1
|
Duarte T, Omage FB, Rieder GS, Rocha JBT, Dalla Corte CL. Investigating SARS-CoV-2 virus-host interactions and mRNA expression: Insights using three models of D. melanogaster. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167324. [PMID: 38925484 DOI: 10.1016/j.bbadis.2024.167324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Responsible for COVID-19, SARS-CoV-2 is a coronavirus in which contagious variants continue to appear. Therefore, some population groups have demonstrated greater susceptibility to contagion and disease progression. For these reasons, several researchers have been studying the SARS-CoV-2/human interactome to understand the pathophysiology of COVID-19 and develop new pharmacological strategies. D. melanogaster is a versatile animal model with approximately 90 % human protein orthology related to SARS-CoV-2/human interactome and is widely used in metabolic studies. In this context, our work assessed the potential interaction between human proteins (ZNF10, NUP88, BCL2L1, UBC9, and RBX1) and their orthologous proteins in D. melanogaster (gl, Nup88, Buffy, ubc9, and Rbx1a) with proteins from SARS-CoV-2 (nsp3, nsp9, E, ORF7a, N, and ORF10) using computational approaches. Our results demonstrated that all the proteins have the potential to interact, and we compared the binding sites between humans and fruit flies. The stability and consistency in the structure of the gl_nsp3 complex, specifically, could be crucial for its specific biological functions. Lastly, to enhance the understanding of the influence of host factors on coronavirus infection, we also analyse the mRNA expression of the five genes (mbo, gl, lwr, Buffy, and Roc1a) responsible for encoding the fruit fly proteins. Briefly, we demonstrated that those genes were differentially regulated according to diets, sex, and age. Two groups showed higher positive gene regulation than others: females in the HSD group and males in the aging group, which could imply a higher virus-host susceptibility. Overall, while preliminary, our work contributes to the understanding of host defense mechanisms and potentially identifies candidate proteins and genes for in vivo viral studies against SARS-CoV-2.
Collapse
Affiliation(s)
- Tâmie Duarte
- Laboratory of Experimental Biochemistry and Toxicology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Folorunsho Bright Omage
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil; Computational Biology Research Group, Embrapa Agricultural Informatics, Campinas, SP, Brazil
| | - Guilherme Schmitt Rieder
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - João B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Laboratory of Experimental Biochemistry and Toxicology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
2
|
Wei R, Zhang X, Wang X, Li L, Fu Y, Chen Y, Liu X, Guo C. PDCD4 restricts PRRSV replication in an eIF4A-dependent manner and is antagonized by the viral nonstructural protein 9. J Virol 2024; 98:e0006024. [PMID: 38557170 PMCID: PMC11092367 DOI: 10.1128/jvi.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.
Collapse
Affiliation(s)
- Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yajie Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Deza Leon M, Otto WR, Danziger-Isakov L, Kumar A, Scaggs Huang F. Infectious Diseases Evaluation of the Child With Suspected Hemophagocytic Lymphohistiocytosis. J Pediatric Infect Dis Soc 2024; 13:220-227. [PMID: 38263470 DOI: 10.1093/jpids/piae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of excessive and maladaptive inflammation. In this review, we discuss how the clinical and laboratory features of HLH overlap with infection and propose a diagnostic and treatment strategy to identify patients with infections mimicking HLH.
Collapse
Affiliation(s)
- Maria Deza Leon
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - William R Otto
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lara Danziger-Isakov
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashish Kumar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Felicia Scaggs Huang
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Song B, Sheng X, Justice JL, Lum KK, Metzger PJ, Cook KC, Kostas JC, Cristea IM. Intercellular communication within the virus microenvironment affects the susceptibility of cells to secondary viral infections. SCIENCE ADVANCES 2023; 9:eadg3433. [PMID: 37163594 PMCID: PMC10171814 DOI: 10.1126/sciadv.adg3433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
Communication between infected cells and cells in the surrounding tissue is a determinant of viral spread. However, it remains unclear how cells in close or distant proximity to an infected cell respond to primary or secondary infections. We establish a cell-based system to characterize a virus microenvironment, distinguishing infected, neighboring, and distal cells. Cell sorting, microscopy, proteomics, and cell cycle assays allow resolving cellular features and functional consequences of proximity to infection. We show that human cytomegalovirus (HCMV) infection primes neighboring cells for both subsequent HCMV infections and secondary infections with herpes simplex virus 1 and influenza A. Neighboring cells exhibit mitotic arrest, dampened innate immunity, and altered extracellular matrix. Conversely, distal cells are poised to slow viral spread due to enhanced antiviral responses. These findings demonstrate how infection reshapes the microenvironment through intercellular signaling to facilitate spread and how spatial proximity to an infection guides cell fate.
Collapse
Affiliation(s)
| | | | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | - Peter J. Metzger
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | - James C. Kostas
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | |
Collapse
|
5
|
Mono-ADP-ribosylation by PARP10 inhibits Chikungunya virus nsP2 proteolytic activity and viral replication. Cell Mol Life Sci 2023; 80:72. [PMID: 36840772 PMCID: PMC9959937 DOI: 10.1007/s00018-023-04717-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Replication of viruses requires interaction with host cell factors and repression of innate immunity. Recent findings suggest that a subset of intracellular mono-ADP-ribosylating PARPs, which are induced by type I interferons, possess antiviral activity. Moreover, certain RNA viruses, including Chikungunya virus (CHIKV), encode mono-ADP-ribosylhydrolases. Together, this suggests a role for mono-ADP-ribosylation (MARylation) in host-virus conflicts, but the relevant substrates have not been identified. We addressed which PARP restricts CHIKV replication and identified PARP10 and PARP12. For PARP10, this restriction was dependent on catalytic activity. Replication requires processing of the non-structural polyprotein nsP1-4 by the protease located in nsP2 and the assembly of the four individual nsP1-nsP4 into a functional replication complex. PARP10 and PARP12 inhibited the production of nsP3, indicating a defect in polyprotein processing. The nsP3 protein encodes a macrodomain with de-MARylation activity, which is essential for replication. In support for MARylation affecting polyprotein processing, de-MARylation defective CHIKV replicons revealed reduced production of nsP2 and nsP3. We hypothesized that MARylation regulates the proteolytic function of nsP2. Indeed, we found that nsP2 is MARylated by PARP10 and, as a consequence, its proteolytic activity was inhibited. NsP3-dependent de-MARylation reactivated the protease. Hence, we propose that PARP10-mediated MARylation prevents polyprotein processing and consequently virus replication. Together, our findings provide a mechanistic explanation for the role of the viral MAR hydrolase in CHIKV replication.
Collapse
|
6
|
Martínez Cuesta L, Nieto Farías MV, Romeo F, Verna A, Pérez S. Expression of apoptosis-related genes at different stages of BoHV-1 and 5 infection of bovine neural tissue. Comp Immunol Microbiol Infect Dis 2022; 90-91:101906. [DOI: 10.1016/j.cimid.2022.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
7
|
Crook OM, Davies CTR, Breckels LM, Christopher JA, Gatto L, Kirk PDW, Lilley KS. Inferring differential subcellular localisation in comparative spatial proteomics using BANDLE. Nat Commun 2022; 13:5948. [PMID: 36216816 PMCID: PMC9550814 DOI: 10.1038/s41467-022-33570-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
The steady-state localisation of proteins provides vital insight into their function. These localisations are context specific with proteins translocating between different subcellular niches upon perturbation of the subcellular environment. Differential localisation, that is a change in the steady-state subcellular location of a protein, provides a step towards mechanistic insight of subcellular protein dynamics. High-accuracy high-throughput mass spectrometry-based methods now exist to map the steady-state localisation and re-localisation of proteins. Here, we describe a principled Bayesian approach, BANDLE, that uses these data to compute the probability that a protein differentially localises upon cellular perturbation. Extensive simulation studies demonstrate that BANDLE reduces the number of both type I and type II errors compared to existing approaches. Application of BANDLE to several datasets recovers well-studied translocations. In an application to cytomegalovirus infection, we obtain insights into the rewiring of the host proteome. Integration of other high-throughput datasets allows us to provide the functional context of these data.
Collapse
Affiliation(s)
- Oliver M Crook
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK.
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
| | - Colin T R Davies
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Josie A Christopher
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Laurent Gatto
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Paul D W Kirk
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK.
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
8
|
The Key Role of Lysosomal Protease Cathepsins in Viral Infections. Int J Mol Sci 2022; 23:ijms23169089. [PMID: 36012353 PMCID: PMC9409221 DOI: 10.3390/ijms23169089] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins encompass a family of lysosomal proteases that mediate protein degradation and turnover. Although mainly localized in the endolysosomal compartment, cathepsins are also found in the cytoplasm, nucleus, and extracellular space, where they are involved in cell signaling, extracellular matrix assembly/disassembly, and protein processing and trafficking through the plasma and nuclear membrane and between intracellular organelles. Ubiquitously expressed in the body, cathepsins play regulatory roles in a wide range of physiological processes including coagulation, hormone secretion, immune responses, and others. A dysregulation of cathepsin expression and/or activity has been associated with many human diseases, including cancer, diabetes, obesity, cardiovascular and inflammatory diseases, kidney dysfunctions, and neurodegenerative disorders, as well as infectious diseases. In viral infections, cathepsins may promote (1) activation of the viral attachment glycoproteins and entry of the virus into target cells; (2) antigen processing and presentation, enabling the virus to replicate in infected cells; (3) up-regulation and processing of heparanase that facilitates the release of viral progeny and the spread of infection; and (4) activation of cell death that may either favor viral clearance or assist viral propagation. In this review, we report the most relevant findings on the molecular mechanisms underlying cathepsin involvement in viral infection physiopathology, and we discuss the potential of cathepsin inhibitors for therapeutical applications in viral infectious diseases.
Collapse
|
9
|
The Virus-Induced Upregulation of the miR-183/96/182 Cluster and the FoxO Family Protein Members Are Not Required for Efficient Replication of HSV-1. Viruses 2022; 14:v14081661. [PMID: 36016282 PMCID: PMC9414244 DOI: 10.3390/v14081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/07/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) expresses a large number of miRNAs, and their function is still not completely understood. In addition, HSV-1 has been found to deregulate host miRNAs, which adds to the complexity of the regulation of efficient virus replication. In this study, we comprehensively addressed the deregulation of host miRNAs by massive-parallel sequencing. We found that only miRNAs expressed from a single cluster, miR-183/96/182, are reproducibly deregulated during productive infection. These miRNAs are predicted to regulate a great number of potential targets involved in different cellular processes and have only 33 shared targets. Among these, members of the FoxO family of proteins were identified as potential targets for all three miRNAs. However, our study shows that the upregulated miRNAs do not affect the expression of FoxO proteins, moreover, these proteins were upregulated in HSV-1 infection. Furthermore, we show that the individual FoxO proteins are not required for efficient HSV-1 replication. Taken together, our results indicate a complex and redundant response of infected cells to the virus infection that is efficiently inhibited by the virus.
Collapse
|
10
|
Lin A, Yan WH. Perspective of HLA-G Induced Immunosuppression in SARS-CoV-2 Infection. Front Immunol 2021; 12:788769. [PMID: 34938296 PMCID: PMC8685204 DOI: 10.3389/fimmu.2021.788769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has threatened public health worldwide. Host antiviral immune responses are essential for viral clearance and disease control, however, remarkably decreased immune cell numbers and exhaustion of host cellular immune responses are commonly observed in patients with COVID-19. This is of concern as it is closely associated with disease severity and poor outcomes. Human leukocyte antigen-G (HLA-G) is a ligand for multiple immune inhibitory receptors, whose expression can be upregulated by viral infections. HLA-G/receptor signalling, such as engagement with immunoglobulin-like transcript 2 (ILT-2) or ILT-4, not only inhibit T and natural killer (NK) cell immune responses, dendritic cell (DC) maturation, and B cell antibody production. It also induces regulatory cells such as myeloid-derived suppressive cells (MDSCs), or M2 type macrophages. Moreover, HLA-G interaction with CD8 and killer inhibitory receptor (KIR) 2DL4 can provoke T cell apoptosis and NK cell senescence. In this context, HLA-G can induce profound immune suppression, which favours the escape of SARS-CoV-2 from immune attack. Although detailed knowledge on the clinical relevance of HLA-G in SARS-CoV-2 infection is limited, we herein review the immunopathological aspects of HLA-G/receptor signalling in SARS-CoV-2 infection, which could provide a better understanding of COVID-19 disease progression and identify potential immunointerventions to counteract SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Wei-Hua Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China.,Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
11
|
Abstract
The necessity of viruses to modulate the innate immune response often dictates the outcome of viral infection. As such, viruses encode many factors that undermine these potent antiviral responses. A recent study by Bouvet et al. (M. Bouvet, S. Voigt, T. Tagawa, M. Albanese, et al., mBio 12:e03440-20, 2021, https://doi.org/10.1128/mBio.03440-20) revisits the impact of virus-encoded noncoding RNAs on key components of the interferon pathway and sheds light on how the extensive biological functions of Epstein-Barr virus (EBV) microRNAs (miRNAs) are on targeting both the induction and signaling cascades of interferon.
Collapse
|
12
|
Dybas JM, Lum KK, Kulej K, Reyes ED, Lauman R, Charman M, Purman CE, Steinbock RT, Grams N, Price AM, Mendoza L, Garcia BA, Weitzman MD. Adenovirus Remodeling of the Host Proteome and Host Factors Associated with Viral Genomes. mSystems 2021; 6:e0046821. [PMID: 34463575 DOI: 10.1128/msystems.00468-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Viral infections are associated with extensive remodeling of the cellular proteome. Viruses encode gene products that manipulate host proteins to redirect cellular processes or subvert antiviral immune responses. Adenovirus (AdV) encodes proteins from the early E4 region which are necessary for productive infection. Some cellular antiviral proteins are known to be targeted by AdV E4 gene products, resulting in their degradation or mislocalization. However, the full repertoire of host proteome changes induced by viral E4 proteins has not been defined. To identify cellular proteins and processes manipulated by viral products, we developed a global, unbiased proteomics approach to analyze changes to the host proteome during infection with adenovirus serotype 5 (Ad5) virus. We used whole-cell proteomics to measure total protein abundances in the proteome during Ad5 infection. Since host antiviral proteins can antagonize viral infection by associating with viral genomes and inhibiting essential viral processes, we used Isolation of Proteins on Nascent DNA (iPOND) proteomics to identify proteins associated with viral genomes during infection with wild-type Ad5 or an E4 mutant virus. By integrating these proteomics data sets, we identified cellular factors that are degraded in an E4-dependent manner or are associated with the viral genome in the absence of E4 proteins. We further show that some identified proteins exert inhibitory effects on Ad5 infection. Our systems-level analysis reveals cellular processes that are manipulated during Ad5 infection and points to host factors counteracted by early viral proteins as they remodel the host proteome to promote efficient infection. IMPORTANCE Viral infections induce myriad changes to the host cell proteome. As viruses harness cellular processes and counteract host defenses, they impact abundance, post-translational modifications, interactions, or localization of cellular proteins. Elucidating the dynamic changes to the cellular proteome during viral replication is integral to understanding how virus-host interactions influence the outcome of infection. Adenovirus encodes early gene products from the E4 genomic region that are known to alter host response pathways and promote replication, but the full extent of proteome modifications they mediate is not known. We used an integrated proteomics approach to quantitate protein abundance and protein associations with viral DNA during virus infection. Systems-level analysis identifies cellular proteins and processes impacted in an E4-dependent manner, suggesting ways that adenovirus counteracts potentially inhibitory host defenses. This study provides a global view of adenovirus-mediated proteome remodeling, which can serve as a model to investigate virus-host interactions of DNA viruses.
Collapse
Affiliation(s)
- Joseph M Dybas
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Krystal K Lum
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emigdio D Reyes
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard Lauman
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Caitlin E Purman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert T Steinbock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas Grams
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexander M Price
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lydia Mendoza
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
The IGF-1 Signaling Pathway in Viral Infections. Viruses 2021; 13:v13081488. [PMID: 34452353 PMCID: PMC8402757 DOI: 10.3390/v13081488] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 01/29/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) and the IGF-1 receptor (IGF-1R) belong to the insulin-like growth factor family, and IGF-1 activates intracellular signaling pathways by binding specifically to IGF-1R. The interaction between IGF-1 and IGF-1R transmits a signal through a number of intracellular substrates, including the insulin receptor substrate (IRS) and the Src homology collagen (Shc) proteins, which activate two major intracellular signaling pathways: the phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) pathways, specifically the extracellular signal-regulated kinase (ERK) pathways. The PI3K/AKT kinase pathway regulates a variety of cellular processes, including cell proliferation and apoptosis. IGF1/IGF-1R signaling also promotes cell differentiation and proliferation via the Ras/MAPK pathway. Moreover, upon IGF-1R activation of the IRS and Shc adaptor proteins, Shc stimulates Raf through the GTPase Ras to activate the MAPKs ERK1 and ERK2, phosphorylate and several other proteins, and to stimulate cell proliferation. The IGF-1 signaling pathway is required for certain viral effects in oncogenic progression and may be induced as an effect of viral infection. The mechanisms of IGF signaling in animal viral infections need to be clarified, mainly because they are involved in multifactorial signaling pathways. The aim of this review is to summarize the current data obtained from virological studies and to increase our understanding of the complex role of the IGF-1 signaling axis in animal virus infections.
Collapse
|
14
|
Mitochondria and Peroxisome Remodeling across Cytomegalovirus Infection Time Viewed through the Lens of Inter-ViSTA. Cell Rep 2021; 32:107943. [PMID: 32726614 DOI: 10.1016/j.celrep.2020.107943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/20/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Nearly all biological processes rely on the finely tuned coordination of protein interactions across cellular space and time. Accordingly, generating protein interactomes has become routine in biological studies, yet interpreting these datasets remains computationally challenging. Here, we introduce Inter-ViSTA (Interaction Visualization in Space and Time Analysis), a web-based platform that quickly builds animated protein interaction networks and automatically synthesizes information on protein abundances, functions, complexes, and subcellular localizations. Using Inter-ViSTA with proteomics and molecular virology, we define virus-host interactions for the human cytomegalovirus (HCMV) anti-apoptotic protein, pUL37x1. We find that spatiotemporal controlled interactions underlie pUL37x1 functions, facilitating the pro-viral remodeling of mitochondria and peroxisomes during infection. Reciprocal isolations, microscopy, and genetic manipulations further characterize these associations, revealing the interplay between pUL37x1 and the MIB complex, which is critical for mitochondrial integrity. At the peroxisome, we show that pUL37x1 activates PEX11β to regulate fission, a key aspect of virus assembly and spread.
Collapse
|
15
|
Sheng X, Cristea IM. The antiviral sirtuin 3 bridges protein acetylation to mitochondrial integrity and metabolism during human cytomegalovirus infection. PLoS Pathog 2021; 17:e1009506. [PMID: 33857259 PMCID: PMC8078788 DOI: 10.1371/journal.ppat.1009506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023] Open
Abstract
Regulation of mitochondrial structure and function is a central component of infection with viruses, including human cytomegalovirus (HCMV), as a virus means to modulate cellular metabolism and immune responses. Here, we link the activity of the mitochondrial deacetylase SIRT3 and global mitochondrial acetylation status to host antiviral responses via regulation of both mitochondrial structural integrity and metabolism during HCMV infection. We establish that SIRT3 deacetylase activity is necessary for suppressing virus production, and that SIRT3 maintains mitochondrial pH and membrane potential during infection. By defining the temporal dynamics of SIRT3-substrate interactions during infection, and overlaying acetylome and proteome information, we find altered SIRT3 associations with the mitochondrial fusion factor OPA1 and acetyl-CoA acyltransferase 2 (ACAA2), concomitant with changes in their acetylation levels. Using mutagenesis, microscopy, and virology assays, we determine OPA1 regulates mitochondrial morphology of infected cells and inhibits HCMV production. OPA1 acetylation status modulates these functions, and we establish K834 as a site regulated by SIRT3. Control of SIRT3 protein levels or enzymatic activity is sufficient for regulating mitochondrial filamentous structure. Lastly, we establish a virus restriction function for ACAA2, an enzyme involved in fatty acid beta-oxidation. Altogether, we highlight SIRT3 activity as a regulatory hub for mitochondrial acetylation and morphology during HCMV infection and point to global acetylation as a reflection of mitochondrial health. Given their functions in cellular metabolism and immune responses, mitochondria are targeted and disrupted by numerous prevalent viral pathogens, including human cytomegalovirus (HCMV). To characterize mechanisms underlying mitochondrial regulation during HCMV infection in human fibroblasts, this study integrates enzyme-substrate interaction studies, mass spectrometry quantification of protein abundance and acetylation, mutagenesis, microscopy, and virology assays. These analyses establish a link between the mitochondrial acetylation status and mitochondrial structure and metabolism during HCMV infection. We demonstrate that the mitochondrial deacetylase SIRT3 acts in host defense by modulating proteins that regulate mitochondrial structure and fatty acid oxidation. SIRT3 helps to maintain mitochondrial integrity through several mechanisms, including regulation of mitochondrial pH, membrane potential, and the balance between mitochondrial fission and fusion. As excess mitochondrial acetylation is detrimental to mitochondrial metabolism, the virus-induced alterations in SIRT3 functions and mitochondrial acetylation may be linked to known HCMV pathologies, such as the metabolic syndrome and cardiac hypertrophy.
Collapse
Affiliation(s)
- Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ, United States of America
- * E-mail:
| |
Collapse
|
16
|
Kim ET, Dybas JM, Kulej K, Reyes ED, Price AM, Akhtar LN, Orr A, Garcia BA, Boutell C, Weitzman MD. Comparative proteomics identifies Schlafen 5 (SLFN5) as a herpes simplex virus restriction factor that suppresses viral transcription. Nat Microbiol 2021; 6:234-245. [PMID: 33432153 PMCID: PMC7856100 DOI: 10.1038/s41564-020-00826-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Intrinsic antiviral host factors confer cellular defence by limiting virus replication and are often counteracted by viral countermeasures. We reasoned that host factors that inhibit viral gene expression could be identified by determining proteins bound to viral DNA (vDNA) in the absence of key viral antagonists. Herpes simplex virus 1 (HSV-1) expresses E3 ubiquitin-protein ligase ICP0 (ICP0), which functions as an E3 ubiquitin ligase required to promote infection. Cellular substrates of ICP0 have been discovered as host barriers to infection but the mechanisms for inhibition of viral gene expression are not fully understood. To identify restriction factors antagonized by ICP0, we compared proteomes associated with vDNA during HSV-1 infection with wild-type virus and a mutant lacking functional ICP0 (ΔICP0). We identified the cellular protein Schlafen family member 5 (SLFN5) as an ICP0 target that binds vDNA during HSV-1 ΔICP0 infection. We demonstrated that ICP0 mediates ubiquitination of SLFN5, which leads to its proteasomal degradation. In the absence of ICP0, SLFN5 binds vDNA to repress HSV-1 transcription by limiting accessibility of RNA polymerase II to viral promoters. These results highlight how comparative proteomics of proteins associated with viral genomes can identify host restriction factors and reveal that viral countermeasures can overcome SLFN antiviral activity.
Collapse
Affiliation(s)
- Eui Tae Kim
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Department of Microbiology and Immunology, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Joseph M. Dybas
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emigdio D. Reyes
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexander M. Price
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisa N. Akhtar
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Division of Infectious Diseases, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Pennsylvania, USA
| | - Ann Orr
- MRC-University of Glasgow Center for Virus Research, Glasgow, Scotland, United Kingdom
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chris Boutell
- MRC-University of Glasgow Center for Virus Research, Glasgow, Scotland, United Kingdom
| | - Matthew D. Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Correspondence: All correspondence and request for materials should be addressed to Matthew D. Weitzman (, )
| |
Collapse
|
17
|
Pradhan D, Biswasroy P, Goyal A, Ghosh G, Rath G. Recent Advancement in Nanotechnology-Based Drug Delivery System Against Viral Infections. AAPS PharmSciTech 2021; 22:47. [PMID: 33447909 PMCID: PMC7808403 DOI: 10.1208/s12249-020-01908-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, the exponential rise in the incidence of viral infections sets a global health emergency across the world. The biomimetic architecture, the ability to hijack host immune responses, continuous antigen shifting, and drafting are the major critical factors that are responsible for the unavailability of a concrete therapeutic regimen against viral infections. Further, inappropriate pharmacodynamic physicochemical and biological parameters such as low aqueous solubility, poor permeability, high affinity for plasm proteins, short biological half-lives, and fast elimination from the systemic circulation are the major critical factors that govern the suboptimal drug concentration at the target site that leads to the development of drug resistance. To address this issue, nanotechnology-based drug delivery approach is emerged as an altering method to attain the optimal drug concentration at the target site for a prolonged period by integrating the nanoengineering tools in the synthesis of nanoparticles. Nanodimensional configuration with enhanced permeability and retention effect, increased surface-area-to-volume ratio, provision for surface functionalization, etc., are the privileged aspects that make it an effective drug delivery system for dispensing the antiviral therapeutics. However, size, shape, charge, and surface topology of nanoparticles are the greater influential factors that determine target-specific drug delivery, optimum cellular uptake, degree of opsonization by the host immune cells, drug retention time, transcytosis, the extension of biological half-life, in vivo stability, and cytotoxicity. The review will enlighten the elaborative role of nanotechnology-based drug delivery and the major challenging aspect of clinical safety and efficacy.
Collapse
|
18
|
Komorizono R, Sassa Y, Horie M, Makino A, Tomonaga K. Evolutionary Selection of the Nuclear Localization Signal in the Viral Nucleoprotein Leads to Host Adaptation of the Genus Orthobornavirus. Viruses 2020; 12:v12111291. [PMID: 33187187 PMCID: PMC7698282 DOI: 10.3390/v12111291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Adaptation of the viral life cycle to host cells is necessary for efficient viral infection and replication. This evolutionary process has contributed to the mechanism for determining the host range of viruses. Orthobornaviruses, members of the family Bornaviridae, are non-segmented, negative-strand RNA viruses, and several genotypes have been isolated from different vertebrate species. Previous studies revealed that some genotypes isolated from avian species can replicate in mammalian cell lines, suggesting the zoonotic potential of avian orthobornaviruses. However, the mechanism by which the host specificity of orthobornaviruses is determined has not yet been identified. In this study, we found that the infectivity of orthobornaviruses is not determined at the viral entry step, mediated by the viral glycoprotein and matrix protein. Furthermore, we demonstrated that the nuclear localization signal (NLS) sequence in the viral nucleoprotein (N) has evolved under natural selection and determines the host-specific viral polymerase activity. A chimeric mammalian orthobornavirus, which has the NLS sequence of avian orthobornavirus N, exhibited a reduced propagation efficiency in mammalian cells. Our findings indicated that nuclear transport of the viral N is a determinant of the host range of orthobornaviruses, providing insights into the evolution and host adaptation of orthobornaviruses.
Collapse
Affiliation(s)
- Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (R.K.); (M.H.)
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Yukiko Sassa
- Laboratory of Veterinary Infectious Disease, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Masayuki Horie
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (R.K.); (M.H.)
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8507, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (R.K.); (M.H.)
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Correspondence: (A.M.); (K.T.)
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (R.K.); (M.H.)
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Correspondence: (A.M.); (K.T.)
| |
Collapse
|
19
|
McKitterick AC, Hays SG, Johura FT, Alam M, Seed KD. Viral Satellites Exploit Phage Proteins to Escape Degradation of the Bacterial Host Chromosome. Cell Host Microbe 2019; 26:504-514.e4. [PMID: 31600502 PMCID: PMC6910227 DOI: 10.1016/j.chom.2019.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 01/10/2023]
Abstract
Phage defense systems are often found on mobile genetic elements (MGEs), where they constitutively defend against invaders or are induced to respond to new assaults. Phage satellites, one type of MGE, are induced during phage infection to promote their own transmission, reducing phage production and protecting their hosts in the process. One such satellite in Vibrio cholerae, phage-inducible chromosomal island-like element (PLE), sabotages the lytic phage ICP1, which triggers PLE excision from the bacterial chromosome, replication, and transduction to neighboring cells. Analysis of patient stool samples from different geographic regions revealed that ICP1 has evolved to possess one of two syntenic loci encoding an SF1B-type helicase, either of which PLE exploits to drive replication. Further, loss of PLE mobilization limits anti-phage activity because of phage-mediated degradation of the bacterial genome. Our work provides insight into the unique challenges facing parasites of lytic phages and underscores the adaptions of satellites to their ever-evolving target phage.
Collapse
Affiliation(s)
- Amelia C McKitterick
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Stephanie G Hays
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Fatema-Tuz Johura
- ICDDR,B, formerly known as International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Munirul Alam
- ICDDR,B, formerly known as International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
21
|
Bandilovska I, Keam SP, Gamell C, Machicado C, Haupt S, Haupt Y. E6AP goes viral: the role of E6AP in viral- and non-viral-related cancers. Carcinogenesis 2019; 40:707-714. [DOI: 10.1093/carcin/bgz072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
Since its discovery, the E3 ubiquitin ligase E6-associated protein (E6AP) has been studied extensively in two pathological contexts: infection by the human papillomavirus (HPV), and the neurodevelopmental disorder, Angelman syndrome. Vital biological links between E6AP and other viruses, namely hepatitis C virus and encephalomyocarditis virus, have been recently uncovered. Critically, oncogenic E6AP activities have been demonstrated to contribute to cancers of both viral and non-viral origins. HPV-associated cancers serve as the primary example of E6AP involvement in cancers driven by viruses. Studies over the past few years have exposed a role for E6AP in non-viral-related cancers. This has been demonstrated in B-cell lymphoma and prostate cancers, where oncogenic E6AP functions drive these cancers by acting on key tumour suppressors. In this review we discuss the role of E6AP in viral infection, viral propagation and viral-related cancer. We discuss processes affected by oncogenic E6AP, which promote cancers of viral and non-viral aetiology. Overall, recent findings support the role of oncogenic E6AP in disrupting key cellular processes, including tumour suppression and the immune response. E6AP is consequently emerging as an attractive therapeutic target for a number of specific cancers.
Collapse
Affiliation(s)
- Ivona Bandilovska
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Simon P Keam
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Cristina Gamell
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Claudia Machicado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Zhan J, Hossain MA, Sethi A, Ose T, Moseley GW, Gooley PR. 1H, 15N and 13C resonance assignments of the C-terminal domain of the P protein of the Nishigahara strain of rabies virus. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:5-8. [PMID: 30238347 DOI: 10.1007/s12104-018-9841-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
The C-terminal domain of the P protein of rabies virus is a multifunctional domain that interacts with both viral and host cell proteins. Here we report the 1H, 13C and 15N chemical shift assignments of this domain from P protein of the Nishigahara strain of rabies virus, a pathogenic laboratory strain well established for studies of virulence functions of rabies virus proteins, including P protein. The data and secondary structure analysis are in good agreement with the reported predominantly helical structure of the same domain from the CVS strain of rabies solved by crystallography. These assignments will enable future solution studies of the interactions of the P protein with viral and host proteins, and the effects of post-translational modifications.
Collapse
Affiliation(s)
- Jingyu Zhan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
23
|
Murray LA, Sheng X, Cristea IM. Orchestration of protein acetylation as a toggle for cellular defense and virus replication. Nat Commun 2018; 9:4967. [PMID: 30470744 PMCID: PMC6251895 DOI: 10.1038/s41467-018-07179-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence highlights protein acetylation, a prevalent lysine posttranslational modification, as a regulatory mechanism and promising therapeutic target in human viral infections. However, how infections dynamically alter global cellular acetylation or whether viral proteins are acetylated remains virtually unexplored. Here, we establish acetylation as a highly-regulated molecular toggle of protein function integral to the herpesvirus human cytomegalovirus (HCMV) replication. We offer temporal resolution of cellular and viral acetylations. By interrogating dynamic protein acetylation with both protein abundance and subcellular localization, we discover finely tuned spatial acetylations across infection time. We determine that lamin acetylation at the nuclear periphery protects against virus production by inhibiting capsid nuclear egress. Further studies within infectious viral particles identify numerous acetylations, including on the viral transcriptional activator pUL26, which we show represses virus production. Altogether, this study provides specific insights into functions of cellular and viral protein acetylations and a valuable resource of dynamic acetylation events. The dynamics of protein acetylation during infection remains unexplored. Here, Murray et al. characterize spatio-temporal acetylations of both cellular and viral proteins during HCMV infection, providing new functional insights into the host-virus acetylome that might help identify new antiviral targets.
Collapse
Affiliation(s)
- L A Murray
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - X Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - I M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
24
|
Xiao B, Shi X, Bai J. miR-30a regulates the proliferation and invasion of breast cancer cells by targeting Snail. Oncol Lett 2018; 17:406-413. [PMID: 30655781 DOI: 10.3892/ol.2018.9552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
The present study aims to investigate the effect of miR-30a on the proliferative and invasive abilities of breast cancer cells, and to observe the role of miR-30a in the pathogenesis of breast cancer. With the increase of pathological grade and malignant degree of breast cancer cells, the miR-30a expression level gradually decreased (P<0.01). Transfection with miR-30a mimic significantly inhibited the proliferative and invasive ability of SK-BR-3 cells (P<0.01), while transfection with anti-miR-30a significantly improved the proliferative and invasive ability of these cells (P<0.01). It was revealed using bioinformatic methods that Snail was the functional target gene of miR-30a, and this was verified by the results of a luciferase reporter gene assay. The results of analysis of Snail expression in breast cancer tissues and breast cancer cells revealed that with the increase in pathological grade and malignant degree of breast cancer cells, Snail expression levels gradually increased (P<0.01). Western blotting revealed that miR-30a significantly inhibited Snail expression in SK-BR-3 cells, upregulated the expression of EMT-associated E-cadherin, and downregulated the expression of EMT-associated N-cadherin and Vimentin. MiR-30a was able to affect the proliferation and invasion of breast cancer cells by regulating Snail expression, and therefore has a regulatory effect on the occurrence and development of breast cancer.
Collapse
Affiliation(s)
- Baoqiang Xiao
- Department of General Surgery, No. 254 Hospital of The People's Liberation Army, Tianjin 300142, P.R. China
| | - Xuejing Shi
- Department of Breast Surgery, Tianjin Central Obstetrics and Gynecology Hospital, Tianjin 300142, P.R. China
| | - Jianping Bai
- Department of General Surgery, No. 254 Hospital of The People's Liberation Army, Tianjin 300142, P.R. China
| |
Collapse
|
25
|
Immune Ecosystem of Virus-Infected Host Tissues. Int J Mol Sci 2018; 19:ijms19051379. [PMID: 29734779 PMCID: PMC5983771 DOI: 10.3390/ijms19051379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.
Collapse
|
26
|
Johnson PTJ, Calhoun DM, Stokes AN, Susbilla CB, McDevitt-Galles T, Briggs CJ, Hoverman JT, Tkach VV, de Roode JC. Of poisons and parasites-the defensive role of tetrodotoxin against infections in newts. J Anim Ecol 2018; 87:1192-1204. [PMID: 29476541 DOI: 10.1111/1365-2656.12816] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/17/2018] [Indexed: 11/29/2022]
Abstract
Classical research on animal toxicity has focused on the role of toxins in protection against predators, but recent studies suggest these same compounds can offer a powerful defense against parasites and infectious diseases. Newts in the genus Taricha are brightly coloured and contain the potent neurotoxin, tetrodotoxin (TTX), which is hypothesized to have evolved as a defense against vertebrate predators such as garter snakes. However, newt populations often vary dramatically in toxicity, which is only partially explained by predation pressure. The primary aim of this study was to evaluate the relationships between TTX concentration and infection by parasites. By systematically assessing micro- and macroparasite infections among 345 adult newts (sympatric populations of Taricha granulosa and T. torosa), we detected 18 unique taxa of helminths, fungi, viruses and protozoans. For both newt species, per-host concentrations of TTX, which varied from undetectable to >60 μg/cm2 skin, negatively predicted overall parasite richness as well as the likelihood of infection by the chytrid fungus, Batrachochytrium dendrobatidis, and ranavirus. No such effect was found on infection load among infected hosts. Despite commonly occurring at the same wetlands, T. torosa supported higher parasite richness and average infection load than T. granulosa. Host body size and sex (females > males) tended to positively predict infection levels in both species. For hosts in which we quantified leucocyte profiles, total white blood cell count correlated positively with both parasite richness and total infection load. By coupling data on host toxicity and infection by a broad range of micro- and macroparasites, these results suggest that-alongside its effects on predators-tetrodotoxin may help protect newts against parasitic infections, highlighting the importance of integrative research on animal chemistry, immunological defenses and natural enemy ecology.
Collapse
Affiliation(s)
- Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Dana M Calhoun
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Amber N Stokes
- Department of Biology, California State University, Bakersfield, CA, USA
| | - Calvin B Susbilla
- Department of Biology, California State University, Bakersfield, CA, USA
| | - Travis McDevitt-Galles
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | | |
Collapse
|
27
|
Human Cytomegalovirus Tegument Protein pp65 (pUL83) Dampens Type I Interferon Production by Inactivating the DNA Sensor cGAS without Affecting STING. J Virol 2018; 92:JVI.01774-17. [PMID: 29263269 DOI: 10.1128/jvi.01774-17] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/14/2017] [Indexed: 01/06/2023] Open
Abstract
The innate immune response plays a pivotal role during human cytomegalovirus (HCMV) primary infection. Indeed, HCMV infection of primary fibroblasts rapidly triggers strong induction of type I interferons (IFN-I), accompanied by proinflammatory cytokine release. Here, we show that primary human foreskin fibroblasts (HFFs) infected with a mutant HCMV TB40/E strain unable to express UL83-encoded pp65 (v65Stop) produce significantly higher IFN-β levels than HFFs infected with the wild-type TB40/E strain or the pp65 revertant (v65Rev), suggesting that the tegument protein pp65 may dampen IFN-β production. To clarify the mechanisms through which pp65 inhibits IFN-β production, we analyzed the activation of the cGAS/STING/IRF3 axis in HFFs infected with either the wild type, the revertant v65Rev, or the pp65-deficient mutant v65Stop. We found that pp65 selectively binds to cGAS and prevents its interaction with STING, thus inactivating the signaling pathway through the cGAS/STING/IRF3 axis. Consistently, addition of exogenous cGAMP to v65Rev-infected cells triggered the production of IFN-β levels similar to those observed with v65Stop-infected cells, confirming that pp65 inactivation of IFN-β production occurs at the cGAS level. Notably, within the first 24 h of HCMV infection, STING undergoes proteasome degradation independently of the presence or absence of pp65. Collectively, our data provide mechanistic insights into the interplay between HCMV pp65 and cGAS, leading to subsequent immune evasion by this prominent DNA virus.IMPORTANCE Primary human foreskin fibroblasts (HFFs) produce type I IFN (IFN-I) when infected with HCMV. However, we observed significantly higher IFN-β levels when HFFs were infected with HCMV that was unable to express UL83-encoded pp65 (v65Stop), suggesting that pp65 (pUL83) may constitute a viral evasion factor. This study demonstrates that the HCMV tegument protein pp65 inhibits IFN-β production by binding and inactivating cGAS early during infection. In addition, this inhibitory activity specifically targets cGAS, since it can be bypassed via the addition of exogenous cGAMP, even in the presence of pp65. Notably, STING proteasome-mediated degradation was observed in both the presence and absence of pp65. Collectively, our data underscore the important role of the tegument protein pp65 as a critical molecular hub in HCMV's evasion strategy against the innate immune response.
Collapse
|
28
|
Brisse E, Wouters CH, Andrei G, Matthys P. How Viruses Contribute to the Pathogenesis of Hemophagocytic Lymphohistiocytosis. Front Immunol 2017; 8:1102. [PMID: 28936212 PMCID: PMC5594061 DOI: 10.3389/fimmu.2017.01102] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/22/2017] [Indexed: 11/23/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening, hyperinflammatory syndrome, characterized by the uncontrolled activation of macrophages and T cells, eliciting key symptoms such as persistent fever, hepatosplenomegaly, pancytopenia, hemophagocytosis, hyperferritinemia, and coagulopathy. Viral infections are frequently implicated in the onset of active HLH episodes, both in primary, genetic HLH as in the secondary, acquired form. Infections with herpesviruses such as Epstein-Barr virus and cytomegalovirus are the most common. In autoimmune diseases, a link between viral infections and autoreactive immune responses has been recognized for a considerable time. However, the mechanisms by which viruses contribute to HLH pathogenesis remain to be clarified. In this viewpoint, different factors that may come into play are discussed. Viruses, particularly larger DNA viruses such as herpesviruses, are potent modulators of the immune response. By evading immune recognition, interfering with cytokine balances and inhibiting apoptotic pathways, viruses may increase the host's susceptibility to HLH development. In particular cases, a direct connection between the viral infection and inhibition of natural killer cell or T cell cytotoxicity was reported, indicating that viruses may create immunological deficiencies reminiscent of primary HLH.
Collapse
Affiliation(s)
- Ellen Brisse
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carine H. Wouters
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
- University Hospital Gasthuisberg, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Greco TM, Cristea IM. Proteomics Tracing the Footsteps of Infectious Disease. Mol Cell Proteomics 2017; 16:S5-S14. [PMID: 28163258 DOI: 10.1074/mcp.o116.066001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Every year, a major cause of human disease and death worldwide is infection with the various pathogens-viruses, bacteria, fungi, and protozoa-that are intrinsic to our ecosystem. In efforts to control the prevalence of infectious disease and develop improved therapies, the scientific community has focused on building a molecular picture of pathogen infection and spread. These studies have been aimed at defining the cellular mechanisms that allow pathogen entry into hosts cells, their replication and transmission, as well as the core mechanisms of host defense against pathogens. The past two decades have demonstrated the valuable implementation of proteomic methods in all these areas of infectious disease research. Here, we provide a perspective on the contributions of mass spectrometry and other proteomics approaches to understanding the molecular details of pathogen infection. Specifically, we highlight methods used for defining the composition of viral and bacterial pathogens and the dynamic interaction with their hosts in space and time. We discuss the promise of MS-based proteomics in supporting the development of diagnostics and therapies, and the growing need for multiomics strategies for gaining a systems view of pathogen infection.
Collapse
Affiliation(s)
- Todd M Greco
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| |
Collapse
|
30
|
Crow MS, Cristea IM. Human Antiviral Protein IFIX Suppresses Viral Gene Expression during Herpes Simplex Virus 1 (HSV-1) Infection and Is Counteracted by Virus-induced Proteasomal Degradation. Mol Cell Proteomics 2017; 16:S200-S214. [PMID: 28077445 DOI: 10.1074/mcp.m116.064741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/11/2017] [Indexed: 01/05/2023] Open
Abstract
The interferon-inducible protein X (IFIX), a member of the PYHIN family, was recently recognized as an antiviral factor against infection with herpes simplex virus 1 (HSV-1). IFIX binds viral DNA upon infection and promotes expression of antiviral cytokines. How IFIX exerts its host defense functions and whether it is inhibited by the virus remain unknown. Here, we integrated live cell microscopy, proteomics, IFIX domain characterization, and molecular virology to investigate IFIX regulation and antiviral functions during HSV-1 infection. We find that IFIX has a dynamic localization during infection that changes from diffuse nuclear and nucleoli distribution in uninfected cells to discrete nuclear puncta early in infection. This is rapidly followed by a reduction in IFIX protein levels. Indeed, using immunoaffinity purification and mass spectrometry, we define IFIX interactions during HSV-1 infection, finding an association with a proteasome subunit and proteins involved in ubiquitin-proteasome processes. Using synchronized HSV-1 infection, microscopy, and proteasome-inhibition experiments, we demonstrate that IFIX co-localizes with nuclear proteasome puncta shortly after 3 h of infection and that its pyrin domain is rapidly degraded in a proteasome-dependent manner. We further demonstrate that, in contrast to several other host defense factors, IFIX degradation is not dependent on the E3 ubiquitin ligase activity of the viral protein ICP0. However, we show IFIX degradation requires immediate-early viral gene expression, suggesting a viral host suppression mechanism. The IFIX interactome also demonstrated its association with transcriptional regulatory proteins, including the 5FMC complex. We validate this interaction using microscopy and reciprocal isolations and determine it is mediated by the IFIX HIN domain. Finally, we show IFIX suppresses immediate-early and early viral gene expression during infection. Altogether, our study demonstrates that IFIX antiviral functions work in part via viral transcriptional suppression and that HSV-1 has acquired mechanisms to block its functions via proteasome-dependent degradation.
Collapse
Affiliation(s)
- Marni S Crow
- From the Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Ileana M Cristea
- From the Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|