1
|
Hu S, Xie Z, Wang B, Chen Y, Jing Z, Hao Y, Yao J, Wu X, Huo J, Wei A, Qin Y, Dong N, Zheng C, Song Q, Long J, Kang X, Wang C, Xu H. STED Imaging of Vesicular Endocytosis in the Synapse. Neurosci Bull 2024; 40:1379-1395. [PMID: 38976218 PMCID: PMC11365914 DOI: 10.1007/s12264-024-01254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 07/09/2024] Open
Abstract
Endocytosis is a fundamental biological process that couples exocytosis to maintain the homeostasis of the plasma membrane and sustained neurotransmission. Super-resolution microscopy enables optical imaging of exocytosis and endocytosis in live cells and makes an essential contribution to understanding molecular mechanisms of endocytosis in neuronal somata and other types of cells. However, visualization of exo-endocytic events at the single vesicular level in a synapse with optical imaging remains a great challenge to reveal mechanisms governing the synaptic exo-endocytotic coupling. In this protocol, we describe the technical details of stimulated emission depletion (STED) imaging of synaptic endocytosis at the single-vesicle level, from sample preparation and microscopy calibration to data acquisition and analysis.
Collapse
Affiliation(s)
- Shaoqin Hu
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenli Xie
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bianbian Wang
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Chen
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zexin Jing
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Hao
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyu Yao
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuanang Wu
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingxiao Huo
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Anqi Wei
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhao Qin
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Nan Dong
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chaowen Zheng
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qian Song
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiangang Long
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinjiang Kang
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Changhe Wang
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Huadong Xu
- Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Department of Neurology, the First Affiliated Hospital, Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Varinthra P, Anwar SNMN, Shih SC, Liu IY. The role of the GABAergic system on insomnia. Tzu Chi Med J 2024; 36:103-109. [PMID: 38645778 PMCID: PMC11025592 DOI: 10.4103/tcmj.tcmj_243_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 04/23/2024] Open
Abstract
Sleep is an essential activity for the survival of mammals. Good sleep quality helps promote the performance of daily functions. In contrast, insufficient sleep reduces the efficiency of daily activities, causes various chronic diseases like Alzheimer's disease, and increases the risk of having accidents. The GABAergic system is the primary inhibitory neurotransmitter system in the central nervous system. It transits the gamma-aminobutyric acid (GABA) neurotransmitter via GABAA and GABAB receptors to counterbalance excitatory neurotransmitters, such as glutamate, noradrenaline, serotonin, acetylcholine, orexin, and dopamine, which release and increase arousal activities during sleep. Several studies emphasized that dysfunction of the GABAergic system is related to insomnia, the most prevalent sleep-related disorder. The GABAergic system comprises the GABA neurotransmitter, GABA receptors, GABA synthesis, and degradation. Many studies have demonstrated that GABA levels correlate with sleep quality, suggesting that modulating the GABAergic system may be a promising therapeutic approach for insomnia. In this article, we highlight the significance of sleep, the classification and pathology of insomnia, and the impact of the GABAergic system changes on sleep. In addition, we also review the medications that target the GABAergic systems for insomnia, including benzodiazepines (BZDs), non-BZDs, barbiturates, GABA supplements, and Chinese herbal medicines.
Collapse
Affiliation(s)
| | - Shameemun Naseer Mohamed Nizarul Anwar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shu-Ching Shih
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Ingrid Y. Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Jana S, Dines M, Lalzar M, Lamprecht R. Fear Conditioning Leads to Enduring Alterations in RNA Transcripts in Hippocampal Neuropil that are Dependent on EphB2 Forward Signaling. Mol Neurobiol 2023; 60:2320-2329. [PMID: 36637747 DOI: 10.1007/s12035-022-03191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
Alterations in mRNA transcription have been associated with changes in brain functions. We wanted to examine if fear conditioning causes long-term changes in transcriptome profiles in the basolateral amygdala (BLA) and hippocampus using RNA-Seq and laser microdissection microscopy. We further aimed to uncover whether these changes are involved in memory formation by monitoring their levels in EphB2lacZ/lacZ mice, which lack EphB2 forward signaling and can form short-term fear conditioning memory but not long-term fear conditioning memory. We found transcriptome signatures unique to each brain region that are comprise of specific cellular pathways. We also revealed that fear conditioning leads to alterations in mRNAs levels 24 h after training in hippocampal neuropil, but not in hippocampal cell layers or BLA. The two main groups of altered mRNAs encode proteins involved in neuronal transmission, neuronal morphogenesis and neuronal development and the vast majority are known to be enriched in neurons. None of these mRNAs levels were altered by fear conditioning in EphB2lacZ/lacZ mice, which were also impaired in long-term fear memory. We show here that fear conditioning leads to an enduring alteration in mRNAs levels in hippocampal neuropil that is dependent on processes mediated by EphB2 that are needed for long-term memory formation.
Collapse
Affiliation(s)
- Subhajit Jana
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Monica Dines
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
4
|
Xiao F, Shao S, Zhang H, Li G, Piao S, Zhao D, Li G, Yan M. Neuroprotective effect of Ziziphi Spinosae Semen on rats with p-chlorophenylalanine-induced insomnia via activation of GABA A receptor. Front Pharmacol 2022; 13:965308. [PMID: 36483742 PMCID: PMC9722729 DOI: 10.3389/fphar.2022.965308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/07/2022] [Indexed: 09/24/2023] Open
Abstract
Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F.Chow [Rhamnaceae; Ziziphi Spinosae Semen (ZSS)] has attracted extensive attention as the first choice of traditional Chinese medicine in the treatment of insomnia. However, recent studies on the sleep-improving mechanism of ZSS have mainly focused on the role of single components. Thus, to further reveal the potential mechanism of ZSS, an assessment of its multiple constituents is necessary. In this study, ZSS extract (ZSSE) was obtained from ZSS via detailed modern extraction, separation, and purification technologies. The chemical constituents of ZSSE were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS). For in vivo experiments, a rat model of insomnia induced by p-chlorophenylalanine (PCPA) was established to investigate the potential effect and corresponding mechanism of ZSSE on improving sleep. Hematoxylin-eosin staining (HE) results revealed that the drug group showed prominent advantages over the model group in improving sleep. Moreover, the brain levels of γ-aminobutyric acid (GABA), glutamic acid (Glu), 5-hydroxytryptamine (5-HT), and dopamine (DA) were monitored via enzyme-linked immunosorbent assay (ELISA) to further study the sleep-improving mechanism of ZSSE. We found that sleep was effectively improved via upregulation of GABA and 5-HT and downregulation of Glu and DA. In addition, molecular mechanisms of ZSSE in improving sleep were studied by immunohistochemical analysis. The results showed that sleep was improved by regulating the expression levels of GABA receptor subunit alpha-1 (GABAARα1) and GABA acid receptor subunit gamma-2 (GABAARγ2) receptors in the hypothalamus and hippocampus tissue sections. Therefore, this work not only identified the active ingredients of ZSSE but also revealed the potential pharmacological mechanism of ZSSE for improving sleep, which may greatly stimulate the prospective development and application of ZSSE.
Collapse
Affiliation(s)
- Fengqin Xiao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shuai Shao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hongyin Zhang
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Guangfu Li
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Songlan Piao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Guangzhe Li
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mingming Yan
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Chaturvedi R, Stork T, Yuan C, Freeman MR, Emery P. Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Curr Biol 2022; 32:1895-1908.e5. [PMID: 35303417 PMCID: PMC9090989 DOI: 10.1016/j.cub.2022.02.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
A precise balance between sleep and wakefulness is essential to sustain a good quality of life and optimal brain function. GABA is known to play a key and conserved role in sleep control, and GABAergic tone should, therefore, be tightly controlled in sleep circuits. Here, we examined the role of the astrocytic GABA transporter (GAT) in sleep regulation using Drosophila melanogaster. We found that a hypomorphic gat mutation (gat33-1) increased sleep amount, decreased sleep latency, and increased sleep consolidation at night. Interestingly, sleep defects were suppressed when gat33-1 was combined with a mutation disrupting wide-awake (wake), a gene that regulates the cell-surface levels of the GABAA receptor resistance to dieldrin (RDL) in the wake-promoting large ventral lateral neurons (l-LNvs). Moreover, RNAi knockdown of rdl and its modulators dnlg4 and wake in these circadian neurons also suppressed gat33-1 sleep phenotypes. Brain immunohistochemistry showed that GAT-expressing astrocytes were located near RDL-positive l-LNv cell bodies and dendritic processes. We concluded that astrocytic GAT decreases GABAergic tone and RDL activation in arousal-promoting LNvs, thus determining proper sleep amount and quality in Drosophila.
Collapse
Affiliation(s)
- Ratna Chaturvedi
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tobias Stork
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chunyan Yuan
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Kramer RH, Rajappa R. Interrogating the function of GABA A receptors in the brain with optogenetic pharmacology. Curr Opin Pharmacol 2022; 63:102198. [PMID: 35276498 DOI: 10.1016/j.coph.2022.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
To better understand neural circuits and behavior, microbial opsins have been developed as optogenetic tools for stimulating or inhibiting action potentials with high temporal and spatial precision. However, if we seek a more reductionist understanding of how neuronal circuits operate, we also need high-resolution tools for perturbing the function of synapses. By combining photochemical tools and molecular biology, a wide variety of light-regulated neurotransmitter receptors have been developed, enabling photo-control of excitatory, inhibitory, and modulatory synaptic transmission. Here we focus on photo-control of GABAA receptors, ligand-gated Cl- channels that underlie almost all synaptic inhibition in the mammalian brain. By conjugating a photoswitchable tethered ligand onto a genetically-modified subunit of the GABAA receptor, light-sensitivity can be conferred onto specific isoforms of the receptor. Through gene editing, this attachment site can be knocked into the genome, enabling photocontrol of endogenous GABAA receptors. This strategy can be employed to explore the cell biology and neurophysiology of GABAA receptors. This includes investigating how specific isoforms contribute to synaptic and tonic inhibition and understanding the roles they play in brain development, long-term synaptic plasticity, and learning and memory.
Collapse
Affiliation(s)
- Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| | - Rajit Rajappa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
7
|
Distinct Functional Alterations and Therapeutic Options of Two Pathological De Novo Variants of the T292 Residue of GABRA1 Identified in Children with Epileptic Encephalopathy and Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:ijms23052723. [PMID: 35269865 PMCID: PMC8911174 DOI: 10.3390/ijms23052723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations of GABAAR have reportedly led to epileptic encephalopathy and neurodevelopmental disorders. We have identified a novel de novo T292S missense variant of GABRA1 from a pediatric patient with grievous global developmental delay but without obvious epileptic activity. This mutation coincidentally occurs at the same residue as that of a previously reported GABRA1 variant T292I identified from a pediatric patient with severe epilepsy. The distinct phenotypes of these two patients prompted us to compare the impacts of the two mutants on the receptor function and to search for suitable therapeutics. In this study, we used biochemical techniques and patch-clamp recordings in HEK293 cells overexpressing either wild-type or mutated rat recombinant GABAARs. We found that the α1T292S variant significantly increased GABA-evoked whole-cell currents, shifting the dose-response curve to the left without altering the maximal response. In contrast, the α1T292I variant significantly reduced GABA-evoked currents, shifting the dose-response curve to the right with a severely diminished maximum response. Single-channel recordings further revealed that the α1T292S variant increased, while the α1T292I variant decreased the GABAAR single-channel open time and open probability. Importantly, we found that the T292S mutation-induced increase in GABAAR function could be fully normalized by the negative GABAAR modulator thiocolchicoside, whereas the T292I mutation-induced impairment of GABAAR function was largely rescued with a combination of the GABAAR positive modulators diazepam and verapamil. Our study demonstrated that α1T292 is a critical residue for controlling GABAAR channel gating, and mutations at this residue may produce opposite impacts on the function of the receptors. Thus, the present work highlights the importance of functionally characterizing each individual GABAAR mutation for ensuring precision medicine.
Collapse
|
8
|
Intricacies of GABA A Receptor Function: The Critical Role of the β3 Subunit in Norm and Pathology. Int J Mol Sci 2021; 22:ijms22031457. [PMID: 33535681 PMCID: PMC7867123 DOI: 10.3390/ijms22031457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Neuronal intracellular chloride ([Cl−]i) is a key determinant in γ-aminobutyric acid type A (GABA)ergic signaling. γ-Aminobutyric acid type A receptors (GABAARs) mediate both inhibitory and excitatory neurotransmission, as the passive fluxes of Cl− and HCO3− via pores can be reversed by changes in the transmembrane concentration gradient of Cl−. The cation–chloride co-transporters (CCCs) are the primary systems for maintaining [Cl−]i homeostasis. However, despite extensive electrophysiological data obtained in vitro that are supported by a wide range of molecular biological studies on the expression patterns and properties of CCCs, the presence of ontogenetic changes in [Cl−]i—along with the consequent shift in GABA reversal potential—remain a subject of debate. Recent studies showed that the β3 subunit possesses properties of the P-type ATPase that participates in the ATP-consuming movement of Cl− via the receptor. Moreover, row studies have demonstrated that the β3 subunit is a key player in GABAAR performance and in the appearance of serious neurological disorders. In this review, we discuss the properties and driving forces of CCCs and Cl−, HCO3−ATPase in the maintenance of [Cl−]i homeostasis after changes in upcoming GABAAR function. Moreover, we discuss the contribution of the β3 subunit in the manifestation of epilepsy, autism, and other syndromes.
Collapse
|
9
|
Kumar PS. Interventions to prevent periodontal disease in tobacco-, alcohol-, and drug-dependent individuals. Periodontol 2000 2020; 84:84-101. [PMID: 32844411 DOI: 10.1111/prd.12333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Substance abuse affects more than one sixth of the world's population. More importantly, the nature of the abuse and the type of addictive substances available to individuals is increasing exponentially. All substances with abusive potential impact both the human immuno-inflammatory system and oral microbial communities, and therefore play a critical role in the etiopathogenesis of periodontal diseases. Evidence strongly supports the efficacy of professionally delivered cessation counseling. Dentists, dental therapists, and hygienists are ideally placed to deliver this therapy, and to spearhead efforts to provide behavioral and pharmacologic support for cessation. The purpose of this review is to examine the biologic mechanisms underlying their role in disease causation, to understand the pharmacologic and behavioral basis for their habituation, and to investigate the efficacy of population-based and personalized interventions in prevention of periodontal disease.
Collapse
Affiliation(s)
- Purnima S Kumar
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, USA
| |
Collapse
|
10
|
McEachern EP, Coley AA, Yang SS, Gao WJ. PSD-95 deficiency alters GABAergic inhibition in the prefrontal cortex. Neuropharmacology 2020; 179:108277. [PMID: 32818520 DOI: 10.1016/j.neuropharm.2020.108277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/01/2022]
Abstract
Postsynaptic Density Protein-95 (PSD-95) is a major scaffolding protein in the excitatory synapses in the brain and a critical regulator of synaptic maturation for NMDA and AMPA receptors. PSD-95 deficiency has been linked to cognitive and learning deficits implicated in neurodevelopmental disorders such as autism and schizophrenia. Previous studies have shown that PSD-95 deficiency causes a significant reduction in the excitatory response in the hippocampus. However, little is known about whether PSD-95 deficiency will affect gamma-aminobutyric acid (GABA)ergic inhibitory synapses. Using a PSD-95 transgenic mouse model (PSD-95+/-), we studied how PSD-95 deficiency affects GABAA receptor expression and function in the medial prefrontal cortex (mPFC) during adolescence. Our results showed a significant increase in the GABAA receptor subunit α1. Correspondingly, there are increases in the frequency and amplitude in spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal neurons in the mPFC of PSD-95+/- mice, along with a significant increase in evoked IPSCs, leading to a dramatic shift in the excitatory-to-inhibitory balance in PSD-95 deficient mice. Furthermore, PSD-95 deficiency promotes inhibitory synapse function via upregulation and trafficking of NLGN2 and reduced GSK3β activity through tyr-216 phosphorylation. Our study provides novel insights on the effects of GABAergic transmission in the mPFC due to PSD-95 deficiency and its potential link with cognitive and learning deficits associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Erin P McEachern
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Austin A Coley
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
11
|
Hadidi Zavareh AH, Haji Khani R, Pakpour B, Soheili M, Salami M. Probiotic treatment differentially affects the behavioral and electrophysiological aspects in ethanol exposed animals. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:776-780. [PMID: 32695294 PMCID: PMC7351434 DOI: 10.22038/ijbms.2020.41685.9846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Harmful effects of alcohol on brain function including cognitive phenomena are well known. Damage to gut microbiota is linked to neurological disorders. Evidence indicates that intestinal flora can be strengthened by probiotic bacteria. In this study, we evaluated the effect of probiotics administration on LTP induction in rats receiving ethanol. MATERIALS AND METHODS To assess if probiotic treatment influences toxic effect of ethanol, vehicle (CON) and probiotic treated (CON+PRO) control rats, and chronic ethanol (CE) exposed and CE probiotic treated (CE+PRO) animals were entered into the experiments. Shuttle box test and in vivo electrophysiological recordings were accomplished to evaluate memory and hippocampal baseline filed excitatory postsynaptic potentials (fEPSPs) and long term potentiation (LTP), respectively. RESULTS Ethanol impaired memory in the CE rats. It also diminished the slope size of fEPSPs and prevented LTP induction. While the probiotic supplementation improved memory in the CE+PRO rats, it did not influence synaptic transmission in these animals. CONCLUSION Conclusively, behavioral but not electrophysiological aspect of cognition is sensitive to probiotic treatment in the ethanol exposed animals.
Collapse
Affiliation(s)
| | - Ramin Haji Khani
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bahareh Pakpour
- Department of Biology, Faculty of Sciences Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of medical sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of medical sciences, Kashan, Iran
| |
Collapse
|
12
|
Lara CO, Burgos CF, Moraga-Cid G, Carrasco MA, Yévenes GE. Pentameric Ligand-Gated Ion Channels as Pharmacological Targets Against Chronic Pain. Front Pharmacol 2020; 11:167. [PMID: 32218730 PMCID: PMC7079299 DOI: 10.3389/fphar.2020.00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is a common detrimental condition that affects around 20% of the world population. The current drugs to treat chronic pain states, especially neuropathic pain, have a limited clinical efficiency and present significant adverse effects that complicates their regular use. Recent studies have proposed new therapeutic strategies focused on the pharmacological modulation of G-protein-coupled receptors, transporters, enzymes, and ion channels expressed on the nociceptive pathways. The present work intends to summarize recent advances on the pharmacological modulation of pentameric ligand-gated ion channels, which plays a key role in pain processing. Experimental data have shown that novel allosteric modulators targeting the excitatory nicotinic acetylcholine receptor, as well as the inhibitory GABAA and glycine receptors, reverse chronic pain-related behaviors in preclinical assays. Collectively, these evidences strongly suggest the pharmacological modulation of pentameric ligand-gated ion channels is a promising strategy towards the development of novel therapeutics to treat chronic pain states in humans.
Collapse
Affiliation(s)
- César O Lara
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Carlos F Burgos
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Mónica A Carrasco
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Talca, Talca, Chile
| | - Gonzalo E Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| |
Collapse
|
13
|
Iffland H, Wellmann R, Schmid M, Preuß S, Tetens J, Bessei W, Bennewitz J. Genomewide Mapping of Selection Signatures and Genes for Extreme Feather Pecking in Two Divergently Selected Laying Hen Lines. Animals (Basel) 2020; 10:ani10020262. [PMID: 32041297 PMCID: PMC7070400 DOI: 10.3390/ani10020262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Feather pecking is a behavior frequently occurring in commercial layer flocks. It often leads to skin injuries and cannibalism. Besides economic losses, severe animal welfare problems cannot be ignored. Previous research has shown that the trait is heritable. Thus breeding against feather pecking is possible, but phenotyping in a commercial environment is economically unfeasible at the moment because of the lack of proper techniques. Therefore, understanding the genetic background of the trait is mandatory to establish a genomic breeding program. This would require genotypic information of the hens, which is feasible under practical conditions. In the present study, we used different methods to identify regions in the genome that influence feather pecking and extreme feather pecking. We found one trait associated with the genomic region. The use of genotypic information from this region in terms of selection against the undesired behavior may help to improve animal welfare in layer flocks. Abstract Feather pecking (FP) is a longstanding serious problem in commercial flocks of laying hens. It is a highly polygenic trait and the genetic background is still not completely understood. In order to find genomic regions influencing FP, selection signatures between laying hen lines divergently selected for high and low feather pecking were mapped using the intra-population iHS and the inter-population FST approach. In addition, the existence of an extreme subgroup of FP hens (EFP) across both selected lines has been demonstrated by fitting a mixture of negative binomial distributions to the data and calculating the posterior probability of belonging to the extreme subgroup (pEFP) for each hen. A genomewide association study (GWAS) was performed for the traits pEFP and FP delivered (FPD) with a subsequent post GWAS analysis. Mapping of selection signatures revealed no clear regions under selection. GWAS revealed a region on Chromosome 1, where the existence of a QTL influencing FP is likely. The candidate genes found in this region are a part of the GABAergic system, which has already been linked to FP in previous studies. Despite the polygenic nature of FP, selection on these candidate genes may reduce FP.
Collapse
Affiliation(s)
- Hanna Iffland
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
- Correspondence:
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
| | - Markus Schmid
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
| | - Jens Tetens
- Department of Animal Science, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany;
| | - Werner Bessei
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70593 Stuttgart, Germany; (R.W.); (M.S.); (S.P.); (W.B.); (J.B.)
| |
Collapse
|
14
|
Pathophysiology of and therapeutic options for a GABRA1 variant linked to epileptic encephalopathy. Mol Brain 2019; 12:92. [PMID: 31707987 PMCID: PMC6842544 DOI: 10.1186/s13041-019-0513-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
We report the identification of a de novo GABRA1 (R214C) variant in a child with epileptic encephalopathy (EE), describe its functional characterization and pathophysiology, and evaluate its potential therapeutic options. The GABRA1 (R214C) variant was identified using whole exome sequencing, and the pathogenic effect of this mutation was investigated by comparing wild-type (WT) α1 and R214C α1 GABAA receptor-expressing HEK cells. GABA-evoked currents in these cells were recorded using whole-cell, outside-out macro-patch and cell-attached single-channel patch-clamp recordings. Changes to surface and total protein expression levels of WT α1 and R214C α1 were quantified using surface biotinylation assay and western blotting, respectively. Finally, potential therapeutic options were explored by determining the effects of modulators, including diazepam, insulin, and verapamil, on channel gating and receptor trafficking of WT and R214C GABAA receptors. We found that the GABRA1 (R214C) variant decreased whole-cell GABA-evoked currents by reducing single channel open time and both surface and total GABAA receptor expression levels. The GABA-evoked currents in R214C GABAA receptors could only be partially restored with benzodiazepine (diazepam) and insulin. However, verapamil treatment for 24 h fully restored the function of R214C mutant receptors, primarily by increasing channel open time. We conclude that the GABRA1 (R214C) variant reduces channel activity and surface expression of mutant receptors, thereby contributing to the pathogenesis of genetic EE. The functional restoration by verapamil suggests that it is a potentially new therapeutic option for patients with the R214C variant and highlights the value of precision medicine in the treatment of genetic EEs.
Collapse
|
15
|
Mele M, Costa RO, Duarte CB. Alterations in GABA A-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders. Front Cell Neurosci 2019; 13:77. [PMID: 30899215 PMCID: PMC6416223 DOI: 10.3389/fncel.2019.00077] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
GABAA receptors (GABAAR) are the major players in fast inhibitory neurotransmission in the central nervous system (CNS). Regulation of GABAAR trafficking and the control of their surface expression play important roles in the modulation of the strength of synaptic inhibition. Different pieces of evidence show that alterations in the surface distribution of GABAAR and dysregulation of their turnover impair the activity of inhibitory synapses. A diminished efficacy of inhibitory neurotransmission affects the excitatory/inhibitory balance and is a common feature of various disorders of the CNS characterized by an increased excitability of neuronal networks. The synaptic pool of GABAAR is mainly controlled through regulation of internalization, recycling and lateral diffusion of the receptors. Under physiological condition these mechanisms are finely coordinated to define the strength of GABAergic synapses. In this review article, we focus on the alteration in GABAAR trafficking with an impact on the function of inhibitory synapses in various disorders of the CNS. In particular we discuss how similar molecular mechanisms affecting the synaptic distribution of GABAAR and consequently the excitatory/inhibitory balance may be associated with a wide diversity of pathologies of the CNS, from psychiatric disorders to acute alterations leading to neuronal death. A better understanding of the cellular and molecular mechanisms that contribute to the impairment of GABAergic neurotransmission in these disorders, in particular the alterations in GABAAR trafficking and surface distribution, may lead to the identification of new pharmacological targets and to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Joshi S, Kapur J. Neurosteroid regulation of GABA A receptors: A role in catamenial epilepsy. Brain Res 2019; 1703:31-40. [PMID: 29481795 PMCID: PMC6107446 DOI: 10.1016/j.brainres.2018.02.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/08/2017] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
The female reproductive hormones progesterone and estrogen regulate network excitability. Fluctuations in the circulating levels of these hormones during the menstrual cycle cause frequent seizures during certain phases of the cycle in women with epilepsy. This seizure exacerbation, called catamenial epilepsy, is a dominant form of drug-refractory epilepsy in women of reproductive age. Progesterone, through its neurosteroid derivative allopregnanolone, increases γ-aminobutyric acid type-A receptor (GABAR)-mediated inhibition in the brain and keeps seizures under control. Catamenial seizures are believed to be a neurosteroid withdrawal symptom, and it was hypothesized that exogenous administration of progesterone to maintain its levels high during luteal phase will treat catamenial seizures. However, in a multicenter, double-blind, phase III clinical trial, progesterone treatment did not suppress catamenial seizures. The expression of GABARs with reduced neurosteroid sensitivity in epileptic animals may explain the failure of the progesterone clinical trial. The expression of neurosteroid-sensitive δ subunit-containing GABARs is reduced, and the expression of α4γ2 subunit-containing GABARs is upregulated, which alters the inhibition of dentate granule cells in epilepsy. These changes reduce the endogenous neurosteroid control of seizures and contribute to catamenial seizures.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States.
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, United States
| |
Collapse
|
17
|
Full rescue of an inactive olfactory receptor mutant by elimination of an allosteric ligand-gating site. Sci Rep 2018; 8:9631. [PMID: 29941999 PMCID: PMC6018111 DOI: 10.1038/s41598-018-27790-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022] Open
Abstract
Ligand-gating has recently been proposed as a novel mechanism to regulate olfactory receptor sensitivity. TAAR13c, the zebrafish olfactory receptor activated by the death-associated odor cadaverine, appears to possess an allosteric binding site for cadaverine, which was assumed to block progress of the ligand towards the internal orthosteric binding-and-activation site. Here we have challenged the suggested gating mechanism by modeling the entry tunnel for the ligand as well as the ligand path inside the receptor. We report an entry tunnel, whose opening is blocked by occupation of the external binding site by cadaverine, confirming the hypothesized gating mechanism. A multistep docking algorithm suggested a plausible path for cadaverine from the allosteric to the orthosteric binding-and-activation site. Furthermore we have combined a gain-of-function gating site mutation and a loss-of-function internal binding site mutation in one recombinant receptor. This receptor had almost wildtype ligand affinities, consistent with modeling results that showed localized effects for each mutation. A novel mutation of the suggested gating site resulted in increased receptor ligand affinity. In summary both the experimental and the modeling results provide further evidence for the proposed gating mechanism, which surprisingly exhibits pronounced similarity to processes described for some metabotropic neurotransmitter receptors.
Collapse
|
18
|
Fujita T, Kumagai G, Liu X, Wada K, Tanaka T, Kudo H, Asari T, Fukutoku T, Sasaki A, Nitobe Y, Nikaido Y, Furukawa KI, Hirata M, Kanematsu T, Ueno S, Ishibashi Y. Poor Motor-Function Recovery after Spinal Cord Injury in Anxiety-Model Mice with Phospholipase C-Related Catalytically Inactive Protein Type 1 Knockout. J Neurotrauma 2018; 35:1379-1386. [DOI: 10.1089/neu.2017.5492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Taku Fujita
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Gentaro Kumagai
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Xizhe Liu
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kanichiro Wada
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshihiro Tanaka
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hitoshi Kudo
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Asari
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiro Fukutoku
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ayako Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohshiro Nitobe
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken-Ichi Furukawa
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
19
|
Zemková H, Stojilkovic SS. Neurotransmitter receptors as signaling platforms in anterior pituitary cells. Mol Cell Endocrinol 2018; 463:49-64. [PMID: 28684290 PMCID: PMC5752632 DOI: 10.1016/j.mce.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
The functions of anterior pituitary cells are controlled by two major groups of hypothalamic and intrapituitary ligands: one exclusively acts on G protein-coupled receptors and the other activates both G protein-coupled receptors and ligand-gated receptor channels. The second group of ligands operates as neurotransmitters in neuronal cells and their receptors are termed as neurotransmitter receptors. Most information about pituitary neurotransmitter receptors was obtained from secretory studies, RT-PCR analyses of mRNA expression and immunohistochemical and biochemical analyses, all of which were performed using a mixed population of pituitary cells. However, recent electrophysiological and imaging experiments have characterized γ-aminobutyric acid-, acetylcholine-, and ATP-activated receptors and channels in single pituitary cell types, expanding this picture and revealing surprising differences in their expression between subtypes of secretory cells and between native and immortalized pituitary cells. The main focus of this review is on the electrophysiological and pharmacological properties of these receptors and their roles in calcium signaling and calcium-controlled hormone secretion.
Collapse
Affiliation(s)
- Hana Zemková
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology, ASCR, Prague, Czech Republic.
| | - Stanko S Stojilkovic
- Sections on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
20
|
Nicholl GCB, Jawad AK, Weymouth R, Zhang H, Beg AA. Pharmacological characterization of the excitatory 'Cys-loop' GABA receptor family in Caenorhabditis elegans. Br J Pharmacol 2017; 174:781-795. [PMID: 28146602 DOI: 10.1111/bph.13736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Ionotropic GABA receptors are evolutionarily conserved proteins that mediate cellular and network inhibition in both vertebrates and invertebrates. A unique class of excitatory GABA receptors has been identified in several nematode species. Despite well-characterized functions in Caenorhabditis elegans, little is known about the pharmacology of the excitatory GABA receptors EXP-1 and LGC-35. Using a panel of compounds that differentially activate and modulate ionotropic GABA receptors, we investigated the agonist binding site and allosteric modulation of EXP-1 and LGC-35. EXPERIMENTAL APPROACH We used two-electrode voltage clamp recordings to characterize the pharmacological profile of EXP-1 and LGC-35 receptors expressed in Xenopus laevis oocytes. KEY RESULTS The pharmacology of EXP-1 and LGC-35 is different from that of GABAA and GABAA -ρ receptors. Both nematode receptors are resistant to the competitive orthosteric antagonist bicuculline and to classical ionotropic receptor pore blockers. The GABAA -ρ specific antagonist, TPMPA, was the only compound tested that potently inhibited EXP-1 and LGC-35. Neurosteroids have minimal effects on GABA-induced currents, but ethanol selectively potentiates LGC-35. CONCLUSIONS AND IMPLICATIONS The pharmacological properties of EXP-1 and LGC-35 more closely resemble the ionotropic GABAA -ρ family. However, EXP-1 and LGC-35 exhibit a unique profile that differs from vertebrate GABAA and GABAA -ρ receptors, insect GABA receptors and nematode GABA receptors. As a pair, EXP-1 and LGC-35 may be utilized to further understand the differential molecular mechanisms of agonist, antagonist and allosteric modulation at ionotropic GABA receptors and may aid in the design of new and more specific anthelmintics that target GABA neurotransmission.
Collapse
Affiliation(s)
| | - Ali K Jawad
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Haoming Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Asim A Beg
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.,Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol 2016; 7:1934. [PMID: 27965654 PMCID: PMC5127831 DOI: 10.3389/fmicb.2016.01934] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| | - Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| |
Collapse
|
22
|
Förstera B, Castro PA, Moraga-Cid G, Aguayo LG. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected? Front Cell Neurosci 2016; 10:114. [PMID: 27199667 PMCID: PMC4858537 DOI: 10.3389/fncel.2016.00114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023] Open
Abstract
In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.
Collapse
Affiliation(s)
- Benjamin Förstera
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| | - Patricio A Castro
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte Coquimbo, Chile
| | - Gustavo Moraga-Cid
- Hindbrain Integrative Neurobiology Laboratory, Institut de Neurobiologie Alfred Fessard Gif-Sur-Yvette, France
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| |
Collapse
|
23
|
Collier ZA, Gust KA, Gonzalez-Morales B, Gong P, Wilbanks MS, Linkov I, Perkins EJ. A weight of evidence assessment approach for adverse outcome pathways. Regul Toxicol Pharmacol 2016; 75:46-57. [DOI: 10.1016/j.yrtph.2015.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023]
|
24
|
Lo FS, Blue ME, Erzurumlu RS. Enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice. J Neurophysiol 2016; 115:1298-306. [PMID: 26683074 PMCID: PMC4808090 DOI: 10.1152/jn.00944.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electrophysiological results showed an excitation/inhibition imbalance, biased toward inhibition, due to an increase in efficacy of postsynaptic GABAA receptors rather than alterations in inhibitory network and presynaptic release properties. Enhanced inhibition impaired the transmission of tonic sensory signals from the thalamus to the somatosensory cortex. Previous morphological studies showed an upregulation of NMDA receptors in the neocortex of both RTT patients and Mecp2-null mice at early ages [Blue ME, Naidu S, Johnston MV. Ann Neurol 45: 541-545, 1999; Blue ME, Kaufmann WE, Bressler J, Eyring C, O'Driscoll C, Naidu S, Johnston MV. Anat Rec (Hoboken) 294: 1624-1634, 2011]. Although AMPA and NMDA receptor-mediated excitatory synaptic transmission was not altered in the barrel cortex of Mecp2-null mice, extrasynaptic NMDA receptor-mediated responses increased markedly. These responses were blocked by memantine, suggesting that extrasynaptic NMDA receptors play an important role in the pathogenesis of RTT. The results suggest that enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses may underlie impaired somatosensation and that pharmacological blockade of extrasynaptic NMDA receptors may have therapeutic value for RTT.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Mary E Blue
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc. and Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
25
|
Drobish JK, Kelz MB, DiPuppo PM, Cook-Sather SD. Emergence delirium with transient associative agnosia and expressive aphasia reversed by flumazenil in a pediatric patient. ACTA ACUST UNITED AC 2015; 4:148-50. [PMID: 26035220 DOI: 10.1213/xaa.0000000000000140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple factors may contribute to the development of emergence delirium in a child. We present the case of a healthy 12-year-old girl who received preoperative midazolam with the desired anxiolytic effect, underwent a brief general anesthetic, and then exhibited postoperative delirium, consisting of a transient associative agnosia and expressive aphasia. Administration of flumazenil led to immediate and lasting resolution of her symptoms. We hypothesize that γ-aminobutyric acid type A receptor-mediated effects, most likely related to an atypical offset of midazolam, are an important subset of emergence delirium that is amenable to pharmacologic therapy with flumazenil.
Collapse
Affiliation(s)
- Julie K Drobish
- From the Departments of *Anesthesiology and Critical Care Medicine and ‡Nursing, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and †Department of Anesthesiology and Critical Care, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
26
|
Gong P, Hong H, Perkins EJ. Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers. Biomark Med 2015; 9:1225-39. [PMID: 26508561 DOI: 10.2217/bmm.15.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antagonism of ionotropic GABA receptors (iGABARs) can occur at three distinct types of receptor binding sites causing chemically induced epileptic seizures. Here we review three adverse outcome pathways, each characterized by a specific molecular initiating event where an antagonist competitively binds to active sites, negatively modulates allosteric sites or noncompetitively blocks ion channel on the iGABAR. This leads to decreased chloride conductance, followed by depolarization of affected neurons, epilepsy-related death and ultimately decreased population. Supporting evidence for causal linkages from the molecular to population levels is presented and differential sensitivity to iGABAR antagonists in different GABA receptors and organisms discussed. Adverse outcome pathways are poised to become important tools for linking mechanism-based biomarkers to regulated outcomes in next-generation risk assessment.
Collapse
Affiliation(s)
- Ping Gong
- Environmental Laboratory, US Army Engineer Research & Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Huixiao Hong
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Edward J Perkins
- Environmental Laboratory, US Army Engineer Research & Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| |
Collapse
|
27
|
Schipper S, Aalbers MW, Rijkers K, Swijsen A, Rigo JM, Hoogland G, Vles JSH. Tonic GABAA Receptors as Potential Target for the Treatment of Temporal Lobe Epilepsy. Mol Neurobiol 2015; 53:5252-65. [PMID: 26409480 PMCID: PMC5012145 DOI: 10.1007/s12035-015-9423-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
Tonic GABAA receptors are a subpopulation of receptors that generate long-lasting inhibition and thereby control network excitability. In recent years, these receptors have been implicated in various neurological and psychiatric disorders, including Parkinson’s disease, schizophrenia, and epilepsy. Their distinct subunit composition and function, compared to phasic GABAA receptors, opens the possibility to specifically modulate network properties. In this review, the role of tonic GABAA receptors in epilepsy and as potential antiepileptic target will be discussed.
Collapse
Affiliation(s)
- S Schipper
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - M W Aalbers
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K Rijkers
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery and Orthopedic Surgery, Atrium Hospital Heerlen, Heerlen, The Netherlands
| | - A Swijsen
- BIOMED Research Institute, Hasselt University/Transnational University Limburg, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - J M Rigo
- BIOMED Research Institute, Hasselt University/Transnational University Limburg, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - G Hoogland
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J S H Vles
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
28
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Advances in the pharmacology of lGICs auxiliary subunits. Pharmacol Res 2015; 101:65-73. [PMID: 26255765 DOI: 10.1016/j.phrs.2015.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/25/2015] [Accepted: 07/26/2015] [Indexed: 11/21/2022]
Abstract
Ligand-gated ion channels (LGICs) are cell surface integral proteins that mediate the fast neurotransmission in the nervous system. LGICs require auxiliary subunits for their trafficking, assembly and pharmacological modulation. Auxiliary subunits do not form functional homomeric receptors, but are reported to assemble with the principal subunits in order to modulate their pharmacological profiles. For example, nACh receptors are built at least by co-assemble of α and β subunits, and the neuronal auxiliary subunits β3 and α5 and muscle type β, δ, γ, and ϵ determine the agonist affinity of these receptors. Serotonergic 5-HT3B, 5-HT3C, 5-HT3D and 5-HT3E are reported to assemble with the 5-HT3A subunit to modulate its pharmacological profile. Functional studies evaluating the role of γ2 and δ auxiliary subunits of GABAA receptors have made important advances in the understanding of the action of benzodiazepines, ethanol and neurosteroids. Glycine receptors are composed principally by α1-3 subunits and the auxiliary subunit β determines their synaptic location and their pharmacological response to propofol and ethanol. NMDA receptors appear to be functional as heterotetrameric channels. So far, the existence of NMDA auxiliary subunits is controversial. On the other hand, Kainate receptors are modulated by NETO 1 and 2. AMPA receptors are modulated by TARPs, Shisa 9, CKAMP44, CNIH2-3 auxiliary proteins reported that controls their trafficking, conductance and gating of channels. P2X receptors are able to associate with auxiliary Pannexin-1 protein to modulate P2X7 receptors. Considering the pharmacological relevance of different LGICs auxiliary subunits in the present work we will highlight the therapeutic potential of these modulator proteins.
Collapse
|
30
|
Leng S, Liu Y, Weissfeld JL, Thomas CL, Han Y, Picchi MA, Edlund CK, Willink RP, Gaither Davis AL, Do KC, Nukui T, Zhang X, Burki EA, Van Den Berg D, Romkes M, Gauderman WJ, Crowell RE, Tesfaigzi Y, Stidley CA, Amos CI, Siegfried JM, Gilliland FD, Belinsky SA. 15q12 variants, sputum gene promoter hypermethylation, and lung cancer risk: a GWAS in smokers. J Natl Cancer Inst 2015; 107:djv035. [PMID: 25713168 DOI: 10.1093/jnci/djv035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality worldwide. Detection of promoter hypermethylation of tumor suppressor genes in exfoliated cells from the lung provides an assessment of field cancerization that in turn predicts lung cancer. The identification of genetic determinants for this validated cancer biomarker should provide novel insights into mechanisms underlying epigenetic reprogramming during lung carcinogenesis. METHODS A genome-wide association study using generalized estimating equations and logistic regression models was conducted in two geographically independent smoker cohorts to identify loci affecting the propensity for cancer-related gene methylation that was assessed by a 12-gene panel interrogated in sputum. All statistical tests were two-sided. RESULTS Two single nucleotide polymorphisms (SNPs) at 15q12 (rs73371737 and rs7179575) that drove gene methylation were discovered and replicated with rs73371737 reaching genome-wide significance (P = 3.3×10(-8)). A haplotype carrying risk alleles from the two 15q12 SNPs conferred 57% increased risk for gene methylation (P = 2.5×10(-9)). Rs73371737 reduced GABRB3 expression in lung cells and increased risk for smoking-induced chronic mucous hypersecretion. Furthermore, subjects with variant homozygote of rs73371737 had a two-fold increase in risk for lung cancer (P = .0043). Pathway analysis identified DNA double-strand break repair by homologous recombination (DSBR-HR) as a major pathway affecting susceptibility for gene methylation that was validated by measuring chromatid breaks in lymphocytes challenged by bleomycin. CONCLUSIONS A functional 15q12 variant was identified as a risk factor for gene methylation and lung cancer. The associations could be mediated by GABAergic signaling that drives the smoking-induced mucous cell metaplasia. Our findings also substantiate DSBR-HR as a critical pathway driving epigenetic gene silencing.
Collapse
Affiliation(s)
- Shuguang Leng
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Yushi Liu
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Joel L Weissfeld
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Cynthia L Thomas
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Younghun Han
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Maria A Picchi
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Christopher K Edlund
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Randall P Willink
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Autumn L Gaither Davis
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Kieu C Do
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Tomoko Nukui
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Xiequn Zhang
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Elizabeth A Burki
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - David Van Den Berg
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Marjorie Romkes
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - W James Gauderman
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Richard E Crowell
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Yohannes Tesfaigzi
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Christine A Stidley
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Christopher I Amos
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Jill M Siegfried
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Frank D Gilliland
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS)
| | - Steven A Belinsky
- : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS).
| |
Collapse
|
31
|
Waldvogel H, Faull R. The Diversity of GABAA Receptor Subunit Distribution in the Normal and Huntington's Disease Human Brain1. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:223-64. [DOI: 10.1016/bs.apha.2014.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Procognitive effect of AC-3933 in aged mice, and synergistic effect of combination with donepezil in scopolamine-treated mice. Eur J Pharmacol 2014; 745:123-8. [DOI: 10.1016/j.ejphar.2014.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022]
|
33
|
Quelch D, De Santis V, Strege A, Myers J, Wells L, Nutt D, Lingford-Hughes A, Parker C, Tyacke R. Influence of agonist induced internalization on [3H]Ro15-4513 binding-an application to imaging fluctuations in endogenous GABA with positron emission tomography. Synapse 2014; 69:60-5. [DOI: 10.1002/syn.21780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/12/2014] [Accepted: 08/27/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Darren Quelch
- Centre for Neuropsychopharmacology; Division of Brain Sciences; Imperial College; London UK
| | | | | | - James Myers
- Centre for Neuropsychopharmacology; Division of Brain Sciences; Imperial College; London UK
| | - Lisa Wells
- Imanova Centro for Imaging Sciences; London UK
| | - David Nutt
- Centre for Neuropsychopharmacology; Division of Brain Sciences; Imperial College; London UK
| | - Anne Lingford-Hughes
- Centre for Neuropsychopharmacology; Division of Brain Sciences; Imperial College; London UK
| | | | - Robin Tyacke
- Centre for Neuropsychopharmacology; Division of Brain Sciences; Imperial College; London UK
| |
Collapse
|
34
|
Hashimoto T, Kiyoshi T, Kohayakawa H, Iwamura Y, Yoshida N. Pharmacological properties of AC-3933, a novel benzodiazepine receptor partial inverse agonist. Neuroscience 2014; 256:352-9. [DOI: 10.1016/j.neuroscience.2013.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Human immunodeficiency virus-1 Tat protein increases the number of inhibitory synapses between hippocampal neurons in culture. J Neurosci 2013; 33:17908-20. [PMID: 24198379 DOI: 10.1523/jneurosci.1312-13.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptodendritic damage correlates with cognitive decline in many neurodegenerative diseases, including human immunodeficiency virus-1 (HIV-1)-associated neurocognitive disorders (HAND). Because HIV-1 does not infect neurons, viral-mediated toxicity is indirect, resulting from released neurotoxins such as the HIV-1 protein transactivator of transcription (Tat). We compared the effects of Tat on inhibitory and excitatory synaptic connections between rat hippocampal neurons using an imaging-based assay that quantified clusters of the scaffolding proteins gephyrin or PSD95 fused to GFP. Tat (24 h) increased the number of GFP-gephyrin puncta and decreased the number of PSD95-GFP puncta. The effects of Tat on inhibitory and excitatory synapse number were mediated via the low-density lipoprotein receptor-related protein and subsequent Ca(2+) influx through GluN2A-containing NMDA receptors (NMDARs). The effects of Tat on synapse number required cell-autonomous activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Ca(2+) buffering experiments suggested that loss of excitatory synapses required activation of CaMKII in close apposition to the NMDAR, whereas the increase in inhibitory synapses required Ca(2+) diffusion to a more distal site. The increase in inhibitory synapses was prevented by inhibiting the insertion of GABAA receptors into the membrane. Synaptic changes induced by Tat (16 h) were reversed by blocking either GluN2B-containing NMDARs or neuronal nitric oxide synthase, indicating changing roles for pathways activated by NMDAR subtypes during the neurotoxic process. Compensatory changes in the number of inhibitory and excitatory synapses may serve as a novel mechanism to reduce network excitability in the presence of HIV-1 neurotoxins; these changes may inform the development of treatments for HAND.
Collapse
|
36
|
TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 2013; 33:15879-93. [PMID: 24089494 DOI: 10.1523/jneurosci.0530-13.2013] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation has been implicated in the progression of neurological disease, yet precisely how inflammation affects neuronal function remains unclear. Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine that regulates synapse function by controlling neurotransmitter receptor trafficking and homeostatic synaptic plasticity. Here we characterize the mechanisms through which TNFα regulates inhibitory synapse function in mature rat and mouse hippocampal neurons. Acute application of TNFα induces a rapid and persistent decrease of inhibitory synaptic strength and downregulation of cell-surface levels of GABA(A)Rs containing α1, α2, β2/3, and γ2 subunits. We show that trafficking of GABA(A)Rs in response to TNFα is mediated by neuronally expressed TNF receptor 1 and requires activation of p38 MAPK, phosphatidylinositol 3-kinase, protein phosphatase 1 (PP1), and dynamin GTPase. Furthermore, TNFα enhances the association of PP1 with GABA(A)R β3 subunits and dephosphorylates a site on β3 known to regulate phospho-dependent interactions with the endocytic machinery. Conversely, we find that calcineurin and PP2A are not essential components of the signaling pathway and that clustering of the scaffolding protein gephyrin is only reduced after the initial receptor endocytosis. Together, these findings demonstrate a distinct mechanism of regulated GABA(A)R endocytosis that may contribute to the disruption of circuit homeostasis under neuroinflammatory conditions.
Collapse
|
37
|
Abbah J, Braga MFM, Juliano SL. Targeted disruption of layer 4 during development increases GABAA receptor neurotransmission in the neocortex. J Neurophysiol 2013; 111:323-35. [PMID: 24155012 DOI: 10.1152/jn.00652.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cortical dysplasia (CD) associates with clinical pathologies, including epilepsy and mental retardation. CD results from impaired migration of immature neurons to their cortical targets, leading to clustering of neural cells and changes in cortical properties. We developed a CD model by administering methylazoxymethanol (MAM), an anti-mitotic, to pregnant ferrets on embryonic day 33; this leads to reduction in cortical thickness in addition to redistribution and increased expression of GABAA receptors (GABAAR). We evaluated the impact of MAM treatment on GABAAR-mediated synaptic transmission in postnatal day 0-1 neurons, leaving the ganglionic eminence (GE) and in layer 2/3 pyramidal cells of postnatal day 28-38 ferrets. Embryonic day 33 MAM treatment significantly increases the amplitude and frequency of spontaneous GABAAR-mediated inhibitory postsynaptic currents (IPSCs) in the cells leaving the GE. In older MAM-treated animals, the amplitude and frequency of GABAAR-mediated spontaneous IPSCs in layer 2/3 pyramidal cells is increased, as are the amplitude and frequency of miniature IPSCs. The kinetics of GABAAR opening also altered following treatment with MAM. Western blot analysis shows that the expression of the GABAAα3R and GABAAγ2R subunits amplified in our model animals. We did not observe any significant change in the passive properties of either the layer 2/3 pyramidal cells or cells leaving the GE after MAM treatment. These observations reinforce the idea that synaptic neurotransmission through GABAAR enhances following treatment with MAM and coincides with our finding of increased GABAAαR expression within the upper cortical layers. Overall, we demonstrate that small amounts of toxins delivered during corticogenesis can result in long-lasting changes in ambient expression of GABAAR that influence intrinsic neuronal properties.
Collapse
Affiliation(s)
- J Abbah
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and
| | | | | |
Collapse
|
38
|
González MI. The possible role of GABAA receptors and gephyrin in epileptogenesis. Front Cell Neurosci 2013; 7:113. [PMID: 23885234 PMCID: PMC3717475 DOI: 10.3389/fncel.2013.00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/26/2013] [Indexed: 12/29/2022] Open
Abstract
The term epileptogenesis refers to a dynamic alteration in neuronal excitability that promotes the appearance of spontaneous seizures. Temporal lobe epilepsy, the most common type of acquired epilepsy, often develops after an insult to the brain such as trauma, febrile seizures, encephalitis, or status epilepticus. During the pre-epileptic state (also referred as latent or silent period) there is a plethora of molecular, biochemical, and structural changes that lead to the generation of recurrent spontaneous seizures (or epilepsy). The specific contribution of these alterations to epilepsy development is unclear, but a loss of inhibition has been associated with the increased excitability detected in the latent period. A rapid increase in neuronal hyperexcitability could be due, at least in part, to a decline in the number of physiologically active GABAA receptors (GABAAR). Altered expression of scaffolding proteins involved in the trafficking and anchoring of GABAAR could directly impact the stability of GABAergic synapses and promote a deficiency in inhibitory neurotransmission. Uncovering the molecular mechanisms operating during epileptogenesis and its possible impact on the regulation of GABAAR and scaffolding proteins may offer new targets to prevent the development of epilepsy.
Collapse
Affiliation(s)
- Marco I González
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
39
|
Enoch MA, Baghal B, Yuan Q, Goldman D. A factor analysis of global GABAergic gene expression in human brain identifies specificity in response to chronic alcohol and cocaine exposure. PLoS One 2013; 8:e64014. [PMID: 23717525 PMCID: PMC3661725 DOI: 10.1371/journal.pone.0064014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022] Open
Abstract
Although expression patterns of GABAergic genes in rodent brain have largely been elucidated, no comprehensive studies have been performed in human brain. The purpose of this study was to identify global patterns of GABAergic gene expression in healthy adults, including trans and cis effects in the GABAA gene clusters, before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from ‘BrainSpan’ was obtained across 16 brain regions from postmortem samples from nine adults. A factor analysis was performed on global expression of 21 GABAergic pathway genes. Factor specificity for response to chronic alcohol/cocaine exposure was subsequently determined from the analysis of RNA-Seq data from postmortem hippocampus of eight alcoholics, eight cocaine addicts and eight controls. Six gene expression factors were identified. Most genes loaded (≥0.5) onto one factor; six genes loaded onto two. The largest factor (0.30 variance) included the chromosome 5 gene cluster that encodes the most common GABAA receptor, α1β2γ2, and genes encoding the α3β3γ2 receptor. Genes within this factor were largely unresponsive to chronic alcohol/cocaine exposure. In contrast, the chromosome 4 gene cluster factor (0.14 variance) encoding the α2β1γ1 receptor was influenced by chronic alcohol/cocaine exposure. Two other factors (0.17 and 0.06 variance) showed expression changes in alcoholics/cocaine addicts; these factors included genes involved in GABA synthesis and synaptic transport. Finally there were two factors that included genes with exceptionally low (0.10 variance) and high (0.09 variance) expression in the cerebellum; the former factor was unaffected by alcohol/cocaine exposure. This study has shown that there appears to be specificity of GABAergic gene groups, defined by covariation in expression, for response to chronic alcohol/cocaine exposure. These findings might have implications for combating stress-related craving and relapse.
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
40
|
Eckle VS, Hauser S, Drexler B, Antkowiak B, Grasshoff C. Opposing actions of sevoflurane on GABAergic and glycinergic synaptic inhibition in the spinal ventral horn. PLoS One 2013; 8:e60286. [PMID: 23565218 PMCID: PMC3614984 DOI: 10.1371/journal.pone.0060286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ventral horn is a major substrate in mediating the immobilizing properties of the volatile anesthetic sevoflurane in the spinal cord. In this neuronal network, action potential firing is controlled by GABA(A) and glycine receptors. Both types of ion channels are sensitive to volatile anesthetics, but their role in mediating anesthetic-induced inhibition of spinal locomotor networks is not fully understood. METHODOLOGY/PRINCIPAL FINDINGS To compare the effects of sevoflurane on GABAergic and glycinergic inhibitory postsynaptic currents (IPSCs) whole-cell voltage-clamp recordings from ventral horn interneurons were carried out in organotypic spinal cultures. At concentrations close to MAC (minimum alveolar concentration), decay times of both types of IPSCs were significantly prolonged. However, at 1.5 MAC equivalents, GABAergic IPSCs were decreased in amplitude and reduced in frequency. These effects counteracted the prolongation of the decay time, thereby decreasing the time-averaged GABAergic inhibition. In contrast, amplitudes and frequency of glycinergic IPSCs were not significantly altered by sevoflurane. Furthermore, selective GABA(A) and glycine receptor antagonists were tested for their potency to reverse sevoflurane-induced inhibition of spontaneous action potential firing in the ventral horn. These experiments confirmed a weak impact of GABA(A) receptors and a prominent role of glycine receptors at a high sevoflurane concentration. CONCLUSIONS At high concentrations, sevoflurane mediates neuronal inhibition in the spinal ventral horn primarily via glycine receptors, and less via GABA(A) receptors. Our results support the hypothesis that the impact of GABA(A) receptors in mediating the immobilizing properties of volatile anesthetics is less essential in comparison to glycine receptors.
Collapse
Affiliation(s)
- Veit-Simon Eckle
- Experimental Anesthesiology Section, Department of Anesthesiology & Intensive Care, Tübingen University Hospital, Eberhard-Karls-University, Tübingen, Germany
| | - Sabrina Hauser
- Experimental Anesthesiology Section, Department of Anesthesiology & Intensive Care, Tübingen University Hospital, Eberhard-Karls-University, Tübingen, Germany
| | - Berthold Drexler
- Experimental Anesthesiology Section, Department of Anesthesiology & Intensive Care, Tübingen University Hospital, Eberhard-Karls-University, Tübingen, Germany
- * E-mail:
| | - Bernd Antkowiak
- Experimental Anesthesiology Section, Department of Anesthesiology & Intensive Care, Tübingen University Hospital, Eberhard-Karls-University, Tübingen, Germany
| | - Christian Grasshoff
- Experimental Anesthesiology Section, Department of Anesthesiology & Intensive Care, Tübingen University Hospital, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
41
|
González MI, Cruz Del Angel Y, Brooks-Kayal A. Down-regulation of gephyrin and GABAA receptor subunits during epileptogenesis in the CA1 region of hippocampus. Epilepsia 2013; 54:616-24. [PMID: 23294024 DOI: 10.1111/epi.12063] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE Epileptogenesis is the process by which a brain becomes hyperexcitable and capable of generating recurrent spontaneous seizures. In humans, it has been hypothesized that following a brain insult there are a number of molecular and cellular changes that underlie the development of spontaneous seizures. Studies in animal models have shown that an injured brain may develop epileptiform activity before appearance of epileptic seizures and that the pathophysiology accompanying spontaneous seizures is associated with a dysfunction of γ-aminobutyric acid (GABA)ergic neurotransmission. Here, we analyzed the effects of status epilepticus on the expression of GABAA receptors (GABAA Rs) and scaffolding proteins involved in the regulation of GABAA R trafficking and anchoring. METHODS Western blot analysis was used to determine the levels of proteins involved in GABAA R trafficking and anchoring in adult rats subjected to pilocarpine-induced status epilepticus (SE) and controls. Cell surface biotinylation using a cell membrane-impermeable reagent was used to assay for changes in the expression of receptors at the plasma membrane. Finally, immunoprecipitation experiments were used to evaluate the composition of GABAA Rs. We examined for a correlation between total GABAA R subunit expression, plasma membrane expression, and receptor composition. KEY FINDINGS Analysis of tissue samples from the CA1 region of hippocampus show that SE promotes a loss of GABAA R subunits and of the scaffolding proteins associated with them. We also found a decrease in the levels of receptors located at the plasma membrane and alterations in GABAA R composition. SIGNIFICANCE The changes in protein expression of GABAA Rs and scaffolding proteins detected in these studies provide a potential mechanism to explain the deficits in GABAergic neurotransmission observed during the epileptogenic period. Our current observations represent an additional step toward the elucidation of the molecular mechanisms underlying GABAA R dysfunction during epileptogenesis.
Collapse
Affiliation(s)
- Marco I González
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | | | | |
Collapse
|
42
|
England PM. Developing a photoreactive antagonist. Methods Mol Biol 2013; 995:121-129. [PMID: 23494376 DOI: 10.1007/978-1-62703-345-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Light is an exquisite reagent for controlling the activity of biological systems, often offering improved temporal and spatial resolution over strictly genetic, biochemical, or pharmacological manipulations. This chapter describes a general approach for developing small molecules that, upon irradiation with light, may be used to rapidly inactivate targeted proteins expressed on the surfaces of cells. Highlighted is ANQX, a photoreactive AMPA receptor antagonist developed to irreversibly inactivate a subtype of glutamate-gated ion channels natively expressed on neurons.
Collapse
Affiliation(s)
- Pamela M England
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Determination of GABA(Aα1) and GABA (B1) receptor subunits expression in tissues of gilts during the late gestation. Mol Biol Rep 2012; 40:1377-84. [PMID: 23086273 DOI: 10.1007/s11033-012-2181-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
GABA(Aα1) and GABA(B1) receptor subunits are responsible for most behavioral, physiological and pharmacological effects of GABA receptors. We investigated the expression of GABA(Aα1) and GABA(B1) receptor subunits in different tissues of gilts during late pregnancy in hot summer. The mRNA abundance of GABA(Aα1) receptor subunit in different tissues of gilts at d 90 and d 110 of gestation was as follows: d 90: brain > lung > liver > ovary > spleen > kidney > heart; d 110: brain > lung > spleen > liver > ovary > kidney > heart. And, the mRNA abundance of GABA(B1) receptor subunit was as follows: d 90: spleen > lung > brain > kidney > ovary > liver > heart; d 110: spleen > lung > kidney > brain > ovary > liver > heart. The results in this trial indicated that the GABA(Aα1) receptor subunit was abundantly expressed in brain, while GABA(B1) receptor subunit was abundant in spleen and lung of gilts during late gestation. There were no gestation stage-dependent effects on GABA(Aα1) and GABA(B1) receptor subunits expression in all tissues.
Collapse
|
44
|
Zhu Y, Dua S, Gold MS. Inflammation-induced shift in spinal GABA(A) signaling is associated with a tyrosine kinase-dependent increase in GABA(A) current density in nociceptive afferents. J Neurophysiol 2012; 108:2581-93. [PMID: 22914654 DOI: 10.1152/jn.00590.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To account for benzodiazepine-induced spinal analgesia observed in association with an inflammation-induced shift in the influence of the GABA(A) receptor antagonist gabazine on nociceptive threshold, the present study was designed to determine whether persistent inflammation is associated with the upregulation of high-affinity GABA(A) receptors in primary afferents. The cell bodies of afferents innervating the glabrous skin of the rat hind paw were retrogradely labeled, acutely dissociated, and studied before and after the induction of persistent inflammation. A time-dependent increase in GABA(A) current density was observed that was more than twofold by 72 h after the initiation of inflammation. This increase in current density included both high- and low-affinity currents and was restricted to neurons in which GABA increased intracellular Ca(2+). No increases in GABA(A) receptor subunit mRNA or protein were detected in whole ganglia. In contrast, the increased current density was completely reversed by 20-min preincubation with the tyrosine kinase inhibitor genistein and partially reversed with the Src kinase inhibitor PP2. Genistein reversal was partially blocked by the dynamin inhibitor peptide P4. Changes in nociceptive threshold following spinal administration of genistein and muscimol to inflamed rats indicated that the pronociceptive actions of muscimol observed in the presence of inflammation were reversed by genistein. These results suggest that persistent changes in relative levels of tyrosine kinase activity following inflammation provide not only a sensitive way to dynamically regulate spinal nociceptive signaling but a viable target for the development of novel therapeutic interventions for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Neural and Pain Sciences, University of Maryland, Baltimore School of Dentistry, Baltimore, Maryland, USA
| | | | | |
Collapse
|
45
|
Jugessur A, Wilcox AJ, Murray JC, Gjessing HK, Nguyen TT, Nilsen RM, Lie RT. Assessing the impact of nicotine dependence genes on the risk of facial clefts: An example of the use of national registry and biobank data. NORSK EPIDEMIOLOGI 2012; 21:241-250. [PMID: 26451072 DOI: 10.5324/nje.v21i2.1500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Maternal smoking during pregnancy has been associated with risk of facial clefts in offspring, but causation has not yet been established. It is possible that the effect of maternal smoking on facial clefts is mediated through genes that are involved in nicotine dependence. Gamma-aminobutyric acid B receptor 2 (GABBR2), dopa decarboxylase (DDC), and cholinergic receptor nicotinic alpha 4 (CHRNA4) are three examples of genes that have previously shown strong associations with nicotine dependence. METHODS We used a population-based sample of 377 case-parent trios of cleft lip with or without cleft palate (CL/P) and 762 control-parent trios from Norway (1996-2001) to investigate whether variants in GABBR2, DDC and CHRNA4 are associated with maternal first-trimester smoking and with clefting risk. We used HAPLIN (Gjessing et al. 2006), a statistical software tailored for family-based association tests, to perform haplotype-based analyses on 12 SNPs in these genes (rs10985765, rs1435252, rs3780422, rs2779562, and rs3750344 in GABBR2; rs2060762, rs3757472, rs1451371, rs3735273, and rs921451 in DDC; rs4522666 and rs1044393 in CHRNA4). RESULTS When analyzed one at a time, there was little evidence of association between any of the 12 SNPs and maternal first-trimester smoking. In haplotype analyses, however, one copy of the maternal G-G-c-G-c haplotype in DDC was linked with smoking prevalence (odds ratio: 1.5; 95% confidence interval: 1.0-2.1). This same haplotype also increased the risk of isolated CL/P in offspring by 1.5-fold with one copy and 2.4-fold with two copies (Ptrend = 0.06). No statistically significant associations were detected with GABBR2 and CHRNA4. CONCLUSIONS Despite strong associations previously reported between nicotine dependence and variants in GABBR2, DDC and CHRNA4, these genes were poor predictors of maternal first-trimester smoking in our data. The direct association of the DDC haplotype with CL/P suggests that this haplotype may either have direct effects on clefts or it may influence clefting risks through other yet unexplored risk behavior(s).
Collapse
Affiliation(s)
- Astanand Jugessur
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway ; Craniofacial Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, North Carolina, USA
| | - Jeffrey C Murray
- Departments of Pediatrics, Epidemiology and Biological Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Håkon K Gjessing
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway ; Department of Public Health and Primary Health Care, University of Bergen, Bergen, Norway
| | - Truc Trung Nguyen
- Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen, Norway
| | - Roy M Nilsen
- Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen, Norway
| | - Rolv T Lie
- Department of Public Health and Primary Health Care, University of Bergen, Bergen, Norway ; Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen, Norway
| |
Collapse
|
46
|
A Single phenylalanine residue in the main intracellular loop of α1 γ-aminobutyric acid type A and glycine receptors influences their sensitivity to propofol. Anesthesiology 2011; 115:464-73. [PMID: 21673564 DOI: 10.1097/aln.0b013e31822550f7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The intravenous anesthetic propofol acts as a positive allosteric modulator of glycine (GlyRs) and γ-aminobutyric acid type A (GABAARs) receptors. Although the role of transmembrane residues is recognized, little is known about the involvement of other regions in the modulatory effects of propofol. Therefore, the influence of the large intracellular loop in propofol sensitivity of both receptors was explored. METHODS The large intracellular loop of α1 GlyRs and α1β2 GABAARs was screened using alanine replacement. Sensitivity to propofol was studied using patch-clamp recording in HEK293 cells transiently transfected with wild type or mutant receptors. RESULTS Alanine mutation of a conserved phenylalanine residue within the α1 large intracellular loop significantly reduced propofol enhancement in both GlyRs (360 ± 30 vs. 75 ± 10%, mean ± SEM) and GABAARs (361 ± 49% vs. 80 ± 23%). Remarkably, propofol-hyposensitive mutant receptors retained their sensitivity to other allosteric modulators such as alcohols, etomidate, trichloroethanol, and isoflurane. At the single-channel level, the ability of propofol to increase open probability was significantly reduced in both α1 GlyR (189 ± 36 vs. 22 ± 13%) and α1β2 GABAAR (279 ± 29 vs. 29 ± 11%) mutant receptors. CONCLUSION In this study, it is demonstrated that the large intracellular loop of both GlyR and GABAAR has a conserved single phenylalanine residue (F380 and F385, respectively) that influences its sensitivity to propofol. Results suggest a new role of the large intracellular loop in the allosteric modulation of two members of the Cys-loop superfamily. Thus, these data provide new insights into the molecular framework behind the modulation of inhibitory ion channels by propofol.
Collapse
|
47
|
Bloss CS, Berrettini W, Bergen AW, Magistretti P, Duvvuri V, Strober M, Brandt H, Crawford S, Crow S, Fichter MM, Halmi KA, Johnson C, Kaplan AS, Keel P, Klump KL, Mitchell J, Treasure J, Woodside DB, Marzola E, Schork NJ, Kaye WH. Genetic association of recovery from eating disorders: the role of GABA receptor SNPs. Neuropsychopharmacology 2011; 36:2222-32. [PMID: 21750581 PMCID: PMC3176559 DOI: 10.1038/npp.2011.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Follow-up studies of eating disorders (EDs) suggest outcomes ranging from recovery to chronic illness or death, but predictors of outcome have not been consistently identified. We tested 5151 single-nucleotide polymorphisms (SNPs) in approximately 350 candidate genes for association with recovery from ED in 1878 women. Initial analyses focused on a strictly defined discovery cohort of women who were over age 25 years, carried a lifetime diagnosis of an ED, and for whom data were available regarding the presence (n=361 ongoing symptoms in the past year, ie, 'ill') or absence (n=115 no symptoms in the past year, ie, 'recovered') of ED symptoms. An intronic SNP (rs17536211) in GABRG1 showed the strongest statistical evidence of association (p=4.63 × 10(-6), false discovery rate (FDR)=0.021, odds ratio (OR)=0.46). We replicated these findings in a more liberally defined cohort of women age 25 years or younger (n=464 ill, n=107 recovered; p=0.0336, OR=0.68; combined sample p=4.57 × 10(-6), FDR=0.0049, OR=0.55). Enrichment analyses revealed that GABA (γ-aminobutyric acid) SNPs were over-represented among SNPs associated at p<0.05 in both the discovery (Z=3.64, p=0.0003) and combined cohorts (Z=2.07, p=0.0388). In follow-up phenomic association analyses with a third independent cohort (n=154 ED cases, n=677 controls), rs17536211 was associated with trait anxiety (p=0.049), suggesting a possible mechanism through which this variant may influence ED outcome. These findings could provide new insights into the development of more effective interventions for the most treatment-resistant patients.
Collapse
Affiliation(s)
- Cinnamon S Bloss
- Scripps Genomic Medicine, Scripps Translational Science Institute, and Scripps Health, La Jolla, CA, USA
| | - Wade Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew W Bergen
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Pierre Magistretti
- Brain Mind Institute, EPFL and Department of Psychiatry, University of Lausanne Medical School, Lausanne, Switzerland
| | - Vikas Duvvuri
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Michael Strober
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Harry Brandt
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steve Crawford
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Scott Crow
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Manfred M Fichter
- Roseneck Hospital for Behavioral Medicine, Prien, Germany and Department of Psychiatry, University of Munich (LMU), Munich, Germany
| | - Katherine A Halmi
- New York Presbyterian Hospital-Westchester Division, Weill Medical College of Cornell University, White Plains, NY, USA
| | - Craig Johnson
- Laureate Psychiatric Clinic and Hospital, Tulsa, OK, USA
| | - Allan S Kaplan
- Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Department of Psychiatry, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Pamela Keel
- Department of Psychology, Florida State University, Tallahasseei, FL, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - James Mitchell
- Neuropsychiatric Research Institute, Fargo, ND, USA,Department of Clinical Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Janet Treasure
- Eating Disorders Section, Institute of Psychiatry, King's College, University of London, London, UK
| | - D Blake Woodside
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Department of Psychiatry, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Enrica Marzola
- Scripps Genomic Medicine, Scripps Translational Science Institute, and Scripps Health, La Jolla, CA, USA,Day Hospital of the Eating Disorders Program at the San Giovanni Battista Hospital of Turin, Turin, Italy
| | - Nicholas J Schork
- Scripps Genomic Medicine, Scripps Translational Science Institute, and Scripps Health, La Jolla, CA, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA,Scripps Genomic Medicine, Scripps Translational Science Institute, 3344 North Torrey Pines Court, Suite 300, La Jolla, CA 92037, USA. Tel: +1 858 554 5705, E-mail:
| | - Walter H Kaye
- Department of Psychiatry, University of California, San Diego, CA, USA,Department of Psychiatry, University of California, San Diego, 8950 Villa La Jolla Drive, Suite C207, La Jolla, CA 92037, USA. Tel: +1 858 205 7293; Fax: +1 858 534 6727, E-mail:
| |
Collapse
|
48
|
O'Toole KK, Jenkins A. Discrete M3-M4 intracellular loop subdomains control specific aspects of γ-aminobutyric acid type A receptor function. J Biol Chem 2011; 286:37990-37999. [PMID: 21903587 DOI: 10.1074/jbc.m111.258012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The GABA type A receptor (GABA(A)R) is a member of the pentameric ligand gated ion channel (pLGIC) family that mediates ionotropic neurotransmission. Residues in the intracellular loop domain (ILD) have recently been shown to define part of the ion permeation pathway in several closely related members of the pentameric ligand gated ion channel family. In this study, we investigated the role the ILD of the GABA(A)R α1 subunit plays in channel function. Deletion of the α1 ILD resulted in a significant increase in GABA EC(50) and maximal current amplitude, suggesting that the ILD must be intact for proper receptor function. To test this hypothesis, we conducted a mutagenic screen of all amino acids harboring ionizable side chains within this domain to investigate the contribution of individual charged residues to ion permeation. Using macroscopic and single channel voltage-clamp recording techniques, we found that mutations within a subdomain of the α1 ILD near M3 altered GABA apparent affinity; interestingly, α1(K312E) exhibited reduced partial agonist efficacy. We introduced point mutations near M4, including α1(K383E) and α1(K384E), that enhanced receptor desensitization. Mutation of 5 charged residues within a 39-residue span contiguous with M4 reduced relative anion permeability of the channel and may represent a weak intracellular selectivity filter. Within this subdomain, the α1(K378E) mutation induced a significant reduction in single channel conductance, consistent with our hypothesis that the GABA(A)R α1 ILD contributes directly to the permeation pathway.
Collapse
Affiliation(s)
- Kate K O'Toole
- Departments of Anesthesiology and Pharmacology, Emory University, Atlanta, Georgia 30322
| | - Andrew Jenkins
- Departments of Anesthesiology and Pharmacology, Emory University, Atlanta, Georgia 30322.
| |
Collapse
|
49
|
Evolving therapeutic indications for N-type calcium channel blockers: from chronic pain to alcohol abuse. Future Med Chem 2011; 2:791-802. [PMID: 21426203 DOI: 10.4155/fmc.10.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clinical exploitation of the therapeutic potential of calcium channels has long been limited to L-type blockers for cardiovascular diseases. Recently, N-type blockers have been fully validated for the treatment of chronic pain, following approval of the intrathecally active ziconotide (Prialt(®)). This review describes the successful efforts to broaden the therapeutic scope of this mechanism to other major CNS indications, based on the discovery of N-type blockers orally active against pain. In animal models, the N-type blocker and pain-reducing NP078585 is efficacious against key elements of ethanol dependency, including self-administration and relapse. NP078585 moderately stimulates brain dopamine release without inducing reward or hyperlocomotion. N-type blockers may emerge as a novel class of 'dopamine stabilizers' for the treatment of drug dependency and other neuropsychiatric disorders without the side effects of current therapies.
Collapse
|
50
|
Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. An Update on GABAρ Receptors. Curr Neuropharmacol 2011; 8:422-33. [PMID: 21629448 PMCID: PMC3080597 DOI: 10.2174/157015910793358141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 04/08/2010] [Accepted: 06/21/2010] [Indexed: 01/29/2023] Open
Abstract
The present review discusses the functional and molecular diversity of GABAρ receptors. These receptors were originally described in the mammalian retina, and their functional role in the visual pathway has been recently elucidated; however new studies on their distribution in the brain and spinal cord have revealed that they are more spread than originally thought, and thus it will be important to determine their physiological contribution to the GABAergic transmission in other areas of the central nervous system. In addition, molecular modeling has revealed peculiar traits of these receptors that have impacted on the interpretations of the latest pharmacolgical and biophysical findings. Finally, sequencing of several vertebrate genomes has permitted a comparative analysis of the organization of the GABAρ genes.
Collapse
Affiliation(s)
- Gustavo Martínez-Delgado
- Instituto de Neurbiología, Departamento de Neurobiología Celular y Molecular, Laboratorio D15, Campus UNAM Juriquilla. Querétaro 76230, México
| | | | | | | |
Collapse
|