68:10882. [PMID: 39691690 PMCID: PMC11650448 DOI: 10.29219/fnr.v68.10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 12/19/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by postprandial dysmetabolism, which has been linked to post-meal redox disturbances. Oleocanthal (OO), one of the most potent bioactive phenols of extra virgin olive oil, has shown redox modulating properties in vitro. However, its acute, in vivo antioxidant properties have never been studied before. Objective The aim of this study was to investigate the kinetics of five redox markers (Thiobarbituric acid-reactive substances [TBARS] and glutathione peroxidase activity in serum-GPx3 and erythrocytes (GPx1), protein carbonyls in serum) after the consumption different meals. Design Five different isocaloric meals comprised of white bread and butter (BU) or butter plus ibuprofen (BU-IBU) or olive oil poor in OO or olive oils containing 250 and 500 mg/Kg of oleocanthal (OO250 and OO500, respectively). We hypothesized that OO-rich olive oil will reduce postprandial oxidative stress in T2DM patients compared to other lipid sources. This study involved 10 patients with T2DM and had a cross-over design. Results The comparison of incremental Area Under Curves (iAUCs) has shown that OO-rich olive oils were able to alleviate the increments of thiobarbituric acid-reactive substances (TBARS) and GPx3 and induce a higher red blood cells (RBCs) GPx1 activity compared to OO (P < 0.05). The effect was dose and redox marker depended. Correlation analysis in the pooled sample demonstrated a positive association between postprandial ex vivo platelet sensitivity to ADP and iAUC TBARS. In conclusion, our study has shown that OO-rich olive oils can favorably modulate lipid peroxidation and RBC GPx activity in T2DM patients when consumed as part of a carbohydrate meal. Discussion This study demonstrates for the first time that, apart from its anti-inflammatory and antiplatelet properties, OO can also exert acute antioxidant effects. Conclusion This finding emphasizes the health benefits of extra virgin olive oil, particularly those with a high OO content, for T2DM patients.
Collapse
Affiliation(s)
- Maria Efthymia Katsa
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Andrea Paola Rojas Gil
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Evangelia-Mantelena Makri
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Spyridon Papadogiannis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Anastasios Ioannidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Marianna Kalliostra
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Kleopatra Ketselidi
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Panagiotis Diamantakos
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
5
|
Peyrot des Gachons C, Willis C, Napolitano MP, O’Keefe AJ, Kimball BA, Slade L, Beauchamp GK. Oleocanthal and Oleacein from Privet Leaves: An Alternative Source for High-Value Extra Virgin Olive Oil Bioactives. Int J Mol Sci 2024; 25:12020. [PMID: 39596088 PMCID: PMC11593957 DOI: 10.3390/ijms252212020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Current research strongly suggests that phenolic compounds in extra virgin olive oil (EVOO) are potent preventive and therapeutic agents against metabolic diseases associated with inflammation and oxidative stress. Oleocanthal (OC) and oleacein (OA) are two of the most abundant and promising EVOO phenolics. To fully establish their health-promoting efficacy, additional animal studies and human clinical trials must be conducted, but the sourcing of both compounds at gram scale, reasonable cost, and ease of access remains a challenge. Here, we describe an extraction procedure to obtain OC and OA from the common privet (Ligustrum vulgare), a fast-growing, semi-evergreen shrub. We show that, compared to the olive tree, in addition to its broader geographical distribution, L. vulgare offers the benefit of yielding both OA and OC from its leaves. We also demonstrate the necessity of providing adapted enzymatic conditions during leaf treatment to optimize OC and OA concentrations in the final extracts.
Collapse
Affiliation(s)
| | - Claudia Willis
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (C.W.); (M.P.N.); (B.A.K.); (G.K.B.)
| | - Michael P. Napolitano
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (C.W.); (M.P.N.); (B.A.K.); (G.K.B.)
| | - Abigail J. O’Keefe
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (C.W.); (M.P.N.); (B.A.K.); (G.K.B.)
- Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| | - Bruce A. Kimball
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (C.W.); (M.P.N.); (B.A.K.); (G.K.B.)
| | - Louise Slade
- Food Polymer Science Consultancy, Morris Plains, NJ 07950, USA
| | - Gary K. Beauchamp
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (C.W.); (M.P.N.); (B.A.K.); (G.K.B.)
| |
Collapse
|
6
|
Pavlidis DE, Kafentzi MC, Rekoumi K, Koliadima A, Papadelli M, Papadimitriou K, Kapolos J. Turn to the wild: A comprehensive review on the chemical composition of wild olive oil. Food Res Int 2024; 196:115038. [PMID: 39614480 DOI: 10.1016/j.foodres.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/04/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Wild olive oil (WOO) derives from naturally occurring wild olive trees. WOO has received increasing attention over the last decade, in response to the growing demand of the consumer for high-quality food products which may also provide health benefits. This study provides a comprehensive review of the available studies concerning the chemical composition of WOO produced across diverse geographical regions. The composition of WOO is characterized by the presence of acylglycerols (mainly triacylglycerols), biophenols, sterols, tocopherols, pigments, and triterpene alcohols. Many of these compounds present important variations depending on the wild olive tree subspecies and the specific ecological niches of production. Further, the presence of phenolic and volatile fraction may contribute to the fruity, bitter, and pungent flavor notes of WOO. The concentration of several compounds (e.g. phenols) are comparable to those found in olive oils from cultivated varieties, while sterol levels consistently surpass the international standard of 1000 mg/kg for all olive oils (extra virgin, virgin and refined). Both the qualitative and quantitative characteristics of the chemical profile of WOO underscore its potential as a viable alternative edible oil.
Collapse
Affiliation(s)
- Dimitrios E Pavlidis
- Department of Food Science and Technology, School of Agriculture and Food, University of the Peloponnese, 24100 Kalamata, Greece
| | - Maria-Chrysanthi Kafentzi
- Department of Food Science and Technology, School of Agriculture and Food, University of the Peloponnese, 24100 Kalamata, Greece
| | - Konstantina Rekoumi
- Department of Food Science and Technology, School of Agriculture and Food, University of the Peloponnese, 24100 Kalamata, Greece
| | | | - Marina Papadelli
- Department of Food Science and Technology, School of Agriculture and Food, University of the Peloponnese, 24100 Kalamata, Greece
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - John Kapolos
- Department of Food Science and Technology, School of Agriculture and Food, University of the Peloponnese, 24100 Kalamata, Greece.
| |
Collapse
|
7
|
Patnaik R, Varghese R, Jannati S, Naidoo N, Banerjee Y. Targeting PAR2-mediated inflammation in osteoarthritis: a comprehensive in vitro evaluation of oleocanthal's potential as a functional food intervention for chondrocyte protection and anti-inflammatory effects. BMC Musculoskelet Disord 2024; 25:769. [PMID: 39354427 PMCID: PMC11446003 DOI: 10.1186/s12891-024-07888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by chronic inflammation and progressive cartilage degradation, ultimately leading to joint dysfunction and disability. Oleocanthal (OC), a bioactive phenolic compound derived from extra virgin olive oil, has garnered significant attention due to its potent anti-inflammatory properties, which are comparable to those of non-steroidal anti-inflammatory drugs (NSAIDs). This study pioneers the investigation into the effects of OC on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway in OA, aiming to validate its efficacy as a functional food-based therapeutic intervention. METHODS To simulate cartilage tissue in vitro, human bone marrow-derived mesenchymal stem cells (BMSCs) were differentiated into chondrocytes. An inflammatory OA-like environment was induced in these chondrocytes using lipopolysaccharide (LPS) to mimic the pathological conditions of OA. The therapeutic effects of OC were evaluated by treating these inflamed chondrocytes with various concentrations of OC. The study focused on assessing key inflammatory markers, catabolic enzymes, and mitochondrial function to elucidate the protective mechanisms of OC. Mitochondrial function, specifically mitochondrial membrane potential (ΔΨm), was assessed using Rhodamine 123 staining, a fluorescent dye that selectively accumulates in active mitochondria. The integrity of ΔΨm serves as an indicator of mitochondrial and bioenergetic function. Additionally, Western blotting was employed to analyze protein expression levels, while real-time polymerase chain reaction (RT-PCR) was used to quantify gene expression of inflammatory cytokines and catabolic enzymes. Flow cytometry was utilized to measure cell viability and apoptosis, providing a comprehensive evaluation of OC's therapeutic effects on chondrocytes. RESULTS The results demonstrated that OC significantly downregulated PAR-2 expression in a dose-dependent manner, leading to a substantial reduction in pro-inflammatory cytokines, including TNF-α, IL-1β, and MCP-1. Furthermore, OC attenuated the expression of catabolic markers such as SOX4 and ADAMTS5, which are critically involved in cartilage matrix degradation. Importantly, OC was found to preserve mitochondrial membrane potential (ΔΨm) in chondrocytes subjected to inflammatory stress, as evidenced by Rhodamine 123 staining, indicating a protective effect on cellular bioenergetics. Additionally, OC modulated the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL)/Receptor Activator of Nuclear Factor Kappa-Β (RANK) pathway, suggesting a broader therapeutic action against the multifactorial pathogenesis of OA. CONCLUSIONS This study is the first to elucidate the modulatory effects of OC on the PAR-2 mediated inflammatory pathway in OA, revealing its potential as a multifaceted therapeutic agent that not only mitigates inflammation but also protects cartilage integrity. The preservation of mitochondrial function and modulation of the RANKL/RANK pathway further underscores OC's comprehensive therapeutic potential in counteracting the complex pathogenesis of OA. These findings position OC as a promising candidate for integration into nutritional interventions aimed at managing OA. However, further research is warranted to fully explore OC's therapeutic potential across different stages of OA and its long-term effects in musculoskeletal disorders.
Collapse
|
8
|
Kusuma IY, Habibie H, Bahar MA, Budán F, Csupor D. Anticancer Effects of Secoiridoids-A Scoping Review of the Molecular Mechanisms behind the Chemopreventive Effects of the Olive Tree Components Oleocanthal, Oleacein, and Oleuropein. Nutrients 2024; 16:2755. [PMID: 39203892 PMCID: PMC11357637 DOI: 10.3390/nu16162755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The olive tree (Olea europaea) and olive oil hold significant cultural and historical importance in Europe. The health benefits associated with olive oil consumption have been well documented. This paper explores the mechanisms of the anti-cancer effects of olive oil and olive leaf, focusing on their key bioactive compounds, namely oleocanthal, oleacein, and oleuropein. The chemopreventive potential of oleocanthal, oleacein, and oleuropein is comprehensively examined through this systematic review. We conducted a systematic literature search to identify eligible articles from Scopus, PubMed, and Web of Science databases published up to 10 October 2023. Among 4037 identified articles, there were 88 eligible articles describing mechanisms of chemopreventive effects of oleocanthal, oleacein, and oleuropein. These compounds have the ability to inhibit cell proliferation, induce cell death (apoptosis, autophagy, and necrosis), inhibit angiogenesis, suppress tumor metastasis, and modulate cancer-associated signalling pathways. Additionally, oleocanthal and oleuropein were also reported to disrupt redox hemostasis. This review provides insights into the chemopreventive mechanisms of O. europaea-derived secoiridoids, shedding light on their role in chemoprevention. The bioactivities summarized in the paper support the epidemiological evidence demonstrating a negative correlation between olive oil consumption and cancer risk. Furthermore, the mapped and summarized secondary signalling pathways may provide information to elucidate new synergies with other chemopreventive agents to complement chemotherapies and develop novel nutrition-based anti-cancer approaches.
Collapse
Affiliation(s)
- Ikhwan Yuda Kusuma
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Pharmacy Study Program, Universitas Harapan Bangsa, Purwokerto 53182, Indonesia
| | - Habibie Habibie
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Muh. Akbar Bahar
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Ferenc Budán
- Institute of Physiology, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Institute for Translational Medicine, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
9
|
Alaziqi B, Beckitt L, Townsend DJ, Morgan J, Price R, Maerivoet A, Madine J, Rochester D, Akien G, Middleton DA. Characterization of Olive Oil Phenolic Extracts and Their Effects on the Aggregation of the Alzheimer's Amyloid-β Peptide and Tau. ACS OMEGA 2024; 9:32557-32578. [PMID: 39100310 PMCID: PMC11292642 DOI: 10.1021/acsomega.4c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
The dietary consumption of extra virgin olive oil (EVOO) is believed to slow the progression of Alzheimer's disease (AD) symptoms. Its protective mechanisms are unclear, but specific EVOO phenolic compounds can individually impede the aggregation of amyloid-β (Aβ) peptides and the microtubule-associated protein tau, two important pathological manifestations of AD. It is unknown, however, whether the numerous and variable phenolic compounds that are consumed in dietary EVOO can collectively alter tau and Aβ aggregation as effectively as the individual compounds. The activity of these complex mixtures against Aβ and tau may be moderated by competition between active and nonactive phenolic components and by extensive derivatizations and isomerization. Here, phenolic mixtures extracted from two different EVOO sources are characterized and tested for how they modulate the aggregation of Aβ40 peptide and tau peptides in vitro. The chromatographic and NMR analysis of Greek and Saudi Arabian EVOO phenolic extracts reveals that they have different concentration profiles, and over 30 compounds are identified. Thioflavin T fluorescence and circular dichroism measurements show that relatively low concentrations (<20 μg/mL) of the Greek and Saudi extracts reduce the rate of Aβ40 aggregation and fibril mass, despite the extracts having different phenolic profiles. By contrast, the Greek extract reduces the rate of tau aggregation only at very high phenolic concentrations (>100 μg/mL). Most compounds in the extracts bind to preformed Aβ40 fibrils and release soluble Aβ oligomers that are mildly toxic to SH-SY5Y cells. Much higher (500 μg/mL) extract concentrations are required to remodel tau filaments into oligomers, and a minimal binding of phenolic compounds to the preformed filaments is observed. It is concluded that EVOO extracts having different phenol profiles are similarly capable of modulating Aβ40 aggregation and fibril morphology in vitro at relatively low concentrations but are less efficient at modulating tau aggregation. Over 2 M tonnes of EVOO are consumed globally each year as part of the Mediterranean diet, and the results here provide motivation for further clinical interrogation of the antiaggregation properties of EVOO as a potential protective mechanism against AD.
Collapse
Affiliation(s)
- Bakri Alaziqi
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Department
of Chemistry, University College in Al-Qunfudah,
Umm Al-Qura University, Makkah
Al-Mukarramah 1109, Saudi
Arabia
| | - Liam Beckitt
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David J. Townsend
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Jasmine Morgan
- Department
of Biology, Edge Hill University, Ormskirk L39 4QP, United Kingdom
| | - Rebecca Price
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Alana Maerivoet
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jillian Madine
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - David Rochester
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Geoffrey Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David A. Middleton
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
10
|
Gonçalves M, Vale N, Silva P. Neuroprotective Effects of Olive Oil: A Comprehensive Review of Antioxidant Properties. Antioxidants (Basel) 2024; 13:762. [PMID: 39061831 PMCID: PMC11274152 DOI: 10.3390/antiox13070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are a significant challenge to global healthcare, and oxidative stress plays a crucial role in their development. This paper presents a comprehensive analysis of the neuroprotective potential of olive oil, with a primary focus on its antioxidant properties. The chemical composition of olive oil, including key antioxidants, such as oleuropein, hydroxytyrosol, and oleocanthal, is systematically examined. The mechanisms by which these compounds provide neuroprotection, including counteracting oxidative damage and modulating neuroprotective pathways, are explored. The neuroprotective efficacy of olive oil is evaluated by synthesizing findings from various sources, including in vitro studies, animal models, and clinical trials. The integration of olive oil into dietary patterns, particularly its role in the Mediterranean diet, and its broader implications in neurodegenerative disease prevention are also discussed. The challenges in translating preclinical findings to clinical applications are acknowledged and future research directions are proposed to better understand the potential of olive oil in mitigating the risk of neurodegenerative conditions. This review highlights olive oil not only as a dietary component, but also as a promising candidate in preventive neurology, advocating for further investigation in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Gonçalves
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
11
|
López-Salas L, Díaz-Moreno J, Ciulu M, Borrás-Linares I, Quirantes-Piné R, Lozano-Sánchez J. Monitoring the Phenolic and Terpenic Profile of Olives, Olive Oils and By-Products throughout the Production Process. Foods 2024; 13:1555. [PMID: 38790855 PMCID: PMC11121151 DOI: 10.3390/foods13101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil is a food of great importance in the Mediterranean diet and culture. However, during its production, the olive oil industry generates a large amount of waste by-products that can be an important source of bioactive compounds, such as phenolic compounds and terpenes, revalorizing them in the context of the circular economy. Therefore, it is of great interest to study the distribution and abundance of these bioactive compounds in the different by-products. This research is a screening focused on phytochemical analysis, with particular emphasis on the identification and quantification of the phenolic and terpenic fractions. Both the main products of the olive industry (olives, olive paste and produced oil) and the by-products generated throughout the oil production process (leaf, "alpeorujo", liquid and solid residues generated during decanting commonly named "borras" and washing water) were analyzed. For this purpose, different optimized extraction procedures were performed for each matrix, followed by high-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF/MS) analysis. Although no phenolic alcohols were quantified in the leaf and the presence of secoiridoids was low, this by-product was notable for its flavonoid (720 ± 20 µg/g) and terpene (5000 ± 300 µg/g) contents. "Alpeorujo" presented a complete profile of compounds of interest, being abundant in phenolic alcohols (900 ± 100 µg/g), secoiridoids (4500 ± 500 µg/g) and terpenes (1200 ± 100 µg/g), among others. On the other hand, while the solid residue of the borras was the most abundant in phenolic alcohols (3700 ± 200 µg/g) and secoiridoids (680 ± 20 µg/g), the liquid fraction of this waste was notable for its content of elenolic acid derivatives (1700 ± 100 µg/mL) and phenolic alcohols (3000 ± 300 µg/mL). Furthermore, to our knowledge, this is the first time that the terpene content of this by-product has been monitored, demonstrating that it is an important source of these compounds, especially maslinic acid (120 ± 20 µg/g). Finally, the phytochemical content in wash water was lower than expected, and only elenolic acid derivatives were detected (6 ± 1 µg/mL). The results highlighted the potential of the olive by-products as possible alternative sources of a wide variety of olive bioactive compounds for their revalorization into value-added products.
Collapse
Affiliation(s)
- Lucía López-Salas
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (L.L.-S.); (J.D.-M.); (J.L.-S.)
| | - Javier Díaz-Moreno
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (L.L.-S.); (J.D.-M.); (J.L.-S.)
| | - Marco Ciulu
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy;
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (L.L.-S.); (J.D.-M.); (J.L.-S.)
| |
Collapse
|
12
|
Huang Y, Guan Q, Zhang Z, Wang P, Li C. Oleacein: A comprehensive review of its extraction, purification, absorption, metabolism, and health effects. Food Chem 2024; 433:137334. [PMID: 37660602 DOI: 10.1016/j.foodchem.2023.137334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Extra virgin olive oil (EVOO) consumption reduces the risk of cardiovascular disease in high-risk groups and the polyphenols in EVOO play an important health effect on it. As one of the most abundant polyphenols in EVOO, oleacein (OLEA) has many health benefits. However, there is no review article that focus comprehensively on OLEA, and most articles have limited data and information on OLEA. The purpose of this review is to summarize the results of all available studies, to present and compare the main traditional and novel techniques for the extraction and isolation and purification of OLEA, to elucidate the absorption and metabolic pathways of OLEA, and finally, to illustrate the health-promoting properties. Hopefully, this review can promote the use of OLEA in functional foods and therapeutic fields.
Collapse
Affiliation(s)
- Yunfei Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyun Guan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuoya Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengxiang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
13
|
Olmo-Cunillera A, Pérez M, López-Yerena A, Abuhabib MM, Ninot A, Romero-Aroca A, Vallverdú-Queralt A, Maria Lamuela-Raventós R. Targeted metabolic profiling of the revived ancient 'Corbella' olive cultivar during early maturation. Food Chem 2024; 430:137024. [PMID: 37527576 DOI: 10.1016/j.foodchem.2023.137024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
'Corbella' is an ancient olive cultivar whose cultivation has recently been revived and hence little is known about its composition. This is the first work studying the metabolic profile of 'Corbella' olives during early maturation. Olives with a ripening index (RI) < 1 yielded considerably less oil content (<40%) but had more concentration of phenolic compounds (148.41-219.70 mg/kg), carotenoids (9.61-14.94 mg/kg) and squalene (521.41-624.40 mg/kg). Contrarily, the levels of α-tocopherol were higher at the RI of 1.08 and 1.96 (64.57 and 57.75 mg/kg, respectively). The most abundant phenolic compound was oleuropein aglycone (>50% of the phenolic composition), suggesting a high hydrolytic activity of β-glucosidase in the fruit. The antioxidant capacity was barely affected, while oleic/linoleic ratio reached its highest at RI of 1.96. Therefore, olives with an RI below 2 could be good candidates to produce high-quality olive oils with good level of stability.
Collapse
Affiliation(s)
- Alexandra Olmo-Cunillera
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Anallely López-Yerena
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Mohamed M Abuhabib
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Antònia Ninot
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain
| | - Agustí Romero-Aroca
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rosa Maria Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
14
|
García-Gavilán JF, Babio N, Toledo E, Semnani-Azad Z, Razquin C, Dennis C, Deik A, Corella D, Estruch R, Ros E, Fitó M, Arós F, Fiol M, Lapetra J, Lamuela-Raventos R, Clish C, Ruiz-Canela M, Martínez-González MÁ, Hu F, Salas-Salvadó J, Guasch-Ferré M. Olive oil consumption, plasma metabolites, and risk of type 2 diabetes and cardiovascular disease. Cardiovasc Diabetol 2023; 22:340. [PMID: 38093289 PMCID: PMC10720204 DOI: 10.1186/s12933-023-02066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Olive oil consumption has been inversely associated with the risk of type 2 diabetes (T2D) and cardiovascular disease (CVD). However, the impact of olive oil consumption on plasma metabolites remains poorly understood. This study aims to identify plasma metabolites related to total and specific types of olive oil consumption, and to assess the prospective associations of the identified multi-metabolite profiles with the risk of T2D and CVD. METHODS The discovery population included 1837 participants at high cardiovascular risk from the PREvención con DIeta MEDiterránea (PREDIMED) trial with available metabolomics data at baseline. Olive oil consumption was determined through food-frequency questionnaires (FFQ) and adjusted for total energy. A total of 1522 participants also had available metabolomics data at year 1 and were used as the internal validation sample. Plasma metabolomics analyses were performed using LC-MS. Cross-sectional associations between 385 known candidate metabolites and olive oil consumption were assessed using elastic net regression analysis. A 10-cross-validation (CV) procedure was used, and Pearson correlation coefficients were assessed between metabolite-weighted models and FFQ-derived olive oil consumption in each pair of training-validation data sets within the discovery sample. We further estimated the prospective associations of the identified plasma multi-metabolite profile with incident T2D and CVD using multivariable Cox regression models. RESULTS We identified a metabolomic signature for the consumption of total olive oil (with 74 metabolites), VOO (with 78 metabolites), and COO (with 17 metabolites), including several lipids, acylcarnitines, and amino acids. 10-CV Pearson correlation coefficients between total olive oil consumption derived from FFQs and the multi-metabolite profile were 0.40 (95% CI 0.37, 0.44) and 0.27 (95% CI 0.22, 0.31) for the discovery and validation sample, respectively. We identified several overlapping and distinct metabolites according to the type of olive oil consumed. The baseline metabolite profiles of total and extra virgin olive oil were inversely associated with CVD incidence (HR per 1SD: 0.79; 95% CI 0.67, 0.92 for total olive oil and 0.70; 0.59, 0.83 for extra virgin olive oil) after adjustment for confounders. However, no significant associations were observed between these metabolite profiles and T2D incidence. CONCLUSIONS This study reveals a panel of plasma metabolites linked to the consumption of total and specific types of olive oil. The metabolite profiles of total olive oil consumption and extra virgin olive oil were associated with a decreased risk of incident CVD in a high cardiovascular-risk Mediterranean population, though no associations were observed with T2D incidence. TRIAL REGISTRATION The PREDIMED trial was registered at ISRCTN ( http://www.isrctn.com/ , ISRCTN35739639).
Collapse
Affiliation(s)
- Jesús F García-Gavilán
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Estefanía Toledo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Zhila Semnani-Azad
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cristina Razquin
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | | | - Amy Deik
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut de Nutrició I Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Lipid Clinic, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Institut de Recerca Hospital del Mar, Barcelona, Spain
| | - Fernando Arós
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009, Vitoria-Gasteiz, Spain
| | - Miquel Fiol
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Plataforma de Ensayos Clínicos, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120, Palma, Spain
| | - José Lapetra
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Seville, Spain
| | - Rosa Lamuela-Raventos
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Nutrició I Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
- Polyphenol Research Group, Departament de Nutrició, Ciències de L'Alimentació I Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028, Barcelona, Spain
| | - Clary Clish
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark.
| |
Collapse
|
15
|
Schuh L, Reginato M, Florêncio I, Falcao L, Boron L, Gris EF, Mello V, Báo SN. From Nature to Innovation: The Uncharted Potential of Natural Deep Eutectic Solvents. Molecules 2023; 28:7653. [PMID: 38005377 PMCID: PMC10675409 DOI: 10.3390/molecules28227653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review discusses the significance of natural deep eutectic solvents (NaDESs) as a promising green extraction technology. It employs the consolidated meta-analytic approach theory methodology, using the Web of Science and Scopus databases to analyze 2091 articles as the basis of the review. This review explores NaDESs by examining their properties, challenges, and limitations. It underscores the broad applications of NaDESs, some of which remain unexplored, with a focus on their roles as solvents and preservatives. NaDESs' connections with nanocarriers and their use in the food, cosmetics, and pharmaceutical sectors are highlighted. This article suggests that biomimicry could inspire researchers to develop technologies that are less harmful to the human body by emulating natural processes. This approach challenges the notion that green science is inferior. This review presents numerous successful studies and applications of NaDESs, concluding that they represent a viable and promising avenue for research in the field of green chemistry.
Collapse
Affiliation(s)
- Luísa Schuh
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Marcella Reginato
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Isadora Florêncio
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Leila Falcao
- Inaturals SAS, 2 Bis, Impasse Henri Mouret, 84000 Avignon, France;
| | - Luana Boron
- Inaturals BR, Rua Gerson Luís Piovesan 200, Concórdia 89701-012, Brazil;
| | - Eliana Fortes Gris
- Department of Bromatology, Faculty of Ceilândia, University of Brasília, Ceilândia 72220-275, Brazil;
| | - Victor Mello
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Nanocycle Group, Brasília 72622-401, Brazil
| |
Collapse
|
16
|
Al-Naqeb G, Kalmpourtzidou A, De Giuseppe R, Cena H. Beneficial Effects of Plant Oils Supplementation on Multiple Sclerosis: A Comprehensive Review of Clinical and Experimental Studies. Nutrients 2023; 15:4827. [PMID: 38004221 PMCID: PMC10674509 DOI: 10.3390/nu15224827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis disease (MS) is a 38.5 chronic neurological autoimmune disease that affects the nervous system, and its incidence is increasing globally. At present, there is no cure for this disease, and with its severity and disabling variety, it is important to search for possibilities that could help to slow its progression. It is recognized that the mechanisms of MS pathology, its development and degree of activity can be affected by dietary factors. In this review, the beneficial health effects of 10 plants oils-mainly seed oils, including pomegranate seed oil, sesame oil, acer truncatum bunge seed oil, hemp seeds oil, evening primrose seed oil, coconut oil, walnut oil, essential oil from Pterodon emarginatus seeds, flaxseed oil and olive oil-on MS are discussed. The literature data indicate that plant oils could be effective for the treatment of MS and its related symptoms primarily through reducing inflammation, promoting remyelination, immunomodulation and inhibiting oxidative stress. Plant oils may potentially reduce MS progression. Longitudinal research including a larger sample size with a longer duration is essential to confirm the findings from the selected plant oils. Moreover, new plant oils should be studied for their potential MS benefit.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (R.D.G.); (H.C.)
- Department of Food Sciences and Nutrition, Faculty of Agriculture Food and Environment, University of Sana’a, Sana’a P.O. Box 1247, Yemen
| | - Aliki Kalmpourtzidou
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (R.D.G.); (H.C.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (R.D.G.); (H.C.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (R.D.G.); (H.C.)
- Clinical Nutrition Unit, General Medicine, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
17
|
Asadi A, Shariati V, Mousavi S, Mariotti R, Hosseini Mazinani M. Meta-analysis of transcriptome reveals key genes relating to oil quality in olive. BMC Genomics 2023; 24:566. [PMID: 37740234 PMCID: PMC10517554 DOI: 10.1186/s12864-023-09673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Olive oil contains monounsaturated oleic acid up to 83% and phenolic compounds, making it an excellent source of fat. Due to its economic importance, the quantity and quality of olive oil should be improved in parallel with international standards. In this study, we analyzed the raw RNA-seq data with a meta-analysis approach to identify important genes and their metabolic pathways involved in olive oil quality. RESULTS A deep search of RNA-seq published data shed light on thirty-nine experiments associated with the olive transcriptome, four of these proved to be ideal for meta-analysis. Meta-analysis confirmed the genes identified in previous studies and released new genes, which were not identified before. According to the IDR index, the meta-analysis had good power to identify new differentially expressed genes. The key genes were investigated in the metabolic pathways and were grouped into four classes based on the biosynthetic cycle of fatty acids and factors that affect oil quality. Galactose metabolism, glycolysis pathway, pyruvate metabolism, fatty acid biosynthesis, glycerolipid metabolism, and terpenoid backbone biosynthesis were the main pathways in olive oil quality. In galactose metabolism, raffinose is a suitable source of carbon along with other available sources for carbon in fruit development. The results showed that the biosynthesis of acetyl-CoA in glycolysis and pyruvate metabolism is a stable pathway to begin the biosynthesis of fatty acids. Key genes in oleic acid production as an indicator of oil quality and critical genes that played an important role in production of triacylglycerols were identified in different developmental stages. In the minor compound, the terpenoid backbone biosynthesis was investigated and important enzymes were identified as an interconnected network that produces important precursors for the synthesis of a monoterpene, diterpene, triterpene, tetraterpene, and sesquiterpene biosynthesis. CONCLUSIONS The results of the current investigation can produce functional data related to the quality of olive oil and would be a useful step in reducing the time of cultivar screening by developing gene specific markers in olive breeding programs, releasing also new genes that could be applied in the genome editing approach.
Collapse
Affiliation(s)
- AliAkbar Asadi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran
| | - Vahid Shariati
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran.
| | - Soraya Mousavi
- Institute of Biosciences and Bioresources, National Research Council, 06128, Perugia, Italy
| | - Roberto Mariotti
- Institute of Biosciences and Bioresources, National Research Council, 06128, Perugia, Italy
| | - Mehdi Hosseini Mazinani
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran.
| |
Collapse
|
18
|
Boronat A, Serreli G, Rodríguez-Morató J, Deiana M, de la Torre R. Olive Oil Phenolic Compounds' Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants (Basel) 2023; 12:1472. [PMID: 37508010 PMCID: PMC10376491 DOI: 10.3390/antiox12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Epidemiological studies have shown that consuming olive oil rich in phenolic bioactive compounds is associated with a lower risk of neurodegenerative diseases and better cognitive performance in aged populations. Since oxidative stress is a common hallmark of age-related cognitive decline, incorporating exogenous antioxidants could have beneficial effects on brain aging. In this review, we firstly summarize and critically discuss the current preclinical evidence and the potential neuroprotective mechanisms. Existing studies indicate that olive oil phenolic compounds can modulate and counteract oxidative stress and neuroinflammation, two relevant pathways linked to the onset and progression of neurodegenerative processes. Secondly, we summarize the current clinical evidence. In contrast to preclinical studies, there is no direct evidence in humans of the bioactivity of olive oil phenolic compounds. Instead, we have summarized current findings regarding nutritional interventions supplemented with olive oil on cognition. A growing body of research indicates that high consumption of olive oil phenolic compounds is associated with better preservation of cognitive performance, conferring an additional benefit, independent of the dietary pattern. In conclusion, the consumption of olive oil rich in phenolic bioactive compounds has potential neuroprotective effects. Further research is needed to understand the underlying mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy
| | - Jose Rodríguez-Morató
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), 28029 Madrid, Spain
| |
Collapse
|
19
|
Ruiz-García I, Ortíz-Flores R, Badía R, García-Borrego A, García-Fernández M, Lara E, Martín-Montañez E, García-Serrano S, Valdés S, Gonzalo M, Tapia-Guerrero MJ, Fernández-García JC, Sánchez-García A, Muñoz-Cobos F, Calderón-Cid M, El-Bekay R, Covas MI, Rojo-Martínez G, Olveira G, Romero-Zerbo SY, Bermúdez-Silva FJ. Rich oleocanthal and oleacein extra virgin olive oil and inflammatory and antioxidant status in people with obesity and prediabetes. The APRIL study: A randomised, controlled crossover study. Clin Nutr 2023; 42:1389-1398. [PMID: 37421852 DOI: 10.1016/j.clnu.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Oleocanthal and oleacein are olive oil phenolic compounds with well known anti-inflammatory and anti-oxidant properties. The main evidence, however, is provided by experimental studies. Few human studies have examined the health benefits of olive oils rich in these biophenols. Our aim was to assess the health properties of rich oleocanthal and oleacein extra virgin olive oil (EVOO), compared to those of common olive oil (OO), in people with prediabetes and obesity. METHODS Randomised, double-blind, crossover trial done in people aged 40-65 years with obesity (BMI 30-40 kg/m2) and prediabetes (HbA1c 5.7-6.4%). The intervention consisted in substituting for 1 month the oil used for food, both raw and cooked, by EVOO or OO. No changes in diet or physical activity were recommended. The primary outcome was the inflammatory status. Secondary outcomes were the oxidative status, body weight, glucose handling and lipid profile. An ANCOVA model adjusted for age, sex and treatment administration sequence was used for the statistical analysis. RESULTS A total of 91 patients were enrolled (33 men and 58 women) and finished the trial. A decrease in interferon-γ was observed after EVOO treatment, reaching inter-treatment differences (P = 0.041). Total antioxidant status increased and lipid and organic peroxides decreased after EVOO treatment, the changes reaching significance compared to OO treatment (P < 0.05). Decreases in weight, BMI and blood glucose (p < 0.05) were found after treatment with EVOO and not with OO. CONCLUSIONS Treatment with EVOO rich in oleocanthal and oleacein differentially improved oxidative and inflammatory status in people with obesity and prediabetes.
Collapse
Affiliation(s)
- Ignacio Ruiz-García
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Rodolfo Ortíz-Flores
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain; Departamento de Fisiología Humana, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Rocío Badía
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | | | - María García-Fernández
- Departamento de Fisiología Humana, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Estrella Lara
- Departamento de Fisiología Humana, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Elisa Martín-Montañez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Sara García-Serrano
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Sergio Valdés
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Montserrat Gonzalo
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - María-José Tapia-Guerrero
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - José-Carlos Fernández-García
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Alicia Sánchez-García
- Departamento de Fitoquímica de los Alimentos, Instituto de la Grasa - CSIC, Sevilla, Spain
| | - Francisca Muñoz-Cobos
- Centro de Salud El Palo, Consejería de Salud y Familias, Junta de Andalucía, Málaga, Spain
| | | | - Rajaa El-Bekay
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | | | - Gemma Rojo-Martínez
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Gabriel Olveira
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain; Departamento de Medicina y Dermatología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Silvana-Yanina Romero-Zerbo
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain; Departamento de Fisiología Humana, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| | - Francisco-Javier Bermúdez-Silva
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain; Departamento de Fisiología Humana, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
20
|
Reuss JM, Alonso-Gamo L, Garcia-Aranda M, Reuss D, Albi M, Albi B, Vilaboa D, Vilaboa B. Oral Mucosa in Cancer Patients-Putting the Pieces Together: A Narrative Review and New Perspectives. Cancers (Basel) 2023; 15:3295. [PMID: 37444405 DOI: 10.3390/cancers15133295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
The oral mucosa is a key player in cancer patients and during cancer treatment. The increasing prevalence of cancer and cancer-therapy-associated side effects are behind the major role that oral mucosa plays in oncological patients. Oral mucositis is a debilitating severe complication caused by the early toxicity of chemo and/or radiotherapy that can restrict treatment outcome possibilities, even challenging a patient's survival. It has been referred to as the most feared cancer treatment complication. Predictive variables as to who will be affected, and to what extent, are still unclear. Additionally, oral mucositis is one of the sources of the increasing economic burden of cancer, not only for patients and their families but also for institutions and governments. All efforts should be implemented in the search for new approaches to minimize the apparently ineluctable outburst of oral mucositis during cancer treatment. New perspectives derived from different approaches to explaining the interrelation between oral mucositis and the oral microbiome or the similarities with genitourinary mucosa may help elucidate the biomolecular pathways and mechanisms behind oral mucosa cancer-therapy-related toxicity, and what is more important is its management in order to minimize treatment side effects and provide enhanced cancer support.
Collapse
Affiliation(s)
- Jose Manuel Reuss
- Department of Postgraduate Prosthodontics, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura Alonso-Gamo
- Department of Pediatrics, Hospital Infanta Cristina, 28981 Madrid, Spain
| | - Mariola Garcia-Aranda
- Centro Integral Oncológico Clara Campal, Department of Oncologic Radiotherapy, Hospital Universitario Sanchinarro, 28050 Madrid, Spain
| | - Debora Reuss
- Lecturer Dental School, Universidad San Pablo CEU, 28003 Madrid, Spain
| | - Manuel Albi
- Department of Gynecology and Obstetrics, Quironsalud Group Public Hospitals, 28223 Madrid, Spain
| | - Beatriz Albi
- Department of Gynecology and Obstetrics, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Debora Vilaboa
- Aesthetic Dentistry Department, Universidad San Pablo CEU, 28003 Madrid, Spain
| | | |
Collapse
|
21
|
Rivero-Pino F. Oleocanthal - Characterization, production, safety, functionality and in vivo evidences. Food Chem 2023; 425:136504. [PMID: 37276673 DOI: 10.1016/j.foodchem.2023.136504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Oleocanthal, OC, 2-(4-Hydroxyphenyl)ethyl(3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate, is a natural organic compound exclusively found in Olea europaea L. (Oleoaceae), such as extra virgin olive oil (EVOO). Chemically, it is considered a monophenolic secoiridoid, taking part of the validated antioxidants naturally occurring in some plant-based foods. In this review, the aim is to summarize the identity and characteristics of this molecule, where it can be obtained (isolation from the natural source or chemical synthesis), as well as the use as food component. Then, the bioavailability, safety and studies aiming to demonstrate the potential health benefits, including in vitro and in vivo animal and human studies were also discussed.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
22
|
Tsai HH, Yu JC, Hsu HM, Chu CH, Chang TM, Hong ZJ, Feng AC, Fu CY, Hsu KF, Dai MS, Liao GS. The Risk of Breast Cancer between Western and Mediterranean Dietary Patterns. Nutrients 2023; 15:2057. [PMID: 37432206 DOI: 10.3390/nu15092057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 07/12/2023] Open
Abstract
Breast cancer is a significant public health problem globally and prevention strategies have become of great interest as its incidence rises. Exploring the connection between dietary patterns and the reduction of breast cancer risk is considered a promising approach. High levels of fiber, phytochemicals, a good antioxidant profile, and a composition of advantageous fatty acids are characteristics of healthy dietary programs such as the Mediterranean diet. This review summarized and discussed the active compounds that are considered important in preventing breast cancer, including dietary components from recent related reports. These include polyunsaturated fatty acids, fiber, phytochemicals, and alcohol. Although the exact mechanism for preventing breast cancer using these dietary factors is not well understood, the combination of all the elements in a healthy diet plays a role in reducing breast cancer risk. Considering the elevated probability of breast cancer relapse and mortality, it is crucial to investigate the correlation between a nutritious dietary pattern and breast cancer, while identifying bioactive components that have the potential to mitigate the risk of breast cancer incidence.
Collapse
Affiliation(s)
- Hsueh-Han Tsai
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Jyh-Cherng Yu
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Huan-Ming Hsu
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chi-Hong Chu
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Tzu-Ming Chang
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Zhi-Jie Hong
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - An-Chieh Feng
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Yu Fu
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Feng Hsu
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Shen Dai
- Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Guo-Shiou Liao
- Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
23
|
Rodríguez-Agurto A, Bravo M, Magán-Fernandez A, López-Toruño A, Muñoz R, Ferrer J, Mesa F. Randomized clinical trial on the clinical effects of a toothpaste containing extra virgin olive oil, xylitol, and betaine in gingivitis. Sci Rep 2023; 13:6294. [PMID: 37072503 PMCID: PMC10113385 DOI: 10.1038/s41598-023-33521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
To determine the effects on gingival bleeding, dental biofilm, and salivary flow and pH in patients with gingivitis of using toothpaste with extra-virgin olive oil (EVOO), xylitol, and betaine in comparison to a placebo or commercial toothpaste. This controlled, double blinded, and multicenter randomized clinical trial included patients with gingivitis randomly assigned to one of three groups: test group (EVOO, xylitol, and betaine toothpaste), control group 1 (placebo toothpaste), or control group 2 (commercial toothpaste). Percentage supragingival biofilm and gingival bleeding were evaluated at baseline (T0), 2 months (T2), and 4 months (T4), measuring non-stimulated salivary flow and salivary pH. Comparisons were performed between and within groups. The final study sample comprised 20 in the test group, 21 in control group 1, and 20 in control group 2. In comparison to control group 1, the test group showed significantly greater decreases in gingival bleeding between T4 and T0 (p = 0.02) and in biofilm between T2 and T0 (p = 0.02) and between T4 and T0 (p = 0.01). In the test group, salivary flow significantly increased between T2 and T0 (p = 0.01), while pH alkalization was significantly greater between T4 and T0 versus control group 2 (p = 0.01) and close-to-significantly greater versus control group 1 (p = 0.06). The toothpaste with EVOO, xylitol, and betaine obtained the best outcomes in patients with gingivitis, who showed reductions in gingival bleeding and supragingival biofilm and an increase in pH at 4 months in comparison to a commercial toothpaste.
Collapse
Affiliation(s)
| | - Manuel Bravo
- Department of Preventive and Community Dentistry, University of Granada, Granada, Spain
| | - Antonio Magán-Fernandez
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain.
- Facultad de Odontología, Universidad de Granada, Campus de Cartuja s/n, 18071, Granada, Spain.
| | - Ana López-Toruño
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain
| | - Ricardo Muñoz
- Odontólogo, Centro de Salud de Loja, Unidad de Salud Bucodental Distrito Metropolitano, Servicio Andaluz de Salud, Granada, Spain
| | - Joaquín Ferrer
- Odontólogo, Centro de Salud de Huétor-Tajar, Unidad de Salud Bucodental Distrito Metropolitano, Servicio Andaluz de Salud, Granada, Spain
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
24
|
Treatment with the Olive Secoiridoid Oleacein Protects against the Intestinal Alterations Associated with EAE. Int J Mol Sci 2023; 24:ijms24054977. [PMID: 36902407 PMCID: PMC10003427 DOI: 10.3390/ijms24054977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple sclerosis (MS) is a CNS inflammatory demyelinating disease. Recent investigations highlight the gut-brain axis as a communication network with crucial implications in neurological diseases. Thus, disrupted intestinal integrity allows the translocation of luminal molecules into systemic circulation, promoting systemic/brain immune-inflammatory responses. In both, MS and its preclinical model, the experimental autoimmune encephalomyelitis (EAE) gastrointestinal symptoms including "leaky gut" have been reported. Oleacein (OLE), a phenolic compound from extra virgin olive oil or olive leaves, harbors a wide range of therapeutic properties. Previously, we showed OLE effectiveness preventing motor defects and inflammatory damage of CNS tissues on EAE mice. The current studies examine its potential protective effects on intestinal barrier dysfunction using MOG35-55-induced EAE in C57BL/6 mice. OLE decreased EAE-induced inflammation and oxidative stress in the intestine, preventing tissue injury and permeability alterations. OLE protected from EAE-induced superoxide anion and accumulation of protein and lipid oxidation products in colon, also enhancing its antioxidant capacity. These effects were accompanied by reduced colonic IL-1β and TNFα levels in OLE-treated EAE mice, whereas the immunoregulatory cytokines IL-25 and IL-33 remained unchanged. Moreover, OLE protected the mucin-containing goblet cells in colon and the serum levels of iFABP and sCD14, markers that reflect loss of intestinal epithelial barrier integrity and low-grade systemic inflammation, were significantly reduced. These effects on intestinal permeability did not draw significant differences on the abundance and diversity of gut microbiota. However, OLE induced an EAE-independent raise in the abundance of Akkermansiaceae family. Consistently, using Caco-2 cells as an in vitro model, we confirmed that OLE protected against intestinal barrier dysfunction induced by harmful mediators present in both EAE and MS. This study proves that the protective effect of OLE in EAE also involves normalizing the gut alterations associated to the disease.
Collapse
|
25
|
Cuffaro D, Bertini S, Macchia M, Digiacomo M. Enhanced Nutraceutical Properties of Extra Virgin Olive Oil Extract by Olive Leaf Enrichment. Nutrients 2023; 15:nu15051073. [PMID: 36904073 PMCID: PMC10005073 DOI: 10.3390/nu15051073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
(1) Background: Nowadays, the health-promoting properties of extra virgin olive oil (EVOO), including the antioxidant and anti-inflammatory actions, are well recognized and mainly attributed to the different polyphenols, such as oleocanthal and oleacein. In EVOO production, olive leaves represent a high value by-product, showing a wide spectrum of beneficial effects due to the presence of polyphenols, especially oleuropein. Here we report the study of olive leaf extract (OLE)-enriched EVOO extracts, obtained by adding different percentages of OLE to EVOO in order to ameliorate their nutraceutical activities. (2) Methods: The polyphenolic content of the EVOO/OLE extracts was analyzed by HPLC and the Folin-Ciocalteau assay. For further biological testing, an 8% OLE-enriched EVOO extract was chosen. Therefore, antioxidant effects were evaluated by three different methods (DPPH, ABTS, and FRAP), and the anti-inflammatory properties were assessed in terms of cyclooxygenase activity inhibition. (3) Results: The antioxidant and anti-inflammatory profiles of the new EVOO/OLE extract are significantly improved compared to those of EVOO extract; (4) Conclusions: The combination of OLE and EVOO extract can lead to an extract enriched in terms of bioactive polyphenols and endowed with better biological properties than the singular EVOO extract. Therefore, it may represent a new complement in the nutraceutical field.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Correspondence:
| |
Collapse
|
26
|
Thangavel N, Albratty M. Benchmarked molecular docking integrated molecular dynamics stability analysis for prediction of SARS-CoV-2 papain-like protease inhibition by olive secoiridoids. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102402. [PMID: 36338939 PMCID: PMC9617799 DOI: 10.1016/j.jksus.2022.102402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/23/2022] [Accepted: 10/24/2022] [Indexed: 05/28/2023]
Abstract
Objectives We performed a virtual screening of olive secoiridoids of the OliveNetTM library to predict SARS-CoV-2 PLpro inhibition. Benchmarked molecular docking protocol that evaluated the performance of two docking programs was applied to execute virtual screening. Molecular dynamics stability analysis of the top-ranked olive secoiridoid docked to PLpro was also carried out. Methods Benchmarking virtual screening used two freely available docking programs, AutoDock Vina 1.1.2. and AutoDock 4.2.1. for molecular docking of olive secoiridoids to a single PLpro structure. Screening also included benchmark structures of known active and decoy molecules from the DEKOIS 2.0 library. Based on the predicted binding energies, the docking programs ranked the screened molecules. We applied the usual performance evaluation metrices to evaluate the docking programs using the predicted ranks. Molecular dynamics of the top-ranked olive secoiridoid bound to PLpro and computation of MM-GBSA energy using three iterations during the last 50 ps of the analysis of the dynamics in Desmond supported the stability prediction. Results and discussions Predictiveness curves suggested that AutoDock Vina has a better predictive ability than AutoDock, although there was a moderate correlation between the active molecules rankings (Kendall's correlation of rank (τ) = 0.581). Interestingly, two same molecules, Demethyloleuropein aglycone, and Oleuroside enriched the top 1 % ranked olive secoiridoids predicted by both programs. Demethyloleuropein aglycone bound to PLpro obtained by docking in AutoDock Vina when analyzed for stability by molecular dynamics simulation for 50 ns displayed an RMSD, RMSF<2 Å, and MM-GBSA energy of -94.54 ± 6.05 kcal/mol indicating good stability. Molecular dynamics also revealed the interactions of Demethyloleuropein aglycone with binding sites 2 and 3 of PLpro, suggesting a potent inhibition. In addition, for 98 % of the simulation time, two phenolic hydroxy groups of Demethyloleuropein aglycone maintained two hydrogen bonds with Asp302 of PLpro, specifying the significance of the groups in receptor binding. Conclusion AutoDock Vina retrieved the active molecules accurately and predicted Demethyloleuropein aglycone as the best inhibitor of PLpro. The Arabian diet consisting of olive products rich in secoiridoids benefits from the PLpro inhibition property and reduces the risk of viral infection.
Collapse
Key Words
- AD, AutoDock 4.2.1
- ADV, AutoDock Vina 1.1.2
- BEDROC, Boltzmann enhanced discrimination of ROC
- Benchmarking docking
- DEKOIS, Demanding evaluation kits for objective in-silico screening
- EF, Enrichment factor
- M, Moles
- MD, Molecular dynamics
- MM-GBSA, Molecular mechanics generalized Born surface area
- MW, Molecular weight
- Molecular docking
- Molecular dynamics
- OS, Olive secoiridoids
- Olive secoiridoids
- PC, Predictiveness curve
- PLpro
- PLpro, Papain-like protease
- RIE, Robust initial enhancement
- RMSD, Root mean square deviation
- RMSF, Root mean square fluctuation
- ROC, Receiver operating characteristic curve
- ROC-AUC, Area under ROC
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus-2
- TG, Total gain
- g/mol, Grams/mole
- kcal/mol, Kilocalorie/mole
- ns, nanoseconds
- pAUC, partial area under ROC
- pTG, Partial total gain
- ps, picoseconds
Collapse
Affiliation(s)
- Neelaveni Thangavel
- Department of Pharmaceutical Chemistry & Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry & Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
27
|
Martins BT, Bronze MR, Ventura MR. Phenolic Compounds from Virgin Olive Oil: Approaches for Their Synthesis and Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14109-14128. [PMID: 36301258 DOI: 10.1021/acs.jafc.2c05349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Virgin olive oil (VOO) is the main fat consumed by populations in the Mediterranean basin, and phenolic compounds, minor components of this fat, are known to be responsible for diverse health benefits when consumed in a regular diet. According to numerous investigations, these benefits are mostly related to phenols such as tyrosol and hydroxytyrosol and secoiridoid derivatives such as ligstroside, oleuropein, oleocanthal and oleacein. These compounds are present in low concentrations, and for some of them, standards are not commercially available, hampering studies on the mechanisms underlying their biological activity. In order to contribute to a better knowledge of the bioactivity of these compounds and their metabolites, they must be available with high purity and in sufficient amounts for the assays. Chemical synthesis has been considered a convenient way to obtain these compounds. This Review will focus on the synthesis of representative VOO compounds, namely, ligstroside, oleuropein, oleocanthal, oleacein and analogues.
Collapse
Affiliation(s)
- Beatriz T Martins
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- FFULisboa-Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
- IBET-Instituto de Biologia Experimental e Tecnológica, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - M Rita Ventura
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
28
|
Nikou T, Sakavitsi ME, Kalampokis E, Halabalaki M. Metabolism and Bioavailability of Olive Bioactive Constituents Based on In Vitro, In Vivo and Human Studies. Nutrients 2022; 14:3773. [PMID: 36145149 PMCID: PMC9504511 DOI: 10.3390/nu14183773] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Consumption of olive products has been established as a health-promoting dietary pattern due to their high content in compounds with eminent pharmacological properties and well-described bioactivities. However, their metabolism has not yet been fully described. The present critical review aimed to gather all scientific data of the past two decades regarding the absorption and metabolism of the foremost olive compounds, specifically of the phenylalcohols hydroxytyrosol (HTyr) and tyrosol (Tyr) and the secoiridoids oleacein (Olea), oleocanthal (Oleo) and oleuropein (Oleu). A meticulous record of the in vitro assays and in vivo (animals and humans) studies of the characteristic olive compounds was cited, and a critical discussion on their bioavailability and metabolism was performed taking into account data from their gut microbial metabolism. The existing critical review summarizes the existing knowledge regarding the bioavailability and metabolism of olive-characteristic phenylalchohols and secoiridoids and spotlights the lack of data for specific chemical groups and compounds. Critical observations and conclusions were derived from correlating structure with bioavailability data, while results from in vitro, animal and human studies were compared and discussed, giving significant insight to the future design of research approaches for the total bioavailability and metabolism exploration thereof.
Collapse
Affiliation(s)
| | | | | | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
29
|
Costa M, Costa V, Lopes M, Paiva-Martins F. A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo. Crit Rev Food Sci Nutr 2022; 64:1403-1428. [PMID: 36094444 DOI: 10.1080/10408398.2022.2116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chemistry of the phenolic compounds found in virgin olive oil (VOO) is very complex due, not only to the different classes of polyphenols that can be found in it, but, above all, due to the existence of a very specific phenol class found only in oleaceae plants: the secoiridoids. Searching in the Scopus data base the keywords flavonoid, phenolic acid, lignin and secoiridoid, we can find a number of 148174, 79435, 11326 and 1392 research articles respectively, showing how little is devote to the latter class of compounds. Moreover, in contrast with other classes, that include only phenolic compounds, secoiridoids may include phenolic and non-phenolic compounds, being the articles concerning phenolic secoiridoids much less than the half of the abovementioned articles. Therefore, it is important to clarify the structures of these compounds and their chemistry, as this knowledge will help understand their bioactivity and metabolism studies, usually performed by researchers with a more health science's related background. In this review, all the structures found in many research articles concerning VOO phenolic compounds chemistry and metabolism was gathered, with a special attention devoted to the secoiridoids, the main phenolic compound class found in olives, VOO and olive leaf.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Vânia Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Margarida Lopes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
D’Archivio M, Santangelo C, Silenzi A, Scazzocchio B, Varì R, Masella R. Dietary EVOO Polyphenols and Gut Microbiota Interaction: Are There Any Sex/Gender Influences? Antioxidants (Basel) 2022; 11:antiox11091744. [PMID: 36139818 PMCID: PMC9495659 DOI: 10.3390/antiox11091744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence indicates that regular consumption of extra virgin olive oil (EVOO), the main source of fat in the Mediterranean diet, is associated with beneficial health effects and a reduced risk of developing chronic degenerative disorders. The beneficial effects of EVOO can be attributed to its unique composition in monounsaturated fats and phenolic compounds that provide important antioxidant, anti-inflammatory, and immune-modulating activities. On the other hand, it is well known that the gut microbiota has several important roles in normal human physiology, and its composition can be influenced by a multitude of environmental and lifestyle factors, among which dietary components play a relevant role. In the last few years, the two-way interaction between polyphenols, including those in EVOO, and the gut microbiota, i.e., the modulation of the microbiota by polyphenols and that of polyphenol metabolism and bioavailability by the microbiota, has attracted growing attention, being potentially relevant to explain the final effects of polyphenols, as well as of the microbiota profile. Furthermore, sex and gender can affect dietary habits, polyphenol intake, and nutrient metabolism. Lastly, it has been recently suggested that differences in gut microbiota composition could be involved in the unequal incidence of metabolic diseases observed between women and men, due to sex-dependent effects on shaping gut microbiota profiles according to diet. This review summarizes the most recent studies on the relationship between EVOO polyphenols and the gut microbiota, taking into account possible influences of sex and gender in modulating such an interaction.
Collapse
|
31
|
Seidita A, Soresi M, Giannitrapani L, Di Stefano V, Citarrella R, Mirarchi L, Cusimano A, Augello G, Carroccio A, Iovanna JL, Cervello M. The clinical impact of an extra virgin olive oil enriched mediterranean diet on metabolic syndrome: Lights and shadows of a nutraceutical approach. Front Nutr 2022; 9:980429. [PMID: 35990331 PMCID: PMC9386289 DOI: 10.3389/fnut.2022.980429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
For years it has been established that the only truly effective treatment of metabolic syndrome (MS) is lifestyle modification to prevent its cardiovascular (e.g., coronary artery disease and atherosclerosis), metabolic (e.g., diabetes mellitus), and hepatic (e.g., steatosis and non-alcoholic steatohepatitis) complications. The focal points of this approach are to increase physical activity and intake of a diet characterized by high quantities of fruits, vegetables, grains, fish, and low-fat dairy products, the so called mediterranean diet (MD); however, the added value of MD is the presence of extra virgin olive oil (EVOO), a healthy food with a high content of monounsaturated fatty acids, especially oleic acid, and variable concentrations (range 50–800 mg/kg) of phenols (oleuropein, ligstroside, and oleocanthal, and their derivatives, phenolic alcohols, such as hydroxytyrosol and tyrosol). Phenolic compounds not only determine EVOO’s main organoleptic qualities (oxidative stability, specific flavor, and taste features) but, theoretically, make it a source of antioxidant, anti-inflammatory, insulin-sensitizing, cardioprotective, antiatherogenic, neuroprotective, immunomodulatory, and anticancer activity. Although many studies have been carried out on EVOO’s clinical effects and attention toward this dietary approach (healthy and palatable food with strong nutraceutical activity) has become increasingly pressing, there are still many dark sides to be clarified, both in terms of actual clinical efficacy and biochemical and molecular activity. Thus, we reviewed the international literature, trying to show the state of the art about EVOO’s clinical properties to treat MS (along with correlated complications) and the future prospective of its nutraceutical use.
Collapse
Affiliation(s)
- Aurelio Seidita
- Unit of Internal Medicine, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maurizio Soresi
- Unit of Internal Medicine, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Lydia Giannitrapani
- Unit of Internal Medicine, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.,Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Roberto Citarrella
- Unit of Internal Medicine, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Luigi Mirarchi
- Unit of Internal Medicine, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy
| | - Antonio Carroccio
- Unit of Internal Medicine, "V. Cervello" Hospital, Ospedali Riuniti "Villa Sofia-Cervello", Palermo, Italy.,Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Juan Lucio Iovanna
- Cancer Research Center of Marseille, Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy
| |
Collapse
|
32
|
Navarro A, Ruiz-Méndez MV, Sanz C, Martínez M, Rego D, Pérez AG. Application of Pulsed Electric Fields to Pilot and Industrial Scale Virgin Olive Oil Extraction: Impact on Organoleptic and Functional Quality. Foods 2022; 11:foods11142022. [PMID: 35885265 PMCID: PMC9318511 DOI: 10.3390/foods11142022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
The quality of virgin olive oil (VOO) is largely determined by the technology used in the industrial process of extracting the oil. Technological innovations within this field aim to strike a proper balance between oil yield and the optimal chemical composition of VOO. The application of pulsed electric fields (PEF) that cause the electroporation of the plant cell membranes favors a more efficient breakage of the olive fruit tissue, which in turn could facilitate the extraction of the oil and some of its key minor components. Pilot-scale and industrial extraction tests have been conducted to assess the effect of PEF technology on the oil extraction yield and on the organoleptic and functional quality of VOO. The best results were obtained by combining the PEF treatment (2 kV/cm) with short malaxation times and a low processing temperature. Under these conditions, PEF technology could decisively improve the oil yield by up to 25% under optimal conditions and enhance the incorporation of phenolic and volatile compounds into the oils. The PEF treatment neither affected the physicochemical parameters used to determine the commercial categories of olive oils, nor the tocopherol content. Similarly, the sensory evaluation of the PEF-extracted oils by means of a panel test did not detect the appearance of any defect or off-flavor. In addition, the intensity of positive attributes (fruity, bitter and pungent) was generally higher in PEF oils than in control oils.
Collapse
Affiliation(s)
- Alberto Navarro
- Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra. de Utrera, km 1, 41013 Seville, Spain
| | - María-Victoria Ruiz-Méndez
- Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra. de Utrera, km 1, 41013 Seville, Spain
| | - Carlos Sanz
- Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra. de Utrera, km 1, 41013 Seville, Spain
| | | | - Duarte Rego
- EnergyPulse Systems, Est Paco Lumiar Polo Tecnológico Lt3, 1600-546 Lisbon, Portugal
| | - Ana G Pérez
- Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra. de Utrera, km 1, 41013 Seville, Spain
| |
Collapse
|
33
|
Zhang Y, Zhang C, Xu C, Deng Y, Wen B, Xie P, Huang L. Effect of geographical location and soil fertility on main phenolic compounds and fatty acids compositions of virgin olive oil from Leccino cultivar in China. Food Res Int 2022; 157:111207. [DOI: 10.1016/j.foodres.2022.111207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
|
34
|
Extra Virgin Olive Oil Secoiridoids Modulate the Metabolic Activity of Dacarbazine Pre-Treated and Treatment-Naive Melanoma Cells. Molecules 2022; 27:molecules27103310. [PMID: 35630786 PMCID: PMC9146374 DOI: 10.3390/molecules27103310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
Nowadays, many individuals, whether healthy or diagnosed with disease, tend to expose themselves to various easily accessible natural products in hopes of benefiting their health and well-being. Mediterranean populations have traditionally used olive oil not only in nutrition but also in cosmetics, including skincare. In this study, the phenolic profile—composed of twelve compounds altogether, including the secoiridoids oleocanthal (OCAL) and oleacein (OCEIN)—of extra virgin olive oil (EVOO) from autochthonous cultivars from Croatia was determined using 1H qNMR spectroscopy and HPLC-DAD analysis, and its biological activity was investigated in melanoma cell lines. The EVOO with the highest OCEIN content had the strongest anti-cancer activity in A375 melanoma cells and the least toxic effect on the non-cancerous keratocyte cell line (HaCaT). On the other hand, pure OCAL was shown to be more effective and safer than pure OCEIN. Post-treatment with any of the EVOO phenolic extracts (EVOO-PEs) enhanced the anti-cancer effect of the anti-cancerous drug dacarbazine (DTIC) applied in pre-treatment, while they did not compromise the viability of non-cancerous cells. The metastatic melanoma A375M cell line was almost unresponsive to the EVOO-PEs themselves, as well as to pure OCEIN and OCAL. Our results demonstrate that olive oils and/or their compounds may have a potentially beneficial effect on melanoma treatment. However, their usage can be detrimental or futile, especially in healthy cells, due to inadequately applied concentrations/combinations or the presence of resistant cells.
Collapse
|
35
|
Cravotto C, Fabiano-Tixier AS, Claux O, Rapinel V, Tomao V, Stathopoulos P, Skaltsounis AL, Tabasso S, Jacques L, Chemat F. Higher Yield and Polyphenol Content in Olive Pomace Extracts Using 2-Methyloxolane as Bio-Based Solvent. Foods 2022; 11:1357. [PMID: 35564082 PMCID: PMC9104984 DOI: 10.3390/foods11091357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Despite its severe toxicity and negative environmental impact, hexane remain the solvent of choice for the extraction of vegetable oils. This is in contrast with the constantly growing demand for sustainable and green extraction processes. In recent years a variety of alternatives to hexane have been reported, among them 2-methyloxolane (2-MeOx), which has emerged as a promising bio-based alternative. This study evaluates the possibility of replacing hexane, in the extraction of olive pomace (OP), with 2-MeOx, both dry and saturated with water (4.5%), the latter of which is called 2-MeOx 95.5%. The three solvents have been compared in terms of extraction yield and quality, as well as the lipid and polyphenol profiles of the extracts. The work concluded that both dry 2-MeOx and 2-MeOx 95.5% can replace hexane in OP extraction, resulting in higher yields and extracts richer in phenolic compounds. This study should open the road to further semi-industrial scale investigations toward more sustainable production processes.
Collapse
Affiliation(s)
- Christian Cravotto
- GREEN Extraction Team, INRAE, UMR 408, Avignon Université, F-84000 Avignon, France; (C.C.); (O.C.); (F.C.)
| | - Anne Sylvie Fabiano-Tixier
- GREEN Extraction Team, INRAE, UMR 408, Avignon Université, F-84000 Avignon, France; (C.C.); (O.C.); (F.C.)
| | - Ombéline Claux
- GREEN Extraction Team, INRAE, UMR 408, Avignon Université, F-84000 Avignon, France; (C.C.); (O.C.); (F.C.)
| | - Vincent Rapinel
- Pennakem Europa, 224 Avenue de la Dordogne, F-59640 Dunkerque, France; (V.R.); (L.J.)
| | - Valérie Tomao
- MicroNut Team, INRAE, UMR 408, Avignon Université, F-84000 Avignon, France;
| | - Panagiotis Stathopoulos
- Department of Pharmacognosy, School of Pharmacy, University of Athens, Panepistimioupolis, 15571 Zografou, Greece; (P.S.); (A.L.S.)
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy, School of Pharmacy, University of Athens, Panepistimioupolis, 15571 Zografou, Greece; (P.S.); (A.L.S.)
| | - Silvia Tabasso
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy;
| | - Laurence Jacques
- Pennakem Europa, 224 Avenue de la Dordogne, F-59640 Dunkerque, France; (V.R.); (L.J.)
| | - Farid Chemat
- GREEN Extraction Team, INRAE, UMR 408, Avignon Université, F-84000 Avignon, France; (C.C.); (O.C.); (F.C.)
| |
Collapse
|
36
|
Ianni F, Volpi C, Moretti S, Blasi F, Mondanelli G, Varfaj I, Galarini R, Sardella R, Di Renzo GC, Cossignani L. In-depth characterization of phenolic profiling of Moraiolo extra-virgin olive oil extract and initial investigation of the inhibitory effect on Indoleamine-2,3-Dioxygenase (IDO1) enzyme. J Pharm Biomed Anal 2022; 213:114688. [DOI: 10.1016/j.jpba.2022.114688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
|
37
|
Lozano-Castellón J, Rinaldi de Alvarenga JF, Vallverdú-Queralt A, Lamuela-Raventós RM. Cooking with extra-virgin olive oil: A mixture of food components to prevent oxidation and degradation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Lozano-Castellón J, Rocchetti G, Vallverdú-Queralt A, Lucchini F, Giuberti G, Torrado-Prat X, Illán M, Mª Lamuela-Raventós R, Lucini L. New insights into the lipidomic response of CaCo-2 cells to differently cooked and in vitro digested extra-virgin olive oils. Food Res Int 2022; 155:111030. [DOI: 10.1016/j.foodres.2022.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 01/18/2023]
|
39
|
Di Pietro M, Filardo S, Mattioli R, Francioso A, Raponi G, Mosca L, Sessa R. Extra Virgin Olive Oil-Based Green Formulations With Promising Antimicrobial Activity Against Drug-Resistant Isolates. Front Pharmacol 2022; 13:885735. [PMID: 35548334 PMCID: PMC9082028 DOI: 10.3389/fphar.2022.885735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Extra virgin olive oil (EVOO) from Olea europaea L. drupes, a cornerstone in the Mediterranean diet, is well known for its nutritional and health properties, especially for prevention of cardiovascular diseases and metabolic disorders. Traditionally, beneficial health effects have been largely attributed to the high concentration of monounsaturated fatty acids, and in recent years, these have also been related to other components including oleacein and oleocanthal. Here, we evaluated, for the first time, the antimicrobial activity of different green extra virgin olive oil-based formulations in natural deep eutectic solvents (NaDESs) emerging as powerful and biocompatible solvents. Specifically, the antimicrobial activity of the EVOO extract, as well as purified oleocanthal and oleacein in two NaDESs (choline/glycerol and choline/propylene glycol), against several drug-resistant clinical isolates and standard microbial strains has been evaluated. The main result was the inhibitory activity of the EVOO extract in choline/glycerol as well as oleacein in choline/propylene glycol toward drug-resistant Gram-positive and -negative strains. Specifically, the EVOO extract in choline/glycerol showed the highest antibacterial activity against several clinical strains of Staphylococcus aureus, whereas oleacein in choline/propylene glycol was the most effective toward various clinical strains of Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In addition, all the formulations tested were effective against Candida spp. In conclusion, our results suggest EVOO-based formulations in NaDESs as an interesting strategy that may help in reducing the risk of development of drug resistance. Under this perspective, the usage of NaDESs for the preparation of new antimicrobial formulations may represent a promising approach.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Roberto Mattioli
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Antonio Francioso
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| |
Collapse
|
40
|
Food-Derived Bioactive Molecules from Mediterranean Diet: Nanotechnological Approaches and Waste Valorization as Strategies to Improve Human Wellness. Polymers (Basel) 2022; 14:polym14091726. [PMID: 35566894 PMCID: PMC9103748 DOI: 10.3390/polym14091726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The beneficial effects of the Mediterranean diet (MedDiet), the most widely followed healthy diet in the world, are principally due to the presence in the foods of secondary metabolites, mainly polyphenols, whose healthy characteristics are widely recognized. However, one of the biggest problems associated with the consumption of polyphenols as nutraceutical adjuvant concerns their bioavailability. During the last decades, different nanotechnological approaches have been developed to enhance polyphenol bioavailability, avoiding the metabolic modifications that lead to low absorption, and improving their retention time inside the organisms. This review focuses on the most recent findings regarding the encapsulation and delivery of the bioactive molecules present in the foods daily consumed in the MedDiet such as olive oil, wine, nuts, spice, and herbs. In addition, the possibility of recovering the polyphenols from food waste was also explored, taking into account the increased market demand of functional foods and the necessity to obtain valuable biomolecules at low cost and in high quantity. This circular economy strategy, therefore, represents an excellent approach to respond to both the growing demand of consumers for the maintenance of human wellness and the economic and ecological exigencies of our society.
Collapse
|
41
|
Bioactive Compound Profiling of Olive Fruit: The Contribution of Genotype. Antioxidants (Basel) 2022; 11:antiox11040672. [PMID: 35453357 PMCID: PMC9032303 DOI: 10.3390/antiox11040672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
The health, therapeutic, and organoleptic characteristics of olive oil depend on functional bioactive compounds, such as phenols, tocopherols, squalene, and sterols. Genotype plays a key role in the diversity and concentration of secondary compounds peculiar to olive. In this study, the most important bioactive compounds of olive fruit were studied in numerous international olive cultivars during two consecutive seasons. A large variability was measured for each studied metabolite in all 61 olive cultivars. Total phenol content varied on a scale of 1–10 (3831–39,252 mg kg−1) in the studied cultivars. Squalene values fluctuated over an even wider range (1–15), with values of 274 to 4351 mg kg−1. Total sterols ranged from 119 to 969 mg kg−1, and total tocopherols varied from 135 to 579 mg kg−1 in fruit pulp. In the present study, the linkage among the most important quality traits highlighted the scarcity of cultivars with high content of at least three traits together. This work provided sound information on the fruit metabolite profile of a wide range of cultivars, which will facilitate the studies on the genomic regulation of plant metabolites and development of new olive genotypes through genomics-assisted breeding.
Collapse
|
42
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
43
|
Notario A, Sánchez R, Luaces P, Sanz C, Pérez AG. The Infestation of Olive Fruits by Bactrocera oleae (Rossi) Modifies the Expression of Key Genes in the Biosynthesis of Volatile and Phenolic Compounds and Alters the Composition of Virgin Olive Oil. Molecules 2022; 27:1650. [PMID: 35268754 PMCID: PMC8911628 DOI: 10.3390/molecules27051650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Bactrocera oleae, the olive fruit fly, is one of the most important pests affecting the olive fruit, causing serious quantitative and qualitative damage to olive oil production. In this study, the changes induced by B. oleae infestation in the biosynthesis of volatile and phenolic compounds in olive (cvs. Picual, Manzanilla, and Hojiblanca) have been analyzed. Despite cultivar differences, the oils obtained from infested fruits showed a significant increase in the content of certain volatile compounds such as (E)-hex-2-enal, ethanol, ethyl acetate, and β-ocimene and a drastic decrease of the phenolic contents. The impact of those changes on the inferred quality of the oils has been studied. In parallel, the changes induced by the attack of the olive fly on the expression of some key genes in the biosynthesis of volatile and phenolic compounds, such as lipoxygenase, β-glucosidase, and polyphenol oxidase, have been analyzed. The strong induction of a new olive polyphenol oxidase gene (OePPO2) explains the reduction of phenolic content in the oils obtained from infested fruits and suggest the existence of a PPO-mediated oxidative defense system in olives.
Collapse
Affiliation(s)
| | | | | | | | - Ana G. Pérez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Campus UPO, Ctra. Utrera km 1, Bldg. 46, 41013 Seville, Spain; (A.N.); (R.S.); (P.L.); (C.S.)
| |
Collapse
|
44
|
Pitsillou E, Liang JJ, Beh RC, Prestedge J, Catak S, Hung A, Karagiannis TC. Identification of novel bioactive compounds from Olea europaea by evaluation of chemical compounds in the OliveNet™ library: in silico bioactivity and molecular modelling, and in vitro validation of hERG activity. Comput Biol Med 2022; 142:105247. [DOI: 10.1016/j.compbiomed.2022.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
|
45
|
Rodríguez-Juan E, Martínez Román F, Sánchez-García A, Fernández-Bolaños J, García-Borrego A. From Low-Quality Olive Oils to Valuable Bioactive Compounds: Obtaining Oleacein and Oleocanthal from Olive Oils Intended for Refining. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:333-342. [PMID: 34957829 DOI: 10.1021/acs.jafc.1c05814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of this work was to recover phenolic compounds such as oleacein and oleocanthal from low commercial value olive oils destined for refining [lampante olive oil (LOO)]. For this, the ability of three extraction systems of phenols from oils was evaluated. A new quick and simple extraction method (NM) for obtaining phenols was developed, consisting of the acidified mixture MeOH/H2O (50:50) (v/v) 0.1% formic acid, and it was compared to a conventional method (CM) widely used for the analytical determination of phenolic compounds in olive oil using MeOH: H2O (80:20) (v/v). NM showed a higher yield for the extraction of oleacein with an increase of 14% compared to CM; no significant differences were observed in the extraction of oleocanthal between the two methods. The third method, using two formulations of deep eutectic solvents (DESs) based on ChCl, showed higher extractive efficiency for the two secoiridoids than CM and NM when DES consisted of ChCl and xylitol. On the other hand, the concentrations of oleacein and oleocanthal were determined in 14 samples of blended oils that were previously classified as extra virgin olive oil and LOO according to EU regulation. LOO contained amounts up to 109.89 and 140.16 mg/kg of oleacein and oleocanthal, respectively. Oleacein (>98%) and oleocanthal (>95%) were successfully recovered from phenolic extracts obtained from LOO oils through chromatographic separation and purification by semipreparative high-performance liquid chromatography. Therefore, these low-quality oils are an inexpensive source of bioactive substances.
Collapse
Affiliation(s)
- Elisa Rodríguez-Juan
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Fernando Martínez Román
- Almazara Experimental, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Alicia Sánchez-García
- Laboratory of Mass Spectroscopy, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Aranzazu García-Borrego
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| |
Collapse
|
46
|
Faci M, Douzane M, Hedjal M, Daas MS, Fougere L, Lesellier E. Changes in secoiridoids content and chemical characteristics of cultivated and wild Algerian olive oil, in term of fruit maturation. PLoS One 2021; 16:e0260182. [PMID: 34784391 PMCID: PMC8594848 DOI: 10.1371/journal.pone.0260182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Wild varieties in nature are known to be better adapted to climate change and more resistant to arid conditions common in some regions of the world. Oil samples of two cultivated varieties, Chemlal and Lemli, and one sylvestris variety were collected at four different harvesting periods in the semi-arid region of Bouira, Algeria. The aim of this study was to determine the influence of the genetic and maturity factors on the quality indices (acidity, peroxides value, and the parameters K232, K270), fatty acids profile, phenolic composition, and antioxidant activity of monovarietal olive oils. The study showed that early harvest dates of the fruits produced oils richer in pigments and phenolic compounds, with high antioxidant activity registered in both wild and cultivated varieties. Moreover, all oil samples showed high values of secoiridoids exceeding 60–90% of total biophenols, with higher values found in oleaster oils, which are correlated with high resistance to oxidation attacks. UHPLC-DAD and UHPLC-HRMS analyses showed that the secoiridoids composition is dominated by a profile rich in several isomers of oleuropein and ligstroside aglycons, which in turn represent more than 60% of the total secoiridoids in olive and Oleaster oils. Furthermore, chemometric analysis on the data allowed a better appreciation of the sensitivity of the virgin olive oil composition to the changes in genetic and ripening factors. According to the principal component analysis, phenolic and fatty acid profiles were the most important components contributing to the discrimination between olive oil samples.
Collapse
Affiliation(s)
- Massinissa Faci
- Department of Biological sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi-Ouzou, Algeria
| | - Malika Douzane
- Agri-Food Technologies Research Division, National Institute of Agronomic Research of Algeria, Algiers, Algeria
| | - Mariem Hedjal
- Department of Biological sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi-Ouzou, Algeria
| | - Mohamed Seghir Daas
- Agri-Food Technologies Research Division, National Institute of Agronomic Research of Algeria, Algiers, Algeria
| | - Laëtitia Fougere
- Institute of Organic and Analytical Chemistry, University of Orleans, National Centre for Scientific Research, Orleans, France
| | - Eric Lesellier
- Institute of Organic and Analytical Chemistry, University of Orleans, National Centre for Scientific Research, Orleans, France
- * E-mail:
| |
Collapse
|
47
|
Olmo-Cunillera A, Lozano-Castellón J, Pérez M, Miliarakis E, Tresserra-Rimbau A, Ninot A, Romero-Aroca A, Lamuela-Raventós RM, Vallverdú-Queralt A. Optimizing the Malaxation Conditions to Produce an Arbequina EVOO with High Content of Bioactive Compounds. Antioxidants (Basel) 2021; 10:antiox10111819. [PMID: 34829690 PMCID: PMC8614922 DOI: 10.3390/antiox10111819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
To meet the growing demand for high-quality extra-virgin olive oil (EVOO) with health-promoting properties and pleasant sensory properties, studies are needed to establish optimal production parameters. Bioactive components of EVOO, including phenolic compounds, carotenoids, chlorophylls, tocopherols, and squalene, contribute to its organoleptic properties and beneficial health effects. The aim of this study was to develop an Arbequina EVOO with high phenol content, particularly oleocanthal and oleacein, on a laboratory scale by analyzing the effects of different temperatures (20, 25, and 30 °C) and times (30 and 45 min) of malaxation. Higher temperatures decreased the levels of the phenolic compounds, secoiridoids, tocopherols, and squalene, but increased the pigments. EVOO with the highest quality was produced using malaxation parameters of 20 °C and 30 min, although oleocanthal and oleacein were higher at 30 and 25 °C, respectively. Overall, 20 °C and 30 min were the processing conditions that most favored the physiological and chemical processes that contribute to higher levels of bioactive compounds in the oil and diminished their degradation and oxidation processes.
Collapse
Affiliation(s)
- Alexandra Olmo-Cunillera
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (J.L.-C.); (M.P.); (E.M.); (A.T.-R.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Julián Lozano-Castellón
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (J.L.-C.); (M.P.); (E.M.); (A.T.-R.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (J.L.-C.); (M.P.); (E.M.); (A.T.-R.); (R.M.L.-R.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Eleftherios Miliarakis
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (J.L.-C.); (M.P.); (E.M.); (A.T.-R.); (R.M.L.-R.)
| | - Anna Tresserra-Rimbau
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (J.L.-C.); (M.P.); (E.M.); (A.T.-R.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antònia Ninot
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain; (A.N.); (A.R.-A.)
| | - Agustí Romero-Aroca
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain; (A.N.); (A.R.-A.)
| | - Rosa Maria Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (J.L.-C.); (M.P.); (E.M.); (A.T.-R.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.O.-C.); (J.L.-C.); (M.P.); (E.M.); (A.T.-R.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
48
|
Finicelli M, Squillaro T, Galderisi U, Peluso G. Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives. Nutrients 2021; 13:3831. [PMID: 34836087 PMCID: PMC8624306 DOI: 10.3390/nu13113831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Given their beneficial potential on human health, plant food bioactive molecules are important components influencing nutrition. Polyphenols have been widely acknowledged for their potentially protective role against several complex diseases. In particular, the polyphenols of olive oil (OOPs) emerge as the key components of many healthy diets and have been widely studied for their beneficial properties. The qualitative and quantitative profile defining the composition of olive oil phenolic molecules as well as their absorbance and metabolism once ingested are key aspects that need to be considered to fully understand the health potential of these molecules. In this review, we provide an overview of the key aspects influencing these variations by focusing on the factors influencing the biosynthesis of OOPs and the findings about their absorption and metabolism. Despite the encouraging evidence, the health potential of OOPs is still debated due to limitations in current studies. Clinical trials are necessary to fully understand and validate the beneficial effects of olive oil and OOPs on human health. We provide an update of the clinical trials based on olive oil and/or OOPs that aim to understand their beneficial effects. Tailored studies are needed to standardize the polyphenolic distribution and understand the variables associated with phenol-enriched OO. An in-depth knowledge of the steps that occur following polyphenol ingestion may reveal useful insights to be used in clinical settings for the prevention and treatment of many diseases.
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
49
|
Cairone F, Petralito S, Scipione L, Cesa S. Study on Extra Virgin Olive Oil: Quality Evaluation by Anti-Radical Activity, Color Analysis, and Polyphenolic HPLC-DAD Analysis. Foods 2021; 10:foods10081808. [PMID: 34441585 PMCID: PMC8392269 DOI: 10.3390/foods10081808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to evaluate the quality of oils available on the Italian market and purchased directly from the mill or in the supermarket and labelled as extra virgin olive oils (EVOOs). As one of the most relevant foods of the Mediterranean diet and recognized as a functional food if regularly consumed, the quality of EVOO needs to be continuously monitored. Different analytical protocols were applied. The spectrophotometric parameters used to classify the extra virgin olive oils—a CIEL*a*b*color analysis and the quali-quantitative analysis of bioactive molecules by HPLC-DAD detection and the anti-radical activity, by the DPPH method, were evaluated and compared among the samples. This study confirmed a very high variation in terms of quality, both in oils purchased directly from mills throughout Italy, but also in oils labeled as “100% of Italian origin”. Due to the high variability reconfirmed in the monitored samples, it is necessary to carry out a capillary control, not limited only to the parameters indexed by law. A useful complementary method could be represented by reflectance colorimetric analysis.
Collapse
|
50
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|