1
|
Antonello G, Marucco A, Gazzano E, Kainourgios P, Ravagli C, Gonzalez-Paredes A, Sprio S, Padín-González E, Soliman MG, Beal D, Barbero F, Gasco P, Baldi G, Carriere M, Monopoli MP, Charitidis CA, Bergamaschi E, Fenoglio I, Riganti C. Changes of physico-chemical properties of nano-biomaterials by digestion fluids affect the physiological properties of epithelial intestinal cells and barrier models. Part Fibre Toxicol 2022; 19:49. [PMID: 35854319 PMCID: PMC9297619 DOI: 10.1186/s12989-022-00491-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature—lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)—were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. Results The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. Conclusions Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00491-w.
Collapse
Affiliation(s)
- Giulia Antonello
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy.,Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy
| | - Arianna Marucco
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Panagiotis Kainourgios
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Costanza Ravagli
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | | | - Simone Sprio
- National Research Council, Institute of Science and Technology for Ceramics ISTEC-CNR, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Esperanza Padín-González
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Mahmoud G Soliman
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - David Beal
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Francesco Barbero
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Headwork, Via Livorno 60, 10144, Turin, Italy
| | - Giovanni Baldi
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | - Marie Carriere
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Costas A Charitidis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy.
| |
Collapse
|
2
|
Cole H, Bryan D, Lancaster L, Mawas F, Vllasaliu D. Chitosan nanoparticle antigen uptake in epithelial monolayers can predict mucosal but not systemic in vivo immune response by oral delivery. Carbohydr Polym 2018; 190:248-254. [DOI: 10.1016/j.carbpol.2018.02.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
|
3
|
DeLoid GM, Wang Y, Kapronezai K, Lorente LR, Zhang R, Pyrgiotakis G, Konduru NV, Ericsson M, White JC, De La Torre-Roche R, Xiao H, McClements DJ, Demokritou P. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Part Fibre Toxicol 2017; 14:40. [PMID: 29029643 PMCID: PMC5640936 DOI: 10.1186/s12989-017-0221-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Engineered nanomaterials (ENMs) are increasingly added to foods to improve their quality, sensory appeal, safety and shelf-life. Human exposure to these ingested ENMs (iENMS) is inevitable, yet little is known of their hazards. To assess potential hazards, efficient in vitro methodologies are needed to evaluate particle biokinetics and toxicity. These methodologies must account for interactions and transformations of iENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Here we report the development and application of an integrated methodology consisting of three interconnected stages: 1) assessment of iENM-food interactions (food matrix effect) using model foods; 2) assessment of gastrointestinal transformations of the nano-enabled model foods using a three-stage GIT simulator; 3) assessment of iENMs biokinetics and cellular toxicity after exposure to simulated GIT conditions using a triculture cell model. As a case study, a model food (corn oil-in-water emulsion) was infused with Fe2O3 (Iron(III) oxide or ferric oxide) ENMs and processed using this three-stage integrated platform to study the impact of food matrix and GIT effects on nanoparticle biokinetics and cytotoxicity . METHODS A corn oil in phosphate buffer emulsion was prepared using a high speed blender and high pressure homogenizer. Iron oxide ENM was dispersed in water by sonication and combined with the food model. The resulting nano-enabled food was passed through a three stage (mouth, stomach and small intestine) GIT simulator. Size distributions of nano-enabled food model and digestae at each stage were analyzed by DLS and laser diffraction. TEM and confocal imaging were used to assess morphology of digestae at each phase. Dissolution of Fe2O3 ENM along the GIT was assessed by ICP-MS analysis of supernatants and pellets following centrifugation of digestae. An in vitro transwell triculture epithelial model was used to assess biokinetics and toxicity of ingested Fe2O3 ENM. Translocation of Fe2O3 ENM was determined by ICP-MS analysis of cell lysates and basolateral compartment fluid over time. RESULTS It was demonstrated that the interactions of iENMs with food and GIT components influenced nanoparticle fate and transport, biokinetics and toxicological profile. Large differences in particle size, charge, and morphology were observed in the model food with and without Fe2O3 and among digestae from different stages of the simulated GIT (mouth, stomach, and small intestine). Immunoflorescence and TEM imaging of the cell culture model revealed markers and morphology of small intestinal epithelium including enterocytes, goblet cells and M cells. Fe2O3 was not toxic at concentrations tested in the digesta. In biokinetics studies, translocation of Fe2O3 after 4 h was <1% and ~2% for digesta with and without serum, respectively, suggesting that use of serum proteins alters iENMs biokinetics and raises concerns about commonly-used approaches that neglect iENM - food-GIT interactions or dilute digestae in serum-containing media. CONCLUSIONS We present a simple integrated methodology for studying the biokinetics and toxicology of iENMs, which takes into consideration nanoparticle-food-GIT interactions. The importance of food matrix and GIT effects on biointeractions was demonstrated, as well as the incorporation of these critical factors into a cellular toxicity screening model. Standardized food models still need to be developed and used to assess the effect of the food matrix effects on the fate and bioactivity of iENMs since commercial foods vary considerably in their compositions and structures.
Collapse
Affiliation(s)
- Glen M. DeLoid
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Yanli Wang
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Klara Kapronezai
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Laura Rubio Lorente
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Roujie Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Nagarjun V. Konduru
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Jason C. White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504 USA
| | - Roberto De La Torre-Roche
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504 USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - David Julian McClements
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
4
|
A new cell-to-cell interaction model for epithelial microfold cell formation and the enhancing effect of epidermal growth factor. Eur J Pharm Sci 2017; 106:49-61. [DOI: 10.1016/j.ejps.2017.05.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/12/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022]
|
5
|
Lozoya-Agullo I, Araújo F, González-Álvarez I, Merino-Sanjuán M, González-Álvarez M, Bermejo M, Sarmento B. Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B Coculture Models To Predict Intestinal and Colonic Permeability Compared to Caco-2 Monoculture. Mol Pharm 2017; 14:1264-1270. [PMID: 28263609 DOI: 10.1021/acs.molpharmaceut.6b01165] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Caco-2 cellular monolayer is a widely accepted in vitro model to predict human permeability but suffering from several and critical limitations. Therefore, some alternative cell cultures to mimic the human intestinal epithelium, as closely as possible, have been developed to achieve more physiological conditions, as the Caco-2/HT29-MTX coculture and the triple Caco-2/HT29-MTX/Raji B models. In this work the permeability of 12 model drugs of different Biopharmaceutical Classification System (BCS) characteristics, in the coculture and triple coculture models was assessed. Additionally, the utility of both models to classify compounds according to the BCS criteria was scrutinized. The obtained results suggested that the coculture of Caco-2/HT29-MTX and the triple coculture of Caco-2/HT29-MTX/Raji B were useful models to predict intestinal permeability and to classify the drugs in high or low permeability according to BCS. Moreover, to study thoroughly the transport mechanism of a specific drug, using a more complex model than Caco-2 monocultures is more suitable because coculture and triple coculture are more physiological models, so the results obtained with them will be closer to those obtained in the human intestine.
Collapse
Affiliation(s)
- Isabel Lozoya-Agullo
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University , San Juan de Alicante, 03550 Alicante, Spain.,Department of Pharmacokinetics and Pharmaceutical Technology, University of Valencia , Av. de Blasco Ibáñez, 13, 46010 Valencia, Spain
| | - Francisca Araújo
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto , Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, University of Porto , Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Isabel González-Álvarez
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University , San Juan de Alicante, 03550 Alicante, Spain
| | - Matilde Merino-Sanjuán
- Department of Pharmacokinetics and Pharmaceutical Technology, University of Valencia , Av. de Blasco Ibáñez, 13, 46010 Valencia, Spain.,Molecular Recognition and Technological Development, Polytechnic University-University of Valencia , Camí de Vera, s/n, 46022 Valencia, Spain
| | - Marta González-Álvarez
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University , San Juan de Alicante, 03550 Alicante, Spain
| | - Marival Bermejo
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University , San Juan de Alicante, 03550 Alicante, Spain
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto , Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, University of Porto , Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Rua Central da Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
6
|
Ye D, Bramini M, Hristov DR, Wan S, Salvati A, Åberg C, Dawson KA. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1396-1406. [PMID: 28900595 PMCID: PMC5530606 DOI: 10.3762/bjnano.8.141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/14/2017] [Indexed: 05/10/2023]
Abstract
Cellular barriers, such as the skin, the lung epithelium or the intestinal epithelium, constitute one of the first obstacles facing nanomedicines or other nanoparticles entering organisms. It is thus important to assess the capacity of nanoparticles to enter and transport across such barriers. In this work, Caco-2 intestinal epithelial cells were used as a well-established model for the intestinal barrier, and the uptake, trafficking and translocation of model silica nanoparticles of different sizes were investigated using a combination of imaging, flow cytometry and transport studies. Compared to typical observations in standard cell lines commonly used for in vitro studies, silica nanoparticle uptake into well-developed Caco-2 cellular barriers was found to be very low. Instead, nanoparticle association to the apical outer membrane was substantial and these particles could easily be misinterpreted as internalised in the absence of imaging. Passage of nanoparticles through the barrier was very limited, suggesting that the low amount of internalised nanoparticles was due to reduced uptake into cells, rather than a considerable transport through them.
Collapse
Affiliation(s)
- Dong Ye
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
- present address: AbbVie Deutschland GmbH & Co KG, Brain Delivery at Neuroscience Discovery, Knollstraße, 67061 Ludwigshafen, Germany
| | - Mattia Bramini
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
- present address: Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, L.go Rosanna Benzi 10, 16132, Genova, Italy
| | - Delyan R Hristov
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sha Wan
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna Salvati
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
- present address: Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Christoffer Åberg
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
- present address: Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Pereira JFS, Awatade NT, Loureiro CA, Matos P, Amaral MD, Jordan P. The third dimension: new developments in cell culture models for colorectal research. Cell Mol Life Sci 2016; 73:3971-89. [PMID: 27147463 PMCID: PMC11108567 DOI: 10.1007/s00018-016-2258-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 12/23/2022]
Abstract
Cellular models are important tools in various research areas related to colorectal biology and associated diseases. Herein, we review the most widely used cell lines and the different techniques to grow them, either as cell monolayer, polarized two-dimensional epithelia on membrane filters, or as three-dimensional spheres in scaffold-free or matrix-supported culture conditions. Moreover, recent developments, such as gut-on-chip devices or the ex vivo growth of biopsy-derived organoids, are also discussed. We provide an overview on the potential applications but also on the limitations for each of these techniques, while evaluating their contribution to provide more reliable cellular models for research, diagnostic testing, or pharmacological validation related to colon physiology and pathophysiology.
Collapse
Affiliation(s)
- Joana F S Pereira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Nikhil T Awatade
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cláudia A Loureiro
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Margarida D Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Peter Jordan
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
8
|
Jain AS, Dhawan VV, Sarmento B, Nagarsenker MS. In Vitro and Ex Vivo Evaluations of Lipid Anti-Cancer Nanoformulations: Insights and Assessment of Bioavailability Enhancement. AAPS PharmSciTech 2016; 17:553-71. [PMID: 27068527 DOI: 10.1208/s12249-016-0522-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
Lipid-based nanoformulations have been extensively investigated for improving oral efficacy of plethora of drugs. Chemotherapeutic agents remain a preferred option for effective management of cancer; however, most chemotherapeutic agents suffer from limitation of poor oral bioavailability that is associated with their physicochemical properties. Drug delivery via lipid-based nanosystems possesses strong rational and potential for improving oral bioavailability of such anti-cancer molecules through various mechanisms, viz. improving their gut solubilisation owing to micellization, improving mucosal permeation, improving lymphatic uptake, inhibiting intestinal metabolism and/or inhibiting P-glycoprotein efflux of molecules in the gastrointestinal tract. Various in vitro characterization techniques have been reported in literature that aid in getting insights into mechanisms of lipid-based nanodevices in improving oral efficacy of anti-cancer drugs. The review focuses on different characterization techniques that can be employed for evaluation of lipid-based nanosystems and their role in effective anti-cancer drug delivery.
Collapse
|
9
|
Shrestha N, Shahbazi MA, Araújo F, Mäkilä E, Raula J, Kauppinen EI, Salonen J, Sarmento B, Hirvonen J, Santos HA. Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials 2015; 68:9-20. [DOI: 10.1016/j.biomaterials.2015.07.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 12/25/2022]
|
10
|
Trends in Nonparenteral Delivery of Biologics, Vaccines and Cancer Therapies. NOVEL APPROACHES AND STRATEGIES FOR BIOLOGICS, VACCINES AND CANCER THERAPIES 2015. [PMCID: PMC7150203 DOI: 10.1016/b978-0-12-416603-5.00005-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Alasil SM, Omar R, Ismail S, Yusof MY, Dhabaan GN, Abdulla MA. Evidence of Bacterial Biofilms among Infected and Hypertrophied Tonsils in Correlation with the Microbiology, Histopathology, and Clinical Symptoms of Tonsillar Diseases. Int J Otolaryngol 2013; 2013:408238. [PMID: 24454384 PMCID: PMC3886491 DOI: 10.1155/2013/408238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 11/17/2022] Open
Abstract
Diseases of the tonsils are becoming more resistant to antibiotics due to the persistence of bacteria through the formation of biofilms. Therefore, understanding the microbiology and pathophysiology of such diseases represent an important step in the management of biofilm-related infections. We have isolated the microorganisms, evaluated their antimicrobial susceptibility, and detected the presence of bacterial biofilms in tonsillar specimens in correlation with the clinical manifestations of tonsillar diseases. Therefore, a total of 140 palatine tonsils were collected from 70 patients undergoing tonsillectomy at University Malaya Medical Centre. The most recovered isolate was Staphylococcus aureus (39.65%) followed by Haemophilus influenzae (18.53%). There was high susceptibility against all selected antibiotics except for cotrimoxazole. Bacterial biofilms were detected in 60% of patients and a significant percentage of patients demonstrated infection manifestation rather than obstruction. In addition, an association between clinical symptoms like snore, apnea, nasal obstruction, and tonsillar hypertrophy was found to be related to the microbiology of tonsils particularly to the presence of biofilms. In conclusion, evidence of biofilms in tonsils in correlation with the demonstrated clinical symptoms explains the recalcitrant nature of tonsillar diseases and highlights the importance of biofilm's early detection and prevention towards better therapeutic management of biofilm-related infections.
Collapse
Affiliation(s)
- Saad Musbah Alasil
- Department of Microbiology, Faculty of Medicine, MAHSA University, 59100 Kuala Lumpur, Malaysia
| | - Rahmat Omar
- Pantai Hospital Cheras, 56100 Kuala Lumpur, Malaysia
| | - Salmah Ismail
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Yasim Yusof
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ghulam N. Dhabaan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Casteleyn C, Van den Broeck W, Gebert A, Tambuyzer BR, Van Cruchten S, Van Ginneken C. M cell specific markers in man and domestic animals: Valuable tools in vaccine development. Comp Immunol Microbiol Infect Dis 2013; 36:353-64. [DOI: 10.1016/j.cimid.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/01/2013] [Accepted: 03/21/2013] [Indexed: 12/13/2022]
|
13
|
Antunes F, Andrade F, Araújo F, Ferreira D, Sarmento B. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm 2012; 83:427-35. [PMID: 23159710 DOI: 10.1016/j.ejpb.2012.10.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/27/2012] [Accepted: 10/05/2012] [Indexed: 01/12/2023]
Abstract
In vitro cell culture models for studying oral drug absorption during early stages of drug development have become a useful tool in drug discovery and development, with respect to substance throughput and reproducibility. The aim of this study was to establish an in vitro cellular model based on human colon carcinoma Caco-2, mucus-producing HT29, and Raji B cells in order to design a model that more accurately mimics the small intestinal epithelial layer. Normal oriented model was set up by seeding co-cultures of Caco-2 and HT29 cells into Transwell filters and maintained under identical conditions following addition of Raji B to the basolateral chamber. Inverted model was set up seeding Caco-2 and HT29 cells on the basolateral chamber and then transferred in the Transwell device with the epithelial cells facing the basolateral chamber following Raji B addition to the apical compartment. Morphological differences on size and thickness of cell membranes were detected between the models studied by using fluorescence microscopy. On the triple co-culture models, cell membranes were increasing in size and thickness from the Caco-2 to Caco-2/HT29 and Caco-2/Raji B. Also, the nuclei seem to be larger than in the other studied models. Insulin permeation was higher on the triple co-culture model when compared to the Caco-2/HT29 co-culture model. Also, insulin permeation as mediated by nanoparticles and insulin solution permeation was higher on the normal oriented Caco-2/HT29/Raji B model as compared to the inverted model. Overall, our results suggest that Caco-2/HT29/Raji B triple co-culture normal oriented cellular model may be reliable to obtain a more physiological, functional, and reproducible in vitro model of the intestinal barrier to study protein absorption, both in solution and when delivered by nanocarriers.
Collapse
Affiliation(s)
- Filipa Antunes
- Department of Pharmaceutical Technology, University of Porto, Portugal
| | | | | | | | | |
Collapse
|
14
|
Tawde SA, Chablani L, Akalkotkar A, D'Souza C, Chiriva-Internati M, Selvaraj P, D'Souza MJ. Formulation and evaluation of oral microparticulate ovarian cancer vaccines. Vaccine 2012; 30:5675-81. [PMID: 22750042 DOI: 10.1016/j.vaccine.2012.05.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/25/2012] [Indexed: 01/08/2023]
Abstract
Ovarian cancer is the fifth most leading cause of cancer related deaths in women in the US. Customized immunotherapeutic strategies may serve as an alternative method to control the recurrence or progression of ovarian cancer and to avoid severe adverse effects of chemotherapy. In this study, a microparticulate vaccine using whole cell lysate of a murine ovarian cancer cell line, ID8 was prepared with the use of a spray dryer. These particles were designed for oral delivery using enteric polymers such as methacrylic copolymer, Eudragit(®) FS30D and hydroxyl propyl methyl cellulose acetate succinate. These particles were targeted for uptake via microfold cell (M-cell) in Peyer's patches of small intestine using M-cell targeting ligand, Aleuria aurantia lectin. The interleukins (ILs) such as IL-2 and IL-12 were added to the vaccine formulation to further enhance the immune response. The particles obtained were of 1.58±0.62 μm size with a charge of 12.48±2.32 mV. The vaccine efficacy was evaluated by administering the particles via oral route to C57BL/6 female mice. At the end of vaccination, mice were challenged with live tumor cells. Vaccinated mice showed significant (around six-fold) retardation of tumor volume in comparison to non-vaccinated animals for 3 weeks after the tumor challenge (p<0.001). The serum IgG antibody levels were found to be elevated in case of vaccinated animals in comparison to non-vaccinated group (p<0.05). Analysis of IgG1 titers (indicative of Th2 response) and IgG2a titers (indicative of Th1 response) showed a mixed Th1 and Th2 immune response in case vaccine alone and Th2 response in case of vaccine with interleukins group. Moreover, CD8+ T-cell, CD4+ T-cell and B-cell populations in different lymphatic organs were elevated in case of vaccinated mice. Thus, whole cell lysate vaccine microparticles formulated by spray drying could trigger humoral as well as cellular immune response when administered orally. Such vaccine could potentially be an effective treatment for patients with residual tumor or high tumor-relapse probability.
Collapse
Affiliation(s)
- Suprita A Tawde
- Vaccine Nanotechnology Laboratory, Department of Pharmaceutical Sciences, Mercer University, College of Pharmacy and Health Sciences, Atlanta, GA 30341, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ubale RV, D'Souza MJ, Infield DT, McCarty NA, Zughaier SM. Formulation of meningococcal capsular polysaccharide vaccine-loaded microparticles with robust innate immune recognition. J Microencapsul 2012; 30:28-41. [PMID: 22657751 DOI: 10.3109/02652048.2012.692402] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis associated with a high mortality rate. Capsular polysaccharides (CPSs) are a major virulence factor and form the basis for serogroup designation and protective vaccines. The current polysaccharide meningococcal vaccines are available but are very expensive and require chemical conjugation. Here, we report a novel meningococcal vaccine formulation consisting of meningococcal CPS polymers encapsulated in albumin-based biodegradable microparticles that slowly release antigen and induce robust innate immune responses. Vaccines that elicit innate immunity are reported to have enhanced and protective adaptive immune responses. In this study, the meningococcal CPS-loaded microparticles, but not the empty microparticles, induced the release of IL-8, TNF-α and IL-1β, enhanced phagocytic capacity and induced robust autophagy in macrophages. The novel meningococcal vaccine microparticles are robustly taken up by macrophages and elicit strong innate immune responses that enhance antigen presentation which is a prerequisite for inducing adaptive immunity.
Collapse
Affiliation(s)
- Ruhi V Ubale
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341, USA
| | | | | | | | | |
Collapse
|
16
|
Chablani L, Tawde SA, D'souza MJ. Spray-dried microparticles: a potential vehicle for oral delivery of vaccines. J Microencapsul 2012; 29:388-97. [DOI: 10.3109/02652048.2011.651503] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Carr KE, Smyth SH, McCullough MT, Morris JF, Moyes SM. Morphological aspects of interactions between microparticles and mammalian cells: intestinal uptake and onward movement. ACTA ACUST UNITED AC 2012; 46:185-252. [DOI: 10.1016/j.proghi.2011.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Diaz RR, Picciafuoco S, Paraje MG, Villegas NA, Miranda JA, Albesa I, Cremonezzi D, Commisso R, Paglini-Oliva P. Relevance of biofilms in pediatric tonsillar disease. Eur J Clin Microbiol Infect Dis 2011; 30:1503-9. [PMID: 21499955 DOI: 10.1007/s10096-011-1249-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/25/2011] [Indexed: 11/29/2022]
Abstract
In this investigation, we study the relation between chronic inflammation of the tonsils, clinical features, and the presence of biofilms in the crypts in patients presenting with obstructive hypertrophy and recurrent upper airway pathology. Thirty-six patients who needed to undergo a tonsillectomy for obstructive reasons (aged 1 to 6 years), among which none of them had taken any antibiotics 30 days prior to surgery, were included. Samples were examined with hematoxylin-eosin and Gram staining, fluorescent microscopy, and confocal laser microscopy. The predominance of symptoms were those related to obstructive pathology rather than infection (p < 0.01). All patients had tonsillar hypertrophy (grade III or IV), but an association with adenoids hypertrophy was detected in 66.66% of cases (p < 0.05). 77.28% of tonsils presented biofilms in their crypts, but hypertrophy and tonsillar follicle number were not related to the presence or absence of biofilms. Here, we demonstrated that symptoms like harsh raucous sound, tonsillar and adenoids hypertrophy, apnea, and cervical adenopathies are clearly related to the presence of biofilm in tonsils. Our results allow us to propose that biofilms are involved in the pathogenesis of tonsils and adenoids hypertrophy. The prevention of biofilms formation should be focused in the early stages, attempting to restrain bacterial attachment to the respiratory mucosa.
Collapse
Affiliation(s)
- R R Diaz
- Department of Otolaryngology, Reina Fabiola Clinic, Catholic University of Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
O'Neill MJ, Bourre L, Melgar S, O'Driscoll CM. Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 2011; 16:203-18. [PMID: 21262379 DOI: 10.1016/j.drudis.2011.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/18/2010] [Accepted: 01/14/2011] [Indexed: 01/12/2023]
Abstract
The future of nucleic acid-based therapeutics is dependent on achieving successful delivery. Recently, there has been an increasing interest in delivery via the gastrointestinal tract. Gene therapy via this route has many advantages, including non-invasive access and the versatility to treat local diseases, such as inflammatory bowel disease, as well as systemic diseases, such as haemophilia. However, the intestine presents several distinct barriers and, therefore, the design of robust non-viral delivery systems is key to future success. Several non-viral delivery strategies have provided evidence of activity in vivo. To facilitate the design of more efficient and safe gene medicines, more physiologically relevant models, at both the in vitro and in vivo levels, are essential.
Collapse
Affiliation(s)
- Martin J O'Neill
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
20
|
Transport of chitosan-DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes. Eur J Pharm Sci 2009; 39:103-9. [PMID: 19913612 DOI: 10.1016/j.ejps.2009.11.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/30/2009] [Accepted: 11/01/2009] [Indexed: 12/11/2022]
Abstract
Oral vaccination is one of the most promising applications of polymeric nanoparticles. Using two different in vitro cellular models to partially reproduce the characteristics of intestinal enterocytes and M-cells, this study demonstrates that nanoparticle transport through the M-cell co-culture model is 5-fold that of the intestinal epithelial monolayer, with at least 80% of the chitosan-DNA nanoparticles uptaken in the first 30 min. Among the properties of nanoparticles studied, ligand decoration has the most dramatic effect on the transcytosis rate: transferrin modification enhances transport through both models by 3- to 5-fold. The stability of the nanoparticles also affects transport kinetics. Factors which de-stabilize the nanoparticles, such as low charge (N/P) ratio and addition of serum, result in aggregation and in turn decreases transport efficiency. Of these stability factors, luminal pH is of great interest as an increase in pH from 5.5 to 6.4 and 7.4 leads to a 3- and 10-fold drop in nanoparticle transport, respectively. Since soluble chitosan can act as an enhancer to increase paracellular transport by up to 60%, this decrease is partially attributed to the soluble chitosan precipitating near neutral pH. The implication that chitosan-DNA nanoparticles are more stable in the upper regions of the small intestine suggests that higher uptake rates may occur in the duodenum compared to the ileum and the colon.
Collapse
|
21
|
Saunders M. Transplacental transport of nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:671-84. [DOI: 10.1002/wnan.53] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|