1
|
Li Y, Chen J, Feng W, Xiao Y. Untargeted metabolomics and physiological phenotypic analyses reveal the defense strategies of nitrite by Lactiplantibacillus plantarum PK25. Food Chem 2025; 463:141338. [PMID: 39316904 DOI: 10.1016/j.foodchem.2024.141338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
A comprehensive understanding of the defense strategies against nitrite by Lactiplantibacillus plantarum remains unknown. Herein, the effects of nitrite degradation process on metabolic profiling of L. plantarum PK25 were investigated by metabolomics and phenomenological measurement. A total of 633 metabolites were significantly different at 6, 12, and 24 incubation hours. Specifically, citrulline and lysine reduction facilitated strain survival by limiting cell growth. A significant reduction of unsaturated fatty acids was observed, which could induce reduced cell membrane fluidity to prevent nitrite entry. The accumulation of thymine and cytosine might be resulted from accelerated RNA expression to accelerate the repair of cells. Dopamine and ergothioneine could serve as antioxidants to prevent bacteria from oxidative stress. Furthermore, cell filamentation production, increased hydrophobicity, and altered antioxidant enzyme activity were favorable alterations made by strain. Our study demonstrated the metabolite profile alteration of L. plantarum during nitrite degradation, which provided a theoretical basis for targeting strain function.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yao Xiao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Guan Y, Cui Y, Qu X, Li B, Zhang L. Post-acidification of fermented milk and its molecular regulatory mechanism. Int J Food Microbiol 2025; 426:110920. [PMID: 39316924 DOI: 10.1016/j.ijfoodmicro.2024.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
The fermented milk products with lactic acid bacteria (LAB) are widely accepted by consumers. During the chilled-chain transportation and storage, LAB in the product keep producing lactic acid, and this will lead to post-acidification, which can affect the flavor, consumer acceptance and even shelf-life of the product. LAB is the determining factor affecting post-acidification. The acid production pathway in LAB and methods inhibiting post-acidification received widespread attention. This review will focus on the post-acidification from the perspective of fermentation starters, including acid production pathway in LAB, main factors and key enzymes affecting post-acidification. Lactobacillus delbrueckii subsp. bulgaricus is a key bacterial species responsible for post acidification in the fermented milk products. The different species and strains presented various differences in process like acid production, acid resistance and post-acidification. Furthermore, multiple factors, such as milk composition, fermentation temperature, and homogenization, also can influence post-acidification. Lactose transport and utilization pathways, as well as its subsequent products metabolic pathway directly influence the post-acidification. F0F1-ATPase, β-galactosidase, and lactate dehydrogenase are recognized as important enzymes related to post-acidification. The degree of post-acidification is mainly related to the acid production and acid resistance abilities of the fermentation starters, so the key enzymes related to post-acidification are mostly taking part in these two capacities. Recently, some new post-acidification related biomarker genes were found, providing a reference adjusting post-acidification without affecting fermentation rate and bacteria viability. To clarify the post-acidification mechanism at the molecular level will help control post- acidification.
Collapse
Affiliation(s)
- Yuxuan Guan
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Haryani Y, Abdul Halid N, Goh SG, Nor-Khaizura MAR, Md Hatta MA, Sabri S, Radu S, Hasan H. Efficient metabolic pathway modification in various strains of lactic acid bacteria using CRISPR/Cas9 system for elevated synthesis of antimicrobial compounds. J Biotechnol 2024; 395:53-63. [PMID: 39245212 DOI: 10.1016/j.jbiotec.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Lactic acid bacteria (LAB) are known to exhibit various beneficial roles in fermentation, serving as probiotics, and producing a plethora of valuable compounds including antimicrobial activity such as bacteriocin-like inhibitory substance (BLIS) that can be used as biopreservative to improve food safety and quality. However, the yield of BLIS is often limited, which poses a challenge to be commercially competitive with the current preservation practice. Therefore, the present work aimed to establish an optimised two-plasmid CRISPR/Cas9 system to redirect the carbon flux away from lactate towards compounds with antimicrobial activity by disrupting lactate dehydrogenase gene (ldh) on various strains of LAB. The lactic acid-deficient (ldhΔ) strains caused a metabolic shift resulting in increased inhibitory activity against selected foodborne pathogens up to 78 % than the wild-type (WT) strain. The most significant effect was depicted by Enterococcus faecalis-ldh∆ which displayed prominent bactericidal effects against all foodborne pathogens as compared to the WT that showed no antimicrobial activity. The present work provided a framework model for economically important LAB and other beneficial bacteria to synthesise and increase the yield of valuable food and industrial compounds. The present work reported for the first time that the metabolism of selected LAB can be manipulated by modifying ldh to attain metabolites with higher antimicrobial activity.
Collapse
Affiliation(s)
- Yuli Haryani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Riau University, Pekanbaru, Riau 28293, Indonesia
| | - Nadrah Abdul Halid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Sur Guat Goh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Laboratory of Halal Science Research, Halal Research Product Institute, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| |
Collapse
|
4
|
Wen Q, Chen X, Xu M, Liu R, Lian W, Ma Y, Ibrahim AA. Selection and characterization of spontaneous phage-resistant mutant of Limosilactobacillus fermentum. Int J Food Microbiol 2024; 423:110833. [PMID: 39079450 DOI: 10.1016/j.ijfoodmicro.2024.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 08/18/2024]
Abstract
Phage infection remains a major cause of fermentation failures in the dairy industry. The development of phage-resistant mutants of important fermentation strains is an effective measure used to address phage-related issues. This study employed the secondary culture method to screen for spontaneous phage-resistant mutants from the phage sensitive strain Limosilactobacillus fermentum IMAU32646 (L. fermentum IMAU32646). The phenotypic characteristics, technological attributes, probiotic characterization, adsorption characteristics and mutant genes were investigated. The results showed that the mutant strain displayed a high degree of phage-resistance and stability. The mutant strain produced more lactic acid during fermentation than the sensitive strain, while maintaining identical cell structure and morphologies. The mutant strain exhibited superior tolerance to acid and bile salts compared to the sensitive strain. Furthermore, the adsorption rate of phage LFP01 on the mutant strain was significantly lower than that of the sensitive strain. Following genome re-sequencing analysis showed that adsorption interference and blocked DNA injection were responsible for its phage-resistance. These results may provide a new strategy for avoiding phage contamination and industrial application of phage-resistant strains with good characteristics.
Collapse
Affiliation(s)
- Qiannan Wen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Ming Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Runze Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Weiqi Lian
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yang Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Amel A Ibrahim
- Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
5
|
Kim DH, Kim SH, Kim SA, Kwak MJ, Han NS, Lee CH. Pathway and Production Differences in Branched-Chain Hydroxy Acids as Bioactive Metabolites in Limosilactobacillus fermentum, Ligilactobacillus salivarius, and Latilactobacillus sakei. Int J Mol Sci 2024; 25:10112. [PMID: 39337595 PMCID: PMC11432647 DOI: 10.3390/ijms251810112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Branched-chain hydroxy acids (BCHAs) as bioactive metabolites of Lactobacillaceae include 2-hydroxy isovaleric acid (HIVA), 2-hydroxy isocaproic acid (HICA), and 2-hydroxy-3-methyl isovaleric acid (HMVA). Combining targeted and untargeted metabolomics, this study elucidates differences in extracellular BCHA production in Limosilactobacillus fermentum, Ligilactobacillus salivarius, and Latilactobacillus sakei alongside comparing comprehensive metabolic changes. Through targeted metabolomics, BCHA production among 38 strains exhibited strain specificity, except for L. sakei, which showed significantly lower BCHA production. Explaining the lower production in L. sakei, which lacks the branched-chain amino acid (BCAA)-utilizing pathway, comparison of BCHA production by precursor reaction revealed that the pathway utilizing BCAAs is more dominant than the pathway utilizing pyruvate. Expanding upon the targeted approach, untargeted metabolomics revealed the effects of the reaction compound on other metabolic pathways besides BCHAs. Metabolism alterations induced by BCAA reactions varied among species. Significant differences were observed in glycine, serine, and threonine metabolism, pyruvate metabolism, butanoate metabolism, and galactose metabolism (p < 0.05). These results emphasize the importance of the synergy between fermentation strains and substrates in influencing nutritional components of fermented foods. By uncovering novel aspects of BCAA metabolism pathways, this study could inform the selection of fermentation strains and support the targeted production of BCHAs.
Collapse
Affiliation(s)
- Dong-Hyuk Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Min Jeong Kwak
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Natrella G, Vacca M, Minervini F, Faccia M, De Angelis M. A Comprehensive Review on the Biogenic Amines in Cheeses: Their Origin, Chemical Characteristics, Hazard and Reduction Strategies. Foods 2024; 13:2583. [PMID: 39200510 PMCID: PMC11353796 DOI: 10.3390/foods13162583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Most of the biogenic amines are naturally found in fermented foods as a consequence of amino acid decarboxylation. Their formation is ascribable to microorganisms (starters, contaminants and autochthonous) present in the food matrix. The concentration of these molecules is important for food security reasons, as they are involved in food poisoning illnesses. The most frequent amines found in foods are histamine, putrescine, cadaverine, tyramine, tryptamine, phenylethylamine, spermine and spermidine. One of the most risk-prone foods are cheeses, mostly ripened ones, which could easily accumulate amines due to their peculiar manufacturing process and ripening. Cheeses represent a pivotal food in our diet, providing for nutrients such as amino acids, calcium, vitamins and others; thus, since they are widely consumed, it is important to evaluate the presence of toxic molecules to avoid consumers' poisoning. This review aimed to gather general information on the role of biogenic amines, their formation, the health issues and the microorganisms and processes that produce/reduce them, with a focus on their content in different types of cheese (from soft to hard cheeses) and the biotic and abiotic factors that influence their formation or reduction and concentration. Finally, a multivariate analysis was performed on the biogenic amine content, derived from data available in the literature, to obtain more information about the factors influencing their presence in cheeses.
Collapse
Affiliation(s)
- Giuseppe Natrella
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (F.M.); (M.F.); (M.D.A.)
| | | | | | | | | |
Collapse
|
7
|
Tonini S, Tlais AZA, Filannino P, Di Cagno R, Gobbetti M. Apple Blossom Agricultural Residues as a Sustainable Source of Bioactive Peptides through Microbial Fermentation Bioprocessing. Antioxidants (Basel) 2024; 13:837. [PMID: 39061905 PMCID: PMC11273824 DOI: 10.3390/antiox13070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study explored the impact of starter-assisted fermentation on apple blossoms to enhance their potential as a source of antioxidant and antifungal molecules. Fructobacillus fructosus PL22 and Wickerhamomyces anomalus GY1 were chosen as starters owing to their origin and promising ability to modify plant secondary metabolites. An initial assessment through microbiological and physicochemical analyses showed superior outcomes for starter-assisted fermentation compared to the spontaneous process. Enzymatic hydrolysis of proteins, primarily controlled by starters, orchestrated the generation of new low-molecular-weight peptides. W. anomalus GY1 also induced modifications in the phenolic profile, generating a diverse array of bioactive metabolites. These metabolic changes, particularly the release of potentially bioactive peptides, were associated with significant antioxidant activity and marked antifungal efficacy against three common mold species. Our results shed light on the potential of microbial starters to valorize agricultural wastes and convert them into a valuable resource for industry.
Collapse
Affiliation(s)
- Stefano Tonini
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
- International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| |
Collapse
|
8
|
Rajendran S, Khomenko I, Silcock P, Betta E, Biasioli F, Bremer P. Impact of Different Carbon Sources on Volatile Organic Compounds (VOCs) Produced during Fermentation by Levilactobacillus brevis WLP672 Measured Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Molecules 2024; 29:3275. [PMID: 39064855 PMCID: PMC11279293 DOI: 10.3390/molecules29143275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial fermentation is considered to be a cost-effective means of generating desired flavour compounds from plant-based substrates. However, the wide range of substrates present in plants makes it challenging to understand how individual components impact on flavour volatile organic compound (VOC) production. To simplify this, a defined medium can be used to better understand VOCs production with regard to individual compounds. In the current study, the VOCs produced by the lactic acid bacterium, Levilactobacillus brevis WLP672, growing in a defined medium containing different carbon sources (either glucose (DM), fructose (DMFr) or citrate (DMCi)) under a range of fermentation conditions (time: 0, 7, and 14 days; and temperature: 25 and 35 °C) were assessed using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). Among the detected mass peaks (m/z), after 7 days of fermentation, the concentrations of m/z 45.033 (t.i. acetaldehyde), m/z 49.011 (t.i. methanethiol), and m/z 89.060 (t.i. ethyl acetate) were significantly (p < 0.05) higher in DM at 35 °C than all other treatments at either temperature. The knowledge obtained will help to produce desirable LAB fermentation flavour VOCs or VOC mixtures that could be used in developing plant-based analogues with acceptable sensory properties.
Collapse
Affiliation(s)
- Sarathadevi Rajendran
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (S.R.); (P.B.)
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 Trento, Italy; (I.K.); (E.B.); (F.B.)
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi 44000, Sri Lanka
| | - Iuliia Khomenko
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 Trento, Italy; (I.K.); (E.B.); (F.B.)
- ONFoods-Research and Innovation Network on Food and Nutrition Sustainability, Safety and Security-Working ON Foods, 43121 Parma, Italy
| | - Patrick Silcock
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (S.R.); (P.B.)
| | - Emanuela Betta
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 Trento, Italy; (I.K.); (E.B.); (F.B.)
- ONFoods-Research and Innovation Network on Food and Nutrition Sustainability, Safety and Security-Working ON Foods, 43121 Parma, Italy
| | - Franco Biasioli
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 Trento, Italy; (I.K.); (E.B.); (F.B.)
- ONFoods-Research and Innovation Network on Food and Nutrition Sustainability, Safety and Security-Working ON Foods, 43121 Parma, Italy
| | - Phil Bremer
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (S.R.); (P.B.)
| |
Collapse
|
9
|
Hwang CH, Kim SH, Lee CH. Bacterial Growth Modulatory Effects of Two Branched-Chain Hydroxy Acids and Their Production Level by Gut Microbiota. J Microbiol Biotechnol 2024; 34:1314-1321. [PMID: 38938006 PMCID: PMC11239411 DOI: 10.4014/jmb.2404.04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024]
Abstract
Branched-chain hydroxy acids (BCHAs), produced by lactic acid bacteria, have recently been suggested as bioactive compounds contributing to the systemic metabolism and modulation of the gut microbiome. However, the relationship between BCHAs and gut microbiome remains unclear. In this study, we investigated the effects of BCHAs on the growth of seven different families in the gut microbiota. Based on in vitro screening, both 2-hydroxyisovaleric acid (HIVA) and 2-hydroxyisocaproic acid (HICA) stimulated the growth of Lactobacillaceae and Bifidobacteriaceae, with HIVA showing a significant growth promotion. Additionally, we observed not only the growth promotion of probiotic Lactobacillaceae strains but also growth inhibition of pathogenic B. fragilis in a dosedependent manner. The production of HIVA and HICA varied depending on the family of the gut microbiota and was relatively high in case of Lactobacillaceae and Lachnosporaceae. Furthermore, HIVA and HICA production by each strain positively correlated with their growth variation. These results demonstrated gut microbiota-derived BCHAs as active metabolites that have bacterial growth modulatory effects. We suggest that BCHAs can be utilized as active metabolites, potentially contributing to the treatment of diseases associated with gut dysbiosis.
Collapse
Affiliation(s)
- Chan Hyuk Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- MetaMass Corp., Seoul 05029, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- MetaMass Corp., Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Alba C, Arroyo R, Fernández L, Narbad A, Rodríguez JM. Characterization of a Ligilactobacillus salivarius Strain Isolated from a Cheese Seal Which Was Last Used in 1936. Foods 2024; 13:2005. [PMID: 38998510 PMCID: PMC11241558 DOI: 10.3390/foods13132005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Cheesemaking played a pivotal role in the life of the Pyrenean villages where cheese was a most prized commodity and the subject of much local competition. In one of them (Sasa de Sobrepuerto), Mrs. Sebastiana Palacio decided in 1877 to label all the cheeses made in her household with a seal to differentiate them from those made by other local producers. The cheese seal was last used in 1936 and, since then, it has been kept under excellent storage conditions. Since well-preserved cheese seals are rare, and bacterial cells may survive desiccation for long periods, the objective of this work was to isolate and characterize any lactic acid bacteria that survived in the seal. Analysis of the milky crust material revealed the presence of sheep caseins. Culture-based analysis led to the isolation of a strain of Bacillus licheniformis and a strain of Ligilactobacillus salivarius (L. salivarius SP36). The latter was characterized in vitro for safety and dairy-related functional properties. Its genome encodes several genes involved in protein, peptide, and amino acid catabolism, and flavor. Overall, the phenotypic and genetic features of this strain support a high potential for being used as adjunct culture in cheesemaking.
Collapse
Affiliation(s)
- Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Arjan Narbad
- Food Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, UK;
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| |
Collapse
|
11
|
Gu L, Zhao S, Tadesse BT, Zhao G, Solem C. Scrutinizing a Lactococcus lactis mutant with enhanced capacity for extracellular electron transfer reveals a unique role for a novel type-II NADH dehydrogenase. Appl Environ Microbiol 2024; 90:e0041424. [PMID: 38563750 PMCID: PMC11107169 DOI: 10.1128/aem.00414-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.
Collapse
Affiliation(s)
- Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Ge Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Zhao L, Li X, Wang Y, Yang Q, Jiang X, Zhao R, Chen H, Zhang Y, Ran J, Chen W, Wei Z, Wang H. Resistance role of Lactobacillus sp. and Lactococcus sp. to copper ions in healthy children's intestinal microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134059. [PMID: 38503209 DOI: 10.1016/j.jhazmat.2024.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Heavy metal exposure is closely associated with gut microbe function and tolerance. However, intestinal microbe responses in children to different copper ion (Cu2+) concentrations have not yet been clarified. Here, in vitro cultivation systems were established for fecal microbe control and Cu2+-treated groups in healthy children. 16S rDNA high-throughput sequencing, meta-transcriptomics and metabolomics were used here to identify toxicity resistance mechanisms at microbiome levels. The results showed that Lactobacillus sp. and Lactococcus sp. exerted protective effects against Cu2+ toxicity, but these effects were limited by Cu2+ concentration. When the Cu2+ concentration was ≥ 4 mg/L, the abundance of Lactobacillus sp. and Lactococcus sp. significantly decreased, and the pathways of antioxidant activity and detoxification processes were enriched at 2 mg/L Cu2+, and beneficial metabolites accumulated. However, at high concentrations of Cu2+ (≥4 mg/L), the abundance of potential pathogen increased, and was accompanied by a downregulation of genes in metabolism and detoxification pathways, which meant that the balance of gut microbiota was disrupted and toxicity resistance decreased. From these observations, we identified some probiotics that are tolerant to heavy metal Cu2+, and warn that only when the concentration limit of Cu2+ in food is 2 mg/L, then a balanced gut microbiota can be guaranteed in children, thereby providing protection for their health.
Collapse
Affiliation(s)
- Lili Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xinlei Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yibin Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xiaobing Jiang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Hong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yiping Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wanrong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zihan Wei
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
13
|
Mockus E, Starkute V, Klupsaite D, Bartkevics V, Borisova A, Sarunaite L, Arlauskiene A, Rocha JM, Bartkiene E. Changes in Chemical Composition of Lentils, Including Gamma-Aminobutyric Acid and Volatile Compound Formation during Submerged and Solid-State Fermentation with Pediococcus acidilactici. Foods 2024; 13:1249. [PMID: 38672920 PMCID: PMC11049090 DOI: 10.3390/foods13081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to evaluate and compare the characteristics of non-treated and fermented [via submerged (SMF) and solid-state (SSF) fermentation using Pediococcus acidilactici] lentils (Lens culinaris) grown either in pure stands (L) or relay intercropped with winter rye (LR). It was observed that the lentils were suitable substrate for lacto-fermentation. Most of the free amino acid concentrations increased in lentils after both fermentations. The highest concentration of γ-aminobutyric acid was found in SSF LR samples. However, fermentation led to higher biogenic amines (BA) content in lentils. The most abundant fatty acid in lentils was C18:2. SSF lentils showed more complex volatile compound (VC) profiles (with between nine and seventeen new VCs formed), whereas, in SMF samples, between two and five newly VCs were formed. When comparing lentil grown types, L contained significantly higher concentrations of Na, K, Ca, P, Mn, and Se, while LR contained significantly higher concentrations of Fe and Ni. To sum up, fermentation with lactic acid bacteria (LAB) contributed to the improved biological value of lentils; still, the quantity of BA needs to be considered. Further investigations into the P. acidilactici metabolism of certain compounds (such as phenolic and antinutritional compounds) in lentils during fermentation ought to be carried out.
Collapse
Affiliation(s)
- Ernestas Mockus
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.M.); (V.S.); (D.K.)
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.M.); (V.S.); (D.K.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.M.); (V.S.); (D.K.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, LV-1076 Riga, Latvia; (V.B.); (A.B.)
| | - Anastasija Borisova
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, LV-1076 Riga, Latvia; (V.B.); (A.B.)
| | - Lina Sarunaite
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture Instituto 1, Akademija, LT-58344 Kėdainiai, Lithuania; (L.S.); (A.A.)
| | - Ausra Arlauskiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture Instituto 1, Akademija, LT-58344 Kėdainiai, Lithuania; (L.S.); (A.A.)
| | - João Miguel Rocha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.M.); (V.S.); (D.K.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
14
|
Sedó Molina GE, Shetty R, Jacobsen C, Duedahl-Olesen L, Hansen EB, Bang-Berthelsen CH. Synergistic effect of the coculture of Leuconostoc pseudomesenteroides and Lactococcus lactis, isolated from honeybees, on the generation of plant-based dairy alternatives based on soy, pea, oat, and potato drinks. Food Microbiol 2024; 118:104427. [PMID: 38049267 DOI: 10.1016/j.fm.2023.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
The production of plant-based dairy alternatives has been majorly focused on the improvement of sensorial, technological and nutritional properties, to be able to mimic and replace milk-based fermented products. The presence of off-flavours and antinutrients, the lack of production of dairy-like flavours or the metabolic inaccessibility of plant proteins are some of the challenges to overcome to generate plant-based dairy alternatives. However, in the present study, it is demonstrated how the synergistic effect of two LAB strains, when cocultured, can simultaneously solve those challenges when fermenting in four different plant-based raw materials: soy, pea, oat, and potato drinks (SPOP). The fermentation was performed through the mono- and co-culture of the two LAB strains isolated from Apis mellifera (honeybee): Leuconostoc pseudomesenteroides NFICC 2004 and Lactococcus lactis NFICC 2005. Firstly, the coculture of both strains demonstrated to increase the acidification rate of the four plant matrices. Moreover, L. pseudomesenteroides (LP) demonstrated to in situ produce high concentrations of mannitol when fructose was present as C-source. Furthermore, L. pseudomesenteroides, which encoded for PII-proteinase, demonstrated to break down SPOP proteins, releasing free amino acids that were used by L.lactis (LL) for growth and metabolism. Lastly, the analysis of their co-metabolic volatile performance showed the principal ability of removal of the main off-flavours found in SPOP, such as hexanal, 1-octen-3-ol, 2-pentylfuran, pentanal, octanal, heptanal, and nonanal, mainly led by L. pseudomesenteroides, as well as the production of dairy-like flavours, such as diacetyl and 3-methyl-1-butanol, triggered by L. lactis metabolism. Overall, these findings endorsed the use of honeybee isolated strains as starter cultures, demonstrated the potential of coupling genotypes and phenotypes of multiple strains to improve the organoleptic properties suggesting a potential of combining plant-based matrices for the generation of future high-quality plant-based dairy alternatives.
Collapse
Affiliation(s)
- Guillermo Eduardo Sedó Molina
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark
| | - Radhakrishna Shetty
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark
| | - Charlotte Jacobsen
- Research Group for Bioactives - Analysis and Application, National Food Institute, Technical University of Denmark, Denmark
| | - Lene Duedahl-Olesen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Denmark
| | - Egon Bech Hansen
- Research Group for Gut, Microbes and Health, National Food Institute, Technical University of Denmark, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark.
| |
Collapse
|
15
|
Gao Z, Zhou MC, Lin J, Lu Y, Liu SQ. Metabolomics analysis of okara probiotic beverages fermented with Lactobacillus gasseri and Limosilactobacillus fermentum by LC-QTOF-MS/MS. Food Chem X 2024; 21:101178. [PMID: 38357377 PMCID: PMC10865209 DOI: 10.1016/j.fochx.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/29/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
In this study, okara was fermented with probiotic strains Lactobacillus gasseri LAC 343 and Limosilactobacillus fermentum PCC, respectively. Significant increases in cell count (by 2.22 log CFU/mL for LAC and 0.82 log CFU/mL for PCC) and significant decreases in pH (by 1.31 for LAC and 1.03 for PCC) were found in fermented okara slurry. In addition, strain LAC tended to produce amino acids, while strain PCC depleted most amino acids. An untargeted metabolomic-based approach using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to further understand the compositional changes and potential health benefits by identifying bioactive metabolites in fermented okara slurry. We successfully identified various beneficial bioactive compounds including γ-aminobutyric acid, indolelactic acid, d-phenyllactic acid, and p-hydroxyphenyllactic acid which had differences in fold-changes in okara slurry fermented with different strains. Our study indicated the feasibility of using probiotics to ferment okara for novel functional food development.
Collapse
Affiliation(s)
- Zihan Gao
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Melody Chang Zhou
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Jing Lin
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| |
Collapse
|
16
|
Rajendran S, Silcock P, Bremer P. Volatile Organic Compounds (VOCs) Produced by Levilactobacillus brevis WLP672 Fermentation in Defined Media Supplemented with Different Amino Acids. Molecules 2024; 29:753. [PMID: 38398505 PMCID: PMC10892824 DOI: 10.3390/molecules29040753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Fermentation by lactic acid bacteria (LAB) is a promising approach to meet the increasing demand for meat or dairy plant-based analogues with realistic flavours. However, a detailed understanding of the impact of the substrate, fermentation conditions, and bacterial strains on the volatile organic compounds (VOCs) produced during fermentation is lacking. As a first step, the current study used a defined medium (DM) supplemented with the amino acids L-leucine (Leu), L-isoleucine (Ile), L-phenylalanine (Phe), L-threonine (Thr), L-methionine (Met), or L-glutamic acid (Glu) separately or combined to determine their impact on the VOCs produced by Levilactobacillus brevis WLP672 (LB672). VOCs were measured using headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS). VOCs associated with the specific amino acids added included: benzaldehyde, phenylethyl alcohol, and benzyl alcohol with added Phe; methanethiol, methional, and dimethyl disulphide with added Met; 3-methyl butanol with added Leu; and 2-methyl butanol with added Ile. This research demonstrated that fermentation by LB672 of a DM supplemented with different amino acids separately or combined resulted in the formation of a range of dairy- and meat-related VOCs and provides information on how plant-based fermentations could be manipulated to generate desirable flavours.
Collapse
Affiliation(s)
- Sarathadevi Rajendran
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi 44000, Sri Lanka
| | - Patrick Silcock
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Phil Bremer
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
17
|
Cardin M, Cardazzo B, Coton M, Carraro L, Lucchini R, Novelli E, Coton E, Mounier J. Ecological diversity and associated volatilome of typical mountain Caciotta cheese from Italy. Int J Food Microbiol 2024; 411:110523. [PMID: 38134579 DOI: 10.1016/j.ijfoodmicro.2023.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Traditional products are particularly appreciated by consumers and among these products, cheese is a major contributor to the Italian mountainous area economics. In this study, shotgun metagenomics and volatilomics were used to understand the biotic and abiotic factors contributing to mountain Caciotta cheese typicity and diversity. Results showed that the origin of cheese played a significant role; however, curd cooking temperature, pH, salt concentration and water activity also had an impact. Viral communities exhibited higher biodiversity and discriminated cheese origins in terms of production farms. Among the most dominant bacteria, Streptococcus thermophilus showed higher intraspecific diversity and closer relationship to production farm when compared to Lactobacillus delbrueckii. However, despite a few cases in which the starter culture was phylogenetically separated from the most dominant strains sequenced in the cheese, starter cultures and dominant cheese strains clustered together suggesting substantial starter colonization in mountain Caciotta cheese. The Caciotta cheese volatilome contained prominent levels of alcohols and ketones, accompanied by lower proportions of terpenes. Volatile profile not only demonstrated a noticeable association with production farm but also significant differences in the relative abundances of enzymes connected to flavor development. Moreover, correlations of different non-homologous isofunctional enzymes highlighted specific contributions to the typical flavor of mountain Caciotta cheese. Overall, this study provides a deeper understanding of the factors shaping typical mountain Caciotta cheese, and the potential of metagenomics for characterizing and potentially authenticating food products.
Collapse
Affiliation(s)
- Marco Cardin
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy; Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy.
| | - Monika Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Rosaria Lucchini
- Italian Health Authority and Research Organization for Animal Health and Food Safety (Istituto zooprofilattico sperimentale delle Venezie), Viale Università 10, 35020 Legnaro, PD, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
18
|
Werum V, Ehrmann M. Dellaglioa spp. an underestimated genus isolated from high-oxygen modified-atmosphere packaged meat. Food Microbiol 2024; 117:104398. [PMID: 37919006 DOI: 10.1016/j.fm.2023.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The genus Dellaglioa (D.) actually comprises two species, i.e., D. algida and the recently described species D. carnosa. Both species are adapted to cold and have been typically recovered from meat products. However, their importance has thus far been underestimated, since routine culture-based analysis failed to support their growth. Furthermore, their occurrence on meat packed under high-oxygen MA conditions (HiOx-MAP) is controversial because they have been described as being oxygen-sensitive. In this study, we focused on the targeted isolation of Dellaglioa spp. from HiOx-MAP meat samples and the characterization of our isolates regarding their adaption to HiOx-MAP conditions, their spoilage potential, as well as food safety aspects. We used a medium recently developed specifically for strains of this genus and investigated ten meat batches from seven different suppliers. Our study confirms that the occurrence of Dellaglioa spp. on HiOx-MAP meat is non-sporadic, reaching cell counts ranging from log10 5.8-7.1 CFU/cm2 at a late stage of chilled storage. Autochthonous Dellaglioa spp. and Leuconostoc (L.) gasicomitatum dominated the microbiota of the beef steaks with similar growth behavior. Our results suggest that Dellaglioa spp. benefits from the heme-dependent respiration of oxygen by L. gasicomitatum. Furthermore, whole genome analysis revealed the presence of genes predictively involved in oxidative stress defense, survival, and adaptation in meat environments. Moreover, we predict a weak aminogenic potential of D. algida strains. Tyramine production from tyrosine seems to be a species-specific characteristic of D. carnosa. The extent to which D. algida and D. carnosa occurrence is influenced by or even dependent on the composition of the entire microbiota remains to be investigated.
Collapse
Affiliation(s)
- Victoria Werum
- Lehrstuhl für Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Matthias Ehrmann
- Lehrstuhl für Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354, Freising, Germany.
| |
Collapse
|
19
|
Zhang Z, Yin B, Liu F, Zhou W, Wang M, Chang Z, Zhou J, Yue M, Chen J, Feng Z. Effect of the initial pH of the culture medium on the nutrient consumption pattern of Bifidobacterium animalis subsp. lactis Bb12 and the improvement of acid resistance by purine and pyrimidine compounds. J Appl Microbiol 2024; 135:lxae022. [PMID: 38299790 DOI: 10.1093/jambio/lxae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
AIMS During fermentation, the accumulation of acidic products can induce media acidification, which restrains the growth of Bifidobacterium animalis subsp. lactis Bb12 (Bb12). This study investigated the nutrient consumption patterns of Bb12 under acid stress and effects of specific nutrients on the acid resistance of Bb12. METHODS AND RESULTS Bb12 was cultured in chemically defined medium (CDM) at different initial pH values. Nutrient consumption patterns were analyzed in CDM at pH 5.3, 5.7, and 6.7. The patterns varied with pH: Asp + Asn had the highest consumption rate at pH 5.3 and 5.7, while Ala was predominant at pH 6.7. Regardless of the pH levels (5.3, 5.7, or 6.7), ascorbic acid, adenine, and Fe2+ were vitamins, nucleobases, and metal ions with the highest consumption rates, respectively. Nutrients whose consumption rates exceeded 50% were added individually in CDM at pH 5.3, 5.7, and 6.7. It was demonstrated that only some of them could promote the growth of Bb12. Mixed nutrients that could promote the growth of Bb12 were added to three different CDM. In CDM at pH 5.3, 5.7, and 6.7, it was found that the viable cell count of Bb12 was the highest after adding mixed nutrients, which were 8.87, 9.02, and 9.10 log CFU ml-1, respectively. CONCLUSIONS The findings suggest that the initial pH of the culture medium affects the nutrient consumption patterns of Bb12. Specific nutrients can enhance the growth of Bb12 under acidic conditions and increase its acid resistance.
Collapse
Affiliation(s)
- Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Boxing Yin
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, No. 88, Dingxing Road, Guangling District, Yangzhou 225004, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Wei Zhou
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, No. 88, Dingxing Road, Guangling District, Yangzhou 225004, China
| | - Mengrui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Ziqing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Junping Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Mingzhe Yue
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Junxia Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Zhen Feng
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, No. 88, Dingxing Road, Guangling District, Yangzhou 225004, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| |
Collapse
|
20
|
Liao SF, Ji F, Fan P, Denryter K. Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. Int J Mol Sci 2024; 25:1237. [PMID: 38279233 PMCID: PMC10816286 DOI: 10.3390/ijms25021237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Many researchers consider gut microbiota (trillions of microorganisms) an endogenous organ of its animal host, which confers a vast genetic diversity in providing the host with essential biological functions. Particularly, the gut microbiota regulates not only gut tissue structure but also gut health and gut functionality. This paper first summarized those common bacterial species (dominated by the Firmicutes, Bacteroidota, and Proteobacteria phyla) in swine gut and then briefly discussed their roles in swine nutrition and health, which include roles in nutrient metabolism, pathogen exclusion, and immunity modulation. Secondly, the current knowledge on how dietary nutrients and feed additives affect the gut bacterial composition and nutrient metabolism in pigs was discussed. Finally, how dietary amino acids affect the relative abundances and metabolism of bacteria in the swine gut was reviewed. Tryptophan supplementation promotes the growth of beneficial bacteria and suppresses pathogens, while arginine metabolism affects nitrogen recycling, impacting gut immune response and health. Glutamate and glutamine supplementations elevate the levels of beneficial bacteria and mitigate pathogenic ones. It was concluded that nutritional strategies to manipulate gut microbial ecosystems are useful measures to optimize gut health and gut functions. For example, providing pigs with nutrients that promote the growth of Lactobacillus and Bifidobacterium can lead to better gut health and growth performance, especially when dietary protein is limited. Further research to establish the mechanistic cause-and-effect relationships between amino acids and the dynamics of gut microbiota will allow swine producers to reap the greatest return on their feed investment.
Collapse
Affiliation(s)
- Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Peixin Fan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Kristin Denryter
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| |
Collapse
|
21
|
Drouin P, da Silva ÉB, Tremblay J, Chevaux E, Apper E, Castex M. Inoculation with Lentilactobacillus buchneri alone or in combination with Lentilactobacillus hilgardii modifies gene expression, fermentation profile, and starch digestibility in high-moisture corn. Front Microbiol 2023; 14:1253588. [PMID: 37901805 PMCID: PMC10602787 DOI: 10.3389/fmicb.2023.1253588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Inoculants combining Lentilactobacillus buchneri and Lentilactobacillus hilgardii have been shown to improve the aerobic stability of high-moisture corn (HMC) and whole-plant corn silage, but the mode of action of this co-inoculation remains to be elucidated. This study used metatranscriptomics to evaluate the effects of inoculation with L. buchneri alone or combined with L. hilgardii on the bacterial community, gene expression, fermentation profile, and starch digestibility in HMC. High-moisture corn not inoculated (Control) or inoculated with L. buchneri NCIMB 40788 (LB) or L. buchneri NCIMB 40788 combined with L. hilgardii CNCM-I-4785 (Combo) was ensiled in mini silo bags for 30, 60, 120, and 180 days. The fermentation profile was evaluated at all time points. Metatranscriptomics was performed on samples collected on day 120. Combo had a greater alpha diversity richness index of contigs than LB and Control, and inoculation with Combo and LB modified the beta-diversity of contigs compared to Control. Out of 69 genes of interest, 20 were differentially expressed in LB compared to Control and 25 in Combo compared to Control. Of those differently expressed genes, 16 (10 of which were associated with carbohydrate metabolism and six with amino acid metabolism) were differently expressed in both LB and Combo compared to Control, and all those genes were upregulated in the inoculated silages. When we compared Combo and LB, we found seven genes expressed differently, four associated with carbohydrate metabolism and downregulated in Combo, and three associated with amino acid metabolism and upregulated in Combo. At day 120, the inoculated silages had more culturable lactic acid bacteria, higher Lactobacillus relative abundance, and lower Leuconostoc relative abundance than Control. The concentration of acetic acid remained low throughout ensiling in Control, but in LB and Combo, it increased up to day 60 and remained stable from day 60 to 180. The 1,2-propanediol was only detected in LB and Combo. Inoculation did not affect the concentration of starch, but starch digestibility was greater in Combo than in Control. Inoculation of HMC with Combo modified the gene expression and fermentation profile compared to Control and LB, improving starch digestibility compared to uninoculated HMC.
Collapse
Affiliation(s)
- Pascal Drouin
- Independent Researcher, Saint-Jean-sur-Richelieu, QC, Canada
| | | | - Julien Tremblay
- Energy, Mining, and Environment, National Research Council of Canada, Montréal, QC, Canada
| | | | | | | |
Collapse
|
22
|
Abedi E, Mohammad Bagher Hashemi S, Ghiasi F. Effective mitigation in the amount of acrylamide through enzymatic approaches. Food Res Int 2023; 172:113177. [PMID: 37689930 DOI: 10.1016/j.foodres.2023.113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 09/11/2023]
Abstract
Acrylamide (AA), as a food-borne toxicant, is created at some stages of thermal processing in the starchy food through Maillard reaction, fatty food via acrolein route, and proteinous food using free amino acids pathway. Maillard reaction obviously takes place in thermal-based products, being responsible for specific sensory attributes; AA formation, thereby, is unavoidable during the thermal processing. Additionally, AA can naturally occur in soil and water supply. In order to reduce the levels of acrylamide in cooked foods, mitigation techniques can be separated into three different types. Firstly, starting materials low in acrylamide precursors can be used to reduce the acrylamide in the final product. Secondly, process conditions may be modified in order to decrease the amount of acrylamide formation. Thirdly, post-process intervention could be used to reduce acrylamide. Conventional or emerging mitigation techniques might negatively influence the pleasant features of heated foods. The current study summarizes the effect of enzymatic reaction induced by asparaginase, glucose oxidase, acrylamidase, phytase, amylase, and protease to possibly inhibit AA formation or progressively hydrolyze formed AA. Not only enzyme-assisted AA reduction could dramatically maintain bio-active compounds, but also no damaging impact has been reported on the sensorial and rheological properties of the final heated products. The enzyme engineering can be applied to ameliorate enzyme functionality through altering the amino acid sequence like site-specific mutagenesis and directed evolution, chemical modifications by covalent conjugation of L-asparaginase onto soluble/insoluble biocompatible polymers and immobilization. Moreover, it would be possible to improve the enzyme's physical, chemical, and thermal stability, recyclability and prevent enzyme overuse by applying engineered ones. In spite of enzymes' cost-effective and eco-friendly, promoting their large-scale usages for AA reduction in food application and AA bioremediation in wastewater and soil resources.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | | - Fatemeh Ghiasi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
23
|
Li K, Gao N, Tang J, Ma H, Jiang J, Duan Y, Li Z. A Study on the Formation of Flavor Substances by Bacterial Diversity in the Fermentation Process of Canned Bamboo Shoots in Clear Water. Foods 2023; 12:3478. [PMID: 37761186 PMCID: PMC10529733 DOI: 10.3390/foods12183478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Canned bamboo shoots in clear water could produce a unique flavor through bacterial diversity via the fermentation process. Weissella, Streptococcus, Leuconostoc, Acinetobacter, Lactococcus and Lactobacillus were the main microorganisms. Tyrosine was the most abundant free amino acid (FAA), which had a negative correlation with Lactococcus. Ten kinds of flavor substances, such as 3-methyl-1-butanol, acetic acid, 2-phenylethyl ester, benzene acetaldehyde, benzoic acid and ethyl ester, were important influential factors in the flavor of fermented bamboo shoots. Through the verification test of tyrosine and phenylalanine decarboxylase, it was found that Lactococcus lactis TJJ2 could decompose tyrosine and phenylalanine to produce benzaldehyde and benzene acetaldehyde, which provided the fermented bamboo shoots with a grassy aroma.
Collapse
Affiliation(s)
- Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.L.); (N.G.); (J.T.); (H.M.); (J.J.); (Y.D.)
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Ning Gao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.L.); (N.G.); (J.T.); (H.M.); (J.J.); (Y.D.)
| | - Jiaojiao Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.L.); (N.G.); (J.T.); (H.M.); (J.J.); (Y.D.)
| | - Huiqin Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.L.); (N.G.); (J.T.); (H.M.); (J.J.); (Y.D.)
| | - Jiayan Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.L.); (N.G.); (J.T.); (H.M.); (J.J.); (Y.D.)
| | - Yufan Duan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.L.); (N.G.); (J.T.); (H.M.); (J.J.); (Y.D.)
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (K.L.); (N.G.); (J.T.); (H.M.); (J.J.); (Y.D.)
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| |
Collapse
|
24
|
Bendig T, Ulmer A, Luzia L, Müller S, Sahle S, Bergmann FT, Lösch M, Erdemann F, Zeidan AA, Mendoza SN, Teusink B, Takors R, Kummer U, Figueiredo AS. The pH-dependent lactose metabolism of Lactobacillus delbrueckii subsp. bulgaricus: An integrative view through a mechanistic computational model. J Biotechnol 2023; 374:90-100. [PMID: 37572793 DOI: 10.1016/j.jbiotec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The fermentation process of milk to yoghurt using Lactobacillus delbrueckii subsp. bulgaricus in co-culture with Streptococcus thermophilus is hallmarked by the breakdown of lactose to organic acids such as lactate. This leads to a substantial decrease in pH - both in the medium, as well as cytosolic. The latter impairs metabolic activities due to the pH-dependence of enzymes, which compromises microbial growth. To quantitatively elucidate the impact of the acidification on metabolism of L. bulgaricus in an integrated way, we have developed a proton-dependent computational model of lactose metabolism and casein degradation based on experimental data. The model accounts for the influence of pH on enzyme activities as well as cellular growth and proliferation of the bacterial population. We used a machine learning approach to quantify the cell volume throughout fermentation. Simulation results show a decrease in metabolic flux with acidification of the cytosol. Additionally, the validated model predicts a similar metabolic behaviour within a wide range of non-limiting substrate concentrations. This computational model provides a deeper understanding of the intricate relationships between metabolic activity and acidification and paves the way for further optimization of yoghurt production under industrial settings.
Collapse
Affiliation(s)
- Tamara Bendig
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Laura Luzia
- Systems Biology Lab, Vrije Universiteit, Amsterdam, the Netherlands
| | - Susanne Müller
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Sven Sahle
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Frank T Bergmann
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Maren Lösch
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Florian Erdemann
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ahmad A Zeidan
- Systems Biology, R&D Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | | | - Bas Teusink
- Systems Biology Lab, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ursula Kummer
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| | - Ana Sofia Figueiredo
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
25
|
Li Q, Hu K, Mou J, Li J, Liu A, Ao X, Yang Y, He L, Chen S, Zou L, Guo M, Liu S. Insight into the acid tolerance mechanism of Acetilactobacillus jinshanensis subsp. aerogenes Z-1. Front Microbiol 2023; 14:1226031. [PMID: 37520381 PMCID: PMC10382275 DOI: 10.3389/fmicb.2023.1226031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Several lactic acid bacteria (LAB) are double-edged swords in the production of Sichuan bran vinegar; on the one hand, they are important for the flavour of the vinegar, but on the other hand, they result in vinegar deterioration because of their gas-producing features and their acid resistance. These characteristics intensify the difficulty in managing the safe production of vinegar using strains such as Acetilactobacillus jinshanensis subsp. aerogenes Z-1. Therefore, it is necessary to characterize the mechanisms underlying their acid tolerance. The results of this study showed a survival rate of 77.2% for Z-1 when exposed to pH 3.0 stress for 1 h. This strain could survive for approximately 15 days in a vinegar solution with 4% or 6% total acid content, and its growth was effectively enhanced by the addition of 10 mM of arginine (Arg). Under acidic stress, the relative content of the unsaturated fatty acid C18:1 (n-11) increased, and eight amino acids accumulated in the cells. Meanwhile, based on a transcriptome analysis, the genes glnA, carA/B, arcA, murE/F/G, fabD/H/G, DnaK, uvrA, opuA/C, fliy, ecfA2, dnaA and LuxS, mainly enriched in amino acid transport and metabolism, protein folding, DNA repair, and cell wall/membrane metabolism processes, were hypothesized to be acid resistance-related genes in Z-1. This work paves the way for further clarifying the acid tolerance mechanism of Z-1 and shares applicable perspectives for vinegar brewing.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Juan Mou
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingye Guo
- Sichuan Baoning Vinegar Co., Ltd, Langzhong, Sichuan, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
26
|
Xian L, Tian J, Long Y, Ma H, Tian M, Liu X, Yin G, Wang L. Metabolomics and transcriptomics analyses provide new insights into the nutritional quality during the endosperm development of different ploidy rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1210134. [PMID: 37409294 PMCID: PMC10319422 DOI: 10.3389/fpls.2023.1210134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Autotetraploid rice is developed from diploid rice by doubling the chromosomes, leading to higher nutritional quality. Nevertheless, there is little information about the abundances of different metabolites and their changes during endosperm development in autotetraploid rice. In this research, two different kinds of rice, autotetraploid rice (AJNT-4x) and diploid rice (AJNT-2x), were subjected to experiments at various time points during endosperm development. A total of 422 differential metabolites, were identified by applying a widely used metabolomics technique based on LC-MS/MS. KEGG classification and enrichment analysis showed the differences in metabolites were primarily related to biosynthesis of secondary metabolites, microbial metabolism in diverse environments, biosynthesis of cofactors, and so on. Twenty common differential metabolites were found at three developmental stages of 10, 15 and 20 DAFs, which were considered the key metabolites. To identify the regulatory genes of metabolites, the experimental material was subjected to transcriptome sequencing. The DEGs were mainly enriched in starch and sucrose metabolism at 10 DAF, and in ribosome and biosynthesis of amino acids at 15 DAF, and in biosynthesis of secondary metabolites at 20 DAF. The numbers of enriched pathways and the DEGs gradually increased with endosperm development of rice. The related metabolic pathways of rice nutritional quality are cysteine and methionine metabolism, tryptophan metabolism, lysine biosynthesis and histidine metabolism, and so on. The expression level of the genes regulating lysine content was higher in AJNT-4x than in AJNT-2x. By applying CRISPR/Cas9 gene-editing technology, we identified two novel genes, OsLC4 and OsLC3, negatively regulated lysine content. These findings offer novel insight into dynamic metabolites and genes expression variations during endosperm development of different ploidy rice, which will aid in the creation of rice varieties with better grain nutritional quality.
Collapse
Affiliation(s)
- Lin Xian
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guizhou Academy of Tobacco Science, Guiyang, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jiaqi Tian
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanxi Long
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Huijin Ma
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Min Tian
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guoying Yin
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Lan Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Liu Y, Lu Y, Quan Liu S. Untargeted LC-QTOF-MS/MS-based metabolomics of spent coffee grounds alcoholic beverages fermented with Lachancea thermotolerans and Lactiplantibacillus plantarum. Food Res Int 2023; 167:112733. [PMID: 37087284 DOI: 10.1016/j.foodres.2023.112733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Spent coffee grounds (SCG) is a solid waste generated from coffee brewing. We recently developed a novel SCG hydrolysate-derived alcoholic beverage fermented with Lachancea thermotolerans Concerto and Lactiplantibacillus plantarum ML Prime. To further understand the potential health benefits of the fermented SCG hydrolysate alcoholic beverage, an untargeted metabolomics-based approach (UPLC-QTOF-MS/MS) was applied to detect and identify bioactive metabolites especially low molecular weight compounds. Our results showed that, compared to yeast monoculture-fermented SCG alcoholic beverages, yeast-lactic acid bacterial coculture enriched the beverage with a range of bioactive compounds especially aromatic and branched-chain amino acid derivatives (e.g., 4-hydroxyphenyl lactic acid, phenyl lactic acid, indole lactic acid, (S)-(-)-2-hydroxyisocaproic acid, and 4-hydroxyphenyl ethanol). Although some endogenous phenolic compounds were metabolized during fermentation, many phenolic metabolites (e.g., vinyl phenols, dihydrocaffeic acid, 3,4-dihydroxybenzoic acid, 4-hydroxycoumarin) were produced. Our study provided a theoretical basis for further valorization of SCG hydrolysates from the health benefits point of view and the findings may be extended to other fermented products.
Collapse
|
28
|
On JY, Kim SH, Kim JM, Park S, Kim KH, Lee CH, Kim SK. Effects of Fermented Artemisia annua L. and Salicornia herbacea L. on Inhibition of Obesity In Vitro and In Mice. Nutrients 2023; 15:2022. [PMID: 37432154 DOI: 10.3390/nu15092022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
Plant extracts including secondary metabolites have anti-inflammatory and anti-obesity activities. This study was conducted to investigate the anti-obesity properties of fermented Artemisia annua (AW) and Salicornia herbacea (GW) in vitro and in mice. The metabolite profiling of AW and GW extracts was performed using UHPLC-LTQ-Orbitrap-MS/MS, and gene expression was analyzed using real-time PCR for adipocyte difference factors. The anti-obesity effects in mice were measured using serum AST, ALT, glucose, TG, and cholesterol levels. Metabolites of the plant extracts after fermentation showed distinct differences with increasing anti-obesity active substances. The efficacy of inhibitory differentiation adipogenesis of 3T3-L1 adipocytes was better for GW than AW in a concentration-dependent manner. RT-PCR showed that the GW extract significantly reduced the expression of genes involved in adipocyte differentiation and fat accumulation (C/EBPα, PPARγ, and Fas). In C57BL/6 mice fed the HFD, the group supplemented with AW and GW showed reduced liver weight, NAS value, and fatty liver by suppressing liver fat accumulation. The GW group significantly reduced ALT, blood glucose, TG, total cholesterol, and LDL-cholesterol. This study displayed significant metabolite changes through biotransformation in vitro and the increasing anti-obesity effects of GW and AW in mice. GW may be applicable as functional additives for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Jeong-Yeon On
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong-Mee Kim
- Institute of Animal Resource Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Institute of Animal Resource Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
29
|
Jiang Z, Lu J, Tong Y, Yang H, Feng S. Enhancement of acid tolerance of Escherichia coli by introduction of molecule chaperone CbpA from extremophile. World J Microbiol Biotechnol 2023; 39:158. [PMID: 37046107 DOI: 10.1007/s11274-023-03613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Molecular chaperone CbpA from extreme acidophile Acidithiobacillus caldus was applied to improve acid tolerance of Escherichia coli via CRISPR/Cas9. Cell growth and viability of plasmid complementary strain indicated the importance of cbpAAc for bacteria acid tolerance. With in situ gene replacement by CRISPR/Cas9 system, colony formation unit (CFU) of genome recombinant strain BL21-ΔcbpA/AccbpA showed 7.7 times higher cell viability than deficient strain BL21-ΔcbpA and 2.3 times higher than wild type. Cell morphology observation using Field Emission Scanning Electron Microscopy (FESEM) revealed cell breakage of BL21-ΔcbpA and significant recovery of BL21-ΔcbpA/AccbpA. The intracellular ATP level of all strains gradually decreased along with the increased stress time. Particularly, the value of recombinant strain was 56.0% lower than that of deficient strain after 5 h, indicating that the recombinant strain consumed a lot of energy to resist acid stress. The arginine concentration in BL21-ΔcbpA/AccbpA was double that of BL21-ΔcbpA, while the aspartate and glutamate contents were 14.8% and 6.2% higher, respectively, compared to that of wild type. Moreover, RNA-Seq analysis examined 93 genes down-regulated in BL21-ΔcbpA compared to wild type strain, while 123 genes were up-regulated in BL21-ΔcbpA/AccbpA compared to BL21-ΔcbpA, with an emphasis on energy metabolism, transport, and cell components. Finally, the working model in response to acid stress of cbpA from A. caldus was developed. This study constructed a recombinant strain resistant to acid stress and also provided a reference for enhancing microorganisms' robustness to various conditions.
Collapse
Affiliation(s)
- Zhenming Jiang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jie Lu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
30
|
Hsueh CC, Roxas TJ, Chan YH, Juan CN, Tayo LL, Chen YY, Wu YC, Hua KF, Tsai PW, Sun SY, Chen BY. Feasibility study of value-added production from onion peel agricultural wastes for circular economy. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
31
|
van Leeuwen PT, Brul S, Zhang J, Wortel MT. Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications. FEMS Microbiol Rev 2023; 47:fuad012. [PMID: 36931888 PMCID: PMC10062696 DOI: 10.1093/femsre/fuad012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The human gut harbors native microbial communities, forming a highly complex ecosystem. Synthetic microbial communities (SynComs) of the human gut are an assembly of microorganisms isolated from human mucosa or fecal samples. In recent decades, the ever-expanding culturing capacity and affordable sequencing, together with advanced computational modeling, started a ''golden age'' for harnessing the beneficial potential of SynComs to fight gastrointestinal disorders, such as infections and chronic inflammatory bowel diseases. As simplified and completely defined microbiota, SynComs offer a promising reductionist approach to understanding the multispecies and multikingdom interactions in the microbe-host-immune axis. However, there are still many challenges to overcome before we can precisely construct SynComs of designed function and efficacy that allow the translation of scientific findings to patients' treatments. Here, we discussed the strategies used to design, assemble, and test a SynCom, and address the significant challenges, which are of microbiological, engineering, and translational nature, that stand in the way of using SynComs as live bacterial therapeutics.
Collapse
Affiliation(s)
- Pim T van Leeuwen
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jianbo Zhang
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike T Wortel
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
32
|
Wang Y, Ke W, Lu Q, Zhang G. Effects of Bacillus coagulans and Lactobacillus plantarum on the Fermentation Characteristics, Microbial Community, and Functional Shifts during Alfalfa Silage Fermentation. Animals (Basel) 2023; 13:932. [PMID: 36899789 PMCID: PMC10000087 DOI: 10.3390/ani13050932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
This study aimed to investigate the potential of Bacillus coagulans (BC) as an inoculant in alfalfa silage fermentation. Fresh alfalfa was harvested at a dry matter (DM) content of 329.60 g/kg fresh weight (FW), and inoculated without (CON) or with BC (1 × 106 CFU/g FW), Lactobacillus plantarum (LP, 1 × 106 CFU/g FW), and their combinations (LP+BC, 1 × 106 CFU/g FW, respectively). Samples were taken at 3, 7, 14, 30, and 60 d, with three replicates for each. The prolonged ensiling period resulted in a decrease in pH values and an increase in lactic acid (LA) concentrations in alfalfa silages. After 60 d of fermentation, the application of BC and LP decreased the pH values and increased LA concentrations in treated silages, especially when their combination was applied. Application of BC preserved more water-soluble carbohydrates (WSC), and further application of BC increased WSC in LP+BC-treated silage compared to LP-treated silage. There was no significant difference in the crude protein (CP) content between the CON and treated silages, however, the BC and LP treatments reduced the ammonia nitrogen (NH3-N) concentration, especially when their combination was applied. Additionally, the BC and LP-treated silages had lower neutral detergent fiber (NDF) and acid detergent fiber (ADF) when compared to the CON silage (p < 0.001). Inoculants also increased Lactobacillus abundance and decreased Enterococcus abundance after 60 d of fermentation. Spearman's rank correlation analysis revealed a positive correlation between LA concentration and Lactobacillus abundance. It was noteworthy that LP, BC, and their combination increased the relative abundances of carbohydrate metabolism, energy metabolism, cofactors, and vitamin metabolism, decreasing the relative abundances of amino acid metabolism and drug resistance: antimicrobial. Therefore, the inclusion of BC increased the fermentation quality of alfalfa silage, with the optimal combination being LP+BC. According to the findings, BC could be considered a viable bioresource for improving fermentation quality.
Collapse
Affiliation(s)
| | | | | | - Guijie Zhang
- Department of Animal Science, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
33
|
Zhuang S, Tian L, Liu Y, Wang L, Hong H, Luo Y. Amino acid degradation and related quality changes caused by common spoilage bacteria in chill-stored grass carp (Ctenopharyngodon idella). Food Chem 2023; 399:133989. [DOI: 10.1016/j.foodchem.2022.133989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
|
34
|
Effects of the addition of starches with different amylose contents on kimchi microbiota and metabolites. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Chen S, Zhang F, Ananta E, Muller JA, Liang Y, Lee YK, Liu S. Inoculation of Latilactobacillus sakei with Pichia kluyveri or Saccharomyces boulardii improves flavor compound profiles of salt-free fermented wheat-gluten: Effects from single strain inoculation. Curr Res Food Sci 2023; 6:100492. [PMID: 37033740 PMCID: PMC10074509 DOI: 10.1016/j.crfs.2023.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Wheat-gluten, the protein-rich portion of wheat, can be processed to produce a highly savory sauce product after solid and liquid-state fermentation (SSF and LSF) with the inoculation of selected lactic acid bacteria (LAB) and yeast under salt-free condition. However, limited research has been done on the impact of different types of microbes in this process. This work studied the flavour impact on fermented wheat-gluten by the single inoculation of Latilactobacillus sakei or one yeast (Saccharomyces boulardii or Pichia kluyveri). Glucose was depleted during LSF in all treatments. Lactic acid production increased over time in L. sakei-fermented samples but not in yeast-fermented samples. Cysteine, serine and arginine remained low over LSF in L. sakei-fermented samples but increased in yeast-fermented samples. More fruity esters such as isoamyl acetate and isobutyl acetate were detected in samples fermented by P. kluyveri, while S. boulardii boosted the production of alcohols such as 3-methyl butanol and 2-phenylethyl alcohol. Principal component analysis revealed a clear difference in volatile profiles of the samples fermented with different strains. Therefore, the fermented sauce can potentially be processed into different flavor directions, and based on the flavor profile, be used in different food applications.
Collapse
Affiliation(s)
- Shuoyu Chen
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore
- Nestlé Research and Development Center Singapore, 29 Quality Road, 618802, Singapore
| | - Fanxin Zhang
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore
| | - Edwin Ananta
- Nestlé Research Center, Rte du Jorat 57, 1000, Lausanne, Switzerland
| | | | - Youyun Liang
- Nestlé Research and Development Center Singapore, 29 Quality Road, 618802, Singapore
- Corresponding author.
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore
| | - Shaoquan Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Corresponding author. Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore.
| |
Collapse
|
36
|
Yu HY, Rhim DB, Kim SK, Ban OH, Oh SK, Seo J, Hong SK. Growth promotion effect of red ginseng dietary fiber to probiotics and transcriptome analysis of Lactiplantibacillus plantarum. J Ginseng Res 2023; 47:159-165. [PMID: 36644380 PMCID: PMC9834016 DOI: 10.1016/j.jgr.2022.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background Red ginseng marc, the residue of red ginseng left after water extraction, is rich in dietary fiber. Dietary fiber derived from fruits or vegetables can promote the proliferation of probiotics, and it is a key technology in the food industry to increase the productivity of probiotics by adding growth-enhancing substances such as dietary fiber. In this study, the effect of red ginseng dietary fiber (RGDF) on the growth of probiotic bacterial strains was investigated at the phenotypic and genetic levels. Methods We performed transcriptome profiling of Lactiplantibacillus plantarum IDCC3501 in two phases of culture (logarithmic (L)-phase and stationary (S)-phase) in two culture conditions (with or without RGDF) using RNA-seq. Differentially expressed genes (DEGs) were identified and classified according to Gene Ontology terms. Results The growth of L.plantarum IDCC3501 was enhanced in medium supplemented with RGDF up to 2%. As a result of DEG analysis, 29 genes were upregulated and 30 were downregulated in the RGDF-treated group in the L-phase. In the S-phase, 57 genes were upregulated and 126 were downregulated in the RGDF-treated group. Among the upregulated genes, 5 were upregulated only in the L-phase, 10 were upregulated only in the S-phase, and 3 were upregulated in both the L- and S-phases. Conclusions Transcriptome analysis could be a valuable tool for elucidating the molecular mechanisms by which RGDF promotes the proliferation of L.plantarum IDCC3501. This growth-promoting effect of RGDF is important, since RGDF could be used as a prebiotic source without additional chemical or enzymatic processing.
Collapse
Affiliation(s)
- Hye-Young Yu
- Laboratory of Red Ginseng Products, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Dong-Bin Rhim
- Laboratory of Red Ginseng Products, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sang-Kyu Kim
- Laboratory of Red Ginseng Products, Korea Ginseng Corporation, Daejeon, Republic of Korea
- Corresponding author. Sang-Kyu Kim, Laboratory of Red Ginseng Products, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea.
| | - O-Hyun Ban
- Ildong Bioscience, Pyeongteak, Republic of Korea
| | - Sang-Ki Oh
- Ildong Bioscience, Pyeongteak, Republic of Korea
| | - Jiho Seo
- Laboratory of Red Ginseng Products, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Soon-Ki Hong
- Laboratory of Red Ginseng Products, Korea Ginseng Corporation, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Zhang C, Cheng H, Han Y, Wa Y, Chen D, Guan C, Huang Y, Gu R. Transcriptome-phenotype matching analysis of how nitrogen sources influence Lacticaseibacillus rhamnosus tolerance to heat stress and oxidative stress. Microb Cell Fact 2022; 21:257. [PMID: 36510221 PMCID: PMC9746023 DOI: 10.1186/s12934-022-01985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Spray drying is the most cost-effective production method for lactic acid bacteria starters, but heat and oxidative stresses result in low survival rates. The heat stress and oxidative stress tolerance of Lacticaseibacillus rhamnosus cultured in tryptone-free MRS (NP-MRS) broth was much stronger than that in MRS or tryptone-free MRS broth supplemented with phenylalanine (Phe-MRS). Here, multiple transcriptome-phenotype matching was performed on cells cultured in NP-MRS, MRS and Phe-MRS broths to reveal the mechanism by which nitrogen sources influence L. rhamnosus tolerance to heat stress and oxidative stress. RESULTS Compared with cells cultured in NP-MRS broth, 83 overlapping differentially expressed genes (DEGs) were downregulated by either tryptone or phenylalanine. The overlapping DEGs were mainly classified into carbohydrate metabolism and membrane transport pathways, which are often repressed by glucose during carbon catabolite repression (CCR). In the presence of glucose, the heat stress or oxidative stress tolerance of L. rhamnosus hsryfm 1301 was not strengthened by supplementation with secondary carbohydrates. Replacing glucose with mannose, fructose or ribose improved the heat stress and oxidative stress tolerance of L. rhamnosus hsryfm 1301 (5 to 46-fold). CONCLUSIONS Alleviation of CCR might be a reason for the resistance of L. rhamnosus hsryfm 1301 to heat stress and oxidative stress in a low-nitrogen environment. The survival rate of L. rhamnosus during spray drying will hopefully be improved by relieving CCR. It is a new discovery that nitrogen sources influence CCR in L. rhamnosus.
Collapse
Affiliation(s)
- Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China.,Jiangsu Dairy Biotechnology Engineering Research Center, Yangzhou, People's Republic of China
| | - Haohao Cheng
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China
| | - Yuemei Han
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China
| | - Dawei Chen
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China.,Jiangsu Dairy Biotechnology Engineering Research Center, Yangzhou, People's Republic of China
| | - Yujun Huang
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China. .,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China.
| |
Collapse
|
38
|
Guo X, Xu D, Li F, Bai J, Su R. Current approaches on the roles of lactic acid bacteria in crop silage. Microb Biotechnol 2022; 16:67-87. [PMID: 36468295 PMCID: PMC9803335 DOI: 10.1111/1751-7915.14184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) play pivotal roles in the preservation and fermentation of forage crops in spontaneous or inoculated silages. Highlights of silage LAB over the past decades include the discovery of the roles of LAB in silage bacterial communities and metabolism and the exploration of functional properties. The present article reviews published literature on the effects of LAB on the succession, structure, and functions of silage microbial communities involved in fermentation. Furthermore, the utility of functional LAB in silage preparation including feruloyl esterase-producing LAB, antimicrobial LAB, lactic acid bacteria with high antioxidant potential, pesticide-degrading LAB, lactic acid bacteria producing 1,2-propanediol, and low-temperature-tolerant LAB have been described. Compared with conventional LAB, functional LAB produce different effects; specifically, they positively affect animal performance, health, and product quality, among others. In addition, the metabolic profiles of ensiled forages show that plentiful probiotic metabolites with but not limited to antimicrobial, antioxidant, aromatic, and anti-inflammatory properties are observed in silage. Collectively, the current knowledge on the roles of LAB in crop silage indicates there are great opportunities to develop silage not only as a fermented feed but also as a vehicle of delivery of probiotic substances for animal health and welfare in the future.
Collapse
Affiliation(s)
- Xusheng Guo
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Dongmei Xu
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Fuhou Li
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Jie Bai
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Rina Su
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| |
Collapse
|
39
|
Kim SH, Singh D, Son SY, Lee S, Suh DH, Lee NR, Park GS, Kang J, Lee CH. Characterization and temporal dynamics of the intra- and extracellular environments of Lactiplantibacillus plantarum using multi-platform metabolomics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Biosynthesis of gamma-aminobutyric acid by Lactiplantibacillus plantarum K16 as an alternative to revalue agri-food by-products. Sci Rep 2022; 12:18904. [PMID: 36344571 PMCID: PMC9640535 DOI: 10.1038/s41598-022-22875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Probiotic metabolites, known as postbiotics, have received attention due to their wide variety of promoting health effects. One of the most exciting postbiotic is gamma-aminobutyric acid (GABA), widely produced by lactic acid bacteria, due to its benefits in health. In addition, the performance of the biosynthesis of GABA by Lactiplantibacillus plantarum could be modulated through the modification of fermentation parameters. Due to their high nutritional value, agri-food by-products could be considered a useful fermentation source for microorganisms. Therefore, these by-products were proposed as fermentation substrates to produce GABA in this study. Previously, several experiments in Man Rogosa Sharpe (MRS) broth were performed to identify the most critical parameters to produce GABA using the strain Lactiplantibacillus plantarum K16. The percentage of inoculum, the initial pH, and the concentration of nutrients, such as monosodium glutamate or glucose, significantly affected the biosynthetic pathway of GABA. The highest GABA yield was obtained with 500 mM of monosodium glutamate and 25 g/L of glucose, and an initial pH of 5.5 and 1.2% inoculum. Furthermore, these investigated parameters were used to evaluate the possibility of using tomato, green pepper, apple, or orange by-products to get GABA-enriched fermented media, which is an excellent way to revalorise them.
Collapse
|
41
|
Zhou RY, Huang X, Liu Z, Chua JY, Liu SQ. Evaluating the effect of lactic acid bacterial fermentation on salted soy whey for development of a potential novel soy sauce-like condiment. Curr Res Food Sci 2022; 5:1826-1836. [PMID: 36276244 PMCID: PMC9579447 DOI: 10.1016/j.crfs.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
There were two main objectives of this study: (1) to understand the effect of salt concentration on the growth of four lactic acid bacteria (LAB) in soy whey and determine the non-volatile and volatile profiles generated after fermentation; (2) to evaluate the potential of using salted soy whey to develop a sauce-like condiment through LAB fermentation. The four LAB included non-halophilic Lactiplantibacillus plantarum ML Prime, Limosilactobacillus fermentum PCC, Oenococcus oeni Enoferm Beta and halophilic Tetragenococcus halophilus DSM20337. At 2% salt, all LAB grew remarkably from day 0 to day 1, except for T. halophilus, while at 6% salt, the growth of L. plantarum, L. fermentum and O. oeni was suppressed. Conversely, the higher salt concentration enhanced the growth of T. halophilus in soy whey as the cell count only increased from 6.36 to 6.60 log CFU/mL at 2% salt but it elevated from 6.61 to 7.55 log CFU/mL at 6% salt. Similarly, the higher salt content negatively affected the sugar and amino acids metabolism and organic acids production by non-halophilic LAB. L. plantarum and O. oeni generated significantly (p < 0.05) more lactic acid (3.83 g/L and 4.17 g/L, respectively) than L. fermentum and T. halophilus (2.02 g/L and 0 g/L, respectively) at 2% salt. In contrast, a higher amount of acetic acid was generated by L. fermentum (0.72 g/L at 2% salt) and T. halophilus (0.51 g/L at 6% salt). LAB could remove the green and beany off-flavours in soy whey by metabolizing C6 and C7 aldehydes. However, to develop a novel soy sauce-like condiment, yeast fermentation and Maillard reaction may be required to generate more characteristic soy sauce-associated aroma compounds. Soy whey with 2% and 6% NaCl supported the growth of lactic acid bacteria (LAB). At 6% NaCl, T. halophilus grew better while the growth of other LAB was impeded. T. halophilus and L. fermentum produced significant amounts of acetic acid. Through LAB fermentation, green and beany off-odour of soy whey could be removed. Yeast fermentation and heating are required to produce key aroma soy sauce compounds.
Collapse
Affiliation(s)
- Rebecca Yinglan Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Xin Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Zhihao Liu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Jian-Yong Chua
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore,Corresponding author. Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore.
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu, 215213, China,Corresponding author. Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore.
| |
Collapse
|
42
|
The Effect of Yogurt and Kefir Starter Cultures on Bioactivity of Fermented Industrial By-Product from Cannabis sativa Production—Hemp Press Cake. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cannabis sativa (hemp) is a plant considered to be abundant in bioactive compounds. The increasing production of hemp oil is leaving considerable amounts of hemp press cakes (HPC), which have not been sufficiently managed so far. One of the directions of development of plant-based food is the use of by-products of the agri-food industry in accordance with the idea of zero waste and the circular economy, so the purpose of this study was to determine the possibility of HPC fermentation using yogurt and kefir cultures and to determine the effect of the type of starter on the properties of the products. In the present study, starter cultures of yogurt (YO 122) and kefir (commercial grains) were used for HPC fermentation. Changes in lactic acid bacteria (LAB) and yeast population, pH, acidity, the content of bioactive compounds by spectrophotometric methods (proteins, amino acids, polyphenols, flavonoids, reducing sugars) and antioxidant activity (DDPH, ABTS, FRAP and reducing power) were determined. The results showed that it was possible to develop high-value beverages based on HPC with high fermentation efficiency: survivability of LAB and yeast (>106 CFU/g) and acidification (pH in a range of 4.82–6.36 and 5.34–6.49 for yogurt and kefir culture, respectively). Moreover, the stability of hemp protein, with its variable free amino acid composition, antioxidant potential and presented changes in polyphenolic content, was observed during storage. The presented results show a new way to manage HPC as an oil industry residue by using it as a raw material for the development of a bioactive food product and illustrate the relationship between applied starter culture, the direction of fermentation and changes in the content of bioactive compounds.
Collapse
|
43
|
Zhang C, Han Y, Gui Y, Wa Y, Chen D, Huang Y, Yin B, Gu R. Influence of nitrogen sources on the tolerance of Lacticaseibacillus rhamnosus to heat stress and oxidative stress. J Ind Microbiol Biotechnol 2022; 49:6693999. [PMID: 36073749 PMCID: PMC9559300 DOI: 10.1093/jimb/kuac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022]
Abstract
It has been found that 32 genes related to nitrogen source metabolism in Lacticaseibacillus rhamnosus are downregulated under both heat stress and oxidative stress. In this study, the influence of different nitrogen sources within the growth medium on the tolerance of L. rhamnosus to heat stress and oxidative stress was investigated. Tryptone-free MRS was found to enhance the tolerance of L. rhamnosus hsryfm 1301 to heat stress and oxidative stress during the whole growth period, and this result was universal for all L. rhamnosus species analyzed. The strongest strengthening effect occurred when the OD600 value reached 2.0, at which the survival rates under heat stress and oxidative stress increased 130-fold and 40-fold, respectively. After supplementing phenylalanine, isoleucine, glutamate, valine, histidine, or tryptophan into the tryptone-free MRS, the tolerance of L. rhamnosus to heat stress and oxidative stress exhibited a sharp drop. The spray drying survival rate of L. rhamnosus hsryfm 1301 cultured in the tryptone-free MRS rose to 75% (from 30%), and the spray dried powder also performed better in the experimentally simulated gastrointestinal digestion. These results showed that decreasing the intake of amino acids is an important mechanism for L. rhamnosus to tolerate heat stress and oxidative stress. When L. rhamnosus is cultured for spray drying, the concentration of the nitrogen source's components should be an important consideration.
Collapse
Affiliation(s)
- Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China.,Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. Ltd., Yangzhou University, Yangzhou, P.R. China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, P.R. China
| | - Yuemei Han
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Ya Gui
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Yujun Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Boxing Yin
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China.,Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. Ltd., Yangzhou University, Yangzhou, P.R. China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| |
Collapse
|
44
|
Du H, Fu Y, Deng N, Xu Y. Transcriptional Profiling Reveals Adaptive Response and Tolerance to Lactic Acid Stress in Pichia kudriavzevii. Foods 2022; 11:foods11182725. [PMID: 36140854 PMCID: PMC9498142 DOI: 10.3390/foods11182725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pichia kudriavzevii plays an important role in fermented foods and beverages. In the long domestication process of traditional fermentation, the mechanism of response to lactic acid, a common metabolite and growth inhibitor, is currently unclear in P. kudriavzevii. In this study, the tolerance to lactic acid of P. kudriavzevii C-16, isolated from fermented grains, was compared with its type strain ATCC 24210. Under lactic acid stress, P. kudriavzevii C-16 showed increased biomass yields and lactic acid consumption rates. Then, mRNA sequencing was used to analyze the response to lactic acid in P. kudriavzevii C-16. Results showed that 92 and 96 genes were significantly upregulated, 52 and 58 genes were significantly downregulated, respectively, in P. kudriavzevii C-16 cultured for 12 h and 24 h. The genes, which involved in pyruvate metabolic pathway, ABC transporter proteins, glutamate metabolic pathway, and the biosynthetic pathway of leucine and valine, were observed to be differentially expressed between the P. kudriavzevii C-16 and its type strain ATCC 24210. By analyzing the production of higher alcohols, the concentrations of isobutyl alcohol and isoamyl alcohol produced by P. kudriavzevii C-16 increased significantly. It was consistent with the up-regulation of genes that biosynthesized related amino acids.
Collapse
Affiliation(s)
| | | | | | - Yan Xu
- Correspondence: ; Tel.: +86-510-85964112
| |
Collapse
|
45
|
Gao C, Wang R, Zhang F, Sun Z, Meng X. The process monitors of probiotic fermented sour cherry juice based on the HS-GC-IMS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Wu H, Zhang Y, Li L, Li Y, Yuan L, E Y, Qiao J. Positive regulation of the DLT operon by TCSR7 enhances acid tolerance of Lactococcus lactis F44. J Dairy Sci 2022; 105:7940-7950. [PMID: 36028342 DOI: 10.3168/jds.2022-21898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022]
Abstract
Lactococcus lactis, a lactic acid bacterium, has been widely used in the fermented dairy products. The acid tolerance of L. lactis is of great importance to food fermentation and probiotic applications. As the first barrier of bacteria, the cell wall has a protective effect on strains under many stress conditions, whereas the regulatory mechanism has rarely been reported. Here, based on the transcription analysis of 9 cell wall or membrane-related genes of L. lactis F44 under acid stress, the transcription levels of DACB, DLTD, YLBA, HRTA, WP_080613266.1 (1610), and ERFK genes were significantly increased. We constructed 9 overexpressing strains with the cell wall or membrane-related genes, respectively. It was demonstrated that the survival rates under acid stress of DACB, DLTD, and ERFK were significantly higher than that of wild-type F44. To investigate the regulatory mechanism, a DNA pull-down assay was used to identify the transcriptional regulators of these 3 genes. It was discovered that the 2-component system (TCS) transcriptional regulator TCSR7 bound to the upstream region of DLTD involved in the teichoic acid (TA) alanylation. The combination was confirmed through an electrophoretic mobility shift assay in vitro. Reverse-transcription quantitative PCR results indicated that TCSR7 upregulated the expression of DLTD gene. In addition, the transcription level of TCSR7 increased approximately 1.8-fold (log2 fold change) under acidic conditions. In summary, this study found that TCSR7 was induced by acid stress to upregulate the transcription level of the DLT operon genes, which might increase the positive charge on the cell membrane surface to increase the acid tolerance of the strain. This study lays the foundation for the regulatory mechanism of TA alanylation under acid stress.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Yangling Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Li Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Lin Yuan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Department of Bioengineering, School of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300072, P. R. China
| | - Yue E
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
| |
Collapse
|
47
|
Mejía-Gomez CE, Rios-Estepa R, Gonzalez-Lopez LA, Balcazar-Morales N. An experimental and in silico analysis of Lacticaseibacillus paracasei isolated from whey shows an association between lactate production and amino acid catabolism. AN ACAD BRAS CIENC 2022; 94:e20211071. [PMID: 35946647 DOI: 10.1590/0001-3765202220211071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
The production of lactic acid from agroindustry waste products, such as whey, heavily relies on microorganisms within the genusLactobacillus. In this work, a genome-scale metabolic model was implemented from Vinay-Lara (iLca334_548), improved adding some enzymatic reactions and used to analyse metabolic fluxes ofLacticaseibacillus paracasei, which is aLactobacillusstrain isolated from whey used in the large-scale production of lactic acid. Overall, the highest rate of lactic acid productivity was 2.9 g l-1h-1, which equates to a dilution rate of 0.125 h-1, when continuous culture conditions were established. Restrictions on lactic acid production caused by exchange reactions, complex culture medium and intracellular metabolite concentrations were considered and included in the model. In total, theiLca334_548 model consisted of 1046 reactions and 959 metabolites, and flow balance analysis better predicted lactate flux than biomass. The distribution of fluxes exhibited an increase in lactate formation as biomass decreased. This finding is supported by the reactions carried out by glyceraldehyde 3-phosphate dehydrogenase, pyruvate formate lyase and ribose-5-phosphate isomerase, corroborating the modelled phenotype with experimental data. In conclusion, there is potential for the improvement of lactate production in a complex media by amino acid catabolism, especially when lactate is derived from pyruvate.
Collapse
Affiliation(s)
- Carlos Eduardo Mejía-Gomez
- Grupo de Biotransformación, Escuela de Microbiología, Universidad de Antioquia, Calle 70, N° 52-21, 050010 Medellin, Colombia
| | - Rigoberto Rios-Estepa
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Calle 70, N° 52-21, 050010 Medellin, Colombia
| | - Luis Alberto Gonzalez-Lopez
- Grupo de Química Orgánica de Productos Naturales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70, N° 52-21, 050010 Medellin, Colombia
| | - Norman Balcazar-Morales
- Grupo de Genética Molecular y Departamento de Fisiología y Bioquímica, Facultad de Medicina, Universidad de Antioquia, Calle 62 N° 52-59, 050010 Medellín, Colombia
| |
Collapse
|
48
|
Comparative transcriptome analysis reveals the contribution of membrane transporters to acid tolerance in Lactococcus lactis. J Biotechnol 2022; 357:9-17. [PMID: 35963594 DOI: 10.1016/j.jbiotec.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/08/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
Acid stress caused by the accumulation of acidic metabolites severely affects the fermentation performance of lactic acid bacteria. In this study, to overcome the impact of acid stress during growth, nine membrane transporters were introduced in Lactococcus lactis NZ9000 to study their effects on acid tolerance. The engineered strains that overexpressed the metal ATP-binding cassette (ABC) transporters zitP (metal ABC transporter permease) and zitQ (metal ABC transporter ATP-binding protein) exhibited 14.5 and 9.5-fold higher survival rates, respectively, at pH 4.0 for 4 h than the control strain. During acid stress, the two recombinant strains maintained relatively higher ATP concentrations, i.e., 7.7- and 11.7-fold higher, respectively, than the control strain at pH 4.0 for 3 h. Subsequently, transcriptome analysis revealed that genes associated with ABC transporters, metal ion transport, transcriptional regulation, and stress response exhibited differentially expressed. The transcriptional level of ecfA2 gene (energy-coupling factor transporter ATPase) was substantially higher in L. lactis (ZitQ) during acid stress, and the ecfA2 gene was overexpressed in L. lactis. This recombinant strain L. lactis (EcfA2) exhibited a 598.7-fold higher survival rate than the control strain at pH 4.0 for 4 h. This study showed that the membrane transporters ZitP and ZitQ could increase acid tolerance and provided a strategy for constructing robust strains that can be used in food industry.
Collapse
|
49
|
Khusro A, Aarti C. Metabolic heterogeneity and techno-functional attributes of fermented foods-associated coagulase-negative staphylococci. Food Microbiol 2022; 105:104028. [DOI: 10.1016/j.fm.2022.104028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 01/03/2023]
|
50
|
Wa Y, Zhang C, Sun G, Qu H, Chen D, Huang Y, Gu R. Effect of amino acids on free exopolysaccharide biosynthesis by Streptococcus thermophilus 937 in chemically defined medium. J Dairy Sci 2022; 105:6460-6468. [PMID: 35691747 DOI: 10.3168/jds.2022-21814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022]
Abstract
Free exopolysaccharide (f-EPS) produced by Streptococcus thermophilus improves the texture and functionality of fermented dairy foods. Our previous study showed a major improvement in f-EPS production of Strep. thermophilus 937 by increasing the concentrations of histidine, isoleucine, and glutamate to 15 mM in an optimized chemically defined medium. The aim of this study was to elucidate the effect of His, Ile, and Glu on the growth, f-EPS biosynthesis pathway, and carbohydrate metabolism profiles of Strep. thermophilus 937. The growth kinetics; transcript levels of key genes in the EPS biosynthesis pathway; enzyme activity involved in sugar nucleotide synthesis; concentrations of lactic acid, lactose, and galactose; and extracellular and intracellular pH were analyzed in chemically defined media with different initial histidine, isoleucine, and glutamate concentrations. The results showed that f-EPS production and viable cell counts of Strep. thermophilus 937 increased 2-fold after the concentrations of His, Ile, and Glu were increased. Additionally, increasing the concentrations of His, Ile, and Glu upregulated transcription of EPS biosynthesis genes and increased the activity of key enzymes in sugar nucleotide synthesis. Moreover, the consumption of lactose increased and secretion of galactose decreased, indicating that increasing the concentration of His, Ile, and Glu could enhance f-EPS production by maintaining viable cell counts, promoting sugar nucleotide synthesis, and increasing the transcript levels of the eps gene cluster. Our results provide a better understanding of the effect of AA on EPS biosynthesis in Strep. thermophilus.
Collapse
Affiliation(s)
- Yunchao Wa
- Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu Province, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
| | - Chenchen Zhang
- Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu Province, China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
| | - Gulin Sun
- Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu Province, China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
| | - Hengxian Qu
- Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu Province, China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
| | - Dawei Chen
- Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu Province, China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
| | - Yujun Huang
- Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu Province, China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
| | - Ruixia Gu
- Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu Province, China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China.
| |
Collapse
|