1
|
Zhou HB, Peng SH, Liu YM, Wang T, Weng XH, Liu G, Zhang JL. Structural changes of potato starch and activity inhibition of starch digestive enzymes by anthocyanin from lingonberry (Vaccinium uliginosum L.) retarded starch digestibility. Int J Biol Macromol 2024; 281:136673. [PMID: 39426763 DOI: 10.1016/j.ijbiomac.2024.136673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The effects of anthocyanins on in vitro and in vivo digestibility of potato starch were evaluated in this study. Then the influence of anthocyanins on physicochemical property of potato starch and the activity of starch digestive enzymes (α-amylase and α-glucosidase) were also investigated to understand the mechanism of anthocyanins on starch digestibility. Results have shown that dietary anthocyanins could effectively inhibit the biological activities of α-amylase and α-glucosidase to delay the peak of postprandial blood glucose. Characterization of physicochemical properties of potato starch indicates a structural change due to the presence of anthocyanins, hindering its access to starch digestive enzymes. Among all anthocyanins, lingonberry anthocyanin significantly promoted the retrogradation of potato starch (7.153 % to 25.913 %) and exert promising inhibition on α-amylase and α-glucosidase. Lingonberry anthocyanins mainly interacted with potato starch through hydrogen bonds, which reduce the amount of amylose molecules leached from potato starch and loosen the three-dimensional (3D) network structure of starch gel. This study could provide theoretical evidence for utilization of anthocyanins in diabetic-management function food.
Collapse
Affiliation(s)
- H B Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - S H Peng
- Wuhan Polytechnic University, College of Food Science and Engineering, Wuhan, China
| | - Y M Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - T Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - X H Weng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - G Liu
- Wuhan Polytechnic University, College of Food Science and Engineering, Wuhan, China
| | - J L Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Li Y, Ma Q, Jiang C, Wang W, Song L, Wang R, Sun J. Effects of purple potato anthocyanins on the in vitro digestive properties of starches of different crystalline types. Int J Biol Macromol 2024; 265:131052. [PMID: 38522698 DOI: 10.1016/j.ijbiomac.2024.131052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
This study explored the potential of purple potato anthocyanins (PPAs) in regulating the digestive properties of starches of various crystalline types. In vitro digestion experiments indicated that PPAs inhibit the hydrolysis of rice starch (A-type) better than that of garden pea starch (C-type) and potato starch (B-type). Further structural assessment of different PPA-starch systems showed that PPAs and starch likely interact through non-covalent bonds, resulting in structural changes. Microstructural changes observed in the starches were consistent with the in vitro digestion results, and the chain length and proportions of short/long chains in amylopectin molecules affected the binding strengths and interaction modes between PPAs and starch. Hence, the three starches differed in their PPA loading efficiency and digestibility. These discoveries contribute to a deeper understanding of the mechanisms underlying the inhibition of starch digestibility by PPAs. They can aid the formulation of value-added products and low-glycemic-index foods.
Collapse
Affiliation(s)
- Yuwen Li
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China.
| | - Chengbin Jiang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Lijuan Song
- Hebei Jinxu Noodle Industry Co, Xingtai 055350, China
| | - Rui Wang
- Hebei Potato Processing Technology Innovation Center, Hebei 076576, China; Zhangjiakou Hongji Agricultural Science and Technology Development Co, Hebei, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China; Hebei Potato Processing Technology Innovation Center, Hebei 076576, China; Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China.
| |
Collapse
|
3
|
Huang J, Zhang Y, Li J, Li H, Wei Y, Sun M. Association of dietary inflammatory index with all-cause and cardiovascular disease mortality in hyperuricemia population: A cohort study from NHANES 2001 to 2010. Medicine (Baltimore) 2023; 102:e36300. [PMID: 38134106 PMCID: PMC10735113 DOI: 10.1097/md.0000000000036300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Dietary management is a crucial component of non-pharmacological treatment for hyperuricemia, yet there is a paucity of research on the impact of dietary habits on the survival outcomes of individuals with hyperuricemia. The objective of this study is to examine the association between dietary inflammatory index (DII) and the all-cause and cardiovascular disease (CVD) mortality in individuals with hyperuricemia. This study included 3093 adult participants from National Health and Nutrition Examination Survey (NHANES) 2001 to 2010. Participants were categorized into 4 groups based on quartiles of DII to demonstrate data characteristics, with sample weights considered. The relationship between DII and the risk of hyperuricemia was examined using multivariable logistic regression models. Kaplan-Meier models and Cox proportional hazards models were employed to assess the relationship between DII levels and the all-cause mortality in individuals with hyperuricemia, with the non-linear relationship tested using restricted cubic splines (RCS). Competing risk models were employed to investigate the association between DII levels and the CVD mortality in individuals diagnosed with hyperuricemia. Subgroup and sensitivity analysis were performed to confirm the robustness and reliability of the findings. Among the participants, 47.95% were aged over 60 years. A positive association observed between the highest quartile of DII level and the incidence of hyperuricemia (OR: 1.34, CI [1.13, 1.57]). Elevated DII levels were correlated with increased all-cause mortality (P value < .001) and CVD mortality (P value < .001) in participants. In comparison to the lowest quartile, the highest quartile of DII exhibited a 31% rise in all-cause mortality (HR: 1.31, CI [1.01, 1.68]) and a 50% increase in CVD mortality (HR: 1.50, CI [1.00, 2.26]). No indication of a nonlinear association between DII levels and all-cause mortality (p-non-linear = .43). These findings indicate a positive correlation between the pro-inflammatory diet and the incidence of hyperuricemia. Additionally, a pro-inflammatory diet may elevate the all-cause and CVD mortality in individuals with hyperuricemia.
Collapse
Affiliation(s)
- Jingda Huang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Yandong Zhang
- Department of Rheumatology and Immunology, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Jiajie Li
- Department of Hepatobiliary Pancreatology, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Huimin Li
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Yihui Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu province, China
| | - Mindan Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin province, China
| |
Collapse
|
4
|
Feng Q, Yang W, Peng Z, Wang G. Utilizing bio-affinity ultrafiltration combined with UHPLC Q-Exactive Plus Orbitrap HRMS to detect potential α-glucosidase inhibitors in Oxalis corniculate L. Int J Biol Macromol 2023; 252:126490. [PMID: 37625761 DOI: 10.1016/j.ijbiomac.2023.126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Oxalis corniculate L. (O. corniculate) was used to treat diabetes in Chinese folk as a popular tea drink. In this work, 31 compounds from O. corniculate were screened and identified as potential α-Glucosidase inhibitors (α-GIs). Among them, 6 compounds displayed stronger inhibitory activity than acarbose (IC50 = 212.9 ± 5.98 μg/mL). Especially, the most effective compounds quercetin (Qu, IC50 = 4.70 ± 0.40 μg/mL) and luteolin (Lu, IC50 = 15.72 ± 0.75 μg/mL) inhibited α-Glu in competitive and mixed manners, respectively. Moreover, fluorescence quenching, circular dichroism (CD), and molecular docking study revealed that they can arouse the changes in the secondary structure and hydrophobic micro-environment of the enzyme mainly through a hydrophobic binding. Furthermore, it was observed that oral administration of Qu (20 mg/kg) can significantly reduce postprandial blood glucose (PBG) levels in mice vs. the control group. To sum up, the above research confirmed that O. corniculate could prevent and treat postprandial hyperglycemia as a good tea drink, and the plant was an excellent source to obtain natural α-GIs.
Collapse
Affiliation(s)
- Qianqian Feng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Yu Y, Wan X, Li D, Qi Y, Li N, Luo G, Yin H, Wang L, Qin W, Li Y, Li L, Duan W. Dieting alleviates hyperuricemia and organ injuries in uricase-deficient rats via down-regulating cell cycle pathway. PeerJ 2023; 11:e15999. [PMID: 37701826 PMCID: PMC10494837 DOI: 10.7717/peerj.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
Dieting is a basic treatment for lowering hyperuricemia. Here, we aimed to determine the optimal amount of dietary food that lowers serum uric acid (SUA) without modifying the dietary ingredients in rats. Increased SUA was found in food-deprived 45-day-old uricase-deficient rats (Kunming-DY rats), and the optimal amount of dietary food (75% dietary intake) to lower SUA was established by controlling the amount of food given daily from 25% to 100% for 2 weeks. In addition to lowering SUA by approximately 22.5 ± 20.5%, the optimal amount of dietary food given for 2 weeks inhibited urine uric acid excretion, lowered the uric acid content in multiple organs, improved renal function, lowered serum triglyceride, alleviated organ injuries (e.g., liver, kidney and intestinal tract) at the histological level, and down-regulated the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway of the cell cycle (ko04110). Taken together, these results demonstrate that 75% dietary food effectively lowers the SUA level without modifying dietary ingredients and alleviates the injuries resulting from uricase deficiency or hyperuricemia, the mechanism of which is associated with the down-regulation of the cell cycle pathway.
Collapse
Affiliation(s)
- Yun Yu
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Xulian Wan
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicne, Kunming, Yunnan, China
| | - Dan Li
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Yalin Qi
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Ning Li
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Guangyun Luo
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Hua Yin
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Lei Wang
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Wan Qin
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicne, Kunming, Yunnan, China
| | - Yongkun Li
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicne, Kunming, Yunnan, China
| | - Lvyu Li
- The Third Affiliated Hospital, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Weigang Duan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
6
|
Peng S, Tian J, Jin L, Wang H, Xie C, Zheng J, Liu L, Cao J, Zhang W, Zhang X. Efficacy and safety of Danggui Niantong Decoction in patients with gout: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1168863. [PMID: 37587984 PMCID: PMC10426740 DOI: 10.3389/fphar.2023.1168863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Background: This study aims to evaluate the efficacy and safety of Danggui Niantong Decoction (DGNT) systematically on gout treating. Methods: This study was registered in PROSPERO, and the registration number was CRD42021271607. By the end of December, 2022, literature research was conducted among eight electronic databases. Main results of this study were blood uric acid (BUA) and Creactive protein (CRP). Secondary outcomes were erythrocyte sedimentation rate (ESR), serum creatinine (Scr), urinary protein quantified at 24 h (Upro), and interleukin-8 (IL-8). Study screening, data collection, as well as quality assessment were performed by two reviewers independently, and analysis was completed using Stata (SE15.0) and Review Manager (5.4). Results: A total number of 13 studies were included in our meta-analysis (n = 1,094 participants). Results showed DGNT combined with conventional western medicine (CWM) was more effective than WM alone in BUA (weighted mean differences (WMD) = -3.49, 95% confidence interval (CI) [-50.36, -32.59], p = 0.000), CRP (WMD = -41.48, 95% CI [-4.32, -2.66], p = 0.017), ESR (WMD = -6.23, 95% CI [-9.28, -3.17], p = 0.019), Scr (WMD = -18.64, 95% CI [-23.09, -14.19], p = 0.001), Upro (WMD = -0.72, 95% CI [-0.91, -0.53], p = 0.000), and IL-8 (WMD = -4.77, 95% CI [-11.48, 1.94], p = 0.000). None of the adverse effects noted were severe, and no life-threatening event was reported. Conclusion: This study shows that DGNT combined with CWM seems to have an effective clinical therapeutic potential. In addition, it also provides a scientific basis for better clinical application of DGNT in the future. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021271607; Identifier: PROSPERO, CRD42021271607.
Collapse
Affiliation(s)
- Sihan Peng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Tian
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luchang Jin
- Huaxi Securities Co., Ltd., Chengdu, Sichuan, China
| | - Hongyan Wang
- Sichuan Nursing Vocational College, Chengdu, Sichuan, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jie Zheng
- College of Basic Medical Sciences, Air Force Medical University, Xian, Shaanxi, China
| | - Linfeng Liu
- Sichuan Nursing Vocational College, Chengdu, Sichuan, China
| | - Jun Cao
- Sichuan Nursing Vocational College, Chengdu, Sichuan, China
| | - Wen Zhang
- Sichuan Nursing Vocational College, Chengdu, Sichuan, China
| | - Xiangeng Zhang
- Sichuan Nursing Vocational College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Li H, Shi L, Chen X, Wang M. Association between dietary intake of flavonoids and hyperuricemia: a cross-sectional study. BMC Public Health 2023; 23:1227. [PMID: 37355562 PMCID: PMC10290396 DOI: 10.1186/s12889-023-16134-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Previous research has demonstrated flavonoid intake was closely related to hyperuricemia. The purpose of this study was to examine whether flavonoid intake was associated with serum uric acid and hyperuricemia in U.S. adults. METHODS The study sample consisted of 8,760 participants enrolled in the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2010. Flavonoid consumption was measured using a two-day recall questionnaire on dietary intake. Hyperuricemia was defined based on the serum uric acid levels, determined as ≥ 7 mg/dL for males and ≥ 6 mg/dL for females. The study utilized multivariate linear regression to determine the correlation between flavonoid consumption and serum uric acid levels. Additionally, analyses involving multivariate logistic regression and restricted cubic splines (RCS) were conducted to evaluate the potential link between flavonoid consumption and hyperuricemia. All analyses were adjusted for possible confounding variables. RESULTS The study revealed a negative correlation between serum uric acid levels and elevated levels of anthocyanidins and flavanones, with significant p-trends of < 0.001 and 0.02 respectively. The multivariate analysis showed that anthocyanidins and flavanones intake had a significant negative association with the risk of hyperuricemia, with p-trend value being < 0.001 and 0.01, respectively. Flavan-3-ols, flavonols, and all flavonoids exhibited a non-linear association with the incidence of hyperuricemia, with significant p-nonlinear values of < 0.001, 0.04, and 0.01 respectively. CONCLUSION Our study demonstrated that individuals who follow a diet rich in anthocyanins and flavanones had significantly lower serum uric acid levels and a lower incidence of hyperuricemia.
Collapse
Affiliation(s)
- Houlin Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Lin Shi
- Department of Nephrology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Xuelan Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.
| | - Mo Wang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
8
|
Zhang WZ. Uric acid en route to gout. Adv Clin Chem 2023; 116:209-275. [PMID: 37852720 DOI: 10.1016/bs.acc.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Gout and hyperuricemia (HU) have generated immense attention due to increased prevalence. Gout is a multifactorial metabolic and inflammatory disease that occurs when increased uric acid (UA) induce HU resulting in monosodium urate (MSU) crystal deposition in joints. However, gout pathogenesis does not always involve these events and HU does not always cause a gout flare. Treatment with UA-lowering therapeutics may not prevent or reduce the incidence of gout flare or gout-associated comorbidities. UA exhibits both pro- and anti-inflammation functions in gout pathogenesis. HU and gout share mechanistic and metabolic connections at a systematic level, as shown by studies on associated comorbidities. Recent studies on the interplay between UA, HU, MSU and gout as well as the development of HU and gout in association with metabolic syndromes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular, renal and cerebrovascular diseases are discussed. This review examines current and potential therapeutic regimens and illuminates the journey from disrupted UA to gout.
Collapse
Affiliation(s)
- Wei-Zheng Zhang
- VIDRL, The Peter Doherty Institute, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Wang L, Liu H, Wang D, Huang X, Hong X, Wang Y, Li P, Bao K, Zhao D. The correlation between dietary inflammatory index and risk of hyperuricemia in the U.S. population. Medicine (Baltimore) 2023; 102:e33374. [PMID: 37335705 DOI: 10.1097/md.0000000000033374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The dietary inflammatory index (DII) has been reported to be related to chronic diseases as a novel inflammatory marker. However, the correlation between DII score and hyperuricemia in adults in the United States is still unclear. Therefore, our goal was to explore the correlation between them. A total of 19,004 adults were enrolled in the National Health and Nutrition Examination Survey from 2011 to 2018. DII score was calculated according to 28 dietary items obtained by 24-hour dietary interview data. Hyperuricemia was defined by serum uric acid level. We used multilevel logistic regression models and subgroup analysis to determine whether the 2 were associated. DII scores were positively associated with serum uric acid and the risk of hyperuricemia. Per unit increased in DII score was associated with a 3 mmol/L increase in serum uric acid in males (β 3.00, 95% confidence interval (CI) 2.05-3.94) and 0.92mmol/L in females (β 0.92, 95% CI 0.07-1.77), respectively. Compared with the lowest tertile of DII score, the rise of DII grade increased the risk of hyperuricemia among the whole participants (T2: odds ratio (OR) 1.14, 95% CI 1.03, 1.27; T3: OR 1.20 [1.07, 1.34], P for trend = .0012) and males [T2: 1.15 (0.99, 1.33), T3: 1.29 (1.11, 1.50), P for trend = .0008]. For females, the correlation between DII score and hyperuricemia was statistically significant in the subgroup stratified by body mass index (BMI) (BMI < 30, OR 1.08, 95% CI 1.02-1.14, P for interaction = .0134), which indicates that the association depends on BMI. In the United States male population, the DII score has a positive correlation with hyperuricemia. Anti-inflammatory dietary intake can be beneficial for lower serum uric acid.
Collapse
Affiliation(s)
- Lijuan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huoliang Liu
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Huang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaofan Hong
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Li
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Kun Bao
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Daixin Zhao
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Shen L, Yang Y, Zhang J, Feng L, Zhou Q. Diacylated anthocyanins from purple sweet potato ( Ipomoeabatatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet. J Zhejiang Univ Sci B 2023; 24:587-601. [PMID: 37455136 PMCID: PMC10350372 DOI: 10.1631/jzus.b2200587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/06/2023] [Indexed: 04/15/2023]
Abstract
Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.
Collapse
Affiliation(s)
- Luhong Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiuliang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lanjie Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
11
|
Molina AK, Corrêa RCG, Prieto MA, Pereira C, Barros L. Bioactive Natural Pigments' Extraction, Isolation, and Stability in Food Applications. Molecules 2023; 28:1200. [PMID: 36770869 PMCID: PMC9920834 DOI: 10.3390/molecules28031200] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Color in food has multiple effects on consumers, since this parameter is related to the quality of a product, its freshness, and even its nutrient content. Each food has a characteristic color; however, this can be affected by the technological treatments that are applied during its manufacturing process, as well as its storage. Therefore, the development of new food products should take into account consumer preferences, the physical properties of a product, food safety standards, the economy, and applications of technology. With all of this, the use of food additives, such as dyes, is increasingly important due to the interest in the natural coloring of foods, strict regulatory pressure, problems with the toxicity of synthetic food colors, and the need for globally approved colors, in addition to current food market trends that focus on the consumption of healthy, organic, and natural products. It is for this reason that there is a growing demand for natural pigments that drives the food industry to seek or improve extraction techniques, as well as to study different stability processes, considering their interactions with the food matrix, in order to meet the needs and expectations of consumers.
Collapse
Affiliation(s)
- Adriana K. Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Nutrição e Bromatologia, Faculdade de Ciência e Tecnologia de Alimentos, Universidade de Vigo, 36310 Vigo, Spain
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-390, Brazil
| | - Miguel A. Prieto
- Grupo de Nutrição e Bromatologia, Faculdade de Ciência e Tecnologia de Alimentos, Universidade de Vigo, 36310 Vigo, Spain
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
12
|
Yang B, Xin M, Liang S, Huang Y, Li J, Wang C, Liu C, Song X, Sun J, Sun W. Naringenin Ameliorates Hyperuricemia by Regulating Renal Uric Acid Excretion via the PI3K/AKT Signaling Pathway and Renal Inflammation through the NF-κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1434-1446. [PMID: 36525382 DOI: 10.1021/acs.jafc.2c01513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hyperuricemia characterized by high serum levels of uric acid (UA, >6.8 mg/dL) is regarded as a common chronic metabolic disease. When used as a food supplement, naringenin might have various pharmacological activities, including antioxidant, free-radical-scavenging, and inflammation-suppressing activities. However, the effects of naringenin on hyperuricemia and renal inflammation and the underlying mechanisms remain to be elucidated. Here, we comprehensively examined the effects of naringenin on hyperuricemia and the attenuation of renal impairment. Mice were injected with 250 mg/kg of potassium oxonate (PO) and given 5% fructose water to induce hyperuricemia. The pharmacological effects of naringenin (10 and 50 mg/kg) and benzbromarone (positive control group, 20 mg/kg) on hyperuricemic mice were evaluated in vivo. The disordered expression of urate transporters in HK-2 cells was stimulated by 8 mg/dL UA, which was used to determine the mechanisms underlying the effects of naringenin in vitro. Naringenin markedly reduced the serum UA level in a dose-dependent manner and improved renal dysfunction. Moreover, the increased elimination of UA in urine showed that the effects of naringenin were associated with the regulation of renal excretion. Further examination indicated that naringenin reduced the expression of GLUT9 by inhibiting the PI3K/AKT signaling pathway and reinforced the expression of ABCG2 by increasing the abundance of PDZK1 in vivo and in vitro. Furthermore, sirius red staining and western blotting indicated that naringenin plays a protective role in renal injury by suppressing increases in the levels of pro-inflammatory cytokines, including IL-6 and TNF-α, which contribute to the inhibition of the TLR4/NF-κB signaling pathway in vivo and in vitro. Naringenin supplementation might be a potential therapeutic strategy to ameliorate hyperuricemia by promoting UA excretion in the kidney and attenuating the inflammatory response by decreasing the release of inflammatory cytokines. This study shows that naringenin could be used as a functional food or dietary supplement for hyperuricemia prevention and treatment.
Collapse
Affiliation(s)
- Bendong Yang
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Meiling Xin
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Shufei Liang
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434100, People's Republic of China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434100, People's Republic of China
| | - Chao Wang
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Xinhua Song
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
- Shandong Qingyujiangxing Biotechnology Company, Limited, Zibo, Shandong 255000, People's Republic of China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
- School of Public Health and Management, Weifang Medical University, 7166 Baotong Road, Weifang, Shandong 261053, People's Republic of China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
- Shandong Qingyujiangxing Biotechnology Company, Limited, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|
13
|
Chen K, Kortesniemi MK, Linderborg KM, Yang B. Anthocyanins as Promising Molecules Affecting Energy Homeostasis, Inflammation, and Gut Microbiota in Type 2 Diabetes with Special Reference to Impact of Acylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1002-1017. [PMID: 36515085 PMCID: PMC9853865 DOI: 10.1021/acs.jafc.2c05879] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Anthocyanins, the red-orange to blue-violet colorants present in fruits, vegetables, and tubers, have antidiabetic properties expressed via modulating energy metabolism, inflammation, and gut microbiota. Acylation of the glycosyl moieties of anthocyanins alters the physicochemical properties of anthocyanins and improves their stability. Thus, acylated anthocyanins with probiotic-like property and lower bioavailability are likely to have different biological effects from nonacylated anthocyanins on diabetes. This work highlights recent findings on the antidiabetic effects of acylated anthocyanins from the perspectives of energy metabolism, inflammation, and gut microbiota compared to the nonacylated anthocyanins and particularly emphasizes the cellular and molecular mechanisms associated with the beneficial effects of these bioactive molecules, providing a new perspective to explore the different biological effects induced by structurally different anthocyanins. Acylated anthocyanins may have greater modulating effects on energy metabolism, inflammation, and gut microbiota in type 2 diabetes compared to nonacylated anthocyanins.
Collapse
|
14
|
Sirvent P, Chavanelle V, Otero YF, Bargetto M, Le Joubioux F, Boisseau N, Maugard T, Cazaubiel M, Pereira B, Guigas B, Hadjadj S, Peltier SL, Marette A, Bard J. TOTUM-63, a plant-based polyphenol-rich extract, improves glycaemic control in subjects with prediabetes or early stage newly-diagnosed type 2 diabetes in a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2022; 24:2331-2340. [PMID: 35837981 PMCID: PMC9796323 DOI: 10.1111/dom.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023]
Abstract
AIM The plant-based polyphenol-rich extract TOTUM-63 improves glucose homeostasis in various preclinical models of obesity and type 2 diabetes (T2D). A pilot exploratory study showed that TOTUM-63 has good safety and tolerability profiles, and beneficial effects on postprandial glucose control in healthy individuals with overweight. The aim of this study was to assess the effects of TOTUM-63 on glycaemic control in individuals with prediabetes or early stage newly-diagnosed T2D (which does not require pharmacological treatment). MATERIALS AND METHODS This study was a multicentre, randomized, double-blind, placebo-controlled trial. Individuals with prediabetes or early stage newly-diagnosed T2D and with overweight/abdominal obesity received TOTUM-63 (5 g/day) or placebo for 6 months. The primary outcome was the change in fasting blood glucose. RESULTS Fifty-one participants (age: 57.1 ± 10 years; body mass index: 31.3 ± 5.7 kg.m2 ; 35 women and 16 men) completed the study (n = 38 TOTUM-63, n = 13 placebo). After 6 months, blood glucose concentration after fasting and after the 2-h oral glucose tolerance test was reduced in the TOTUM-63-treated group compared with the placebo group (placebo-corrected difference between baseline and month 6: -0.71 mmol/L, p < .05, and -1.93 mmol/L, p < .05, respectively). TOTUM-63 was safe and well tolerated and significantly reduced body weight gain (-1.9 kg; p < .05), waist circumference (-4.5 cm; p < .001), circulating triglycerides (-0.54 mmol/L; p < .01) and low-density lipoprotein-cholesterol (-0.38 mmol/L; p < .05) compared with placebo. CONCLUSIONS TOTUM-63 lowered fasting blood glucose in participants with impaired fasting glycaemia and glucose intolerance. Moreover, TOTUM-63 showed a good safety and tolerability profile and improved several metabolic syndrome features. Therefore, TOTUM-63 is a promising candidate for T2D prevention.
Collapse
Affiliation(s)
| | | | | | | | | | - Nathalie Boisseau
- Laboratoire AME2PUniversité Clermont AuvergneClermont‐FerrandFrance
- CRNH AuvergneCRNHClermont‐FerrandFrance
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé)La Rochelle Université, UMR CNRS 7266 LIENSsLa RochelleFrance
| | | | - Bruno Pereira
- CHU Clermont‐FerrandDélégation à la Recherche Clinique et à l'InnovationClermont‐FerrandFrance
| | - Bruno Guigas
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Samy Hadjadj
- Département d'Endocrinologie, Diabétologie et Nutrition, l'Institut du ThoraxINSERM, CNRS, UNIV Nantes, CHU NantesNantesFrance
| | | | - André Marette
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of MedicineLaval UniversityQuebecCanada
- Institute of Nutrition and Functional FoodsLaval UniversityQuebecCanada
| | - Jean‐Marie Bard
- Laboratoire de Biochimie Générale et Appliquée, UFR de Pharmacie, ISOMer‐UE 2160, IUML‐Institut Universitaire Mer et Littoral‐FR3473 CNRSUniversité de NantesNantesFrance
| |
Collapse
|
15
|
Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines 2022; 10:biomedicines10123051. [PMID: 36551806 PMCID: PMC9776363 DOI: 10.3390/biomedicines10123051] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Natural antioxidants from fruits and vegetables, meats, eggs and fish protect cells from the damage caused by free radicals. They are widely used to reduce food loss and waste, minimizing lipid oxidation, as well as for their effects on health through pharmaceutical preparations. In fact, the use of natural antioxidants is among the main efforts made to relieve the pressure on natural resources and to move towards more sustainable food and pharmaceutical systems. Alternative food waste management approaches include the valorization of by-products as a source of phenolic compounds for functional food formulations. In this review, we will deal with the chemistry of antioxidants, including their molecular structures and reaction mechanisms. The biochemical aspects will also be reviewed, including the effects of acidity and temperature on their partitioning in binary and multiphasic systems. The poor bioavailability of antioxidants remains a huge constraint for clinical applications, and we will briefly describe some delivery systems that provide for enhanced pharmacological action of antioxidants via drug targeting and increased bioavailability. The pharmacological activity of antioxidants can be improved by designing nanotechnology-based formulations, and recent nanoformulations include nanoparticles, polymeric micelles, liposomes/proliposomes, phytosomes and solid lipid nanoparticles, all showing promising outcomes in improving the efficiency and bioavailability of antioxidants. Finally, an overview of the pharmacological effects, therapeutic properties and future choice of antioxidants will be incorporated.
Collapse
|
16
|
Xu S, Li G, Zhou J, Chen G, Shao J. Efficient production of anthocyanins in Saccharomyces cerevisiae by introducing anthocyanin transporter and knocking out endogenous degrading enzymes. Front Bioeng Biotechnol 2022; 10:899182. [PMID: 36061422 PMCID: PMC9437251 DOI: 10.3389/fbioe.2022.899182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Anthocyanins are natural pigments found in various plants. As multifunctional natural compounds, anthocyanins are widely used in food, pharmaceuticals, health products, and cosmetics. At present, the anthocyanins are heterologously biosynthesized in prokaryotes from flavan-3-ols, which is rather expensive. This study aimed to metabolically engineer Saccharomyces cerevisiae for anthocyanin production. Anthocyanin production has been extensively studied to understand the metabolic pathway enzymes in their natural hosts, including CHS (chalcone synthase); FLS (flavonol synthase); CHI (chalcone isomerase); F3H (flavanone 3-hydroxylase); F3′H (flavonoid 3′-hydroxylase); F3′5′H (flavonoid 3′,5′-hydroxylase); DFR (dihydroflavonol 4-reductase); ANS (anthocyanidin synthase); LAR (leucoanthocyanidin reductase); and UFGT (flavonoid 3-O-glucosyltransferase). The anthocyanin transporter MdGSTF6 was first introduced and proven to be indispensable for the biosynthesis of anthocyanins. By expressing MdGSTF6, FaDFR, PhANS0, and Dc3GT and disrupting EXG1 (the main anthocyanin-degrading enzyme), the BA-22 strain produced 261.6 mg/L (254.5 mg/L cyanidin-3-O-glucoside and 7.1 mg/L delphinidin-3-O-glucoside) anthocyanins from 2.0 g/L dihydroflavonols, which was known to be the highest titer in eukaryotes. Finally, 15.1 mg/L anthocyanins was obtained from glucose by expressing the de novo biosynthesis pathway in S. cerevisiae, which is known to be the highest de novo production. It is the first study to show that through the introduction of a plant anthocyanin transporter and knockout of a yeast endogenous anthocyanin degrading enzyme, the anthocyanin titer has been increased by more than 100 times.
Collapse
Affiliation(s)
- Sha Xu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- Zhejiang Esigma Biotechnology Company Limited, Haining, China
| | - Guangjian Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Guicai Chen
- Zhejiang Esigma Biotechnology Company Limited, Haining, China
- *Correspondence: Guicai Chen, ; Jianzhong Shao,
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Guicai Chen, ; Jianzhong Shao,
| |
Collapse
|
17
|
Zeng L, Yang T, Yang K, Yu G, Li J, Xiang W, Chen H. Efficacy and Safety of Curcumin and Curcuma longa Extract in the Treatment of Arthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Front Immunol 2022; 13:891822. [PMID: 35935936 PMCID: PMC9353077 DOI: 10.3389/fimmu.2022.891822] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
BackgroundModern pharmacological research found that the chemical components of Curcuma longa L. are mainly curcumin and turmeric volatile oil. Several recent randomized controlled trials (RCT) have shown that curcumin improves symptoms and inflammation in patients with arthritis.MethodsPubmed, Cochran Library, CNKI, and other databases were searched to collect the randomized controlled trials (RCTs). Then, the risk of bias of RCTs were assessed and data of RCTs were extracted. Finally, RevMan 5.3 was utilized for meta-analysis.ResultsTwenty-nine (29) RCTs involving 2396 participants and 5 types of arthritis were included. The arthritis included Ankylosing Spondylitis (AS), Rheumatoid Arthritis (RA), Osteoarthritis (OA), Juvenile idiopathic arthritis (JIA) and gout/hyperuricemia. Curcumin and Curcuma longa Extract were administered in doses ranging from 120 mg to 1500 mg for a duration of 4-36 weeks. In general, Curcumin and Curcuma longa Extract showed safety in all studies and improved the severity of inflammation and pain levels in these arthritis patients. However, more RCTs are needed in the future to elucidate the effect of Curcumin and Curcuma longa Extract supplementation in patients with arthritis, including RA, OA, AS and JIA.ConclusionCurcumin and Curcuma longa Extract may improve symptoms and inflammation levels in people with arthritis. However, due to the low quality and small quantity of RCTs, the conclusions need to be interpreted carefully.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| | - Tiejun Yang
- Department of Orthopedics, People’s Hospital of Ningxiang City, Ningxiang City, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha City, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| | - Ganpeng Yu
- Department of Orthopedics, People’s Hospital of Ningxiang City, Ningxiang City, China
| | - Jun Li
- Department of Orthopedics, People’s Hospital of Ningxiang City, Ningxiang City, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde City, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| |
Collapse
|
18
|
Wang F, Zhang S, Deng G, Xu K, Xu H, Liu J. Extracting Total Anthocyanin from Purple Sweet Potato Using an Effective Ultrasound-Assisted Compound Enzymatic Extraction Technology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144344. [PMID: 35889219 PMCID: PMC9317032 DOI: 10.3390/molecules27144344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022]
Abstract
This study aimed to develop an effective technique for extracting total anthocyanins from purple sweet potato (Mianzishu 9) (PSP9) by ultrasound-assisted compound enzymatic extraction (UAEE). Single-factor experiments, Plackett-Burman experimental design, and response surface methodology were utilized for optimizing extraction conditions, and the antioxidant activities were evaluated. Anthocyanins were also measured using an ultra-performance liquid chromatograph linked to a mass spectrometer (UPLC-MS). The maximum yield of total anthocyanins was 2.27 mg/g under the following conditions: the ethanol concentration was 78%, the material-to-liquid ratio was 1:15 g/mL, the enzyme ratio (cellulase: pectinase: papain) was 2:2:1 and its hydrolysis was at 41 °C, pH = 4.5, 1.5 h, the ultrasonication was at 48 °C and conducted twice for 20 min each time. In addition to higher yield, anthocyanins extracted from purple sweet potato by UAEE showed great ability to scavenge DPPH (IC50 of 0.089 μg/mL) and hydroxyl radicals (IC50 of 100.229 μg/mL). Five anthocyanins were found in the purple sweet potato extract from UAEE. Taken together, the ultrasound-assisted compound enzymatic method can rapidly and effectively extract anthocyanins with greater antioxidant capacity from purple sweet potato.
Collapse
Affiliation(s)
- Fang Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
| | - Shuo Zhang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
| | - Guowei Deng
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
- Correspondence: (G.D.); (J.L.)
| | - Kun Xu
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
| | - Haiyan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China;
| | - Jialei Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
19
|
Zhang N, Zhou J, Zhao L, Wang O, Zhang L, Zhou F. Dietary Ferulic Acid Ameliorates Metabolism Syndrome-Associated Hyperuricemia in Rats via Regulating Uric Acid Synthesis, Glycolipid Metabolism, and Hepatic Injury. Front Nutr 2022; 9:946556. [PMID: 35845766 PMCID: PMC9280472 DOI: 10.3389/fnut.2022.946556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ferulic acid is a well-known phenolic acid compound and possesses multiple health-promoting and pharmacological effects. Metabolic syndrome (MetS) and hyperuricemia (HUA) have become health problems worldwide and are closely connected. The aim of this study was to explore the influence of ferulic acid on MetS-related HUA and its underlying mechanisms. Rats were administered high-fructose and high-fat diet (HFFD) with or without ferulic acid (0.05 and 0.1%) for 20 weeks. Intake of HFFD resulted in obesity, hyperglycemia, insulin resistance, and dyslipidemia, which were alleviated by ferulic acid consumption. Treatment of rats with ferulic acid diminished the levels of lipids and inflammatory cytokines and enhanced the activities of antioxidant enzymes in the liver caused by HFFD. Additionally, administration of ferulic acid blocked a HFFD-induced elevation in activities and mRNA expression of enzymes involving in uric acid (UA) synthesis. Molecular docking analysis denoted that ferulic acid bound to the active center of these enzymes, indicative of the potential interaction with each other. These two aspects might partially be responsible for the decrement in serum UA content after ferulic acid ingestion. In conclusion, ferulic acid supplementation ameliorated lipid and glucose metabolic abnormalities, hepatic damage, and UA formation in MetS rats. There was a dose correlation between lipid deposition and UA synthesis-related indicators. These findings implied that ferulic acid could be applied as a promising dietary remedy for the management of MetS-associated HUA.
Collapse
Affiliation(s)
- Nanhai Zhang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Feng Zhou,
| |
Collapse
|
20
|
Panchal SK, John OD, Mathai ML, Brown L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022; 14:2161. [PMID: 35631301 PMCID: PMC9142943 DOI: 10.3390/nu14102161] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are mainly purple-coloured phenolic compounds of plant origin that as secondary metabolites are important in plant survival. Understanding their health benefits in humans requires sourcing these unstable compounds in sufficient quantities at a reasonable cost, which has led to improved methods of extraction. Dark-coloured fruits, cereals and vegetables are current sources of these compounds. The range of potential sustainable sources is much larger and includes non-commercialised native plants from around the world and agri-waste containing anthocyanins. In the last 5 years, there have been significant advances in developing the therapeutic potential of anthocyanins in chronic human diseases. Anthocyanins exert their beneficial effects through improvements in gut microbiota, oxidative stress and inflammation, and modulation of neuropeptides such as insulin-like growth factor-1. Their health benefits in humans include reduced cognitive decline; protection of organs such as the liver, as well as the cardiovascular system, gastrointestinal tract and kidneys; improvements in bone health and obesity; and regulation of glucose and lipid metabolism. This review summarises some of the sources of anthocyanins and their mechanisms and benefits in the treatment of chronic human diseases.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Penrith, NSW 2753, Australia;
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia
| | - Oliver D. John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; or
| | - Michael L. Mathai
- Institute of Health and Sport, College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia;
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
21
|
Li Z, Tian J, Cheng Z, Teng W, Zhang W, Bao Y, Wang Y, Song B, Chen Y, Li B. Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways. Crit Rev Food Sci Nutr 2022; 63:7878-7895. [PMID: 35333674 DOI: 10.1080/10408398.2022.2055526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated interrelationships responsible for initiating its pathogenesis. Novel strategies for the treatment of this devastating disease have attracted increasing attention worldwide. Anthocyanins are bioactive compounds that are widely distributed in the plant kingdom, and multiple studies have elucidated their beneficial role in preventing and managing T2DM. This review summarizes and comments on the hypoglycemic actions of anthocyanins from the perspective of molecular mechanisms and different target-related signaling pathways in vitro, in vivo, and clinical trials. Anthocyanins can ameliorate T2DM by functioning as carbohydrate digestive enzyme inhibitors, facilitating glucose transporter 4 (GLUT4) translocation, suppressing the effectiveness of dipeptidyl peptidase IV (DPP-IV), promoting glucagon-like peptide-1 (GLP-1) secretion, inhibiting protein tyrosine phosphatase 1B (PTP1B) overexpression, and interacting with sodium-glucose co-transporter (SGLT) to delay glucose absorption in various organs and tissues. In summary, anthocyanin is a promising and practical small molecule that can hyperglycemic symptoms and accompanying complications suffered by patients with diabetes. However, rational and potent doses for daily intake and clinical studies are required in the future.
Collapse
Affiliation(s)
- Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Wei Teng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| |
Collapse
|