1
|
Behera M, Singh L, Pradhan B, Behera KC. Seaweed-Derived Bioactive Compounds: Potent Modulators in Breast Cancer Therapy. Chem Biodivers 2024:e202401613. [PMID: 39652742 DOI: 10.1002/cbdv.202401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Cancer remains a major global health concern, with breast cancer being particularly challenging. To address this, new therapeutic strategies are being explored, including natural alternatives. Seaweeds, rich in bioactive compounds, have gained attention for their therapeutic potential. Traditionally valued for their nutritional content, seaweed-derived compounds such as polysaccharides, polyphenols, sterols, vitamins, minerals, and carotenoids have shown anticancer properties. These compounds can modulate key cellular processes like apoptosis, angiogenesis, and inflammation-crucial in cancer progression. Their antioxidant, anti-inflammatory, and immunomodulatory effects make them promising candidates for complementary cancer therapies. Key bioactive components like fucoidans, laminarins, phlorotannins, and carotenoids exhibit antiproliferative, proapoptotic, antiangiogenic, and antimetastatic properties. Recent studies focus on the ability of these compounds to induce apoptosis in cancer cells. This review highlights the chemical constituents of various seaweed species with antitumor activity, their mechanisms of action, and the potential for integration into cancer treatments. It also addresses challenges in clinical applications and outlines future research directions for leveraging these marine resources in breast cancer therapy.
Collapse
Affiliation(s)
- Maheswari Behera
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Lakshmi Singh
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
2
|
Safdar B, Liu S, Cao J, Zhang T, Li H, Pang Z, Liu X. Plant-based fascia tissues: Exploring materials and techniques for realistic simulation. Food Chem 2024; 459:140464. [PMID: 39024867 DOI: 10.1016/j.foodchem.2024.140464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The growing demand for sustainable and ethical food options has led to significant advancements in plant-based meat substitutes (PBMS). PBMS have made considerable progress in simulating the taste, texture, and sensory properties of animal meat. Connective tissue is a fundamental component of animal meat that significantly influences tenderness, texture, and sensory properties. However, the imitation of realistic connective tissues has received relatively less attention in the PBMS industry. The current work focuses on exploring materials and techniques for the replication of plant-based connective tissues (PBCT). By understanding the structural and functional characteristics of animal connective tissues (ACT), it is possible to replicate these characteristics in PBCT. Hydrogels, with their ability to simulate certain properties of ACT, present a viable material for the creation of PBCT. To achieve the desired simulation, their mechanical and structural properties need to be enhanced by using several materials and several physical techniques.
Collapse
Affiliation(s)
- Bushra Safdar
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan, China
| | - Shuqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Jinnuo Cao
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan, China
| | - Tianyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China.
| | - Zhihua Pang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China.
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
3
|
Chen B, Li Y, Li W, Ye S, Zhu L, Ding Y. Antitumor Activity and Mechanism of Terpenoids in Seaweeds Based on Literature Review and Network Pharmacology. Adv Biol (Weinh) 2024; 8:e2300541. [PMID: 38134388 DOI: 10.1002/adbi.202300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Seaweeds are a treasure trove of natural secondary metabolites. Terpenoids extracted from seaweeds are shown to possess a variety of antitumor cellular activities. However, due to the complex and diverse structures of terpenoids, their therapeutic targets and complex mechanisms of action have not been clarified. The present study summarises the research on terpenoids from seaweeds in oncological diseases over the last 20 years. Terpenoids show different degrees of inhibitory effects on different types of tumor cells, suggesting that terpenoids in seaweeds may have potential antitumor disease potential. Terpenoids with potential antitumor activity and their mechanism of action are investigated using network pharmacology. A total of 125 terpenoids and 286 targets are obtained. Proto-oncogene tyrosine-protein kinase Src(SRC), Signal transducer and activator of transcription 3 (STAT3), Mitogen-activated protein kinase (MAPK3, MAPK1), Heat shock protein HSP 90-alpha (HSP90AA1), Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and RAC-alpha serine/threonine-protein kinase (AKT1) are defined as core targets. According to GO function and Kyoto encyclopedia of genes and genomes(KEGG) enrichment analysis, terpenoids may affect the Phoshatidylinositol 3'-kinase (PI3K)-Akt signaling pathway, Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance, Prostate cancer, MAPK signaling pathway, and Proteoglycans in cancer. In addition, the molecular docking results show that the selected terpenoids are all able to bind strongly to the active protein. Terpenoids may slow down the progression of cancer by controlling apoptosis, proliferation, and protein and enzyme binding.
Collapse
Affiliation(s)
- Baoguo Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yaxin Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, South Korea
| | - Shuhong Ye
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Lin Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yan Ding
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| |
Collapse
|
4
|
Kim ST, Conklin SD, Redan BW, Ho KK. Determination of the Nutrient and Toxic Element Content of Wild-Collected and Cultivated Seaweeds from Hawai'i. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:595-605. [PMID: 38528908 PMCID: PMC10961648 DOI: 10.1021/acsfoodscitech.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
For centuries, Hawaiians have gathered seaweed for food, medicine, and ceremonial purposes. Seaweed contains nutrients, but some varieties can accumulate toxic elements. We measured target macrominerals (Na, Mg, P, K, Ca), microminerals (B, V, Mn, Co, Cu, Zn, Mo), and nonessential/toxic elements (As, Sr, Cd, Sn, Hg, Pb, and U) in a sample of wild-collected and cultivated seaweeds from Hawai'i. The samples consisted of brown (Sargassum aquifolium, Sargassum echinocarpum), red (Gracilaria parvispora, Halymenia formosa, Halymenia hawaiiana), and green (Ulva ohnoi) seaweed. Elemental composition was determined by inductively coupled plasma (ICP)-atomic emission spectroscopy and ICP-mass spectrometry (MS). Speciation of As was conducted by using liquid chromatography-ICP-MS. S. echinocarpum per 80 g serving was high in Ca (~37% daily value [DV]), U. ohnoi was high in Mg (~40%DV), H. formosa was high in Fe (~40%DV), and G. parvispora was high in Mn (~128%DV). In this study, the highest amounts of toxic elements were observed in S. aquifolium and S. echinocarpum (27.6 mg inorganic As/kg fdw), G. parvispora (43.3 mg Pb/kg fdw) and H. formosa (46.6 mg Pb/kg fdw). These results indicate that although seaweeds from Hawai'i contain a variety of nutrients, some species can accumulate high amounts of toxic elements.
Collapse
Affiliation(s)
- Samuel T. Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, 96822, United States
| | - Sean D. Conklin
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, United States
| | - Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Bedford Park, IL, 60501, United States
| | - Kacie K.H.Y. Ho
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, 96822, United States
| |
Collapse
|
5
|
Park SJ, Sharma A, Lee HJ. An Update on the Chemical Constituents and Biological Properties of Selected Species of an Underpinned Genus of Red Algae: Chondrus. Mar Drugs 2024; 22:47. [PMID: 38248672 PMCID: PMC10817618 DOI: 10.3390/md22010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Macroalgae, particularly red seaweeds, have attracted significant attention due to their economic and health benefits. Chondrus, a red algae genus, despite its economic importance, seems to be undervalued. Among all its species, Chondrus crispus has been meticulously documented for its biological properties, and little is known about other species. No comprehensive review of the biological properties of this genus has been acknowledged. Thus, this review aimed to summarize the available information on the chemical constituents and biological properties of a few selected species, including Chondrus crispus, Chondrus ocellatus, Mazzaella canaliculata, and Chondrus armatus. We compiled and discovered that the genus is offering most of the important health-promoting benefits evidenced from in vitro and in vivo studies focused on antimicrobial, immunomodulation, neuroprotection, anti-atopic, anti-inflammatory, anti-viral, anti-diabetic, cytoprotective, antioxidant, anti-coagulation, nephroprotective, anti-tumor, and anti-venom activity, which speaks about the potential of this genus. Data on clinical studies are limited. Further, around 105 chemical constituents have been reported from Chondrus spp. Given its significance, further investigation is warranted, in the form of meticulously planned cell, animal, and clinical studies that concentrate on novel health-enhancing endeavors, in order to unveil the full potential of this genus. The review also outlines challenges and future directions.
Collapse
Affiliation(s)
- Seon-Joo Park
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
6
|
Cotas J, Lomartire S, Gonçalves AMM, Pereira L. From Ocean to Medicine: Harnessing Seaweed's Potential for Drug Development. Int J Mol Sci 2024; 25:797. [PMID: 38255871 PMCID: PMC10815561 DOI: 10.3390/ijms25020797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| |
Collapse
|
7
|
Velankanni P, Go SH, Jin JB, Park JS, Park S, Lee SB, Kwon HK, Pan CH, Cha KH, Lee CG. Chlorella vulgaris Modulates Gut Microbiota and Induces Regulatory T Cells to Alleviate Colitis in Mice. Nutrients 2023; 15:3293. [PMID: 37571230 PMCID: PMC10421373 DOI: 10.3390/nu15153293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Chlorella vulgaris (C. vulgaris) is unicellular green algae consumed worldwide as a functional food. The immune stimulatory function of C. vulgaris is known; however, no study has elucidated its immune regulatory potential and associated microbiome modulation. In the current study, we aimed to validate the immune regulatory role of C. vulgaris mediated through two mechanisms. Initially, we assessed its ability to promote the expansion of the regulatory T cell (Treg) population. Subsequently, we investigated its impact on gut microbiota composition and associated metabolites. The supplementation of C. vulgaris altered the gut microbiota composition, accompanied by increased short-chain fatty acid (SCFAs) production in mice at homeostasis. We later used C. vulgaris in the treatment of a DSS-induced colitis model. C. vulgaris intervention alleviated the pathological symptom of colitis in mice, with a corresponding increase in Treg levels. As C. vulgaris is a safe and widely used food supplement, it can be a feasible strategy to instigate cross-talk between the host immune system and the intestinal flora for the effective management of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Priyanka Velankanni
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Seok-Ho Go
- Department of Preventive Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jong Beom Jin
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
| | - Jin-Soo Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
| | - Sunhee Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Su-Bin Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-B.L.); (H.-K.K.)
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-B.L.); (H.-K.K.)
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul 02792, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26493, Republic of Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (P.V.); (J.B.J.); (J.-S.P.); (S.P.)
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul 02792, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
8
|
Trigo JP, Palmnäs-Bédard M, Juanola MVL, Undeland I. Effects of whole seaweed consumption on humans: current evidence from randomized-controlled intervention trials, knowledge gaps, and limitations. Front Nutr 2023; 10:1226168. [PMID: 37545570 PMCID: PMC10399747 DOI: 10.3389/fnut.2023.1226168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Seaweed is often recognized for its potential health benefits, attributed to its abundance of dietary fibers, protein, and polyphenols. While human observational studies have shown promise, the collective evidence from human intervention trials remains limited. This narrative review aims to comprehensively analyze the effects of seaweed intake on humans, while critically assessing the methodology, including Cochrane risk-of-bias assessment. A search was conducted in online databases, including PubMed, Scopus, and Google Scholar, covering the period from 2000 to May 2023. The focus was on randomized controlled clinical trials (RCTs) evaluating the impact of whole seaweed, either consumed as capsules, integrated into food products or as part of meals. Various health outcomes were examined, including appetite, anthropometric measures, cardiometabolic risk factors, thyroid function, markers of oxidative stress, and blood mineral concentrations. Out of the 25 RCTs reviewed, the findings revealed limited yet encouraging evidence for effects of seaweed on blood glucose metabolism, blood pressure, anthropometric measures, and, to a lesser extent, blood lipids. Notably, these favorable effects were predominantly observed in populations with type-2 diabetes and hypertension. Despite most trials selecting a seaweed dose aligning with estimated consumption levels in Japan, considerable variability was observed in the pretreatment and delivery methods of seaweed across studies. Moreover, most studies exhibited a moderate-to-high risk of bias, posing challenges in drawing definitive conclusions. Overall, this review highlights the necessity for well-designed RCTs with transparent reporting of methods and results. Furthermore, there is a need for RCTs to explore seaweed species cultivated outside of Asia, with a specific emphasis on green and red species. Such studies will provide robust evidence-based support for the growing utilization of seaweed as a dietary component in regions with negligible seaweed consumption, e.g., Europe.
Collapse
|
9
|
Lomartire S, Gonçalves AMM. Algal Phycocolloids: Bioactivities and Pharmaceutical Applications. Mar Drugs 2023; 21:384. [PMID: 37504914 PMCID: PMC10381318 DOI: 10.3390/md21070384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seaweeds are abundant sources of diverse bioactive compounds with various properties and mechanisms of action. These compounds offer protective effects, high nutritional value, and numerous health benefits. Seaweeds are versatile natural sources of metabolites applicable in the production of healthy food, pharmaceuticals, cosmetics, and fertilizers. Their biological compounds make them promising sources for biotechnological applications. In nature, hydrocolloids are substances which form a gel in the presence of water. They are employed as gelling agents in food, coatings and dressings in pharmaceuticals, stabilizers in biotechnology, and ingredients in cosmetics. Seaweed hydrocolloids are identified in carrageenan, alginate, and agar. Carrageenan has gained significant attention in pharmaceutical formulations and exhibits diverse pharmaceutical properties. Incorporating carrageenan and natural polymers such as chitosan, starch, cellulose, chitin, and alginate. It holds promise for creating biodegradable materials with biomedical applications. Alginate, a natural polysaccharide, is highly valued for wound dressings due to its unique characteristics, including low toxicity, biodegradability, hydrogel formation, prevention of bacterial infections, and maintenance of a moist environment. Agar is widely used in the biomedical field. This review focuses on analysing the therapeutic applications of carrageenan, alginate, and agar based on research highlighting their potential in developing innovative drug delivery systems using seaweed phycocolloids.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
You Y, Song H, Wang L, Liu Z, Guo X, Ai C, Song S, Zhu B. Supplement of Caulerpa lentillifera polysaccharide by pre-prandial gavage and free feeding demonstrates differences to prevent obesity and gut microbiota disturbance in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3840-3849. [PMID: 36305093 DOI: 10.1002/jsfa.12298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Caulerpa lentillifera has received extensive attention regarding expansion of its farming and increasing consumption. In our previous study, the structure of C. lentillifera polysaccharide (CLP) was elucidated. However, little information is available about its health effects. In this study, the anti-obesity effect of CLP was investigated by using a high-fat diet-induced obese mice model with two different supplementation methods. RESULTS In vitro simulated digestion results showed that CLP significantly decreased the lipid digestibility and induced the lipid droplets aggregation in the intestinal stage to inhibit the absorption of lipids. As revealed by 16S ribosomal RNA sequencing and non-targeted metabolomics, supplement of CLP by both pre-prandial gavage and free feeding patterns effectively prevented mice obesity via ameliorating intestinal flora disturbance and regulating bile acids circulation metabolism. Of note was that CLP administration had no effect on short-chain fatty acids production, suggesting the anti-obesity effect was uncorrelated with their production. Moreover, pre-prandial administration of CLP had a better anti-obesity effect in lowering body weight and serum lipid levels, but the free feeding resulted in a higher α-diversity of gut microbiota. CONCLUSION The findings of this study indicate that CLP could be a potential anti-obesity nutraceutical and that pre-prandial supplement of CLP may be a better intake method to exhibit its hypolipidemic effect. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying You
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China
| | - Haoran Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
11
|
Moura PC, Fernandes JM, Diniz MS, Fetter V, Vassilenko V. Differentiation of the Organoleptic Volatile Organic Compound Profile of Three Edible Seaweeds. Metabolites 2023; 13:713. [PMID: 37367871 DOI: 10.3390/metabo13060713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The inclusion of seaweeds in daily-consumption food is a worthy-of-attention challenge due to their high nutritional value and potential health benefits. In this way, their composition, organoleptic profile, and toxicity must be assessed. This work focuses on studying the volatile organic compounds (VOCs) emitted by three edible seaweeds, Grateloupia turuturu, Codium tomentosum, and Bifurcaria bifurcata, with the aim of deepening the knowledge regarding their organoleptic profiles. Nine samples of each seaweed were prepared in glass vials, and the emitted headspace was analyzed, for the first time, with a gas chromatography-ion mobility spectrometry device, a highly sensitive technology. By statistically processing the collected data through PCA, it was possible to accurately differentiate the characteristic patterns of the three seaweeds with a total explained variance of 98%. If the data were pre-processed through PLS Regression, the total explained variance increased to 99.36%. The identification of 13 VOCs was accomplished through a developed database of compounds. These outstanding values in addition to the identification of the main emissions of VOCs and the utilization of a never-before-used technology prove the capacity of GC-IMS to differentiate edible seaweeds based solely on their volatile emissions, increase the knowledge regarding their organoleptic profiles, and provide an important step forward in the inclusion of these highly nutritional ingredients in the human diet.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal
| | - Jorge Manuel Fernandes
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal
- NMT, S. A., Edifício Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Mário Sousa Diniz
- Applied Molecular Biosciences Unit (UCIBIO), Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Viktor Fetter
- Airbus Defense and Space GmbH, Space Systems, Department of TESXS Science Engineering, 88046 Friedrichshafen, Germany
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal
- NMT, S. A., Edifício Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| |
Collapse
|
12
|
Tagliapietra BL, Clerici MTPS. Brown algae and their multiple applications as functional ingredient in food production. Food Res Int 2023; 167:112655. [PMID: 37087243 DOI: 10.1016/j.foodres.2023.112655] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023]
Abstract
Brown algae are considered one of the resources that can contribute to transforming our global food system by promoting healthier diets and reducing environmental impact. In this sense, this review article aims to provide up-to-date information on the nutritional and functional improvement of brown algae when they are applied to different food matrices. Brown algae present sulfated polysaccharides (alginates, fucoidans, and laminarins), proteins, minerals, vitamins, dietary fibers, fatty acids, pigments, and bioactive compounds that can positively contribute to the development of highly nutritious food products, as well as used reformulate products already existing, to remove, reduce, increase, add and/or replace different components and obtain products that confer health-promoting properties. This review demonstrates that there is a tendency to use seaweed for the production of functional foods and that the number of commercially produced products from seaweed is increasing, that is, seaweed is a sector whose global market is expanding.
Collapse
Affiliation(s)
- Bruna Lago Tagliapietra
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato Street, CEP 13.083-870 Campinas, São Paulo, Brazil.
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato Street, CEP 13.083-870 Campinas, São Paulo, Brazil.
| |
Collapse
|
13
|
Wang L, Oh JY, Yang HW, Hyun J, Ahn G, Fu X, Xu J, Gao X, Cha SH, Jeon YJ. Protective Effect of Sargassum fusiforme Fucoidan against Ethanol-Induced Oxidative Damage in In Vitro and In Vivo Models. Polymers (Basel) 2023; 15:polym15081912. [PMID: 37112059 PMCID: PMC10145573 DOI: 10.3390/polym15081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Our previous studies have evaluated the bioactivities of a fucoidan isolated from Sargassum fusiforme (SF-F). To further investigate the health benefit of SF-F, in the present study, the protective effect of SF-F against ethanol (EtOH)-induced oxidative damage has been evaluated in in vitro and in vivo models. SF-F effectively improved the viability of EtOH-treated Chang liver cells by suppressing apoptosis. In addition, the in vivo test results indicate that SF-F significantly and dose-dependently increased the survival rate of zebrafish treated with EtOH. Further research results show that this action works through decreasing cell death via reduced lipid peroxidation by scavenging intracellular reactive oxygen species in EtOH-stimulated zebrafish. These results indicate that SF-F effectively protected Chang liver cells and zebrafish against EtOH-induced oxidative damage and suggest the potential of SF-F to be used as an ingredient in the functional food industry.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jae-Young Oh
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jimin Hyun
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio Food Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
14
|
Kumar A, Hanjabam MD, Kishore P, Uchoi D, Panda SK, Mohan CO, Chatterjee NS, Zynudheen AA, Ravishankar CN. Exploitation of Seaweed Functionality for the Development of Food Products. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
15
|
Farghali M, Mohamed IMA, Osman AI, Rooney DW. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:97-152. [PMID: 36245550 PMCID: PMC9547092 DOI: 10.1007/s10311-022-01520-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 05/02/2023]
Abstract
The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Israa M. A. Mohamed
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555 Japan
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| |
Collapse
|
16
|
Maiorano G, Ramires FA, Durante M, Palamà IE, Blando F, De Rinaldis G, Perbellini E, Patruno V, Gadaleta Caldarola C, Vitucci S, Mita G, Bleve G. The Controlled Semi-Solid Fermentation of Seaweeds as a Strategy for Their Stabilization and New Food Applications. Foods 2022; 11:2811. [PMID: 36140940 PMCID: PMC9497830 DOI: 10.3390/foods11182811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
For centuries, macroalgae, or seaweeds, have been a significant part of East Asian diets. In Europe, seaweeds are not considered traditional foods, even though they are increasingly popular in Western diets in human food applications. In this study, a biological processing method based on semi-solid fermentation was optimized for the treatment of the seaweed Gracilaria gracilis. For the first time, selected lactic acid bacteria and non-conventional coagulase-negative staphylococci were used as starter preparations for driving a bio-processing and bio-stabilization of raw macroalga material to obtain new seaweed-based food prototypes for human consumption. Definite food safety and process hygiene criteria were identified and successfully applied. The obtained fermented products did not show any presence of pathogenic or spoilage microorganisms, thereby indicating safety and good shelf life. Lactobacillus acidophilus-treated seaweeds revealed higher α-amylase, protease, lipase, endo-cellulase, and endo-xylanase activity than in the untreated sample. This fermented sample showed a balanced n-6/n-3 fatty acid ratio. SBM-11 (Lactobacillus sakei, Staphylococcus carnosus and Staphylococcus xylosus) and PROMIX 1 (Staphylococcus xylosus) treated samples showed fatty acid compositions that were considered of good nutritional quality and contained relevant amounts of isoprenoids (vitamin E and A). All the starters improved the nutritional value of the seaweeds by significantly reducing the insoluble indigestible fractions. Preliminary data were obtained on the cytocompatibility of G. gracilis fermented products by in vitro tests. This approach served as a valid strategy for the easy bio-stabilization of this valuable but perishable food resource and could boost its employment for newly designed seaweed-based food products.
Collapse
Affiliation(s)
- Gabriele Maiorano
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Francesca Anna Ramires
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Miriana Durante
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Ilaria Elena Palamà
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Federica Blando
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca De Rinaldis
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | | | - Valeria Patruno
- Agenzia Regionale per la Tecnologia e l’Innovazione (ARTI)—Regione Puglia, 70124 Bari, Italy
| | | | - Santa Vitucci
- Struttura Speciale Cooperazione Territoriale, Regione Puglia, 70100 Bari, Italy
| | - Giovanni Mita
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca Bleve
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| |
Collapse
|
17
|
Subbiah V, Xie C, Dunshea FR, Barrow CJ, Suleria HAR. The Quest for Phenolic Compounds from Seaweed: Nutrition, Biological Activities and Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vigasini Subbiah
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Hafiz A. R. Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Bangar SP, Sandhu KS, Rusu A, Trif M, Purewal SS. Evaluating the Effects of Wheat Cultivar and Extrusion Processing on Nutritional, Health-Promoting, and Antioxidant Properties of Flour. Front Nutr 2022; 9:872589. [PMID: 35782925 PMCID: PMC9245593 DOI: 10.3389/fnut.2022.872589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Wheat has been considered one of the most important staple foods for thousands of years. It is one of the largest suppliers of calories in the daily diet, which is added to many different products. Wheat is also a good source of health-benefiting antioxidants. This study aims toinvestigate the changes in the antioxidant properties, such as total phenol content, 2,2-diphenyl-1-picrylhydrazyl (DPPH), metal chelating activity, 2,2′-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid) diammonium salt (ABTS+) scavenging activity, and color intensity, during the extrusion processing of six different wheat cultivars. The extrusion factors evaluated were 15% feed moisture and two extrusion temperatures (150 and 180°C). Extrusion processing increased antioxidant activity (DPPH, metal chelating activity, and ABTS+ scavenging activity), whereas total flavonoids content and total phenolic content were decreased. The L* values of wheat flours increased significantly (p < 0.05) after extrusion at 150 and 180°C, 15% mc. Furthermore, redness was decreased from control wheat cultivars (range: 0.17–0.21) to extrusion at 150°C (range: 0.14–0.17) and 180°C (range: 0.1–0.14). The study suggests that extruded wheat could improve the antioxidant potential in food products.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, United States
- *Correspondence: Sneh Punia Bangar
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Alexandru Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Rusu
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Sukhvinder Singh Purewal
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| |
Collapse
|
19
|
Application of Functional and Edible Coatings and Films as Promising Strategies for Developing Dairy Functional Products—A Review on Yoghurt Case. COATINGS 2022. [DOI: 10.3390/coatings12060838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Edible coatings and films appear to be a very promising strategy for delivering bioactive compounds and probiotics in food systems when direct incorporation/inoculation is not an option. The production of dairy products has undergone radical modifications thanks to nanotechnology. Despite being a relatively new occurrence in the dairy sector, nanotechnology has quickly become a popular means of increasing the bioavailability and favorable health effects of a variety of bioactive components. The present review describes, in detail, the various processes being practiced worldwide for yoghurt preparation, microencapsulation, and nanotechnology-based approaches for preserving and/or enriching yoghurt with biologically, and its effect on health and in treating various diseases. In the case of yoghurt, as a perfect medium for functional ingredients supplementation, different gums (e.g., alginate, xanthan gum, and gum arabic), alone or in combination with maltodextrin, seem to be excellent coatings materials to encapsulate functional ingredients. Edible coatings and films are ideal carriers of bioactive compounds, such as antioxidants, antimicrobials, flavors, and probiotics, to improve the quality of dairy food products. Yoghurt is regarded as a functional superfood with a variety of health benefits, especially with a high importance for women’s health, as a probiotic. Consumption of yoghurt with certain types of probiotic strains which contain γ-linolenic acid or PUFA can help solve healthy problems or alleviate different symptoms, and this review will be shed light on the latest studies that have focused on the impact of functional yoghurt on women’s health. Recently, it has been discovered that fermented milk products effectively prevent influenza and COVID-19 viruses. Bioactive molecules from yoghurt are quite effective in treating various inflammations, including so-called “cytokine storms” (hypercytokinaemia) caused by COVID-19.
Collapse
|
20
|
Electrospun Smart Oxygen Indicating Tag for Modified Atmosphere Packaging Applications: Fabrication, Characterization and Storage Stability. Polymers (Basel) 2022; 14:polym14102108. [PMID: 35631990 PMCID: PMC9143945 DOI: 10.3390/polym14102108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Pack integrity is essential for the success of modified atmosphere packaging of food products. Colorimetric oxygen leak indicators or tags are simple and smart tools that can depict the presence or absence of oxygen within a package. However, not many bio-based electrospun materials were explored for this purpose. Ultraviolet light-activated kappa-carrageenan-based smart oxygen indicating tag was developed using the electrospinning technique in this study and its stability during storage was determined. Kappa-carrageenan was used with redox dye, sacrificial electron donor, photocatalyst, and solvent for preparing oxygen indicating electrospun tag. Parameters of electrospinning namely flow rate of the polymer solution, the distance between spinneret and collector, and voltage applied were optimized using Taguchi L9 orthogonal design. Rheological and microstructural studies revealed that the electrospinning solution was pseudoplastic and the mat fibers were compact and non-woven with an average fiber size of 1–2 microns. Oxygen sensitivity at different oxygen concentrations revealed that the tag was sensitive enough to detect as low as 0.4% oxygen. The developed tag was stable for at least 60 days when stored in dark at 25 °C and 65% RH. The developed mat could be highly useful in modified atmosphere packaging applications to check seal integrity in oxygen devoid packages.
Collapse
|
21
|
Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers (Basel) 2022; 14:polym14040829. [PMID: 35215741 PMCID: PMC8878437 DOI: 10.3390/polym14040829] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Due to their complete non-biodegradability, current food packages have resulted in major environmental issues. Today’s smart consumer is looking for alternatives that are environmentally friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established fact that complete replacement with environmentally friendly packaging materials is unattainable, and bio-based plastics should be the future of the food packaging industry. Natural biopolymers and nanotechnological interventions allow the creation of new, high-performance, light-weight, and environmentally friendly composite materials, which can replace non-biodegradable plastic packaging materials. This review summarizes the recent advancements in smart biogenic packaging, focusing on the shift from conventional to natural packaging, properties of various biogenic packaging materials, and the amalgamation of technologies, such as nanotechnology and encapsulation; to develop active and intelligent biogenic systems, such as the use of biosensors in food packaging. Lastly, challenges and opportunities in biogenic packaging are described, for their application in sustainable food packing systems.
Collapse
|
22
|
Bangar SP, Suri S, Trif M, Ozogul F. Organic acids production from lactic acid bacteria: A preservation approach. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Variations in the Composition, Antioxidant and Antimicrobial Activities of Cystoseira compressa during Seasonal Growth. Mar Drugs 2022; 20:md20010064. [PMID: 35049919 PMCID: PMC8779577 DOI: 10.3390/md20010064] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
The underexplored biodiversity of seaweeds has recently drawn great attention from researchers to find the bioactive compounds that might contribute to the growth of the blue economy. In this study, we aimed to explore the effect of seasonal growth (from May to September) on the in vitro antioxidant (FRAP, DPPH, and ORAC) and antimicrobial effects (MIC and MBC) of Cystoseira compressa collected in the Central Adriatic Sea. Algal compounds were analyzed by UPLC-PDA-ESI-QTOF, and TPC and TTC were determined. Fatty acids, among which oleic acid, palmitoleic acid, and palmitic acid were the dominant compounds in samples. The highest TPC, TTC and FRAP were obtained for June extract, 83.4 ± 4.0 mg GAE/g, 8.8 ± 0.8 mg CE/g and 2.7 ± 0.1 mM TE, respectively. The highest ORAC value of 72.1 ± 1.2 µM TE was obtained for the August samples, and all samples showed extremely high free radical scavenging activity and DPPH inhibition (>80%). The MIC and MBC results showed the best antibacterial activity for the June, July and August samples, when sea temperature was the highest, against Listeria monocytogenes, Staphylococcus aureus, and Salmonella enteritidis. The results show C. compressa as a potential species for the industrial production of nutraceuticals or functional food ingredients.
Collapse
|