1
|
Alli N, Lou-Hing A, Bolt EL, He L. POLD3 as Controller of Replicative DNA Repair. Int J Mol Sci 2024; 25:12417. [PMID: 39596481 PMCID: PMC11595029 DOI: 10.3390/ijms252212417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple modes of DNA repair need DNA synthesis by DNA polymerase enzymes. The eukaryotic B-family DNA polymerase complexes delta (Polδ) and zeta (Polζ) help to repair DNA strand breaks when primed by homologous recombination or single-strand DNA annealing. DNA synthesis by Polδ and Polζ is mutagenic, but is needed for the survival of cells in the presence of DNA strand breaks. The POLD3 subunit of Polδ and Polζ is at the heart of DNA repair by recombination, by modulating polymerase functions and interacting with other DNA repair proteins. We provide the background to POLD3 discovery, investigate its structure, as well as function in cells. We highlight unexplored structural aspects of POLD3 and new biochemical data that will help to understand the pivotal role of POLD3 in DNA repair and mutagenesis in eukaryotes, and its impact on human health.
Collapse
Affiliation(s)
- Nabilah Alli
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Anna Lou-Hing
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward L. Bolt
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Liu He
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| |
Collapse
|
2
|
Erickson KD, Langsfeld ES, Holland A, Ebmeier CC, Garcea RL. Proteome profiling of polyomavirus nuclear replication centers using iPOND. J Virol 2024; 98:e0079024. [PMID: 39480110 PMCID: PMC11575236 DOI: 10.1128/jvi.00790-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Polyomaviruses (PyVs) cause diverse diseases in a variety of mammalian hosts. During the life cycle, PyVs recruit nuclear host factors to viral genomes to facilitate replication and transcription. While host factors involved in DNA replication, DNA damage sensing and repair, and cell cycle regulation have been observed to bind PyV DNA, the complete set of viral and host proteins comprising the PyV replisome remains incompletely characterized. Here, the iPOND-MS technique (Isolation of Proteins on Nascent DNA coupled with Mass Spectrometry) was used to identify the proteome bound to murine PyV (MuPyV) DNA immediately following synthesis and 2 hours post-synthesis. Several novel MuPyV DNA interactors were identified on newly synthesized viral DNA (vDNA), including MCM complex members, DNA primase, DNA polymerase alpha, DNA ligase, and replication factor C. Though displaying partial overlap, the host and viral proteins bound to MuPyV DNA 2 hours post-synthesis lacked many of the replication proteins found on newly synthesized vDNA. These data help distinguish between the host factors critical for MuPyV DNA replication and those involved in downstream processing.IMPORTANCEPolyomaviruses are the causative agents of serious diseases in humans, including progressive multifocal leukoencephalopathy (PML), BK virus nephropathy, and Merkel cell carcinoma. The exact mechanisms by which the virus replicates, and which host cell proteins are required, are incompletely characterized. Identifying the host proteins necessary for efficient viral replication in the cell may reveal targets for downstream targets that may suppress viral replication in vivo.
Collapse
Affiliation(s)
- Kimberly D Erickson
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Erika S Langsfeld
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Alexandra Holland
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Robert L Garcea
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
3
|
Utkalaja BG, Patel SK, Sahu SR, Dutta A, Acharya N. Critical roles of Dpb3-Dpb4 sub-complex of DNA polymerase epsilon in DNA replication, genome stability, and pathogenesis of Candida albicans. mBio 2024; 15:e0122724. [PMID: 39207097 PMCID: PMC11481497 DOI: 10.1128/mbio.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
DNA polymerase ε (Polε) is an essential replicative polymerase consisting of Pol2, Dpb2, Dpb3, and Dpb4 subunits and has not been explored in the pathogenic yeast Candida albicans. C. albicans is accountable for >40% of deaths due to systemic candidiasis per year worldwide. Genome plasticity is one of the adaptive mechanisms associated with virulence, and as it is associated with DNA polymerase function, this study explored the role of Polε in genome stability and pathogenesis of C. albicans. POL2 and DPB2 are haploinsufficient, but DPB3 and DPB4 are dispensable for cell survival in diploid C. albicans. However, unlike in Saccharomyces cerevisiae, loss of any or both of the nonessential subunits or defective interaction between the two resulted in slow growth and temperature-sensitive phenotypes. Knockout strains of C. albicans (dpb3ΔΔ and dpb4ΔΔ and dpb3ΔΔdpb4ΔΔ) also exhibited sensitivity to genotoxic agents and delayed cell cycle progression. Reduced processive DNA synthesis and increased rate of mutagenesis were observed in dpb3 and dpb4 null strains. Whole-genome sequencing further confirmed the accumulation of indels and SNPs majorly in the intergenic repeat regions of the chromosomes of dpb3ΔΔdpb4ΔΔ. Polε-defective strains were constitutively filamentous and non-pathogenic in mice models of systemic candidiasis. Altogether, this study showed that the function of the Dpb3-Dpb4 subcomplex is critical for fungal morphogenesis and virulence besides its role as a structural component of Polε in DNA replication and genome stability; thus, their interacting interface may be targeted to develop antifungal drugs. IMPORTANCE This study explored the role of DNA polymerase epsilon, especially its non-essential structural subunits in Candida albicans biology. Apart from their role in DNA replication and genome stability, the Dpb3-Dpb4 subcomplex regulates morphological switching and virulence. Since the defective strain is locked in filamentous form and is avirulent, the complex may be targeted for anti-fungal drug development.
Collapse
Affiliation(s)
- Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
4
|
He Q, Wang F, Yao NY, O'Donnell ME, Li H. Structures of the human leading strand Polε-PCNA holoenzyme. Nat Commun 2024; 15:7847. [PMID: 39245668 PMCID: PMC11381554 DOI: 10.1038/s41467-024-52257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
In eukaryotes, the leading strand DNA is synthesized by Polε and the lagging strand by Polδ. These replicative polymerases have higher processivity when paired with the DNA clamp PCNA. While the structure of the yeast Polε catalytic domain has been determined, how Polε interacts with PCNA is unknown in any eukaryote, human or yeast. Here we report two cryo-EM structures of human Polε-PCNA-DNA complex, one in an incoming nucleotide bound state and the other in a nucleotide exchange state. The structures reveal an unexpected three-point interface between the Polε catalytic domain and PCNA, with the conserved PIP (PCNA interacting peptide)-motif, the unique P-domain, and the thumb domain each interacting with a different protomer of the PCNA trimer. We propose that the multi-point interface prevents other PIP-containing factors from recruiting to PCNA while PCNA functions with Polε. Comparison of the two states reveals that the finger domain pivots around the [4Fe-4S] cluster-containing tip of the P-domain to regulate nucleotide exchange and incoming nucleotide binding.
Collapse
Affiliation(s)
- Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Nina Y Yao
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
5
|
Morimoto M, Ryu E, Steger BJ, Dixit A, Saito Y, Yoo J, van der Ven AT, Hauser N, Steinbach PJ, Oura K, Huang AY, Kortüm F, Ninomiya S, Rosenthal EA, Robinson HK, Guegan K, Denecke J, Subramony SH, Diamonstein CJ, Ping J, Fenner M, Balton EV, Strohbehn S, Allworth A, Bamshad MJ, Gandhi M, Dipple KM, Blue EE, Jarvik GP, Lau CC, Holm IA, Weisz-Hubshman M, Solomon BD, Nelson SF, Nishino I, Adams DR, Kang S, Gahl WA, Toro C, Myung K, Malicdan MCV. Expanding the genetic and phenotypic landscape of replication factor C complex-related disorders: RFC4 deficiency is linked to a multisystemic disorder. Am J Hum Genet 2024; 111:1970-1993. [PMID: 39106866 PMCID: PMC11393705 DOI: 10.1016/j.ajhg.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024] Open
Abstract
The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.
Collapse
Affiliation(s)
- Marie Morimoto
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Benjamin J Steger
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Amelie T van der Ven
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Hauser
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Peter J Steinbach
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazumasa Oura
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine Iwate Medical University, Morioka, Japan
| | - Alden Y Huang
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shinsuke Ninomiya
- Department of Clinical Genetics, Kurashiki Central Hospital, Okayama, Japan
| | - Elisabeth A Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hannah K Robinson
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Katie Guegan
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Callie J Diamonstein
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark Fenner
- Nottingham University Hospital, Nottingham, UK
| | - Elsa V Balton
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sam Strohbehn
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Aimee Allworth
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Mahi Gandhi
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Katrina M Dipple
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; University of Washington School of Public Health, Institute for Public Health Genetics, Seattle, WA, USA
| | - Gail P Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - C Christopher Lau
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ingrid A Holm
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin D Solomon
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Stanley F Nelson
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - David R Adams
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - William A Gahl
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camilo Toro
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - May Christine V Malicdan
- National Institutes of Health Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Fajri N, Petryk N. Monitoring and quantifying replication fork dynamics with high-throughput methods. Commun Biol 2024; 7:729. [PMID: 38877080 PMCID: PMC11178896 DOI: 10.1038/s42003-024-06412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Before each cell division, eukaryotic cells must replicate their chromosomes to ensure the accurate transmission of genetic information. Chromosome replication involves more than just DNA duplication; it also includes chromatin assembly, inheritance of epigenetic marks, and faithful resumption of all genomic functions after replication. Recent progress in quantitative technologies has revolutionized our understanding of the complexity and dynamics of DNA replication forks at both molecular and genomic scales. Here, we highlight the pivotal role of these novel methods in uncovering the principles and mechanisms of chromosome replication. These technologies have illuminated the regulation of genome replication programs, quantified the impact of DNA replication on genomic mutations and evolutionary processes, and elucidated the mechanisms of replication-coupled chromatin assembly and epigenome maintenance.
Collapse
Affiliation(s)
- Nora Fajri
- UMR9019 - CNRS, Intégrité du Génome et Cancers, Université Paris-Saclay, Gustave Roussy, Villejuif, France, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Nataliya Petryk
- UMR9019 - CNRS, Intégrité du Génome et Cancers, Université Paris-Saclay, Gustave Roussy, Villejuif, France, 114 rue Edouard Vaillant, 94805, Villejuif, France.
| |
Collapse
|
7
|
Sahu SR, Dutta A, Peroumal D, Kumari P, Utakalaja BG, Patel SK, Acharya N. Immunogenicity and efficacy of CNA25 as a potential whole-cell vaccine against systemic candidiasis. EMBO Mol Med 2024; 16:1254-1283. [PMID: 38783167 PMCID: PMC11178797 DOI: 10.1038/s44321-024-00080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Disseminated fungal infections account for ~1.5 million deaths per year worldwide, and mortality may increase further due to a rise in the number of immunocompromised individuals and drug-resistance fungal species. Since an approved antifungal vaccine is yet to be available, this study explored the immunogenicity and vaccine efficacy of a DNA polymerase mutant strain of Candida albicans. CNA25 is a pol32ΔΔ strain that exhibits growth defects and does not cause systemic candidiasis in mice. Immunized mice with live CNA25 were fully protected against C. albicans and C. parapsilosis but partially against C. tropicalis and C. glabrata infections. CNA25 induced steady expression of TLR2 and Dectin-1 receptors leading to a faster recognition and clearance by the immune system associated with the activation of protective immune responses mostly mediated by neutrophils, macrophages, NK cells, B cells, and CD4+ and CD8+ T cells. Molecular blockade of Dectin-1, IL-17, IFNγ, and TNFα abolished resistance to reinfection. Altogether, this study suggested that CNA25 collectively activates innate, adaptive, and trained immunity to be a promising live whole-cell vaccine against systemic candidiasis.
Collapse
Affiliation(s)
- Satya Ranjan Sahu
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Abinash Dutta
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Doureradjou Peroumal
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Premlata Kumari
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Bhabasha Gyanadeep Utakalaja
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Shraddheya Kumar Patel
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Narottam Acharya
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
8
|
Bugallo A, Sánchez M, Fernández-García M, Segurado M. S-phase checkpoint prevents leading strand degradation from strand-associated nicks at stalled replication forks. Nucleic Acids Res 2024; 52:5121-5137. [PMID: 38520409 PMCID: PMC11109941 DOI: 10.1093/nar/gkae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
The S-phase checkpoint is involved in coupling DNA unwinding with nascent strand synthesis and is critical to maintain replication fork stability in conditions of replicative stress. However, its role in the specific regulation of leading and lagging strands at stalled forks is unclear. By conditionally depleting RNaseH2 and analyzing polymerase usage genome-wide, we examine the enzymology of DNA replication during a single S-phase in the presence of replicative stress and show that there is a differential regulation of lagging and leading strands. In checkpoint proficient cells, lagging strand replication is down-regulated through an Elg1-dependent mechanism. Nevertheless, when checkpoint function is impaired we observe a defect specifically at the leading strand, which was partially dependent on Exo1 activity. Further, our genome-wide mapping of DNA single-strand breaks reveals that strand discontinuities highly accumulate at the leading strand in HU-treated cells, whose dynamics are affected by checkpoint function and Exo1 activity. Our data reveal an unexpected role of Exo1 at the leading strand and support a model of fork stabilization through prevention of unrestrained Exo1-dependent resection of leading strand-associated nicks after fork stalling.
Collapse
Affiliation(s)
- Alberto Bugallo
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - María Fernández-García
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
- Departamento de Microbiología y Genética (USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| |
Collapse
|
9
|
Nasheuer HP, Meaney AM. Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans. Genes (Basel) 2024; 15:360. [PMID: 38540419 PMCID: PMC10969946 DOI: 10.3390/genes15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland;
| | | |
Collapse
|
10
|
Harada R, Hirakawa Y, Yabuki A, Kim E, Yazaki E, Kamikawa R, Nakano K, Eliáš M, Inagaki Y. Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion. Mol Biol Evol 2024; 41:msae014. [PMID: 38271287 PMCID: PMC10877234 DOI: 10.1093/molbev/msae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
DNA polymerases synthesize DNA from deoxyribonucleotides in a semiconservative manner and serve as the core of DNA replication and repair machinery. In eukaryotic cells, there are 2 genome-containing organelles, mitochondria, and plastids, which were derived from an alphaproteobacterium and a cyanobacterium, respectively. Except for rare cases of genome-lacking mitochondria and plastids, both organelles must be served by nucleus-encoded DNA polymerases that localize and work in them to maintain their genomes. The evolution of organellar DNA polymerases has yet to be fully understood because of 2 unsettled issues. First, the diversity of organellar DNA polymerases has not been elucidated in the full spectrum of eukaryotes. Second, it is unclear when the DNA polymerases that were used originally in the endosymbiotic bacteria giving rise to mitochondria and plastids were discarded, as the organellar DNA polymerases known to date show no phylogenetic affinity to those of the extant alphaproteobacteria or cyanobacteria. In this study, we identified from diverse eukaryotes 134 family A DNA polymerase sequences, which were classified into 10 novel types, and explored their evolutionary origins. The subcellular localizations of selected DNA polymerases were further examined experimentally. The results presented here suggest that the diversity of organellar DNA polymerases has been shaped by multiple transfers of the PolI gene from phylogenetically broad bacteria, and their occurrence in eukaryotes was additionally impacted by secondary plastid endosymbioses. Finally, we propose that the last eukaryotic common ancestor may have possessed 2 mitochondrial DNA polymerases, POP, and a candidate of the direct descendant of the proto-mitochondrial DNA polymerase I, rdxPolA, identified in this study.
Collapse
Affiliation(s)
- Ryo Harada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akinori Yabuki
- Deep-Sea Biodiversity Research Group, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Eunsoo Kim
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Euki Yazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
- Interdisciplinary Theoretical and Mathematical Sciences program (iTHEMS), RIKEN, Wako, Saitama, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro Nakano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Agarwal AK, Tunison K, Vale G, McDonald JG, Li X, Horton JD, Garg A. Adipose-specific overexpression of human AGPAT2 in mice causes increased adiposity and mild hepatic dysfunction. iScience 2024; 27:108653. [PMID: 38274405 PMCID: PMC10809107 DOI: 10.1016/j.isci.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
AGPAT2, a critical enzyme involved in the biosynthesis of phospholipids and triacylglycerol (TAG), is highly expressed in adipose tissue (AT). Whether overexpression of AGPAT2 in AT will result in increased TAG synthesis (obesity) and its metabolic complications remains unknown. We overexpressed human AGPAT2 specifically in AT using the adiponectin promoter and report increased mass of subcutaneous, gonadal, and brown AT in wild-type mice. Unexpectedly, overexpression of hAGPAT2 did not change the pattern of phospholipid or TAG concentration of the AT depots. Although there is an increase in liver weight, plasma aspartate aminotransferase, and plasma insulin at various time points of the study, it did not result in significant liver dysfunction. Despite increased adiposity in the Tg-AT-hAGPAT2;mAgpat2+/+ mice, there was no significant increase in TAG concentration of AT. Therefore, this study suggests a role of AGPAT2 in the generation of AT, but not for adipocyte TAG synthesis.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Alphey MS, Wolford CB, MacNeill SA. Canonical binding of Chaetomium thermophilum DNA polymerase δ/ζ subunit PolD3 and flap endonuclease Fen1 to PCNA. Front Mol Biosci 2023; 10:1320648. [PMID: 38223238 PMCID: PMC10787639 DOI: 10.3389/fmolb.2023.1320648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024] Open
Abstract
The sliding clamp PCNA is a key player in eukaryotic genome replication and stability, acting as a platform onto which components of the DNA replication and repair machinery are assembled. Interactions with PCNA are frequently mediated via a short protein sequence motif known as the PCNA-interacting protein (PIP) motif. Here we describe the binding mode of a PIP motif peptide derived from C-terminus of the PolD3 protein from the thermophilic ascomycete fungus C. thermophilum, a subunit of both DNA polymerase δ (Pol δ) and the translesion DNA synthesis polymerase Pol ζ, characterised by isothermal titration calorimetry (ITC) and protein X-ray crystallography. In sharp contrast to the previously determined structure of a Chaetomium thermophilum PolD4 peptide bound to PCNA, binding of the PolD3 peptide is strictly canonical, with the peptide adopting the anticipated 310 helix structure, conserved Gln441 inserting into the so-called Q-pocket on PCNA, and Ile444 and Phe448 forming a two-fork plug that inserts into the hydrophobic surface pocket on PCNA. The binding affinity for the canonical PolD3 PIP-PCNA interaction determined by ITC is broadly similar to that previously determined for the non-canonical PolD4 PIP-PCNA interaction. In addition, we report the structure of a PIP peptide derived from the C. thermophilum Fen1 nuclease bound to PCNA. Like PolD3, Fen1 PIP peptide binding to PCNA is achieved by strictly canonical means. Taken together, these results add to an increasing body of information on how different proteins bind to PCNA, both within and across species.
Collapse
Affiliation(s)
- Magnus S Alphey
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Campbell B Wolford
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Stuart A MacNeill
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
13
|
Dmowski M, Makiela-Dzbenska K, Sharma S, Chabes A, Fijalkowska IJ. Impairment of the non-catalytic subunit Dpb2 of DNA Pol ɛ results in increased involvement of Pol δ on the leading strand. DNA Repair (Amst) 2023; 129:103541. [PMID: 37481989 DOI: 10.1016/j.dnarep.2023.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
The generally accepted model assumes that leading strand synthesis is performed by Pol ε, while lagging-strand synthesis is catalyzed by Pol δ. Pol ε has been shown to target the leading strand by interacting with the CMG helicase [Cdc45 Mcm2-7 GINS(Psf1-3, Sld5)]. Proper functioning of the CMG-Pol ɛ, the helicase-polymerase complex is essential for its progression and the fidelity of DNA replication. Dpb2p, the essential non-catalytic subunit of Pol ε plays a key role in maintaining the correct architecture of the replisome by acting as a link between Pol ε and the CMG complex. Using a temperature-sensitive dpb2-100 mutant previously isolated in our laboratory, and a genetic system which takes advantage of a distinct mutational signature of the Pol δ-L612M variant which allows detection of the involvement of Pol δ in the replication of particular DNA strands we show that in yeast cells with an impaired Dpb2 subunit, the contribution of Pol δ to the replication of the leading strand is significantly increased.
Collapse
Affiliation(s)
- Michal Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Karolina Makiela-Dzbenska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
14
|
Rouillon C, Eckhardt BV, Kollenstart L, Gruss F, Verkennis AE, Rondeel I, Krijger PHL, Ricci G, Biran A, van Laar T, Delvaux de Fenffe CM, Luppens G, Albanese P, Sato K, Scheltema RA, de Laat W, Knipscheer P, Dekker N, Groth A, Mattiroli F. CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands. Nucleic Acids Res 2023; 51:3770-3792. [PMID: 36942484 PMCID: PMC10164577 DOI: 10.1093/nar/gkad171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.
Collapse
Affiliation(s)
- Clément Rouillon
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruna V Eckhardt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Gruss
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Inge Rondeel
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Theo van Laar
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | | | - Georgiana Luppens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal Albanese
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Scheltema
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nynke H Dekker
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Nasheuer HP, Onwubiko NO. Lagging Strand Initiation Processes in DNA Replication of Eukaryotes-Strings of Highly Coordinated Reactions Governed by Multiprotein Complexes. Genes (Basel) 2023; 14:genes14051012. [PMID: 37239371 DOI: 10.3390/genes14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In their influential reviews, Hanahan and Weinberg coined the term 'Hallmarks of Cancer' and described genome instability as a property of cells enabling cancer development. Accurate DNA replication of genomes is central to diminishing genome instability. Here, the understanding of the initiation of DNA synthesis in origins of DNA replication to start leading strand synthesis and the initiation of Okazaki fragment on the lagging strand are crucial to control genome instability. Recent findings have provided new insights into the mechanism of the remodelling of the prime initiation enzyme, DNA polymerase α-primase (Pol-prim), during primer synthesis, how the enzyme complex achieves lagging strand synthesis, and how it is linked to replication forks to achieve optimal initiation of Okazaki fragments. Moreover, the central roles of RNA primer synthesis by Pol-prim in multiple genome stability pathways such as replication fork restart and protection of DNA against degradation by exonucleases during double-strand break repair are discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| | - Nichodemus O Onwubiko
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| |
Collapse
|
16
|
Zhang Y, Zhang Q, Zhang Y, Han J. The Role of Histone Modification in DNA Replication-Coupled Nucleosome Assembly and Cancer. Int J Mol Sci 2023; 24:ijms24054939. [PMID: 36902370 PMCID: PMC10003558 DOI: 10.3390/ijms24054939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 03/08/2023] Open
Abstract
Histone modification regulates replication-coupled nucleosome assembly, DNA damage repair, and gene transcription. Changes or mutations in factors involved in nucleosome assembly are closely related to the development and pathogenesis of cancer and other human diseases and are essential for maintaining genomic stability and epigenetic information transmission. In this review, we discuss the role of different types of histone posttranslational modifications in DNA replication-coupled nucleosome assembly and disease. In recent years, histone modification has been found to affect the deposition of newly synthesized histones and the repair of DNA damage, further affecting the assembly process of DNA replication-coupled nucleosomes. We summarize the role of histone modification in the nucleosome assembly process. At the same time, we review the mechanism of histone modification in cancer development and briefly describe the application of histone modification small molecule inhibitors in cancer therapy.
Collapse
|
17
|
Minamino M, Bouchoux C, Canal B, Diffley JFX, Uhlmann F. A replication fork determinant for the establishment of sister chromatid cohesion. Cell 2023; 186:837-849.e11. [PMID: 36693376 DOI: 10.1016/j.cell.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023]
Abstract
Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Cohesion establishment requires acetylation of conserved cohesin lysine residues by Eco1 acetyltransferase. Here, we explore how cohesin acetylation is linked to DNA replication. Biochemical reconstitution of replication-coupled cohesin acetylation reveals that transient DNA structures, which form during DNA replication, control the acetylation reaction. As polymerases complete lagging strand replication, strand displacement synthesis produces DNA flaps that are trimmed to result in nicked double-stranded DNA. Both flaps and nicks stimulate cohesin acetylation, while subsequent nick ligation to complete Okazaki fragment maturation terminates the acetylation reaction. A flapped or nicked DNA substrate constitutes a transient molecular clue that directs cohesin acetylation to a window behind the replication fork, next to where cohesin likely entraps both sister chromatids. Our results provide an explanation for how DNA replication is linked to sister chromatid cohesion establishment.
Collapse
Affiliation(s)
- Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
18
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
19
|
Patel SK, Sahu SR, Utkalaja BG, Bose S, Acharya N. Pol32, an accessory subunit of DNA polymerase delta, plays an essential role in genome stability and pathogenesis of Candida albicans. Gut Microbes 2023; 15:2163840. [PMID: 36601868 PMCID: PMC9828637 DOI: 10.1080/19490976.2022.2163840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Candida albicans is a pathobiont that inflicts serious bloodstream fungal infections in individuals with compromised immunity and gut dysbiosis. Genomic diversity in the form of copy number alteration, ploidy variation, and loss of heterozygosity as an adaptive mechanism to adverse environments is frequently observed in C. albicans. Such genomic variations also confer a varied degree of fungal virulence and drug resistance, yet the factors propelling these are not completely understood. DNA polymerase delta (Polδ) is an essential replicative DNA polymerase in the eukaryotic cell and is yet to be characterized in C. albicans. Therefore, this study was designed to gain insights into the role of Polδ, especially its non-essential subunit Pol32, in the genome plasticity and life cycle of C. albicans. PCNA, the DNA clamp, recruits Polδ to the replication fork for processive DNA replication. Unlike in Saccharomyces cerevisiae, the PCNA interaction protein (PIP) motif of CaPol32 is critical for Polδ's activity during DNA replication. Our comparative genetic analyses and whole-genome sequencing of POL32 proficient and deficient C. albicans cells revealed a critical role of Pol32 in DNA replication, cell cycle progression, and genome stability as SNPs, indels, and repeat variations were largely accumulated in pol32 null strain. The loss of pol32 in C. albicans conferred cell wall deformity; Hsp90 mediated azoles resistance, biofilm development, and a complete attenuation of virulence in an animal model of systemic candidiasis. Thus, although Pol32 is dispensable for cell survival, its function is essential for C. albicans pathogenesis; and we discuss its translational implications in antifungal drugs and whole-cell vaccine development.
Collapse
Affiliation(s)
- Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,Regional center of Biotechnology, Faridabad, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,Regional center of Biotechnology, Faridabad, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,Regional center of Biotechnology, Faridabad, India
| | - Swagata Bose
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,CONTACT Narottam Acharya ; Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar751023, India
| |
Collapse
|
20
|
Yang D, Alphey MS, MacNeill SA. Non-canonical binding of the Chaetomium thermophilum PolD4 N-terminal PIP motif to PCNA involves Q-pocket and compact 2-fork plug interactions but no 3 10 helix. FEBS J 2023; 290:162-175. [PMID: 35942639 PMCID: PMC10087552 DOI: 10.1111/febs.16590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
DNA polymerase δ (Pol δ) is a key enzyme for the maintenance of genome integrity in eukaryotic cells, acting in concert with the sliding clamp processivity factor PCNA (proliferating cell nuclear antigen). Three of the four subunits of human Pol δ interact directly with the PCNA homotrimer via a short, conserved protein sequence known as a PCNA interacting protein (PIP) motif. Here, we describe the identification of a PIP motif located towards the N terminus of the PolD4 subunit of Pol δ (equivalent to human p12) from the thermophilic filamentous fungus Chaetomium thermophilum and present the X-ray crystal structure of the corresponding peptide bound to PCNA at 2.45 Å. Like human p12, the fungal PolD4 PIP motif displays non-canonical binding to PCNA. However, the structures of the human p12 and fungal PolD4 PIP motif peptides are quite distinct, with the fungal PolD4 PIP motif lacking the 310 helical segment that characterises most previously identified PIP motifs. Instead, the fungal PolD4 PIP motif binds PCNA via conserved glutamine that inserts into the Q-pocket on the surface of PCNA and with conserved leucine and phenylalanine sidechains forming a compact 2-fork plug that inserts into the hydrophobic pocket on PCNA. Despite the unusual binding mode of the fungal PolD4, isothermal calorimetry (ITC) measurements show that its affinity for PCNA is similar to that of its human orthologue. These observations add to a growing body of information on how diverse proteins interact with PCNA and highlight how binding modes can vary significantly between orthologous PCNA partner proteins.
Collapse
Affiliation(s)
- Dongxiao Yang
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, UK
| | - Magnus S Alphey
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, UK
| | - Stuart A MacNeill
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, UK
| |
Collapse
|
21
|
Blair K, Tehseen M, Raducanu VS, Shahid T, Lancey C, Rashid F, Crehuet R, Hamdan SM, De Biasio A. Mechanism of human Lig1 regulation by PCNA in Okazaki fragment sealing. Nat Commun 2022; 13:7833. [PMID: 36539424 PMCID: PMC9767926 DOI: 10.1038/s41467-022-35475-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
During lagging strand synthesis, DNA Ligase 1 (Lig1) cooperates with the sliding clamp PCNA to seal the nicks between Okazaki fragments generated by Pol δ and Flap endonuclease 1 (FEN1). We present several cryo-EM structures combined with functional assays, showing that human Lig1 recruits PCNA to nicked DNA using two PCNA-interacting motifs (PIPs) located at its disordered N-terminus (PIPN-term) and DNA binding domain (PIPDBD). Once Lig1 and PCNA assemble as two-stack rings encircling DNA, PIPN-term is released from PCNA and only PIPDBD is required for ligation to facilitate the substrate handoff from FEN1. Consistently, we observed that PCNA forms a defined complex with FEN1 and nicked DNA, and it recruits Lig1 to an unoccupied monomer creating a toolbelt that drives the transfer of DNA to Lig1. Collectively, our results provide a structural model on how PCNA regulates FEN1 and Lig1 during Okazaki fragments maturation.
Collapse
Affiliation(s)
- Kerry Blair
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Muhammad Tehseen
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Vlad-Stefan Raducanu
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Taha Shahid
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Claudia Lancey
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Fahad Rashid
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Ramon Crehuet
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC) C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Samir M Hamdan
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK.
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
22
|
Martín-Rufo R, de la Vega-Barranco G, Lecona E. Ubiquitin and SUMO as timers during DNA replication. Semin Cell Dev Biol 2022; 132:62-73. [PMID: 35210137 DOI: 10.1016/j.semcdb.2022.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome. In chromatin, their action is complemented by the AAA+ ATPase VCP/p97 that recognizes and removes ubiquitylated and SUMOylated factors from specific cellular compartments. The concerted action of the ubiquitin/SUMO system and VCP/p97 determines every step of DNA replication enforcing the ordered activation/inactivation, loading/unloading and stabilization/destabilization of replication factors. Here we analyze the mechanisms used by ubiquitin/SUMO and VCP/p97 to establish molecular timers throughout DNA replication and their relevance in maintaining genome stability. We propose that these PTMs are the main molecular watch of DNA replication from origin recognition to replisome disassembly.
Collapse
Affiliation(s)
- Rodrigo Martín-Rufo
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
23
|
Murat P, Perez C, Crisp A, van Eijk P, Reed SH, Guilbaud G, Sale JE. DNA replication initiation shapes the mutational landscape and expression of the human genome. SCIENCE ADVANCES 2022; 8:eadd3686. [PMID: 36351018 PMCID: PMC9645720 DOI: 10.1126/sciadv.add3686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The interplay between active biological processes and DNA repair is central to mutagenesis. Here, we show that the ubiquitous process of replication initiation is mutagenic, leaving a specific mutational footprint at thousands of early and efficient replication origins. The observed mutational pattern is consistent with two distinct mechanisms, reflecting the two-step process of origin activation, triggering the formation of DNA breaks at the center of origins and local error-prone DNA synthesis in their immediate vicinity. We demonstrate that these replication initiation-dependent mutational processes exert an influence on phenotypic diversity in humans that is disproportionate to the origins' genomic size: By increasing mutational loads at gene promoters and splice junctions, the presence of an origin significantly influences both gene expression and mRNA isoform usage. Last, we show that mutagenesis at origins not only drives the evolution of origin sequences but also contributes to sculpting regulatory domains of the human genome.
Collapse
Affiliation(s)
- Pierre Murat
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alastair Crisp
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Patrick van Eijk
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Simon H. Reed
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Guillaume Guilbaud
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E. Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
24
|
Global genomic instability caused by reduced expression of DNA polymerase ε in yeast. Proc Natl Acad Sci U S A 2022; 119:e2119588119. [PMID: 35290114 PMCID: PMC8944251 DOI: 10.1073/pnas.2119588119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAlthough most studies of the genetic regulation of genome stability involve an analysis of mutations within the coding sequences of genes required for DNA replication or DNA repair, recent studies in yeast show that reduced levels of wild-type enzymes can also produce a mutator phenotype. By whole-genome sequencing and other methods, we find that reduced levels of the wild-type DNA polymerase ε in yeast greatly increase the rates of mitotic recombination, aneuploidy, and single-base mutations. The observed pattern of genome instability is different from those observed in yeast strains with reduced levels of the other replicative DNA polymerases, Pol α and Pol δ. These observations are relevant to our understanding of cancer and other diseases associated with genetic instability.
Collapse
|
25
|
Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex. DNA Repair (Amst) 2022; 110:103272. [DOI: 10.1016/j.dnarep.2022.103272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022]
|
26
|
Jones ML, Baris Y, Taylor MRG, Yeeles JTP. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J 2021; 40:e108819. [PMID: 34694004 PMCID: PMC8634136 DOI: 10.15252/embj.2021108819] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
The human replisome is an elaborate arrangement of molecular machines responsible for accurate chromosome replication. At its heart is the CDC45-MCM-GINS (CMG) helicase, which, in addition to unwinding the parental DNA duplex, arranges many proteins including the leading-strand polymerase Pol ε, together with TIMELESS-TIPIN, CLASPIN and AND-1 that have key and varied roles in maintaining smooth replisome progression. How these proteins are coordinated in the human replisome is poorly understood. We have determined a 3.2 Å cryo-EM structure of a human replisome comprising CMG, Pol ε, TIMELESS-TIPIN, CLASPIN and AND-1 bound to replication fork DNA. The structure permits a detailed understanding of how AND-1, TIMELESS-TIPIN and Pol ε engage CMG, reveals how CLASPIN binds to multiple replisome components and identifies the position of the Pol ε catalytic domain. Furthermore, the intricate network of contacts contributed by MCM subunits and TIMELESS-TIPIN with replication fork DNA suggests a mechanism for strand separation.
Collapse
|
27
|
Koussa NC, Smith DJ. Post-replicative nick translation occurs on the lagging strand during prolonged depletion of DNA ligase I in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2021; 11:6298594. [PMID: 34849819 PMCID: PMC8496332 DOI: 10.1093/g3journal/jkab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023]
Abstract
During lagging-strand synthesis, strand-displacement synthesis by DNA polymerase delta (Pol ∂), coupled to nucleolytic cleavage of DNA flap structures, produces a nick-translation reaction that replaces the DNA at the 5′ end of the preceding Okazaki fragment. Previous work following depletion of DNA ligase I in Saccharomyces cerevisae suggests that DNA-bound proteins, principally nucleosomes and the transcription factors Abf1/Rap1/Reb1, pose a barrier to Pol ∂ synthesis and thereby limit the extent of nick translation in vivo. However, the extended ligase depletion required for these experiments could lead to ongoing, non-physiological nick translation. Here, we investigate nick translation by analyzing Okazaki fragments purified after transient nuclear depletion of DNA ligase I in synchronized or asynchronous Saccharomyces cerevisiae cultures. We observe that, even with a short ligase depletion, Okazaki fragment termini are enriched around nucleosomes and Abf1/Reb1/Rap1-binding sites. However, protracted ligase depletion leads to a global change in the location of these termini, moving them toward nucleosome dyads from a more upstream location and further enriching termini at Abf1/Reb1/Rap1-binding sites. In addition, we observe an under-representation of DNA derived from DNA polymerase alpha—the polymerase that initiates Okazaki fragment synthesis—around the sites of Okazaki termini obtained from very brief ligase depletion. Our data suggest that, while nucleosomes and transcription factors do limit strand-displacement synthesis by Pol ∂ in vivo, post-replicative nick translation can occur at unligated Okazaki fragment termini such that previous analyses represent an overestimate of the extent of nick translation occurring during normal lagging-strand synthesis.
Collapse
Affiliation(s)
- Natasha C Koussa
- Department of Biology, New York University, New York, NY 10003, USA
| | - Duncan J Smith
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
28
|
Tibbs J, Ghoneim M, Caldwell CC, Buzynski T, Bowie W, Boehm EM, Washington MT, Tabei SMA, Spies M. KERA: analysis tool for multi-process, multi-state single-molecule data. Nucleic Acids Res 2021; 49:e53. [PMID: 33660771 PMCID: PMC8136784 DOI: 10.1093/nar/gkab087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/17/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Molecular machines within cells dynamically assemble, disassemble and reorganize. Molecular interactions between their components can be observed at the single-molecule level and quantified using colocalization single-molecule spectroscopy, in which individual labeled molecules are seen transiently associating with a surface-tethered partner, or other total internal reflection fluorescence microscopy approaches in which the interactions elicit changes in fluorescence in the labeled surface-tethered partner. When multiple interacting partners can form ternary, quaternary and higher order complexes, the types of spatial and temporal organization of these complexes can be deduced from the order of appearance and reorganization of the components. Time evolution of complex architectures can be followed by changes in the fluorescence behavior in multiple channels. Here, we describe the kinetic event resolving algorithm (KERA), a software tool for organizing and sorting the discretized fluorescent trajectories from a range of single-molecule experiments. KERA organizes the data in groups by transition patterns, and displays exhaustive dwell time data for each interaction sequence. Enumerating and quantifying sequences of molecular interactions provides important information regarding the underlying mechanism of the assembly, dynamics and architecture of the macromolecular complexes. We demonstrate KERA's utility by analyzing conformational dynamics of two DNA binding proteins: replication protein A and xeroderma pigmentosum complementation group D helicase.
Collapse
Affiliation(s)
- Joseph Tibbs
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Mohamed Ghoneim
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Colleen C Caldwell
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Troy Buzynski
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Wayne Bowie
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Elizabeth M Boehm
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - M Todd Washington
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Guilliam TA. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage. Front Mol Biosci 2021; 8:712971. [PMID: 34295925 PMCID: PMC8290200 DOI: 10.3389/fmolb.2021.712971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis to drive DNA replication fork progression and complete efficient genome duplication. During its advancement along the parental template, each replisome may encounter an array of obstacles including damaged and structured DNA that impede its progression and threaten genome stability. A number of mechanisms exist to permit replisomes to overcome such obstacles, maintain their progression, and prevent fork collapse. A combination of recent advances in structural, biochemical, and single-molecule approaches have illuminated the architecture of the replisome during unperturbed replication, rationalised the impact of impediments to fork progression, and enhanced our understanding of DNA damage tolerance mechanisms and their regulation. This review focusses on these studies to provide an updated overview of the mechanisms that support replisomes to maintain their progression on an imperfect template.
Collapse
Affiliation(s)
- Thomas A. Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
30
|
Bainbridge LJ, Teague R, Doherty AJ. Repriming DNA synthesis: an intrinsic restart pathway that maintains efficient genome replication. Nucleic Acids Res 2021; 49:4831-4847. [PMID: 33744934 PMCID: PMC8136793 DOI: 10.1093/nar/gkab176] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
To bypass a diverse range of fork stalling impediments encountered during genome replication, cells possess a variety of DNA damage tolerance (DDT) mechanisms including translesion synthesis, template switching, and fork reversal. These pathways function to bypass obstacles and allow efficient DNA synthesis to be maintained. In addition, lagging strand obstacles can also be circumvented by downstream priming during Okazaki fragment generation, leaving gaps to be filled post-replication. Whether repriming occurs on the leading strand has been intensely debated over the past half-century. Early studies indicated that both DNA strands were synthesised discontinuously. Although later studies suggested that leading strand synthesis was continuous, leading to the preferred semi-discontinuous replication model. However, more recently it has been established that replicative primases can perform leading strand repriming in prokaryotes. An analogous fork restart mechanism has also been identified in most eukaryotes, which possess a specialist primase called PrimPol that conducts repriming downstream of stalling lesions and structures. PrimPol also plays a more general role in maintaining efficient fork progression. Here, we review and discuss the historical evidence and recent discoveries that substantiate repriming as an intrinsic replication restart pathway for maintaining efficient genome duplication across all domains of life.
Collapse
Affiliation(s)
- Lewis J Bainbridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Rebecca Teague
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| |
Collapse
|
31
|
Zach R, Carr AM. Increased expression of Polδ does not alter the canonical replication program in vivo. Wellcome Open Res 2021; 6:44. [PMID: 33796794 PMCID: PMC7974630 DOI: 10.12688/wellcomeopenres.16600.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background: In vitro experiments utilising the reconstituted Saccharomyces cerevisiae eukaryotic replisome indicated that the efficiency of the leading strand replication is impaired by a moderate increase in Polδ concentration. It was hypothesised that the slower rate of the leading strand synthesis characteristic for reactions containing two-fold and four-fold increased concentration of Polδ represented a consequence of a relatively rare event, during which Polδ stochastically outcompeted Polε and, in an inefficient manner, temporarily facilitated extension of the leading strand. Inspired by this observation, we aimed to determine whether similarly increased Polδ levels influence replication dynamics in vivo using the fission yeast Schizosaccharomyces pombe as a model system. Methods: To generate S. pombe strains over-expressing Polδ, we utilised Cre-Lox mediated cassette exchange and integrated one or three extra genomic copies of all four Polδ genes. To estimate expression of respective Polδ genes in Polδ-overexpressing mutants, we measured relative transcript levels of cdc1 + , cdc6 + (or cdc6 L591G ), cdc27 + and cdm1 + by reverse transcription followed by quantitative PCR (RT-qPCR). To assess the impact of Polδ over-expression on cell physiology and replication dynamics, we used standard cell biology techniques and polymerase usage sequencing. Results: We provide an evidence that two-fold and four-fold over-production of Polδ does not significantly alter growth rate, cellular morphology and S-phase duration. Polymerase usage sequencing analysis further indicates that increased Polδ expression does not change activities of Polδ, Polε and Polα at replication initiation sites and across replication termination zones. Additionally, we show that mutants over-expressing Polδ preserve WT-like distribution of replication origin efficiencies. Conclusions: Our experiments do not disprove the existence of opportunistic polymerase switches; however, the data indicate that, if stochastic replacement of Polε for Polδ does occur i n vivo, it represents a rare phenomenon that does not significantly influence canonical replication program.
Collapse
Affiliation(s)
- Róbert Zach
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Antony M. Carr
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| |
Collapse
|
32
|
Stepchenkova EI, Zhuk AS, Cui J, Tarakhovskaya ER, Barbari SR, Shcherbakova PV, Polev DE, Fedorov R, Poliakov E, Rogozin IB, Lada AG, Pavlov YI. Compensation for the absence of the catalytically active half of DNA polymerase ε in yeast by positively selected mutations in CDC28. Genetics 2021; 218:6222163. [PMID: 33844024 DOI: 10.1093/genetics/iyab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/02/2021] [Indexed: 11/14/2022] Open
Abstract
Current eukaryotic replication models postulate that leading and lagging DNA strands are replicated predominantly by dedicated DNA polymerases. The catalytic subunit of the leading strand DNA polymerase ε, Pol2, consists of two halves made of two different ancestral B-family DNA polymerases. Counterintuitively, the catalytically active N-terminal half is dispensable, while the inactive C-terminal part is required for viability. Despite extensive studies of yeast Saccharomyces cerevisiae strains lacking the active N-terminal half, it is still unclear how these strains survive and recover. We designed a robust method for constructing mutants with only the C-terminal part of Pol2. Strains without the active polymerase part show severe growth defects, sensitivity to replication inhibitors, chromosomal instability, and elevated spontaneous mutagenesis. Intriguingly, the slow-growing mutant strains rapidly accumulate fast-growing clones. Analysis of genomic DNA sequences of these clones revealed that the adaptation to the loss of the catalytic N-terminal part of Pol2 occurs by a positive selection of mutants with improved growth. Elevated mutation rates help generate sufficient numbers of these variants. Single nucleotide changes in the cell cycle-dependent kinase gene, CDC28, improve the growth of strains lacking the N-terminal part of Pol2, and rescue their sensitivity to replication inhibitors and, in parallel, lower mutation rates. Our study predicts that changes in mammalian homologs of cyclin-dependent kinases may contribute to cellular responses to the leading strand polymerase defects.
Collapse
Affiliation(s)
- Elena I Stepchenkova
- Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia.,Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg 199034, Russia.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna S Zhuk
- ITMO University, Saint-Petersburg 191002, Russia
| | - Jian Cui
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Elena R Tarakhovskaya
- Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia.,Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dmitrii E Polev
- Research Resource Center "Biobank," Research Park, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Roman Fedorov
- Department of Mathematics, University of Pittsburgh, PA 15213, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Artem G Lada
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA 92697, USA
| | - Youri I Pavlov
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg 199034, Russia.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
33
|
Bonnell E, Pasquier E, Wellinger RJ. Telomere Replication: Solving Multiple End Replication Problems. Front Cell Dev Biol 2021; 9:668171. [PMID: 33869233 PMCID: PMC8047117 DOI: 10.3389/fcell.2021.668171] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes are highly complex and divided into linear chromosomes that require end protection from unwarranted fusions, recombination, and degradation in order to maintain genomic stability. This is accomplished through the conserved specialized nucleoprotein structure of telomeres. Due to the repetitive nature of telomeric DNA, and the unusual terminal structure, namely a protruding single stranded 3' DNA end, completing telomeric DNA replication in a timely and efficient manner is a challenge. For example, the end replication problem causes a progressive shortening of telomeric DNA at each round of DNA replication, thus telomeres eventually lose their protective capacity. This phenomenon is counteracted by the recruitment and the activation at telomeres of the specialized reverse transcriptase telomerase. Despite the importance of telomerase in providing a mechanism for complete replication of telomeric ends, the majority of telomere replication is in fact carried out by the conventional DNA replication machinery. There is significant evidence demonstrating that progression of replication forks is hampered at chromosomal ends due to telomeric sequences prone to form secondary structures, tightly DNA-bound proteins, and the heterochromatic nature of telomeres. The telomeric loop (t-loop) formed by invasion of the 3'-end into telomeric duplex sequences may also impede the passage of replication fork. Replication fork stalling can lead to fork collapse and DNA breaks, a major cause of genomic instability triggered notably by unwanted repair events. Moreover, at chromosomal ends, unreplicated DNA distal to a stalled fork cannot be rescued by a fork coming from the opposite direction. This highlights the importance of the multiple mechanisms involved in overcoming fork progression obstacles at telomeres. Consequently, numerous factors participate in efficient telomeric DNA duplication by preventing replication fork stalling or promoting the restart of a stalled replication fork at telomeres. In this review, we will discuss difficulties associated with the passage of the replication fork through telomeres in both fission and budding yeasts as well as mammals, highlighting conserved mechanisms implicated in maintaining telomere integrity during replication, thus preserving a stable genome.
Collapse
Affiliation(s)
| | | | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
34
|
Zach R, Carr AM. Increased expression of Polδ does not alter the canonical replication program in vivo. Wellcome Open Res 2021; 6:44. [PMID: 33796794 PMCID: PMC7974630 DOI: 10.12688/wellcomeopenres.16600.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background: In vitro experiments utilising the reconstituted Saccharomyces cerevisiae eukaryotic replisome indicated that the efficiency of the leading strand replication is impaired by a moderate increase in Polδ concentration. It was hypothesised that the slower rate of the leading strand synthesis characteristic for reactions containing two-fold and four-fold increased concentration of Polδ represented a consequence of a relatively rare event, during which Polδ stochastically outcompeted Polε and, in an inefficient manner, temporarily facilitated extension of the leading strand. Inspired by this observation, we aimed to determine whether similarly increased Polδ levels influence replication dynamics in vivo using the fission yeast Schizosaccharomyces pombe as a model system. Methods: To generate S. pombe strains over-expressing Polδ, we utilised Cre-Lox mediated cassette exchange and integrated one or three extra genomic copies of all four Polδ genes. To estimate expression of respective Polδ genes in Polδ-overexpressing mutants, we measured relative transcript levels of cdc1 + , cdc6 + (or cdc6 L591G ), cdc27 + and cdm1 + by reverse transcription followed by quantitative PCR (RT-qPCR). To assess the impact of Polδ over-expression on cell physiology and replication dynamics, we used standard cell biology techniques and polymerase usage sequencing. Results: We provide an evidence that two-fold and four-fold over-production of Polδ does not significantly alter growth rate, cellular morphology and S-phase duration. Polymerase usage sequencing analysis further indicates that increased Polδ expression does not change activities of Polδ, Polε and Polα at replication initiation sites and across replication termination zones. Additionally, we show that mutants over-expressing Polδ preserve WT-like distribution of replication origin efficiencies. Conclusions: Our experiments do not disprove the existence of opportunistic polymerase switches; however, the data indicate that, if stochastic replacement of Polε for Polδ does occur i n vivo, it represents a rare phenomenon that does not significantly influence canonical replication program.
Collapse
Affiliation(s)
- Róbert Zach
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Antony M. Carr
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| |
Collapse
|
35
|
Guilliam TA, Yeeles JT. The eukaryotic replisome tolerates leading-strand base damage by replicase switching. EMBO J 2021; 40:e107037. [PMID: 33555053 PMCID: PMC7917549 DOI: 10.15252/embj.2020107037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 01/15/2023] Open
Abstract
The high‐fidelity replicative DNA polymerases, Pol ε and Pol δ, are generally thought to be poorly equipped to replicate damaged DNA. Direct and complete replication of a damaged template therefore typically requires the activity of low‐fidelity translesion synthesis (TLS) polymerases. Here we show that a yeast replisome, reconstituted with purified proteins, is inherently tolerant of the common oxidative lesion thymine glycol (Tg). Surprisingly, leading‐strand Tg was bypassed efficiently in the presence and absence of the TLS machinery. Our data reveal that following helicase–polymerase uncoupling a switch from Pol ε, the canonical leading‐strand replicase, to the lagging‐strand replicase Pol δ, facilitates rapid, efficient and error‐free lesion bypass at physiological nucleotide levels. This replicase switch mechanism also promotes bypass of the unrelated oxidative lesion, 8‐oxoguanine. We propose that replicase switching may promote continued leading‐strand synthesis whenever the replisome encounters leading‐strand damage that is bypassed more efficiently by Pol δ than by Pol ε.
Collapse
Affiliation(s)
- Thomas A Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Joseph Tp Yeeles
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
36
|
Prospect of reprogramming replication licensing for cancer drug development. Biomed Pharmacother 2021; 136:111190. [PMID: 33497909 DOI: 10.1016/j.biopha.2020.111190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic chromosomal DNA replication is preceded by replication licensing which involves the identification of the origin of replication by origin recognition complex (ORC). The ORC loads pre-replication complexes (pre-RCs) through a series of tightly regulated mechanisms where the ORC interacts with Cdc6 to recruit cdt1-MCM2-7 complexes to the origin of replication. In eukaryotes, adherence to regulatory mechanisms of the replication program is required to ensure that all daughter cells carry the exact copy of genetic material as the parent cell. Failure of which leads to the development of genome instability syndromes like cancer, diabetes, etc. In an event of such occurrence, preventing cells from carrying the defaulted genetic material and passing it to other cells hinges on the regulation of chromosomal DNA replication. Thus, understanding the mechanisms underpinning chromosomal DNA replication and particularly replication licensing can expose druggable enzymes, effector molecules, and secondary messengers that can be targeted for diagnosis and therapeutic purposes. Effectively drugging these molecular markers to reprogram pre-replication events can be used to control the fate of chromosomal DNA replication for the treatment of genome instability disorders and in this case, cancer. This review discusses available knowledge of replication licensing in the contest of molecular drug discovery for the treatment of cancer.
Collapse
|
37
|
Pavlov YI, Zhuk AS, Stepchenkova EI. DNA Polymerases at the Eukaryotic Replication Fork Thirty Years after: Connection to Cancer. Cancers (Basel) 2020; 12:E3489. [PMID: 33255191 PMCID: PMC7760166 DOI: 10.3390/cancers12123489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization. The principal idea of participation of different polymerases in specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named "division of labor," remains standing, with an amendment of the broader role of polymerase δ in the replication of both the lagging and leading DNA strands. However, cancer-associated mutations predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA synthesis. We analyze how new findings in the DNA replication field help elucidate the polymerase variants' effects on cancer.
Collapse
Affiliation(s)
- Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Anna S. Zhuk
- International Laboratory of Computer Technologies, ITMO University, 197101 Saint Petersburg, Russia;
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia;
- Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|