1
|
Jang JY, Kim D, Im E, Kim ND. Therapeutic Potential of Pomegranate Extract for Women's Reproductive Health and Breast Cancer. Life (Basel) 2024; 14:1264. [PMID: 39459564 PMCID: PMC11509572 DOI: 10.3390/life14101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pomegranate extract has potential benefits for women's reproductive health, including fertility enhancement, menstrual cycle regulation, pregnancy support, and polycystic ovary syndrome (PCOS) treatment. It possesses antioxidant properties, reducing oxidative stress and improving fertility. Pomegranate extract may help regulate hormonal imbalances and promote regular menstrual cycles. The extract's rich nutrient profile supports placental development and fetal growth and may reduce the risk of preterm birth. Additionally, pomegranate extract shows promise in improving insulin sensitivity and reducing inflammation and oxidative damage in PCOS. Some studies suggest its potential anticancer properties, particularly against breast cancer. However, further research, including human clinical trials, is necessary to establish its effectiveness and safety. The current evidence is limited and primarily based on in vitro studies, animal studies, and clinical trials. This review provides a comprehensive summary of the benefits of pomegranate extract for women's reproductive health and breast cancer, serving as a reference for future research.
Collapse
Affiliation(s)
- Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Donghwan Kim
- Functional Food Materials Research Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea;
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
2
|
Paterson S, Majchrzak M, Alexandru D, Di Bella S, Fernández-Tomé S, Arranz E, de la Fuente MA, Gómez-Cortés P, Hernández-Ledesma B. Impact of the biomass pretreatment and simulated gastrointestinal digestion on the digestibility and antioxidant activity of microalgae Chlorella vulgaris and Tetraselmis chuii. Food Chem 2024; 453:139686. [PMID: 38788650 DOI: 10.1016/j.foodchem.2024.139686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Chlorella vulgaris and Tetraselmis chuii are two microalgae species already marketed because of their richness in high-value and health-beneficial compounds. Previous studies have demonstrated the biological properties of compounds isolated from both microalgae, although data are not yet available on the impact that pre-treatment and gastrointestinal digestion could exert on these properties. The aim of the present study was to analyze the impact of the biomass pre-treatment (freeze/thaw cycles plus ultrasounds) and simulated gastrointestinal digestion in the bioaccessibility and in vitro antioxidant activity (ABTS, ORAC, Q-FRAP, Q-DPPH) of the released digests. The cell wall from microalgae were susceptible to the pre-treatment and the action of saliva and gastric enzymes, releasing bioactive peptides and phenolic compounds that contributed to the potent antioxidant activity of digests through their radical scavenging and iron reduction capacities. Our findings suggest the potential of these microalgae against oxidative stress-associated diseases at both, intestinal and systemic level.
Collapse
Affiliation(s)
- Samuel Paterson
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Marta Majchrzak
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Denisa Alexandru
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Serena Di Bella
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Samuel Fernández-Tomé
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Elena Arranz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Departmental Section of Food Science. Faculty of Science, Autonomous University of Madrid (UAM) and Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Miguel Angel de la Fuente
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Pilar Gómez-Cortés
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Godínez-Santillán RI, Kuri-García A, Ramírez-Pérez IF, Herrera-Hernández MG, Ahumada-Solórzano SM, Guzmán-Maldonado SH, Vergara-Castañeda HA. Characterization of Extractable and Non-Extractable Phenols and Betalains in Berrycactus ( Myrtillocactus geometrizans) and Its Chemoprotective Effect in Early Stage of Colon Cancer In Vivo. Antioxidants (Basel) 2024; 13:1112. [PMID: 39334771 PMCID: PMC11428399 DOI: 10.3390/antiox13091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This research identified the bioactive compounds and antioxidant capacity of the extractable (EP) and non-extractable (NEP) polyphenol fractions of berrycactus (BC). Additionally, the effects of BC and its residue (BCR) on preventing AOM/DSS-induced early colon carcinogenesis were evaluated in vivo. Male Sprague Dawley rats were randomly assigned to six groups (n = 12/group): healthy control (C), AOM/DSS, BC, BCR, BC+AOM/DSS, and BCR+AOM/DSS. NEP was obtained through acid hydrolysis using H2SO4 and HCl (1 M or 4 M). The HCl-NEP fraction exhibited the highest total phenolic and flavonoid content, while condensed tannins were more abundant in the H2SO4-NEP fraction. A total of 33 polyphenols were identified by UPLC-QTOF-MSE in both EP and NEP, some of which were novel to BC. Both NEP hydrolysates demonstrated significant total antioxidant capacity (TEAC), with HCl-NEP exhibiting the highest ORAC values. The BC+AOM/DSS and BCR+AOM/DSS groups exhibited fewer aberrant crypt foci (p < 0.05), reduced colonic epithelial injury, and presented lower fecal β-glucuronidase activity, when compared to AOM/DSS group. No differences in butyric acid concentrations were observed between groups. This study presents novel bioactive compounds in EP and NEP from BC that contribute to chemopreventive effects in early colon carcinogenesis, while reducing fecal β-glucuronidase activity and preserving colonic mucosal integrity.
Collapse
Affiliation(s)
- Rosa Iris Godínez-Santillán
- Center for Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Campus Aeropuerto Carretera a Chichimequillas S/N, Ejido Bolaños, Querétaro 76140, Querétaro, Mexico;
| | - Aarón Kuri-García
- Department of Cell and Molecular Biology, School of Natural Sciences, Universidad Autónoma de Querétaro, Querétaro 76230, Querétaro, Mexico;
| | - Iza Fernanda Ramírez-Pérez
- School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas, Querétaro 76076, Querétaro, Mexico;
| | - María Guadalupe Herrera-Hernández
- Unidad de Biotecnología, Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Celaya 38110, Guanajuato, Mexico;
| | - Santiaga Marisela Ahumada-Solórzano
- Investigación Interdisciplinaria en Biomedicina, School of Natural Sciences, Universidad Autónoma de Querétaro, Querétaro 76230, Querétaro, Mexico;
| | - Salvador Horacio Guzmán-Maldonado
- Unidad de Biotecnología, Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Celaya 38110, Guanajuato, Mexico;
| | - Haydé Azeneth Vergara-Castañeda
- Center for Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Campus Aeropuerto Carretera a Chichimequillas S/N, Ejido Bolaños, Querétaro 76140, Querétaro, Mexico;
| |
Collapse
|
4
|
Sęczyk Ł, Jariene E, Sugier D, Kołodziej B. Effects of the dose of administration, co-antioxidants, food matrix, and digestion-related factors on the in vitro bioaccessibility of rosmarinic acid - A model study. Food Chem 2024; 449:139201. [PMID: 38599104 DOI: 10.1016/j.foodchem.2024.139201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
This study aimed to determine the effect of the administration dose, combinations with co-antioxidants (vitamin C, caffeic acid, chlorogenic acid, catechin, rutin), and different food matrices (cooked and lyophilized hen eggs, chicken breast, soybean seeds, potatoes) on the potential bioaccessibility of rosmarinic acid (RA) in simulated digestion conditions, depending on the digestion stage (gastric and intestinal) and the contribution of physicochemical and biochemical digestion factors. The in vitro bioaccessibility of RA depended on the digestion stage and conditions. The physicochemical factors were mainly responsible for the bioaccessibility of RA applied alone. The higher RA doses improved its bioaccessibility, especially at the intestinal stage of digestion. Furthermore, the addition of vitamin C and protein-rich food matrices resulted in enhanced intestinal bioaccessibility of RA. In the future, the knowledge of factors influencing the bioaccessibility of RA can help enhance its favorable biological effects and therapeutic potential.
Collapse
Affiliation(s)
- Łukasz Sęczyk
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| | - Elvyra Jariene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, Kaunas 44248, Lithuania.
| | - Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| | - Barbara Kołodziej
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| |
Collapse
|
5
|
Zhang W, Ge Z, Xiao Y, Liu D, Du J. Antioxidant and Immunomodulatory Polymer Vesicles for Effective Diabetic Wound Treatment through ROS Scavenging and Immune Modulating. NANO LETTERS 2024; 24:9494-9504. [PMID: 39058893 DOI: 10.1021/acs.nanolett.4c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Chronic diabetic wound patients usually show high glucose levels and systemic immune disorder, resulting in high reactive oxygen species (ROS) levels and immune cell dysfunction, prolonged inflammation, and delayed wound healing. Herein, we prepared an antioxidant and immunomodulatory polymer vesicle for diabetic wound treatment. This vesicle is self-assembled from poly(ε-caprolactone)36-block-poly[lysine4-stat-(lysine-mannose)22-stat-tyrosine)16] ([PCL36-b-P[Lys4-stat-(Lys-Man)22-stat-Tyr16]). Polytyrosine is an antioxidant polypeptide that can scavenge ROS. d-Mannose was introduced to afford immunomodulatory functions by promoting macrophage transformation and Treg cell activation through inhibitory cytokines. The mice treated with polymer vesicles showed 23.7% higher Treg cell levels and a 91.3% higher M2/M1 ratio than those treated with PBS. Animal tests confirmed this vesicle accelerated healing and achieved complete healing of S. aureus-infected diabetic wounds within 8 days. Overall, this is the first antioxidant and immunomodulatory vesicle for diabetic wound healing by scavenging ROS and regulating immune homeostasis, opening new avenues for effective diabetic wound healing.
Collapse
Affiliation(s)
- Wenqing Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhenghong Ge
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Danqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Lanzoni D, Grassi Scalvini F, Petrosillo E, Nonnis S, Tedeschi G, Savoini G, Buccioni A, Invernizzi G, Baldi A, Giromini C. Antioxidant capacity and peptidomic analysis of in vitro digested Camelina sativa L. Crantz and Cynara cardunculus co-products. Sci Rep 2024; 14:14456. [PMID: 38914602 PMCID: PMC11196266 DOI: 10.1038/s41598-024-64989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
In recent decades, the food system has been faced with the significant problem of increasing food waste. Therefore, the feed industry, supported by scientific research, is attempting to valorise the use of discarded biomass as co-products for the livestock sector, in line with EU objectives. In parallel, the search for functional products that can ensure animal health and performances is a common fundamental goal for both animal husbandry and feeding. In this context, camelina cake (CAMC), cardoon cake (CC) and cardoon meal (CM), due valuable nutritional profile, represent prospective alternatives. Therefore, the aim of this work was to investigate the antioxidant activity of CAMC, CC and CM following in vitro digestion using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), Ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Total phenolic content (TPC) and angiotensin converting enzyme (ACE) inhibitory activity, actively involved in modulating antioxidant properties, were also studied. Further, a peptidomic analysis was adopted to substantiate the presence of bioactive peptides after in vitro digestion. The results obtained confirmed an interesting nutritional profile of CAMC, CC and CM and relevant antioxidant and ACE inhibitory activities. In particular, considering antioxidant profile, CM and CC revealed a significantly higher (10969.80 ± 18.93 mg TE/100 g and 10451.40 ± 149.17 mg TE/100 g, respectively; p < 0.05) ABTS value than CAMC (9511.18 ± 315.29 mg TE/100 g); a trend also confirmed with the FRAP assay (306.74 ± 5.68 mg FeSO4/100 g; 272.84 ± 11.02 mg FeSO4/100 g; 103.84 ± 3.27 mg FeSO4/100 g, for CC, CM and CAMC, respectively). Similar results were obtained for TPC, demonstrating the involvement of phenols in modulating antioxidant activity. Finally, CAMC was found to have a higher ACE inhibitory activity (40.34 ± 10.11%) than the other matrices. Furthermore, potentially bioactive peptides associated with ACE inhibitory, anti-hypertensive, anti-cancer, antimicrobial, antiviral, antithrombotic, DPP-IV inhibitory and PEP-inhibitory activities were identified in CAMC. This profile was broader than that of CC and CM. The presence of such peptides corroborates the antioxidant and ACE profile of the sample. Although the data obtained report the important antioxidant profile of CAMC, CC, and CM and support their possible use, future investigations, particularly in vivo trials will be critical to evaluate and further investigate their effects on the health and performance of farm animals.
Collapse
Affiliation(s)
- Davide Lanzoni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy.
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Elena Petrosillo
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
- CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122, Milano, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
- CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122, Milano, Italy
| | - Giovanni Savoini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Arianna Buccioni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
- Centro Interdipartimentale di Ricerca e Valorizzazione Degli Alimenti, University of Florence, viale Pieraccini 6, 50139, Firenze, Italy
| | - Guido Invernizzi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
- Institute for Food, Nutrition and Health, University of Reading, Reading, RG6 5EU, UK
| |
Collapse
|
7
|
Navajas-Porras B, Cervera-Mata A, Fernández-Arteaga A, Delgado-Osorio A, Navarro-Moreno M, Hinojosa-Nogueira D, Pastoriza S, Delgado G, Navarro-Alarcón M, Rufián-Henares JÁ. Zn Biofortification of Dutch Cucumbers with Chemically Modified Spent Coffee Grounds: Zn Enrichment and Nutritional Implications. Foods 2024; 13:1146. [PMID: 38672819 PMCID: PMC11049187 DOI: 10.3390/foods13081146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Spent coffee grounds (SCGs) are a food waste with a large generation around the world. However, their utilization as a soil organic amendment is difficult due to their phytotoxic effect. In the present work, the impact of agronomic biofortification on Dutch cucumbers was studied by using different chemically modified SCGs, analyzing their effects on Zn content, the release of antioxidant capacity and the production of short-chain fatty acids after in vitro digestion-fermentation. The results indicated variations in the Zn content and chemical composition of cucumbers according to the treatment groups. The functionalized with Zn and activated SCGs were able to increase Zn levels in cucumbers. Meanwhile, the activated hydrochar obtained at 160 °C and the activated and functionalized with Zn SCGs showed the highest Zn supply per serving. Differences in the antioxidant capacity and short-chain fatty acid production were observed between the groups. It is concluded that the growing conditions and the presence of Zn may significantly influence the contribution of these cucumbers to the dietary intake of nutrients and antioxidants, which could have important implications for human health and nutrition.
Collapse
Affiliation(s)
- Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Ana Cervera-Mata
- Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (A.C.-M.); (G.D.)
| | | | - Adriana Delgado-Osorio
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Miguel Navarro-Moreno
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - Gabriel Delgado
- Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (A.C.-M.); (G.D.)
| | - Miguel Navarro-Alarcón
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18011 Granada, Spain; (B.N.-P.); (A.D.-O.); (M.N.-M.); (D.H.-N.); (S.P.); (M.N.-A.)
- Instituto de Investigación Biosanitaria Ibs.Granada, Universidad de Granada, 18014 Granada, Spain
| |
Collapse
|
8
|
Hu F, Wang L, Bainto-Ancheta L, Ogawa Y. Effects of Matrix Structure on Protein Digestibility and Antioxidant Property of Different Soybean Curds During In Vitro Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7364-7373. [PMID: 38527851 DOI: 10.1021/acs.jafc.3c06980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This study compared the three most common types of tofu (soybean curd), which were prepared by using magnesium chloride (MgCl2 tofu), calcium sulfate (CaSO4 tofu), and glucono-δ-lactone (GDL tofu) coagulants. The results showed that GDL tofu had a higher water holding capacity than MgCl2 tofu and CaSO4 tofu, which was attributed to its high surface hydrophobicity and disulfide bond content. GDL tofu possessed the lowest firmness, gumminess, and chewiness, along with a uniform network structure and a thin protein matrix. In contrast, MgCl2 tofu exhibited an inhomogeneous network structure with a thick protein matrix. Combining the results of protein hydrolysis degree, SDS-PAGE, and free amino acids during in vitro digestion, it was indicated that the degree of protein digestion in GDL tofu was the highest. After intestinal digestion, GDL tofu had the highest total phenolic content, ferric reducing antioxidant power, and DPPH value. These results demonstrated the superior protein digestibility and antioxidant property of GDL tofu during in vitro digestion due to its structural characteristics that facilitate enzyme diffusion in the matrix. The findings offer insight into the protein digestibility and antioxidant properties of different types of tofu during digestion from structural characteristic perspective and valuable reference information for consumer dietary nutrition.
Collapse
Affiliation(s)
- Feifei Hu
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-0092, Japan
| | - Lin Wang
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-0092, Japan
| | - Loraine Bainto-Ancheta
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-0092, Japan
- Institute of Food Science and Technology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños, Laguna 4031, Philippines
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-0092, Japan
| |
Collapse
|
9
|
Bashmil YM, Dunshea FR, Appels R, Suleria HAR. Bioaccessibility of Phenolic Compounds, Resistant Starch, and Dietary Fibers from Australian Green Banana during In Vitro Digestion and Colonic Fermentation. Molecules 2024; 29:1535. [PMID: 38611814 PMCID: PMC11013930 DOI: 10.3390/molecules29071535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Green bananas contain a substantial amount of resistant starch (RS), dietary fiber (DF), and phytochemicals, which exhibit potent antioxidant capabilities, primarily attributable to the abundance of polyphenols. The objective of this study was to assess the variations in the contents and bioaccessibility of RS, DF, and phenolic compounds in three types of Australian green bananas (Cavendish "Musa acuminata", Ladyfinger "Musa paradisiaca L.", and Ducasse "Musa balbisiana"), along with their antioxidant capacities, and the production of short-chain fatty acids (SCFAs) following in vitro simulated gastrointestinal digestion and colonic fermentation. The studied cultivars exhibited significant levels of RS, with Ladyfinger showing the greatest (49%). However, Ducasse bananas had the greatest DF concentration (38.73%). Greater TPC levels for Ladyfinger (2.32 mg GAE/g), as well as TFC and TTC (0.06 mg QE/g and 3.2 mg CE/g, respectively) in Cavendish, together with strong antioxidant capacities (DPPH, 0.89 mg TE/g in Cavendish), have been detected after both intestinal phase and colonic fermentation at 12 and 24 h. The bioaccessibility of most phenolic compounds from bananas was high after gastric and small intestinal digestion. Nevertheless, a significant proportion of kaempferol (31% in Cavendish) remained detectable in the residue after colonic fermentation. The greatest production of SCFAs in all banana cultivars was observed after 24 h of fermentation, except valeric acid, which exhibited the greatest output after 12 h of fermentation. In conclusion, the consumption of whole green bananas may have an advantageous effect on bowel health and offer antioxidant characteristics.
Collapse
Affiliation(s)
- Yasmeen M. Bashmil
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rudi Appels
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (F.R.D.); (R.A.)
| |
Collapse
|
10
|
Kamiloglu S, Koc Alibasoglu E, Acoglu Celik B, Celik MA, Bekar E, Unal TT, Kertis B, Akpinar Bayizit A, Yolci Omeroglu P, Copur OU. Bioaccessibility of Carotenoids and Polyphenols in Organic Butternut Squash ( Cucurbita moschata): Impact of Industrial Freezing Process. Foods 2024; 13:239. [PMID: 38254540 PMCID: PMC10814222 DOI: 10.3390/foods13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Butternut squash (Cucurbita moschata) is recognized as a functional food due to its abundant content of health-promoting compounds, including carotenoids and polyphenols. The aim of this study was to examine the impact of industrial freezing stages on the bioaccessibility of carotenoids and polyphenols in organic Butternut squash supplied for baby food. Identification and quantification of bioactive compounds were carried out using UPLC-ESI-MS/MS and HPLC-PDA, respectively. The results revealed that industrial freezing of squash did not cause a significant change in bioaccessibility of α- and β-carotene. On the other hand, frozen squash was found to contain higher levels of bioaccessible epicatechin (main flavonoid) (117.5 mg/kg) and syringic acid (main phenolic acid) (32.0 mg/kg) compared to fresh internal fruit. Moreover, the levels of bioaccessible epicatechin and syringic acid were found to be the highest in discarded pomace and seed sample (454.0 and 132.4 mg/kg, respectively). Overall, this study emphasized that industrial freezing could be an effective strategy for preserving carotenoid bioaccessibility in organic Butternut squash, while also enhancing the levels of bioaccessible polyphenols. In addition, we also demonstrated that pomace and seed, which are discarded as waste, have significant potential to be utilized as a food source rich in bioactive compounds.
Collapse
Affiliation(s)
- Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Elif Koc Alibasoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Busra Acoglu Celik
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - M. Alpgiray Celik
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye
| | - Erturk Bekar
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Taha Turgut Unal
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Buket Kertis
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
| | - Arzu Akpinar Bayizit
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Perihan Yolci Omeroglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - O. Utku Copur
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| |
Collapse
|
11
|
Yuan L, Jiang Q, Zhai Y, Zhao Z, Liu Y, Hu F, Qian Y, Sun J. Association between Plant-based Diet and Risk of Chronic Diseases and All-Cause Mortality in Centenarians in China: A Cohort Study. Curr Dev Nutr 2024; 8:102065. [PMID: 38234579 PMCID: PMC10792746 DOI: 10.1016/j.cdnut.2023.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
Background Numerous studies have suggested the health benefits of a plant-based dietary pattern. However, whether this dietary pattern is associated with health benefits for centenarians remains unexplored. Our study aimed to investigate the correlation between 16 widely consumed Chinese food items and the incidence rates of chronic diseases and all-cause mortality among centenarians. Methods We conducted a dietary survey on 3372 centenarians with an average age of 102.33 y in China. After rigorous screening, we identified 2675 centenarians, who underwent a 10-y follow-up study with all-cause mortality as the primary outcome. We developed 6 dietary patterns on the basis of the food consumption frequency of each participant. To model the impact of missing values, we employed multiple imputation methods, verifying the robustness of models. Results The overall plant-based diet index (PDI), healthy plant-based diet index (hPDI), unhealthy plant-based diet index (uPDI), healthy plant-based foods index (HPF), unhealthy plant-based foods index (uHPF), and animal-based foods index (AF) scores among centenarians in China were 46.95 ± 6.29, 44.43 ± 5.76, 51.09 ± 6.26, 21.63 ± 4.79, 9.91 ± 2.41, and 14.59 ± 3.58, respectively. High scores of PDI, hPDI, and HPF were associated with a lower risk of chronic diseases. In the 10-y follow-up study, 92.90% of centenarians have died. The high scores of the PDI (HRPDI = 0.81), hPDI (HRhPDI = 0.79), and HPF (HRHPF = 0.81) scores were significantly associated with a lower risk of death compared with the low scores. Conversely, the high AF score (HRAF = 1.17) was significantly associated with a higher risk of death compared with the low scores. Conclusion Despite the fact that a higher score in both a predominantly plant-based dietary pattern and a healthy dietary pattern can decrease the death among centenarians, not all HPFs have this effect. A higher AF predicted a higher risk of mortality, whereas higher PDI, hPDI, and HPF were associated with a lower risk of mortality among Chinese centenarians.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Health Management, Faculty of Military Health Service, Naval Medical University, Shanghai, China
| | - QinQin Jiang
- Department of Health Management, Faculty of Military Health Service, Naval Medical University, Shanghai, China
| | - Yinghong Zhai
- Clinical Research Unit, School of Medicine, Shanghai 9th People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai, China
| | - Zhe Zhao
- Department of Health Management, Faculty of Military Health Service, Naval Medical University, Shanghai, China
| | - Yijun Liu
- Department of Health Management, Faculty of Military Health Service, Naval Medical University, Shanghai, China
| | - Fangyuan Hu
- Department of Medical Service, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Yi Qian
- College of Health Management, Southern Medical University, Guangzhou, China
| | - Jinhai Sun
- Department of Health Management, Faculty of Military Health Service, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Schmidt L, Vargas BK, Monteiro CS, Pappis L, Mello RDO, Machado AK, Emanuelli T, Ayub MAZ, Moreira JCF, Augusti PR. Bioavailable Phenolic Compounds from Olive Pomace Present Anti-Neuroinflammatory Potential on Microglia Cells. Foods 2023; 12:4048. [PMID: 38002106 PMCID: PMC10670107 DOI: 10.3390/foods12224048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The neuroinflammatory process is considered one of the main characteristics of central nervous system diseases, where a pro-inflammatory response results in oxidative stress through the generation of reactive oxygen and nitrogen species (ROS and RNS). Olive (Olea europaea L.) pomace is a by-product of olive oil production that is rich in phenolic compounds (PCs), known for their antioxidant and anti-inflammatory properties. This work looked at the antioxidant and anti-neuroinflammatory effects of the bioavailable PC from olive pomace in cell-free models and microglia cells. The bioavailable PC of olive pomace was obtained through the process of in vitro gastrointestinal digestion of fractionated olive pomace (OPF, particles size < 2 mm) and micronized olive pomace (OPM, particles size < 20 µm). The profile of the PC that is present in the bioavailable fraction as well as its in vitro antioxidant capacity were determined. The anti-neuroinflammatory capacity of the bioavailable PC from olive pomace (0.03-3 mg L-1) was evaluated in BV-2 cells activated by lipopolysaccharide (LPS) for 24 h. The total bioavailable PC concentration and antioxidant activity against peroxyl radical were higher in the OPM than those observed in the OPF sample. The activation of BV-2 cells by LPS resulted in increased levels of ROS and nitric oxide (NO). The bioavailable PCs from both OPF and OPM, at their lowest concentrations, were able to reduce the ROS generation in activated BV-2 cells. In contrast, the highest PC concentration of OPF and OPM was able to reduce the NO levels in activated microglial cells. Our results demonstrate that bioavailable PCs from olive pomace can act as anti-neuroinflammatory agents in vitro, independent of particle size. Moreover, studies approaching ways to increase the bioavailability of PCs from olive pomace, as well as any possible toxic effects, are needed before a final statement on its nutritional use is made.
Collapse
Affiliation(s)
- Luana Schmidt
- Institute of Basic Health Sciences, Postgraduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600-Annex, Porto Alegre CEP 90035-003, RS, Brazil; (L.S.); (J.C.F.M.)
| | - Bruna Krieger Vargas
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre CEP 91501-970, RS, Brazil (M.A.Z.A.)
| | - Camila Sant’Anna Monteiro
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | - Lauren Pappis
- Graduate Program in Nanoscience, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
| | - Renius de Oliveira Mello
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | - Alencar Kolinski Machado
- Graduate Program in Nanoscience, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | - Marco Antônio Zachia Ayub
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre CEP 91501-970, RS, Brazil (M.A.Z.A.)
| | - José Cláudio Fonseca Moreira
- Institute of Basic Health Sciences, Postgraduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600-Annex, Porto Alegre CEP 90035-003, RS, Brazil; (L.S.); (J.C.F.M.)
| | - Paula Rossini Augusti
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre CEP 91501-970, RS, Brazil (M.A.Z.A.)
| |
Collapse
|
13
|
Seke F, Adiamo OQ, Sultanbawa Y, Sivakumar D. In Vitro Antioxidant Activity, Bioaccessibility, and Thermal Stability of Encapsulated Strawberry Fruit ( Fragaria × ananassa) Polyphenols. Foods 2023; 12:4045. [PMID: 37959164 PMCID: PMC10647287 DOI: 10.3390/foods12214045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Bioactive compounds in red fruits, such as strawberries, are vulnerable to digestion, and encapsulation has become an alternative for their protection. This study aims at encapsulating strawberry juice (SJ) by freeze-drying with pea protein and okra mucilage (SJPO), pea protein and psyllium mucilage (SJPP), and pea protein, psyllium mucilage, and okra mucilage (SJPPO) and investigating the in vitro release. The highest encapsulation efficiency was observed in capsule SJPPO (95.38%) and the lowest efficiency in SJPO (82.45%). Scanning electron microscopy revealed an amorphous glassy structure for the structure of the strawberry microcapsules, and X-ray diffraction confirmed that observation. However, X-ray diffraction further showed that SJPPO was crystalline, indicating a tighter crosslinking density than the other microcapsules. Fourier transform infrared spectroscopy showed peaks at 3390 and 1650 cm-1, confirming the presence of polyphenols and polysaccharides in the strawberry microcapsules. Thermal stability was higher for SJPPO, and the observed thermal transitions were due to the bonds formed between the polymers and polyphenols. Pelargonidin 3-glucoside, cyanidin 3-glucoside, cyanidin, delphinidin, malvidin 3-glucoside, ellagic acid, chlorogenic acid, catechin, and kaempferol were identified in the strawberry microcapsules. Digestion affected the compounds' content; the bioaccessibility for SJ was 39.26% and 45.43% for TPC and TAC, respectively. However, encapsulation improved the bioaccessibility of both TPC (SJPP, 51.54%; SJPO, 48.52%; and SJPPO, 54.39%) and TAC (SJPP, 61.08%; SJPO, 55.03%; and SJPPO, 71.93%). Thus, encapsulating pea protein isolate, psyllium mucilage, and okra mucilage is an effective method to facilitate targeted release and preserve the biological activities of fruits.
Collapse
Affiliation(s)
- Faith Seke
- Phytochemical Food Network Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West, Pretoria 0001, South Africa;
| | - Oladipupo Q. Adiamo
- Australian Research Council Industrial Transformation Training Centre for Uniquely, Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Indooroopilly, QLD 4068, Australia; (O.Q.A.); (Y.S.)
| | - Yasmina Sultanbawa
- Australian Research Council Industrial Transformation Training Centre for Uniquely, Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Indooroopilly, QLD 4068, Australia; (O.Q.A.); (Y.S.)
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West, Pretoria 0001, South Africa;
- Australian Research Council Industrial Transformation Training Centre for Uniquely, Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Indooroopilly, QLD 4068, Australia; (O.Q.A.); (Y.S.)
| |
Collapse
|
14
|
Bisinotto MS, da Silva Napoli DC, Simabuco FM, Bezerra RMN, Antunes AEC, Galland F, Pacheco MTB. Sunflower and Palm Kernel Meal Present Bioaccessible Compounds after Digestion with Antioxidant Activity. Foods 2023; 12:3283. [PMID: 37685216 PMCID: PMC10486993 DOI: 10.3390/foods12173283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Sunflower (Helianthus annuus L.) and African palm kernel (Elaeis guineensis Jacq.) are among the most cultivated in the world regarding oil extraction. The oil industry generates a large amount of meal as a by-product, which can be a source of nutrients and bioactive compounds. However, the physiological effects of bioactive compounds in such matrices are only valid if they remain bioavailable and bioactive after simulated gastrointestinal digestion. This study evaluated the chemical composition and antioxidant and prebiotic potential of de-oiled sunflower (DS) and de-oiled palm kernel (DP) meal after in vitro digestion. The DS sample had the highest protein content and the best chemical score, in which lysine was the limiting amino acid. Digested samples showed increased antioxidant activity, measured by in vitro methods. The digested DS sample showed a better antioxidant effect compared to DP. Moreover, both samples managed to preserve DNA supercoiling in the presence of the oxidizing agent. The insoluble fractions after digestion stimulated the growth of prebiotic bacterium, similar to inulin. In conclusion, simulated gastrointestinal digestion promoted in both matrices an increase in protein bioaccessibility and antioxidant capacity, pointing to a metabolic modulation favorable to the organism.
Collapse
Affiliation(s)
- Mariana Sisconeto Bisinotto
- CCQA, Science and Quality Food Center, Institute of Food Technology (ITAL), Av. Brasil, 2880, Campinas 13070-178, SP, Brazil
| | | | - Fernando Moreira Simabuco
- LABMAS, Multidisciplinary Laboratory in Food and Health, School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Rosângela Maria Neves Bezerra
- LABMAS, Multidisciplinary Laboratory in Food and Health, School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Adriane Elisabete Costa Antunes
- LLPP, Dairy Products, Probiotics and Prebiotics Laboratory, School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Fabiana Galland
- CCQA, Science and Quality Food Center, Institute of Food Technology (ITAL), Av. Brasil, 2880, Campinas 13070-178, SP, Brazil
| | - Maria Teresa Bertoldo Pacheco
- CCQA, Science and Quality Food Center, Institute of Food Technology (ITAL), Av. Brasil, 2880, Campinas 13070-178, SP, Brazil
| |
Collapse
|
15
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
16
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023; 15:2749. [PMID: 37375654 PMCID: PMC10302286 DOI: 10.3390/nu15122749] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The Western diet is a modern dietary pattern characterized by high intakes of pre-packaged foods, refined grains, red meat, processed meat, high-sugar drinks, candy, sweets, fried foods, conventionally raised animal products, high-fat dairy products, and high-fructose products. The present review aims to describe the effect of the Western pattern diet on the metabolism, inflammation, and antioxidant status; the impact on gut microbiota and mitochondrial fitness; the effect of on cardiovascular health, mental health, and cancer; and the sanitary cost of the Western diet. To achieve this goal, a consensus critical review was conducted using primary sources, such as scientific articles, and secondary sources, including bibliographic indexes, databases, and web pages. Scopus, Embase, Science Direct, Sports Discuss, ResearchGate, and the Web of Science were used to complete the assignment. MeSH-compliant keywords such "Western diet", "inflammation", "metabolic health", "metabolic fitness", "heart disease", "cancer", "oxidative stress", "mental health", and "metabolism" were used. The following exclusion criteria were applied: (i) studies with inappropriate or irrelevant topics, not germane to the review's primary focus; (ii) Ph.D. dissertations, proceedings of conferences, and unpublished studies. This information will allow for a better comprehension of this nutritional behavior and its effect on an individual's metabolism and health, as well as the impact on national sanitary systems. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
17
|
Wang ZT, Liu YP, Ma YL, Pan SY, Li JK, Shi SJ, Wu ZF, Li Z, Shang YF, Wei ZJ. Insight into the phenolics and antioxidant activity of Indian jujube ( Ziziphus mauritiana Lamk) peel and pulp subjected to the simulated digestion. Heliyon 2023; 9:e16226. [PMID: 37215918 PMCID: PMC10199251 DOI: 10.1016/j.heliyon.2023.e16226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
To evaluate the release and activity of Indian jujube phenolics in vivo, its peel and pulp were subjected to simulated digestions. The phenolics content and antioxidant activity of the digested samples were determined. The results showed that the total phenolics/flavonoids in the peel were respectively 4.63 and 4.48 times higher than that in the pulp. The release of phenolics and flavonoids respectively increased by 79.75% and 39.98% in the peel and 86.34% and 23.54% in the pulp after the intestinal digestion. The correlation between the total phenolics/flavonoids and antioxidant activity was higher in the peel (r > 0.858, p < 0.01) than that in the pulp. The phenolics profiles of the peel were almost the same after the digestion, and four phenolics including naringenin tri-glycoside, quercetin-3-O-[(2-hexosyl)-6-rhamnosyl] -hexoside, quercetin-3-O-pentosylhexoside and quercetin-3-O-(2-pentosyl -rhamnoside)-4'-O-rhamnoside were found to be the main flavonoids of Indian jujube peel, and they showed high recovery (>89.88%) during the digestion, implying that these phenolics may play a vital role in the function of Indian jujubes.
Collapse
Affiliation(s)
- Zi-Tong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu-ping Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yi-Long Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, China
| | - Shuang-Yi Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jian-Kang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shao-Jun Shi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zheng-Fang Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ya-Fang Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, China
| |
Collapse
|
18
|
Cañas S, Rebollo-Hernanz M, Bermúdez-Gómez P, Rodríguez-Rodríguez P, Braojos C, Gil-Ramírez A, Benítez V, Aguilera Y, Martín-Cabrejas MA. Radical Scavenging and Cellular Antioxidant Activity of the Cocoa Shell Phenolic Compounds after Simulated Digestion. Antioxidants (Basel) 2023; 12:antiox12051007. [PMID: 37237874 DOI: 10.3390/antiox12051007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The cocoa industry generates a considerable quantity of cocoa shell, a by-product with high levels of methylxanthines and phenolic compounds. Nevertheless, the digestion process can extensively modify these compounds' bioaccessibility, bioavailability, and bioactivity as a consequence of their transformation. Hence, this work's objective was to assess the influence of simulated gastrointestinal digestion on the concentration of phenolic compounds found in the cocoa shell flour (CSF) and the cocoa shell extract (CSE), as well as to investigate their radical scavenging capacity and antioxidant activity in both intestinal epithelial (IEC-6) and hepatic (HepG2) cells. The CSF and the CSE exhibited a high amount of methylxanthines (theobromine and caffeine) and phenolic compounds, mainly gallic acid and (+)-catechin, which persisted through the course of the simulated digestion. Gastrointestinal digestion increased the antioxidant capacity of the CSF and the CSE, which also displayed free radical scavenging capacity during the simulated digestion. Neither the CSF nor the CSE exhibited cytotoxicity in intestinal epithelial (IEC-6) or hepatic (HepG2) cells. Moreover, they effectively counteracted oxidative stress triggered by tert-butyl hydroperoxide (t-BHP) while preventing the decline of glutathione, thiol groups, superoxide dismutase, and catalase activities in both cell lines. Our study suggests that the cocoa shell may serve as a functional food ingredient for promoting health, owing to its rich concentration of antioxidant compounds that could support combating the cellular oxidative stress associated with chronic disease development.
Collapse
Affiliation(s)
- Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Patricia Bermúdez-Gómez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
19
|
Moloto MR, Akinola SA, Seke F, Shoko T, Sultanbawa Y, Shai JL, Remize F, Sivakumar D. Influence of Fermentation on Functional Properties and Bioactivities of Different Cowpea Leaf Smoothies during In Vitro Digestion. Foods 2023; 12:foods12081701. [PMID: 37107496 PMCID: PMC10137366 DOI: 10.3390/foods12081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated the effects of Lactiplantibacillus plantarum 75 (LAB 75) fermentation at 37 °C for 48 h on the pH, total soluble solids (TSS), colour, total titratable acidity (TTA), carotenoids, and bioactivities of cowpea leaf smoothies from three cultivars (VOP 1, VOP 3, and VOP 4). Fermentation reduced the pH from 6.57 to 5.05 after 48 h. The TTA increased with the fermentation period, whilst the TSS reduced. Fermentation of the smoothies resulted in the least colour changes (∆E) in VOP 1 after 48 h. Fermentation of cowpea smoothies (VOP 1, VOP 3, and VOP 4) improved the antioxidant capacity (FRAP, DPPH, and ABTS), which was attributed to the increase in total phenolic compounds and carotenoid constituents in all of the fermented cowpea smoothies. VOP 1 was further selected for analysis due to its high phenolic content and antioxidant activity. The VOP 1 smoothie fermented for 24 h showed the lowest reduction in TPC (11%) and had the highest antioxidant (FRAP, DPPH, and ABTS) activity. Ltp. plantarum 75 was viable and survived the harsh conditions of the gastrointestinal tract, and, hence, could be used as a probiotic. VOP 1 intestinal digesta showed significantly higher glucose uptake relative to the undigested and the gastric digesta, while the gastric phase had higher levels of α-amylase and α-glucosidase compared to the undigested samples.
Collapse
Affiliation(s)
- Mapula R Moloto
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Stephen A Akinola
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Faith Seke
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Tinotenda Shoko
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Yasmina Sultanbawa
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Elkhorn Building (#1024), 80 Meiers Road, Indooroopilly, Brisbane, QLD 4068, Australia
| | - Jerry L Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Arcadia, Pretoria 0001, South Africa
| | - Fabienne Remize
- SPO, Université de Montpellier, Université de La Réunion, Institut Agro, INRAE, 2 Place Viala, F-34000 Montpellier, France
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Elkhorn Building (#1024), 80 Meiers Road, Indooroopilly, Brisbane, QLD 4068, Australia
| |
Collapse
|
20
|
Tomé-Sánchez I, Martínez-Villaluenga C, Martín-Diana AB, Rico D, Jiménez-Pulido I, Frias J, Dia VP. Antioxidant, Immunostimulatory, and Anticancer Properties of Hydrolyzed Wheat Bran Mediated through Macrophages Stimulation. Int J Mol Sci 2023; 24:ijms24087436. [PMID: 37108599 PMCID: PMC10139194 DOI: 10.3390/ijms24087436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Previous studies demonstrated that enzymatic hydrolysis enhances wheat bran (WB) biological properties. This study evaluated the immunostimulatory effect of a WB hydrolysate (HYD) and a mousse enriched with HYD (MH) before and after in vitro digestion on murine and human macrophages. The antiproliferative activity of the harvested macrophage supernatant on colorectal cancer (CRC) cells was also analyzed. MH showed significantly higher content than control mousse (M) in soluble poly- and oligosaccharides (OLSC), as well as total soluble phenolic compounds (TSPC). Although in vitro gastrointestinal digestion slightly reduced the TSPC bioaccessibility of MH, ferulic acid (FA) levels remained stable. HYD showed the highest antioxidant activity followed by MH, which demonstrated a greater antioxidant activity before and after digestion as compared with M. RAW264.7 and THP-1 cells released the highest amounts of pro-inflammatory cytokines after being treated with 0.5 mg/mL of digested WB samples. Treatment with digested HYD-stimulated RAW264.7 supernatant for 96 h showed the most anticancer effect, and spent medium reduced cancer cell colonies more than direct WB sample treatments. Although a lack of inner mitochondrial membrane potential alteration was found, increased Bax:Bcl-2 ratio and caspase-3 expression suggested activation of the mitochondrial apoptotic pathway when CRC cells were treated with macrophage supernatants. Intracellular reactive oxygen species (ROS) were positively correlated with the cell viability in CRC cells exposed to RAW264.7 supernatants (r = 0.78, p < 0.05) but was not correlated in CRC cells treated with THP-1 conditioned media. Supernatant from WB-stimulated THP-1 cells may be able to stimulate ROS production in HT-29 cells, leading to a decrease of viable cells in a time-dependent manner. Therefore, our present study revealed a novel anti-tumour mechanism of HYD through the stimulation of cytokine production in macrophages and the indirect inhibition of cell proliferation, colony formation, and activation of pro-apoptotic proteins expression in CRC cells.
Collapse
Affiliation(s)
- Irene Tomé-Sánchez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 6, 28040 Madrid, Spain
| | | | - Ana Belén Martín-Diana
- Agricultural Technological Institute of Castilla and Leon, Government of Castilla and Leon, Finca Zamadueñas, Castilla and Leon, 47071 Valladolid, Spain
| | - Daniel Rico
- Agricultural Technological Institute of Castilla and Leon, Government of Castilla and Leon, Finca Zamadueñas, Castilla and Leon, 47071 Valladolid, Spain
| | - Iván Jiménez-Pulido
- Agricultural Technological Institute of Castilla and Leon, Government of Castilla and Leon, Finca Zamadueñas, Castilla and Leon, 47071 Valladolid, Spain
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 6, 28040 Madrid, Spain
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| |
Collapse
|
21
|
Pop OL, Suharoschi R, Socaci SA, Berger Ceresino E, Weber A, Gruber-Traub C, Vodnar DC, Fărcaș AC, Johansson E. Polyphenols—Ensured Accessibility from Food to the Human Metabolism by Chemical and Biotechnological Treatments. Antioxidants (Basel) 2023; 12:antiox12040865. [PMID: 37107240 PMCID: PMC10135483 DOI: 10.3390/antiox12040865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Elaine Berger Ceresino
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Achim Weber
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Carmen Gruber-Traub
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
22
|
Far from being a simple question: The complexity between in vitro and in vivo responses from nutrients and bioactive compounds with antioxidant potential. Food Chem 2023; 402:134351. [DOI: 10.1016/j.foodchem.2022.134351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
|
23
|
Li CX, Wang FR, Zhang B, Deng ZY, Li HY. Stability and antioxidant activity of phenolic compounds during in vitro digestion. J Food Sci 2023; 88:696-716. [PMID: 36617678 DOI: 10.1111/1750-3841.16440] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023]
Abstract
The impact of phenolic compounds on the human body depended on the type, content, bioavailability, and antioxidant activity. After digestion, different phenolic compounds had different changes of bioavailability and antioxidant activity, which needed to be considered in the application. In this experiment, the structural stability and antioxidant activity of 27 phenolic compounds (phenolic acids, flavonols, flavonoids, and flavanones) were investigated during the in vitro simulated digestion. This experiment eliminated the influence of food matrix, provide a basis for regularity for the changes of phenolic substances in different materials. Results showed that the bioaccessibility of phenolic compounds with different structures varied, and there was a conformational relationship between the structure and stability. After oral digestion, most of the phenolic compounds underwent degradation and the cellular antioxidant activity (CAA) values decreased to a large extent (p < 0.05). After gastric digestion, the content (p > 0.05) and CAA values (p < 0.05) of most phenolic compounds increased. However, after intestinal digestion, the phenolic compounds were degraded to a greater extent, and different structures of phenolic compounds had different changes in CAA values (p < 0.05). In general, the CAA values of most phenolic compounds after in vitro digestion were lower than the initial value. The 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ehylbenzthiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) values of phenolic acids and flavonols decreased after in vitro simulated digestion (p < 0.05), while the values of DPPH, ABTS, and FRAP of most flavonoids (p < 0.05) increased. The increased oxygen radical absorption capacity (ORAC) values were found in most phenolic acids, flavonols, and flavonoids (p < 0.05), and most flavanones showed unremarkable changes in ORAC values (p > 0.05). In general, the changing trend of chemical-based antioxidant activity was consistent with the content of phenolic compounds.
Collapse
Affiliation(s)
- Chun Xiao Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Fu Rong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Ze Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Hong Yan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Cerdá-Bernad D, Pitterou I, Tzani A, Detsi A, Frutos MJ. "Novel chitosan/alginate hydrogels as carriers of phenolic-enriched extracts from saffron floral by-products using natural deep eutectic solvents as green extraction media". Curr Res Food Sci 2023; 6:100469. [PMID: 36926417 PMCID: PMC10011189 DOI: 10.1016/j.crfs.2023.100469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
The current saffron production system is generating several hundreds of tons of tepal waste, because only stigmas are used for food. Consequently, the valorization of saffron floral by-products by developing stable functional ingredients could lead to the environmental impact minimization. Thus, the main aim of this study was to develop innovative green extraction processes from saffron floral by-products by using Natural Deep Eutectic Solvents (NaDES) and ultrasound-assisted extraction (UAE) as ecological extraction method. Response surface methodology was used to optimize process parameters. To improve the stability of the optimal extracts, they were incorporated into chitosan/alginate hydrogels, studying their water-uptake and water retention capacity and the total phenolic content (TPC) during the in vitro digestion. The results indicated that the optimal extraction, regarding total phenolic and flavonoid content, was achieved in 20 min, using 180 W ultrasound power and 90% of NaDES. The results of the DPPH assay revealed the potent antioxidant activity of saffron floral by-products. The chitosan/alginate hydrogels incorporating the as-obtained NaDES extracts showed favorable properties whereas the TPC remained stable under intestinal conditions. Therefore, NaDES combined with UAE was an efficient technique to isolate high added-value compounds from saffron flowers, succeeding also the valorization of discarded waste by using green and low-cost strategies. Furthermore, these novel hydrogels could be used as promising candidates for food or cosmetic applications.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312, Orihuela, Spain
| | - Ioanna Pitterou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - María José Frutos
- Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312, Orihuela, Spain
| |
Collapse
|
25
|
Abd-ElGawad AM, Assaeed AM, El Gendy AENG, Dar BA, Elshamy AI. Volatile Oils Discrepancy between Male and Female Ochradenus arabicus and Their Allelopathic Activity on Dactyloctenium aegyptium. PLANTS (BASEL, SWITZERLAND) 2022; 12:110. [PMID: 36616238 PMCID: PMC9824887 DOI: 10.3390/plants12010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Volatile oils (VOs) composition of plants is affected by several exogenous and endogenous factors. Male and female plants of the dioecious species exhibit variation in the bioactive constituents' allocation. The chemical variation in the VOs between male and female plants is not well studied. In the present study, the chemical characterization of the VOs extracted from aerial parts of male and female ecospecies of Ochradenus arabicus was documented. Additionally, the extracted VOs were tested for their allelopathic activity against the weed Dactyloctenium aegyptium. Via GC-MS analysis, a total of 53 compounds were identified in both male and female plants. Among them, 49 compounds were identified from male plants, and 47 compounds were characterized in female plants. Isothiocyanates (47.50% in male and 84.32% in female) and terpenes (48.05% in male and 13.22% in female) were the main components of VOs, in addition to traces of carotenoid-derived compounds and hydrocarbons. The major identified compounds of male and female plants are m-tolyl isothiocyanate, benzyl isothiocyanate, butyl isothiocyanate, isobutyl isothiocyanate, carvone, and α-bisabolol, where they showed variation in the concentration between male and female plants. The O. arabicus VOs of the male plants attained IC50 values of 51.1, 58.1, and 41.9 μL L-1 for the seed germination, seedling shoot growth, and seedling root growth of the weed (D. aegyptium), respectively, while the females showed IC50 values of 56.7, 63.9, and 40.7 μL L-1, respectively. The present data revealed that VOs composition and bioactivity varied significantly with respect to the plant gender, either qualitatively or quantitatively.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Abdulaziz M. Assaeed
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | | | - Basharat A. Dar
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
26
|
Influence of Simulated In Vitro Gastrointestinal Digestion on the Phenolic Profile, Antioxidant, and Biological Activity of Thymbra spicata L. Extracts. Antioxidants (Basel) 2022; 11:antiox11091778. [PMID: 36139852 PMCID: PMC9495638 DOI: 10.3390/antiox11091778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Plants or plant extracts are widely investigated for preventing/counteracting several chronic disorders. The oral route is the most common route for nutraceutical and drug administration. Currently, it is still unclear as to whether and how the pattern of phenolic compounds (PCs) found in the plants as well as their bioactivity could be modified during the gastrointestinal transit. Recent studies have revealed antioxidant and anti-steatotic properties of Thymbra spicata. Here, we investigated the possible loss of phytochemicals that occurs throughout the sequential steps of a simulated in vitro gastrointestinal (GI) digestion of aqueous and ethanolic extracts of aerial parts of T. spicata. Crude, digested, and dialyzed extracts were characterized in terms of their phenolic profile and biological activities. Total contents of carbohydrates, proteins, PCs, flavonoids, and hydroxycinnamic acids were quantified. The changes in the PC profile and in bioactive compounds upon the simulated GI digestion were monitored by HPLC–MS/MS analysis. The antioxidant activity was measured by different spectrophotometric assays, and the antiproliferative potential was assessed by using three representative human cancer cell lines. We observed that the simulated GI digestion reduced the phytochemical contents in both aqueous and ethanolic T. spicata extracts and modified the PC profile. However, T. spicata extracts improved their antioxidant potential after digestion, while a partial reduction in the antiproliferative activity was observed for the ethanolic extract. Therefore, our results could provide a scientific basis for the employment of T. spicata extract as valuable nutraceutical.
Collapse
|
27
|
The Bioaccessibility and Antioxidant Activities of Fermented Mango Cultivar Juices after Simulated In Vitro Digestion. Foods 2022; 11:foods11172702. [PMID: 36076887 PMCID: PMC9455754 DOI: 10.3390/foods11172702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the bioaccessibilities of total phenolic compounds, carotenoid profile, antioxidant activity, and Lactic acid bacteria (LAB) survival in fermented mango juice (MJs) obtained from three mango cultivars after exposure to an in vitro gastrointestinal digestion model. The MJs from three cultivars ('Sabre', 'Peach', and 'Tommy Atkins') were fermented using Lactiplantibacillus plantarum 75 (L75), Leuconostoc pseudomesenteroides 56 (L56), and their combination (L56 + 75). Fermented MJs were digested and fractions: gastric (GF), intestinal (IF), and dialysis (DF) were analyzed for total polyphenolic content (TPC), antioxidant activity (FRAP), 1-diphenyl-2-picrylhydrazyl (DPPH), and 2.2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS). In addition, the carotenoid content and the LAB population were determined from the GF and IF. After digestion, TPC decreased while fermentation improved its bioaccessibility. L75-fermented 'Sabre' MJs had the highest bioaccessible TPC in the GF (75.65%), IF (50.10%), and DF (32.52%) while L56 'Peach' MJs increased the β-carotene bioaccessibility by 1.32-fold at GF and IF (1.21-fold). When compared to the other two juices, 'Sabre' and 'Peach' MJs fermented with L75 showed the highest IC50 values for DPPH and ABTS. Generally, L75-fermented 'Sabre' MJs had the highest LAB survival at both GF (7.57 Log CFU/mL) and IF (7.45 Log CFU/mL) and hold potential as probiotic juices. L56-fermented 'Sabre' MJs would ensure the delivery of four times the carotenoid recommended dietary allowance (RDA) to a target site in the body while L75-fermented 'Peach' MJs could be used to effectively counteract oxidants in the body system.
Collapse
|
28
|
Huang J, Yang J, Miao Q, Olajide TM, Qian J, Liu H, Ou P, Liao X. Effect of Selenium Biofortification on Bioaccessibility, Antioxidant, and Antimicrobial Potentials of Phenolic Compounds in Germinated Black Soybean (
Glycine max
(L.) Merr). Cereal Chem 2022. [DOI: 10.1002/cche.10600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | - Jingyi Yang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | - Qianqian Miao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | | | - Jiana Qian
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | - Haoyue Liu
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | - Pengcheng Ou
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | - Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| |
Collapse
|
29
|
Vieira IRS, Conte-Junior CA. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr 2022; 64:381-406. [PMID: 35938315 DOI: 10.1080/10408398.2022.2106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds represent a broad class of dietary metabolites derived from fruits and vegetables, such as polyphenols, carotenoids and glucosinolates with potential for cancer prevention. Curcumin, resveratrol, quercetin, and β-carotene have been the most widely applied bioactive compounds in chemoprevention. Lately, many approaches to encapsulating bioactive components in nano-delivery systems have improved biomolecules' stability and targeted delivery. In this review, we critically analyze nano-delivery systems for bioactive compounds, including polymeric nanoparticles (NPs), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes, niosomes, and nanoemulsions (NEs) for potential use in cancer therapy. Efficacy studies of the nanoformulations using cancer cell lines and in vivo models and updated human clinical trials are also discussed. Nano-delivery systems were found to improve the therapeutic efficacy of bioactive molecules against various types of cancer (e.g., breast, prostate, colorectal and lung cancer) mainly due to the antiproliferation and pro-apoptotic effects of tumor cells. Furthermore, some bioactive compounds have promised combination therapy with standard chemotherapeutic agents, with increased tumor efficiency and fewer side effects. These opportunities were identified and developed to ensure more excellent safety and efficacy of novel herbal medicines enabling novel insights for designing nano-delivery systems for bioactive compounds applied in clinical cancer therapy.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
Shi M, Gu J, Wu H, Rauf A, Emran TB, Khan Z, Mitra S, Aljohani ASM, Alhumaydhi FA, Al-Awthan YS, Bahattab O, Thiruvengadam M, Suleria HAR. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce-A Comprehensive Review. Antioxidants (Basel) 2022; 11:antiox11061158. [PMID: 35740055 PMCID: PMC9219965 DOI: 10.3390/antiox11061158] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Lettuce is one of the most famous leafy vegetables worldwide with lots of applications from food to other specific uses. There are different types in the lettuce group for consumers to choose from. Additionally, lettuce is an excellent source of bioactive compounds such as polyphenols, carotenoids, and chlorophyll with related health benefits. At the same time, nutrient composition and antioxidant compounds are different between lettuce varieties, especially for green and red lettuce types. The benefit of lettuce consumption depends on its composition, particularly antioxidants, which can function as nutrients. The health benefits rely on their biochemical effect when reaching the bloodstream. Some components can be released from the food matrix and altered in the digestive system. Indeed, the bioaccessibility of lettuce is measuring the quantity of these compounds released from the food matrix during digestion, which is important for health-promoting features. Extraction of bioactive compounds is one of the new trends observed in lettuce and is necessarily used for several application fields. Therefore, this review aims to demonstrate the nutritional value of lettuce and its pharmacological properties. Due to their bioaccessibility and bioavailability, the consumer will be able to comprehensively understand choosing a healthier lettuce diet. The common utilization pattern of lettuce extracted nutrients will also be summarized for further direction.
Collapse
Affiliation(s)
- Min Shi
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| | - Jingyu Gu
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| | - Hanjing Wu
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi 94640, Pakistan;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Abdullah S. M. Aljohani
- Department of Veterinary of Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia; (Y.S.A.-A.); (O.B.)
- Department of Biology Faculty of Sciences, Ibb University, Ibb 70270, Yemen
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia; (Y.S.A.-A.); (O.B.)
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
- Correspondence: (M.T.); (H.A.R.S.)
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
- Correspondence: (M.T.); (H.A.R.S.)
| |
Collapse
|
31
|
Luo J, Li M, Wu H, Liu Z, Barrow C, Dunshea F, Suleria HAR. Bioaccessibility of phenolic compounds from sesame seeds (
Sesamum indicum
L.) during in vitro gastrointestinal digestion and colonic fermentation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiani Luo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Minhao Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
| | - Frank Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
- Faculty of Biological Sciences The University of Leeds Leeds UK
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
| |
Collapse
|
32
|
Optimization of Encapsulation by Ionic Gelation Technique of Cryoconcentrated Solution: A Response Surface Methodology and Evaluation of Physicochemical Characteristics Study. Polymers (Basel) 2022; 14:polym14051031. [PMID: 35267855 PMCID: PMC8914933 DOI: 10.3390/polym14051031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/19/2022] [Accepted: 03/02/2022] [Indexed: 12/30/2022] Open
Abstract
The objective of this study was to evaluate the optimal conditions to encapsulate cryoconcentrate solutions via ionic gelation technique. Hydrogel beads were prepared using alginate (1%, 2% and 3% (w/w)) and cornstarch (0.5%, 1% and 2% (w/w)). Later, a sucrose/acid gallic solution was concentrated through block freeze concentration (BFC) at three cycles. Thus, each solution was a mixture with the respective combination of alginate/cornstarch. The final solution was added drop-wise on a CaCl2 solution, allowing the formation of calcium alginate-cornstarch hydrogel beads filled with sucrose/acid gallic solution or cryoconcentrated solution. The results showed that alginate at 2% (w/w) and cornstarch at 2% (w/w) had the best efficiency to encapsulate any solution, with values close to 63.3%, 90.2%, 97.7%, and 75.1%, and particle sizes of approximately 3.09, 2.82, 2.73, and 2.64 mm, for initial solution, cycle 1, cycle 2, and cycle 3, respectively. Moreover, all the samples presented spherical shape. Therefore, the appropriate content of alginate and cornstarch allows for increasing the amount of model cryoconcentrated solution inside of the hydrogel beads. Furthermore, the physicochemical and morphological characteristics of hydrogel beads can be focused for future food and/or pharmaceutical applications, utilizing juice or extract concentrated by BFC as the solution encapsulated.
Collapse
|
33
|
Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11020232. [PMID: 35204115 PMCID: PMC8868303 DOI: 10.3390/antiox11020232] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Lycopene is a bioactive red pigment found in plants, especially in red fruits and vegetables, including tomato, pink guava, papaya, pink grapefruit, and watermelon. Several research reports have advocated its positive impact on human health and physiology. For humans, lycopene is an essential substance obtained from dietary sources to fulfil the body requirements. The production of reactive oxygen species (ROS) causing oxidative stress and downstream complications include one of the major health concerns worldwide. In recent years, oxidative stress and its counter strategies have attracted biomedical research in order to manage the emerging health issues. Lycopene has been reported to directly interact with ROS, which can help to prevent chronic diseases, including diabetes and neurodegenerative and cardiovascular diseases. In this context, the present review article was written to provide an accumulative account of protective and ameliorative effects of lycopene on coronary artery disease (CAD) and hypertension, which are the leading causes of death worldwide. Lycopene is a potent antioxidant that fights ROS and, subsequently, complications. It reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous oxide bioavailability. It plays an important role in lowering of LDL (low-density lipoproteins) and improving HDL (high-density lipoproteins) levels to minimize atherosclerosis, which protects the onset of coronary artery disease and hypertension. Various studies have advocated that lycopene exhibited a combating competence in the treatment of these diseases. Owing to all the antioxidant, anti-diabetic, and anti-hypertensive properties, lycopene provides a potential nutraceutical with a protective and curing ability against coronary artery disease and hypertension.
Collapse
|
34
|
Effect of food combinations and their co-digestion on total antioxidant capacity under simulated gastrointestinal conditions. Curr Res Food Sci 2022; 5:414-422. [PMID: 35243354 PMCID: PMC8866489 DOI: 10.1016/j.crfs.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
|
35
|
Oliveira-Alves S, Lourenço S, Anjos O, Fernandes TA, Caldeira I, Catarino S, Canas S. Influence of the Storage in Bottle on the Antioxidant Activities and Related Chemical Characteristics of Wine Spirits Aged with Chestnut Staves and Micro-Oxygenation. Molecules 2021; 27:molecules27010106. [PMID: 35011336 PMCID: PMC8796032 DOI: 10.3390/molecules27010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Different ageing technology of wine spirits (WSs) has been investigated, but little has been published on the chemical evolution of aged WS during storage in bottle. The purpose of this study was to examine how 12 months of storage in bottle affected the evolution of antioxidant activity (DPPH, FRAP and ABTS assays), total phenolic index (TPI) and low molecular weight (LMW) compounds content of the WSs aged through alternative technology using three micro-oxygenation levels (MOX) and nitrogen control (N). Results revealed the ability of phenolic compounds from aged WSs to scavenge free radicals during storage in bottle. Among the in vitro antioxidant-activity methods, FRAP assay was the more effective to differentiate WSs according to the ageing technology. Concerning the overall influence of storage in bottle on antioxidant activity, and TPI and LMW compounds content, the higher results were obtained for the MOX modalities (O15, O30 and O60), which showed a similar evolution. In summary, this study provides innovative information, demonstrating that the differences between the aged WSs imparted throughout the ageing process (resulting from different MOX levels) were mostly retained, and only slight modifications during storage in bottle were found.
Collapse
Affiliation(s)
- Sheila Oliveira-Alves
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Dois Portos, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (S.L.); (I.C.)
- Correspondence: (S.O.-A.); (S.C.)
| | - Sílvia Lourenço
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Dois Portos, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (S.L.); (I.C.)
| | - Ofélia Anjos
- Instituto Politécnico de Castelo Branco, Quinta da Senhora de Mércules, 6001-909 Castelo Branco, Portugal;
- CEF—Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Centro de Biotecnologia de Plantas da Beira Interior, Quinta da Senhora de Mércules, 6001-909 Castelo Branco, Portugal
| | - Tiago A. Fernandes
- CQE—Centro de Química Estrutural, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Universidade de Lisboa, 1049-001 Lisboa, Portugal;
- DCeT—Departamento de Ciências e Tecnologia, Universidade Aberta, Rua da Escola Politécnica, 141-147, 1269-001 Lisboa, Portugal
| | - Ilda Caldeira
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Dois Portos, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (S.L.); (I.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Evora, Portugal
| | - Sofia Catarino
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
- CEFEMA—Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Sara Canas
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Dois Portos, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (S.L.); (I.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Evora, Portugal
- Correspondence: (S.O.-A.); (S.C.)
| |
Collapse
|
36
|
Huang Z, Luo Y, Xia X, Wu A, Wu Z. Bioaccessibility, safety, and antidiabetic effect of phenolic-rich extract from fermented Psidium guajava Linn. leaves. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
37
|
Influence of In Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish Cistus Species. Molecules 2021; 26:molecules26175322. [PMID: 34500753 PMCID: PMC8434344 DOI: 10.3390/molecules26175322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is one of the significant precursors of various metabolic diseases such as diabetes, Parkinson's disease, cardiovascular diseases, cancer, etc. Various scientific reports have indicated that secondary plant metabolites play an important role in preventing oxidative stress and its harmful effects. In this respect, this study was planned to investigate the phenolic profile and antioxidant and antidiabetic potentials of the aqueous extracts from Turkish Cistus species by employing in vitro methods. In vitro digestion simulation procedure was applied to all extracts to estimate the bioavailability of their phenolic contents. Total phenolic, flavonoid, phenolic acid and proanthocyanidin contents were determined for all phases of digestion. In addition, changes in the quantity of the assigned marker flavonoids (tiliroside, hyperoside and quercitrin) were monitored by High-Performance Thin Layer Chromatography (HPTLC) analysis. The antioxidant activity potentials of the extracts were studied by various methods to reveal their detailed activity profiles. On the other hand, in vitro α-amylase and α-glucosidase enzymes and advanced-glycation end product (AGE) inhibitory activities of the extracts were determined to evaluate the antidiabetic potentials of extracts. The results showed that aqueous extracts obtained from the aerial parts of Turkish Cistus species have rich phenolic contents and potential antioxidant and antidiabetic activities; however, their bioactivity profiles and marker flavonoid concentrations might significantly be affected by human digestion. The results exhibited that total phenolic contents, antioxidant activities and diabetes-related enzyme inhibitions of the bioavailable samples were lower than non-digested samples in all extracts.
Collapse
|
38
|
The Potential of Sweetpotato as a Functional Food in Sub-Saharan Africa and Its Implications for Health: A Review. Molecules 2021; 26:molecules26102971. [PMID: 34067782 PMCID: PMC8156662 DOI: 10.3390/molecules26102971] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing urbanization in developing countries has resulted in busier lifestyles, accompanied by consumption of fast foods. The consequence is an increased prevalence in noncommunicable diseases (NCDs). Food-based approaches would be cheaper and more sustainable in reducing these NCDs compared to drugs, which may have side effects. Studies have suggested that consuming functional foods could potentially lower NCD risks. Sweetpotato is regarded as a functional food because it contains bioactive compounds. Recently, sweetpotato has gained attention in sub-Saharan Africa (SSA), but research has focused on its use in alleviating micronutrient deficiencies such as vitamin A deficiency, particularly the orange-fleshed variety of sweetpotato. Some studies conducted in other parts of the world have investigated sweetpotato as a functional food. There is a need to characterize the sweetpotato varieties in SSA and determine how processing affects their bioactive components. This review highlights some of the studies conducted in various parts of the world on the functionality of sweetpotato, its bioactive compounds, and how these are influenced by processing. In addition, the potential health benefits imparted by sweetpotato are expounded. The knowledge gaps that remain in these studies are also addressed, focusing on how they can direct sweetpotato research in SSA.
Collapse
|
39
|
Comparison of methanolic extracts of Doronicum orientale and Echium angustifolium in terms of chemical composition and antioxidant activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Tomé-Sánchez I, Martín-Diana AB, Peñas E, Frias J, Rico D, Jiménez-Pulido I, Martínez-Villaluenga C. Bioprocessed Wheat Ingredients: Characterization, Bioaccessibility of Phenolic Compounds, and Bioactivity During in vitro Digestion. FRONTIERS IN PLANT SCIENCE 2021; 12:790898. [PMID: 35003179 PMCID: PMC8740022 DOI: 10.3389/fpls.2021.790898] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/13/2023]
Abstract
To enlarge the applications of whole wheat grain (WWG) and wheat bran (WB) as functional ingredients in foodstuffs that can promote human health, researchers have explored bioprocessing approaches to improve the bioaccessibility of phenolic compounds from these food matrices and, subsequently, their biological effects. The objective of this study was to compare the composition in nutrients, anti-nutrients, and bioactive compounds of WWG and WB, and their respective bioprocessed products: sprouted wheat (GERM) and WB hydrolysate (stabilized by spray-drying [SPD] and microencapsulated [MEC]). In addition, to evaluate the functional properties of these ingredients, the bioaccessibility of phenolic compounds and their potential antioxidant and anti-inflammatory activities were monitored in different digestion steps. GERM had increased amounts of insoluble dietary fiber, higher diversity of oligosaccharides, and higher concentration of monosaccharides, free phosphorous, and phenolic compounds than WWG. SPD had improved content of soluble dietary fiber, oligosaccharides, monosaccharides, free phosphorous, and phenolic compounds (vs. WB), whereas MEC was mainly composed of protein and had nearly 2-fold lower content of SPD components. All the ingredients showed lower amounts of phytic acid as compared with raw materials. In all samples, hydroxycinnamic acids were the most representative polyphenols followed by minor amounts of hydroxybenzoic acids and flavonoids. Gastrointestinal digestion of GERM, SPD, and MEC revealed high stability of total phenolic compounds in both gastric and intestinal phases. Hydroxycinnamic acids were the most bioaccessible compounds during digestion among the three bioprocessed wheat ingredients studied, although their bioaccessibility varied across ingredients. In this sense, the bioaccessibility of ferulic acid (FA) derivatives increased in GERM with progression of the digestion, while it was reduced in SPD and MEC up to the end of the intestinal phase. Microencapsulation of SPD with pea protein led to generally to lower bioaccessible amounts of phenolic acids. Comparison analysis of biological effects highlighted SPD for its most potent antioxidant effects in the gastrointestinal tract (3 out 4 antioxidant parameters with highest values), while no clear differences were observed with regard to in vitro anti-inflammatory activity. Overall, these results support the potential application of GERM, SPD, and MEC as functional and nutraceutical ingredients.
Collapse
Affiliation(s)
- Irene Tomé-Sánchez
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ana Belén Martín-Diana
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Elena Peñas
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Juana Frias
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Daniel Rico
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Iván Jiménez-Pulido
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Cristina Martínez-Villaluenga
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Cristina Martínez-Villaluenga
| |
Collapse
|