1
|
Olroyd SL, Kopperud BT. Allometry of sound reception structures and evidence for a mandibular middle ear in non-mammalian synapsids. Evolution 2025; 79:905-921. [PMID: 39989013 DOI: 10.1093/evolut/qpaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/31/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
The origin of sensory structures provides an excellent framework for studying how constraints and selective pressures affect the evolution of complex features. The evolution of the mammalian middle ear from the jaw hinge of non-mammalian synapsids offers a deep-time perspective on sensory evolution but is limited by a poor understanding of early synapsid hearing. This work tests the hypothesis that the size of the reflected lamina of the angular bone in non-mammalian synapsids followed a strict, negative allometric trend that may be expected for a sound receiver. Allometry is first investigated in the pterygoid bone of chameleons, which was co-opted for hearing in some species and represents a possible analog for the synapsid reflected lamina. Results indicate that chameleons with a pterygoid ear exhibit a similar allometric slope, while species without a pterygoid ear have variable slopes, suggesting an optimum allometric pattern in sound receivers. In the reflected lamina, we find reduced variation around the allometric trend in therocephalians and non-bidentalian anomodonts, and evolutionary modeling suggests constraint in these groups. These results are consistent with a mandibular middle ear in non-mammalian synapsids, adding valuable new insights to the hypothesis that selective pressures for hearing ability were present long before the evolution of the mammalian middle ear.
Collapse
Affiliation(s)
- Savannah L Olroyd
- Department of Biology, Utah Valley University, Orem, UT, United States
| | - Bjørn T Kopperud
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Tovar RU, Dobbins BA, Hartman NR, Leelani S, Devitt TJ, García DM, Gignac PM, Cannatella DC, Hillis DM. Parallel sensory compensation following independent subterranean colonization by groundwater salamanders ( Eurycea). Proc Natl Acad Sci U S A 2025; 122:e2504850122. [PMID: 40460121 DOI: 10.1073/pnas.2504850122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/23/2025] [Indexed: 06/18/2025] Open
Abstract
Lineages that have invaded subterranean environments have repeatedly evolved remarkable adaptations to life in darkness. However, observational and experimental studies in additional natural systems are needed to further our understanding of repeated evolution and convergence. In Texas, a radiation of groundwater salamanders (genus Eurycea), with independent invasions of subterranean karstic environments, offers an opportunity to investigate phenotypic convergence, parallel evolution, and the enhancement and regression of sensory systems. Adaptations to a troglobitic life in this clade include morphological, behavioral, and physiological changes within and among species. Intraspecific and interspecific variation in morphology in response to the selective pressures of life underground allows for detailed examination of physical, behavioral, and physiological changes associated with subterranean adaptation within a comparative phylogenetic framework. We find a correlated change between two sensory systems repeated across multiple subterranean Eurycea lineages: the degeneration of the eye and the expansion of the mechanosensory lateral line. The increase in anterior neuromast organs in subterranean lineages was positively correlated with the expression of pax6 (Paired-box 6), a conserved transcription factor important for vertebrate neurogenesis. Our results show a decreasing trend of PAX6 labeling in the neuromasts of adult surface salamanders (Eurycea nana) relative to the maintained labeling in subterranean species (Eurycea rathbuni). These lateral line enhancements are correlated with reductions in the development of optic systems in subterranean salamander lineages. Altogether, our findings provide a starting point for future evolutionary developmental investigations examining the genetic underpinnings of adaptive, repeated evolution in a novel system.
Collapse
Affiliation(s)
- Ruben U Tovar
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712
| | - Brittany A Dobbins
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712
- Department of Biology, Texas State University, San Marcos, TX 78666
| | - Nicholas R Hartman
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712
| | - Sheena Leelani
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712
| | - Thomas J Devitt
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712
| | - Dana M García
- Department of Biology, Texas State University, San Marcos, TX 78666
| | - Paul M Gignac
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85724
| | - David C Cannatella
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712
| | - David M Hillis
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
3
|
Yatsiuk I, Leontyev D, Schnittler M, Ehlers T, Mikryukov V, Kõljalg U. Arcyria and allied genera: taxonomic backbone and character evolution. Fungal Syst Evol 2025; 15:97-118. [PMID: 40170760 PMCID: PMC11959233 DOI: 10.3114/fuse.2025.15.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/27/2024] [Indexed: 01/05/2025] Open
Abstract
Arcyria, one of the most diverse genera of bright-spored myxomycetes, has recently been identified as polyphyletic within the paraphyletic family Arcyriaceae sensu lato. However, due to the high variability and inconsistency of morphological traits in Trichiales, no taxonomic decision has yet been proposed to rectify this situation. A thorough revision of the genus is necessary. To address this, we present results of the extensive taxonomic and geographic sampling of the genus by incorporating sequences of two marker genes from 192 specimens of Arcyria spp. from 19 countries and six continents into the existing three gene phylogenetic backbone of Trichiales. Our phylogenies decisively confirm the polyphyletic nature of Arcyria, with a considerable part of the genus forming a sister clade to Hemitrichia. Consequently, we erect here the new family Hemitrichiaceae and resurrect the genus Heterotrichia to accommodate the second major branch of former Arcyria species. Additionally, we describe the new genus Spiromyxa with intermediate phylogenetic position and unique combination of morphological traits. Furthermore, we show that most of the Arcyria morphospecies included into this study are either species complexes or para- or polyphyletic taxa. Traits, previously thought to delimit the genus Arcyria, show little consistency with the phylogeny. In particular, the expanding, net-like capillitium, attached to the cup or stalk, appears to have been present in the ancestor of three families of Trichiales, afterwards mostly persisted in two of them and evolved into something else in the third. Such traits as ornamentation of capillitium, cup and spores retain their taxonomic value primarily at the species level. However, the colour of the spore mass in fresh condition partially aligns with our phylogenetic results: most of the yellow "Arcyria" species cluster within Heterotrichia, while red and grey species sort mostly into separate subclades within the clade incorporating the remaining species of the genus Arcyria. Citation: Yatsiuk I, Leontyev D, Schnittler M, Ehlers T, Mikryukov V, Kõljalg U (2025). Arcyria and allied genera: taxonomic backbone and character evolution. Fungal Systematics and Evolution 15: 97-118. doi: 10.3114/fuse.2025.15.04.
Collapse
Affiliation(s)
- I. Yatsiuk
- Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, EE-51014 Tartu, Estonia
| | - D. Leontyev
- Department of Botany, H.S. Skovoroda Kharkiv National Pedagogical University, Valentynivska 2, Kharkiv 61168, Ukraine
- Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, Greifswald, Germany D-17487
| | - M. Schnittler
- Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, Greifswald, Germany D-17487
| | - T. Ehlers
- Masse Environmental Consultants, 812 Vernon St., Nelson, British Columbia, Canada
| | - V. Mikryukov
- Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, EE-51014 Tartu, Estonia
| | - U. Kõljalg
- Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, EE-51014 Tartu, Estonia
| |
Collapse
|
4
|
Hoffman PF. Ecosystem relocation on Snowball Earth: Polar-alpine ancestry of the extant surface biosphere? Proc Natl Acad Sci U S A 2025; 122:e2414059122. [PMID: 40324073 DOI: 10.1073/pnas.2414059122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Geological observations informed by climate dynamics imply that the oceans were 99.9% covered by light-blocking ice shelves during two discrete, self-reversing Snowball Earth epochs spanning a combined 60 to 70 Myr of the Cryogenian Period (720 to 635 Ma). The timescale for initial ice advances across the tropical oceans is ~300 y in an ice-atmosphere-ocean general circulation model in Cryogenian paleogeography. Areas of optically thin oceanic ice are usually invoked to account for fossil marine phototrophs, including macroscopic multicellular eukaryotes, before and after each Snowball, but different taxa. Ecosystem relocation is a scenario that does not require thin marine ice. Assume that long before Cryogenian Snowballs, diverse supra- and periglacial biomes were established in polar-alpine regions. When the Snowball onsets occurred, those biomes migrated in step with their ice margins to the equatorial zone of net sublimation. There, they prospered and evolved, their habitat areas expanded, and the cruelty of winter reduced. Nutrients were supplied by dust (loess) derived from cozonal ablative lands where surface winds were strong. When each Snowball finally ended, those biomes were mostly inundated by the meltwater-dominated and rapidly warming lid of a nutrient-rich but depauperate ocean. Some taxa returned to the mountaintops while others restocked the oceans. This ecosystem relocation scenario makes testable predictions. The lineages required for post-Cryogenian biotic radiations should be present in modern polar-alpine biomes. Legacies of polar-alpine ancestry should be found in the genomes of living organisms. Examples of such tests are highlighted herein.
Collapse
Affiliation(s)
- Paul F Hoffman
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
5
|
Hu XP, Brahmantio B, Bartoszek K, Lercher MJ. Most bacterial gene families are biased toward specific chromosomal positions. Science 2025; 388:186-191. [PMID: 40208975 DOI: 10.1126/science.adm9928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 04/12/2025]
Abstract
The arrangement of genes along bacterial chromosomes influences their expression through growth rate-dependent gene copy number changes during DNA replication. Although translation- and transcription-related genes often cluster near the origin of replication, the extent of positional biases across gene families remains unclear. We hypothesized that natural selection broadly favors specific chromosomal positions to optimize growth rate-dependent expression. Analyzing 910 bacterial species and proteomics data from Escherichia coli and Bacillus subtilis, we found that about two-thirds of bacterial gene families are positionally biased. Natural selection drives genes mainly toward the origin or terminus of replication, with the strongest selection in fast-growing species. Our findings reveal chromosomal positioning as a fundamental mechanism for coordinating gene expression with growth rate, highlighting evolutionary constraints on bacterial genome architecture.
Collapse
Affiliation(s)
- Xiao-Pan Hu
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Bayu Brahmantio
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Martin J Lercher
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Matte A, LeBoeuf AC. Innovation in ant larval feeding facilitated queen-worker divergence and social complexity. Proc Natl Acad Sci U S A 2025; 122:e2413742122. [PMID: 39999174 PMCID: PMC11892636 DOI: 10.1073/pnas.2413742122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Building differences between genetically equivalent units is a fundamental challenge for all multicellular organisms and superorganisms. In ants, reproductive or worker fate is typically determined during the larval stage, through feeding regimes managed by adult caretakers. However, the feeding care provided to larvae varies significantly across ants, as does phenotypic divergence between queen and worker castes. Here, we employed comparative phylogenetic methods and causal inference to investigate the relationships between larval feeding care, caste size dimorphism, and social complexity across ant diversity. We digitized the life's work of George and Jeanette Wheeler, cataloging the larval morphology of over 700 species, and we compiled data on species diets and larval feeding behaviors from the literature and our own observations. We measured queen-worker size dimorphism in 392 species and gathered data for colony size, worker polymorphism, and worker reproduction. Our analyses revealed that ancestral active-feeding larvae evolved passive morphologies when adults began feeding them individually, typically with processed material and often following a shift to nonpredatory diets. Greater queen-worker size dimorphism coevolved with larval passiveness, alongside traits indicative of increased social complexity, including larger colony sizes, worker subcastes, and a reduction in workers' reproductive potential. Likelihood comparisons of causal phylogenetic models support that extended alloparental care facilitated stronger caste dimorphism, which, in turn and along with increased colony sizes, promoted higher social complexity. Our results suggest that enhanced adult control over larval development enabled greater phenotypic specialization within colonies, with profound implications for social evolution.
Collapse
Affiliation(s)
- Arthur Matte
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
| | - Adria C. LeBoeuf
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
| |
Collapse
|
7
|
Anghel IG, Smith LL, Lichter‐Marck IH, Zapata F. When the sand blossoms: Phylogeny, trait evolution, and geography of speciation in Linanthus. AMERICAN JOURNAL OF BOTANY 2025; 112:e70005. [PMID: 40007150 PMCID: PMC11928924 DOI: 10.1002/ajb2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 02/27/2025]
Abstract
PREMISE Understanding how plants successfully diversified in novel environments is a central question in evolutionary biology. Linanthus occurs in arid areas of western North America and exhibits extensive floral trait variation, multiple color polymorphisms, differences in blooming time, and variation in life history strategies. We reconstructed the evolutionary history of this genus. METHODS We generated restriction-site associated (ddRAD) sequences for 180 individuals and target capture (TC) sequences for 63 individuals, with complete species sampling. Using maximum likelihood and pseudo-coalescent approaches, we inferred phylogenies of Linanthus and used them to model the evolution of phenotypic traits and investigate the genus's geographic speciation history. RESULTS Relationships are consistent and well supported with both ddRAD and TC data. Most species are monophyletic despite extensive local sympatry and range overlap, suggesting strong isolating barriers. The non-monophyly of the night-blooming and perennial species may be due to rapid speciation or cryptic diversity. Perenniality likely evolved from annuality, a rare shift in angiosperms. Night-blooming evolved three times independently. Flower color polymorphism is an evolutionarily labile trait that is likely ancestral. No single geographic mode of speciation characterizes this diversification, but most species overlap in range, which suggests that they evolved in parapatry. CONCLUSIONS Our results illustrate the complexity of phylogenetic inference for recent radiations, even with multiple sources of genomic data and extensive sampling. This analysis provides a foundation for understanding aridity adaptations, such as evolution of flower color polymorphisms, night-blooming, and perenniality, as well as speciation mechanisms.
Collapse
Affiliation(s)
- Ioana G. Anghel
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos Angeles90095CaliforniaUSA
| | - Lydia L. Smith
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeley94720CaliforniaUSA
- Department of Integrative BiologyUniversity of California, Valley Life Sciences BuildingBerkeley94720CaliforniaUSA
| | - Isaac H. Lichter‐Marck
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos Angeles90095CaliforniaUSA
- Institute for Biodiversity Science and SustainabilityCalifornia Academy of SciencesSan Francisco94118CaliforniaUSA
| | - Felipe Zapata
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos Angeles90095CaliforniaUSA
- Center for Tropical Research, Institute of the Environment and SustainabilityUniversity of CaliforniaLos Angeles90095CaliforniaUSA
| |
Collapse
|
8
|
Meurville MP, Silvestro D, LeBoeuf AC. Ecological change and conflict reduction led to a social circulatory system in ants. Commun Biol 2025; 8:246. [PMID: 39955384 PMCID: PMC11830068 DOI: 10.1038/s42003-025-07688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Behavioral innovations can be ecologically transformative for lineages that perform them and for their associated communities. Many ecologically dominant, superorganismal, and speciose ant lineages use mouth-to-mouth social regurgitation behavior - stomodeal trophallaxis - to share exogenous and endogenous materials within colonies. This behavior is less common in other species-poor, less cooperative ant lineages. How and why trophallaxis evolved and fixed in only some ant clades remains unclear, and whether this trait could be indicative of superorganismality has yet to be established. Here we show that trophallaxis evolved in two main events, in non-doryline formicoids around 130 Ma and in some ponerines around 90 Ma, lineages that today encompass 86% of all ant species. We found that trophallaxis evolved in lineages that began drinking sugary liquids and that had reduced intra-colonial conflict by constraining worker reproductive potential. Evolution of trophallaxis increased net diversification. Causal models indicate that trophallaxis required low reproductive conflict and contributed to the large colony sizes of the ants that use it. This suggests that the evolution of social regurgitation was enabled by both social conflict reduction and opportunistic inclusion of nectar and honeydew in the ant diet during the shifts in terrestrial ecosystems toward flowering plants.
Collapse
Affiliation(s)
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Adria C LeBoeuf
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
9
|
DeLeo DM, Bracken-Grissom HD. Bioluminescence and environmental light drive the visual evolution of deep-sea shrimp (Oplophoroidea). Commun Biol 2025; 8:213. [PMID: 39934388 PMCID: PMC11814407 DOI: 10.1038/s42003-025-07450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Light functions as the universal language in the deep sea (>200 m). Both bioluminescent emissions and downwelling light sources dimly illuminate the water column and can drive sensory system evolution. In pelagic environments, vertically migrating animals can experience drastic changes to their lighting environment across depth, subjecting them to unique selective pressures, possibly to distinguish between changes in ambient light and bioluminescent sources. Here we show that visual opsin diversity across a group of variable vertical migrators -bioluminescent deep-sea shrimp belonging to the Superfamily Oplophoroidea- is higher among species who migrate to shallower waters with more variable light conditions. Further, we provide evidence for adaptive visual evolution among species who have evolved an additional mode of bioluminescence (photophores), including positive selection for a putative mid-wavelength sensitive opsin that may facilitate light source discrimination. Diversification of this opsin appears to play an important role in the visual ecologies of photophore-bearing shrimp with its diversification in Oplophoroidea likely playing a critical role in the fitness and evolutionary success of this group.
Collapse
Affiliation(s)
- Danielle M DeLeo
- Institute of Environment, Department of Biological Sciences, Florida International University, 3000 NE 151st St, North Miami, FL, 33181, USA.
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA.
| | - Heather D Bracken-Grissom
- Institute of Environment, Department of Biological Sciences, Florida International University, 3000 NE 151st St, North Miami, FL, 33181, USA
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| |
Collapse
|
10
|
Mulvey LPA, May MR, Brown JM, Höhna S, Wright AM, Warnock RCM. Assessing the Adequacy of Morphological Models Using Posterior Predictive Simulations. Syst Biol 2025; 74:34-52. [PMID: 39374100 DOI: 10.1093/sysbio/syae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024] Open
Abstract
Reconstructing the evolutionary history of different groups of organisms provides insight into how life originated and diversified on Earth. Phylogenetic trees are commonly used to estimate this evolutionary history. Within Bayesian phylogenetics a major step in estimating a tree is in choosing an appropriate model of character evolution. While the most common character data used is molecular sequence data, morphological data remains a vital source of information. The use of morphological characters allows for the incorporation fossil taxa, and despite advances in molecular sequencing, continues to play a significant role in neontology. Moreover, it is the main data source that allows us to unite extinct and extant taxa directly under the same generating process. We therefore require suitable models of morphological character evolution, the most common being the Mk Lewis model. While it is frequently used in both palaeobiology and neontology, it is not known whether the simple Mk substitution model, or any extensions to it, provide a sufficiently good description of the process of morphological evolution. In this study we investigate the impact of different morphological models on empirical tetrapod datasets. Specifically, we compare unpartitioned Mk models with those where characters are partitioned by the number of observed states, both with and without allowing for rate variation across sites and accounting for ascertainment bias. We show that the choice of substitution model has an impact on both topology and branch lengths, highlighting the importance of model choice. Through simulations, we validate the use of the model adequacy approach, posterior predictive simulations, for choosing an appropriate model. Additionally, we compare the performance of model adequacy with Bayesian model selection. We demonstrate how model selection approaches based on marginal likelihoods are not appropriate for choosing between models with partition schemes that vary in character state space (i.e., that vary in Q-matrix state size). Using posterior predictive simulations, we found that current variations of the Mk model are often performing adequately in capturing the evolutionary dynamics that generated our data. We do not find any preference for a particular model extension across multiple datasets, indicating that there is no "one size fits all" when it comes to morphological data and that careful consideration should be given to choosing models of discrete character evolution. By using suitable models of character evolution, we can increase our confidence in our phylogenetic estimates, which should in turn allow us to gain more accurate insights into the evolutionary history of both extinct and extant taxa.
Collapse
Affiliation(s)
- Laura P A Mulvey
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loewenichstraße 28, 91054 Erlangen, Germany
| | - Michael R May
- Department of Evolution and Ecology, University of California Davis, Davis, 2320 Storer Hall, One Shields Avenue Davis, CA 95616, USA
| | - Jeremy M Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, 202 Life Science Bldg, Baton Rouge, LA 70803, USA
| | - Sebastian Höhna
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
| | - April M Wright
- Department of Biological Sciences, Biology Building, SLU 10736, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Rachel C M Warnock
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loewenichstraße 28, 91054 Erlangen, Germany
| |
Collapse
|
11
|
Wojahn JMA, Callmander MW, Buerki S. Pandanus plastomes decoded: When climate mirrors morphology and phylogenetic relationships. AMERICAN JOURNAL OF BOTANY 2025; 112:e16461. [PMID: 39887358 DOI: 10.1002/ajb2.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 02/01/2025]
Abstract
PREMISE Pandanus Parkinson (Pandanaceae) is a large genus of paleotropical tree-like monocots. Previous studies using small DNA regions questioned the monophyly of the seven Pandanus subgenera, but low phylogenetic branch support hindered further investigations. We aimed to (1) test Pandanus subgeneric monophyly, (2) identify clade morphological synapomorphies, (3) investigate correlations between leaf anatomy of water storage tissue and climatic differentiation across clades, and (4) construct hypotheses on the genus' spatiotemporal history. METHODS We sequenced 50 Pandanus species using genome skimming and reconstructed plastomes with MITObim. We inferred partitioned RAxML phylogenetic trees to test subgeneric monophyly using Shimodaira-Hasegawa tests. We inferred a partitioned dated BEAST phylogenetic tree used for ancestral state reconstructions of morphological traits. Phylogenetic clades were used to compare climatic (Bioclim) and soil (UNESCO Digital Soil Map) conditions using random forests. We correlated present morphology and climatic niche with past climate events. RESULTS Our phylogenetic analyses revealed two clades and four subclades. Only subgenus Coronata was monophyletic. Staminate synapomorphies were identified for three subclades. Hypertrophied and hyperplasic water-storage tissue was a synapomorphy for clade II, correlating with more seasonal temperature and precipitation regimes and more well-draining soil. Clades differentiated during the advent of the Southeast Asian monsoon in the early Miocene, whereas subclades differentiated during the Miocene Thermal Maximum. CONCLUSIONS Pandanus subgeneric classification needs to be revised. Hypertrophied hyperplasic water-storage tissue is a key trait in Pandanus evolution, possibly explaining climatic and biogeographic patterns because it is key to maintaining photosynthesis during periods of hydric stress.
Collapse
Affiliation(s)
- John M A Wojahn
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, 83725, ID, USA
| | - Martin W Callmander
- Conservatoire et Jardin botaniques de Genève, CP 71, 1292, Chambésy, Switzerland
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, 83725, ID, USA
| |
Collapse
|
12
|
Halali S, Yapar E, Wheat CW, Wahlberg N, Gotthard K, Chazot N, Nylin S, Lehmann P. Tempo and mode of winter diapause evolution in butterflies. Evol Lett 2025; 9:125-136. [PMID: 39906583 PMCID: PMC11790229 DOI: 10.1093/evlett/qrae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 02/06/2025] Open
Abstract
Quantifying the tempo and mode via modern phylogenetic comparative methods can provide key insights into how selection and constraints shape trait evolution on a macroevolutionary time scale. Here, we elucidate the evolution of hibernation (winter) diapause, a complex and defining life-history trait that allows temporal escape from harsh winters in temperate regions for many insects, including our model system, butterflies. Butterflies can diapause in all major life stages, and the availability of global-scale phylogenies makes them an ideal model system for studying diapause evolution. First, using a thorough literature survey, we scored the developmental stage of hibernation diapause (egg, larva, pupa, adult) vs. absence of diapause. We find that larval diapause is most common, while pupal, egg, and adult diapause are relatively rare. Next, we determined that the loss of diapause occurred at a much higher rate and that gains primarily occurred from the non-diapause state. While ancestral state estimation at deeper nodes remained uncertain, we found consistent patterns for some families and strong evidence for extensive convergence in diapause evolution. Contrary to expectations, we find no support for increased gain of diapause during the Eocene-Oligocene glaciation (~35 million years ago). Overall, the evolution of diapause in butterflies has a complex history, has evolved convergently, and has likely predated the major glaciation event consistent with the deep history of diapause evolution in insects. This study advances our understanding of the evolution of a complex and important life-history trait and establishes a macroevolutionary foundation for future studies on the ultimate and proximate basis of diapause evolution.
Collapse
Affiliation(s)
| | - Etka Yapar
- Department of Biology, Lund University, Sweden
| | | | | | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Nicolas Chazot
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Animal physiology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Boisseau RP, Bradler S, Emlen DJ. Divergence time and environmental similarity predict the strength of morphological convergence in stick and leaf insects. Proc Natl Acad Sci U S A 2025; 122:e2319485121. [PMID: 39715436 PMCID: PMC11725862 DOI: 10.1073/pnas.2319485121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Independent evolution of similar traits in lineages inhabiting similar environments (convergent or repeated evolution) is often taken as evidence for adaptation by natural selection, and used to illustrate the predictability of evolution. Yet convergence is rarely perfect for two reasons. First, environments may not be as similar as they appear. Second, responses to selection are contingent upon available genetic variation and independent lineages may differ in the alleles, genetic backgrounds, and even the developmental mechanisms responsible for the phenotypes in question. Both impediments to convergence are predicted to increase as the length of time separating two lineages increases, making it difficult to discern their relative importance. We quantified environmental similarity and the extent of convergence to show how habitat and divergence time each contribute to observed patterns of morphological evolution in 212 species of stick and leaf insects (order Phasmatodea). Dozens of phasmid lineages independently colonized similar habitats, repeatedly evolving in parallel directions on a 23-trait morphospace, though the magnitude and direction of these shifts varied. Lineages converging toward more similar environments ended up closer on the morphospace, as did closely related lineages, and closely related lineages followed more parallel evolutionary trajectories to arrive there than more distantly related ones. Remarkably, after accounting for habitat similarity, we show that divergence time reduced the extent of convergence at a constant rate across more than 100 My of separation, suggesting even the magnitude of contingency can be predictable, given sufficient spans of time.
Collapse
Affiliation(s)
- Romain P. Boisseau
- Division of Biological Sciences, University of Montana, Missoula, MT59812
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sven Bradler
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, GöttingenD-37073, Germany
| | - Douglas J. Emlen
- Division of Biological Sciences, University of Montana, Missoula, MT59812
| |
Collapse
|
14
|
Fortes EA, Landis JB, Steege HT, Specht CD, Doyle JJ, Mansano VDF. Nuclear phylogenomics of Eperua (Leguminosae) highlights the role of habitat and morphological lability in dispersal and diversification across Amazonia and in the Caatinga-Cerrado ecotone. Mol Phylogenet Evol 2025; 202:108236. [PMID: 39549976 DOI: 10.1016/j.ympev.2024.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Eperua is a genus of Neotropical trees that forms a major component of tropical lowland forests in Amazonia, especially in the Guiana Shield and on white-sand forests. One species occurs in the Cerrado-Caatinga ecotone, and the genus also inhabits riverine and terra firme forests. Species in Eperua exhibit one of two drastically different floral architectures and inflorescence types, each associated with distinct pollinators. Prior phylogenetic studies of Eperua have revealed an unstructured topology concerning floral architectures and inflorescence types. In addition, no investigation has been conducted on how the evolution of these traits and habitat preferences influenced the dispersal and diversification of Eperua. Using target capture sequencing, we inferred the most comprehensive phylogeny for Eperua to date, sampling all 19 known species, five for the first time. We used coalescence, concatenation, and network methods to infer the Eperua phylogeny and investigate sources of incongruence impacting resolution and support. We reconstructed the biogeographic history and ancestral states for the flower architecture, inflorescence type, and habitat preference. Our phylogenomic analyses successfully resolved relationships within Eperua, attributing conflicts between the species tree and concatenated tree to gene tree discordance linked to reticulation events. Biogeographical analyses indicate that Eperua originated and initially diversified in the white-sand forests of the Guiana Shield. A subsequent adaptation to riverine and terra firme forests enabled Eperua to expand into new habitats and regions. Still, its historical preference for white-sand forests probably accounts for its absence in the southern and western parts of Amazonia. Ancestral geographic areas and corolla morphotype reconstructions suggest that speciation in Eperua has occurred in sympatry, likely driven by pollinator shifts mediated by drastic changes in floral architecture.
Collapse
Affiliation(s)
- Elenice A Fortes
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, RJ, Brazil.
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA.
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, the Netherlands; Quantitative Biodiversity Dynamics, Dept. of Biology, Utrecht, Utrecht University, the Netherlands
| | - Chelsea D Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Vidal de F Mansano
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, RJ, Brazil
| |
Collapse
|
15
|
Escalona M, Simões PI, Gonzalez-Voyer A, Mendoza-Henao AM, Mello Bezerra AD, Pinheiro PDP, Morales B, Guayasamin JM, Carvalho T, Chaparro JC, De la Riva I, Rojas-Runjaic FJM, Rivera-Correa M, Kok PJR, Peloso P, Nakamura DYM, Maneyro R, Castroviejo-Fisher S. Allometric Constraint Predominates Over the Acoustic Adaptation Hypothesis in a Radiation of Neotropical Treefrogs. Integr Zool 2024. [PMID: 39658839 DOI: 10.1111/1749-4877.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024]
Abstract
Male frogs emit stereotypical advertisement calls to attract mates and deter conspecific rivals. The evolution of these calls is thought to be linked to anatomical constraints and the acoustic characteristics of their surroundings. The acoustic adaptation hypothesis (AAH) posits that species evolve calls that maximize propagation distance and reduce signal degradation in the environment where they are emitted. We applied phylogenetic comparative analyses to study the association of body size, vegetation density, type of aquatic ecosystem, and calling site on the evolution of acoustic traits in Cophomantini, a large radiation of Neotropical treefrogs (Hylidae). We obtained and analyzed body size, acoustic, and habitat data from a total of 112 species (58% of Cophomantini), using the most inclusive available phylogeny. We found a significant negative correlation between peak frequency, body size, and calling site, but contrary to the predictions of the AAH, we did not find support for associations among call traits and environmental characteristics. Although spectral allometry is explained by an anatomical constraint, it could also be maintained by female choice. We recommend that future studies strive to incorporate factors such as female mate preferences, eavesdropping by predators or parasites, and genetic drift.
Collapse
Affiliation(s)
- Moisés Escalona
- Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Laboratorio de Herpetología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratório de Herpetologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Pedro Ivo Simões
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alejandro Gonzalez-Voyer
- Laboratorio de Conducta Animal, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angela M Mendoza-Henao
- Colección de Sonidos Ambientales, Centro de Colecciones y Gestión de Especies, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Villa de Leyva, Colombia
| | - Andressa De Mello Bezerra
- Centro de Herpetologia e Pesquisa, Instituto Vital Brazil, Duque de Caxias, Rio de Janeiro, Brazil
- Laboratório de Herpetología, Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo D P Pinheiro
- Division of Amphibians & Reptiles, Vertebrate Zoology Department, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Belén Morales
- Laboratorio de Biología Evolutiva, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto Biósfera USFQ, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Juan M Guayasamin
- Laboratorio de Biología Evolutiva, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto Biósfera USFQ, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Thiago Carvalho
- Departamento de Zoología, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juan C Chaparro
- Museo de Biodiversidad del Perú, Cusco, Peru
- Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | | - Fernando J M Rojas-Runjaic
- Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
- Museo de Historia Natural La Salle, Fundación La Salle de Ciencias Naturales, Caracas, Venezuela
| | - Mauricio Rivera-Correa
- Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Philippe J R Kok
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Pedro Peloso
- Vertebrate Museum, Department of Biological Sciences, California State Polytechnic University, Arcata, California, USA
- Department of Herpetology, American Museum of Natural History, New York, NY, USA
| | - Daniel Yudi Miyahara Nakamura
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Raúl Maneyro
- Laboratorio de Herpetología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Castroviejo-Fisher
- Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Department of Herpetology, American Museum of Natural History, New York, NY, USA
- Departamento de Zoología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
16
|
Marcondes RS, Douvas N. Social mating systems in birds: resource-defense polygamy-but not lekking-is a macroevolutionarily unstable trait. Evolution 2024; 78:1980-1990. [PMID: 39240141 DOI: 10.1093/evolut/qpae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Our understanding of the evolution of social mating systems is largely based on an atemporal ecological framework, whereas macroevolutionary and phylogenetic perspectives looking at the causes of mating systems variation are less developed. Here, we present analyses of the evolution of social mating systems in birds at an unprecedented scale, including 66% of the world's birds and using trait-dependent speciation and extinction models. We found that lekking (no social bond between the sexes) is very rarely lost, in accordance with the hypothesis that a male shifting to investing in one rather than multiple mates would suffer a severe fitness cost. In contrast, resource-defense polygamous lineages (with a weak, transient socio-sexual bond) frequently revert back to monogamy (strong, durable socio-sexual bond) and have an elevated extinction fraction. We tentatively attribute this to the impossibility of females settling on an optimal parental care strategy under this system. Finally, we found that most gains of lekking have been directly from monogamy rather than through an intermediate stage of resource-defense polygamy.
Collapse
Affiliation(s)
| | - Nicolette Douvas
- Biosciences Department, Rice University, Houston, TX, United States
| |
Collapse
|
17
|
Leménager M, Clark JL, Martén-Rodríguez S, Almarales-Castro A, Joly S. Evolution of intraspecific floral variation in a generalist-specialist pollination system. J Evol Biol 2024; 37:1474-1487. [PMID: 38460029 DOI: 10.1093/jeb/voae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Intraspecific processes impact macroevolutionary patterns through individual variation, selection, and ecological specialization. According to the niche variation hypothesis, the broader ecological niche of generalist species results in an increased morphological variation among individuals either because they are constituted of diversified specialized individuals each exploiting a fraction of the species' niche or because they are constituted of true generalist individuals that experience relaxed selection. To test this hypothesis, we surveyed the individual floral morphology of species of Antillean Gesneriaceae, a group that has transitioned between specialization for hummingbird pollination and generalization multiple times throughout its evolutionary history. We characterized the profiles of corollas using geometric morphometrics and compared the intraspecific shape variance of specialists and generalists in a phylogenetic context. We used three approaches that differently accounted for the high dimensionality of morphological traits, the ancestral reconstruction of pollination syndromes over time, and the error associated with the estimation of the intraspecific variance. Our findings provide partial support for the niche variation hypothesis. If considering the whole shape in the analysis corroborated this idea, decomposing the shape into principal components indicated that not all aspects of the corolla exhibit the same pattern of variation. Specifically, pollination generalists tend to display greater intraspecific variation than specialists in terms of tubularity, but not of curvature. Accounting for the error in the variance estimation also reduced the support for the hypothesis, suggesting that larger sample sizes may be required to reach stronger conclusions. This study emphasizes the reciprocal influence between plants and their pollinators on floral morphology at different biodiversity scales and suggests that ecological strategies of species can affect patterns of morphological variation at macroevolutionary scales.
Collapse
Affiliation(s)
- Marion Leménager
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - John L Clark
- Marie Selby Botanical Gardens, Sarasota, FL, United States
| | - Silvana Martén-Rodríguez
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores-Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Abel Almarales-Castro
- Centro Oriental de Ecosistemas y Biodiversidad (Bioeco), Museo de Historia Natural "Tomás Romay," esq. a Barnada, Santiago de Cuba, Cuba
| | - Simon Joly
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
- Montreal Botanical Garden, Montréal, QC, Canada
| |
Collapse
|
18
|
Grabowski M. Blouch: Bayesian Linear Ornstein-Uhlenbeck Models for Comparative Hypotheses. Syst Biol 2024; 73:1038-1050. [PMID: 39046734 PMCID: PMC11637605 DOI: 10.1093/sysbio/syae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Relationships among species in the tree of life can complicate comparative methods and testing adaptive hypotheses. Models based on the Ornstein-Uhlenbeck process permit hypotheses about adaptation to be tested by allowing traits to either evolve toward fixed adaptive optima (e.g., regimes or niches) or track continuously changing optima that can be influenced by other traits. These models allow estimation of the effects of both adaptation and phylogenetic inertia-resistance to adaptation due to any source-on trait evolution, an approach known as the "adaptation-inertia" framework. However, previous applications of this framework, and most approaches suggested to deal with the issue of species non-independence, are based on a maximum likelihood approach, and thus it is difficult to include information based on prior biological knowledge in the analysis, which can affect resulting inferences. Here, I present Blouch, (Bayesian Linear Ornstein-Uhlenbeck Models for Comparative Hypotheses), which fits allometric and adaptive models of continuous trait evolution in a Bayesian framework based on fixed or continuous predictors and incorporates measurement error. I first briefly discuss the models implemented in Blouch, and then the new applications for these models provided by a Bayesian framework. This includes the advantages of assigning biologically meaningful priors when compared to non-Bayesian approaches, allowing for varying effects (intercepts and slopes), and multilevel modeling. Validations on simulated data show good performance in recovering the true evolutionary parameters for all models. To demonstrate the workflow of Blouch on an empirical dataset, I test the hypothesis that the relatively larger antlers of larger-bodied deer are the result of more intense sexual selection that comes along with their tendency to live in larger breeding groups. While results show that larger-bodied deer that live in larger breeding groups have relatively larger antlers, deer living in the smallest groups appear to have a different and steeper scaling pattern of antler size to body size than other groups. These results are contrary to previous findings and may argue that a different type of sexual selection or other selective pressures govern optimum antler size in the smallest breeding groups.
Collapse
Affiliation(s)
- Mark Grabowski
- Research Centre for Evolutionary Anthropology and Palaeocology, School of Biological and Environmental Sciences, Liverpool John Moores University, James Parson Building, 3 Byrom Street, Liverpool L3 3AF, UK
- Department of Biosciences, CEES, University of Oslo, Blinderen, PB 1066, 0316 Oslo, Norway
| |
Collapse
|
19
|
Magnuson A, Dean MN, Weaver JC, Fontenelle JP, Lovejoy NR, Kolmann MA. Independent Transitions to Freshwater Environments Promote Phenotypic Divergence, Not Convergence, in Stingrays. Integr Comp Biol 2024; 64:1437-1453. [PMID: 38653716 DOI: 10.1093/icb/icae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Instances of convergent or parallel evolution provide a potent model system for exploring contingency and determinism in evolutionary biology. Likewise, the multiple, independent habitat transitions from saltwater to freshwater biomes offer opportunities for studying convergent evolution within and among different vertebrate lineages. For example, stingrays have invaded freshwater habitats multiple times across different continents, sometimes even several times within the same clade (e.g., Dasyatidae). We evaluated the frequency of saltwater-freshwater invasions in stingrays, compared ecological and phenotypic diversification among freshwater and saltwater lineages, and assessed the degree of convergence among freshwater species. Despite not being morphologically distinct from saltwater stingrays, freshwater stingrays do expand the margins of stingray morphological diversity. According to our data, trophic specialists occupied non-overlapping regions of morphospace, with piscivores and molluscivores being distinct from other diet guilds. Freshwater stingrays as a group did not strongly converge morphologically, neither did freshwater rays from different lineages, which shared similar niches. These findings could be explained by there not being enough time for convergence to occur among more ancient and more recent freshwater lineages. Alternatively, the different ancestral bauplans of various freshwater ray lineages and weak selection on optimal phenotypes could promote contingency in the form of evolution along paths of least resistance.
Collapse
Affiliation(s)
- A Magnuson
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - M N Dean
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong
| | - J C Weaver
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - J P Fontenelle
- Institute of Forestry and Conservation, University of Toronto, Toronto, ON M5S 2J5, Canada
| | - N R Lovejoy
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 2J5, Canada
| | - M A Kolmann
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
20
|
Kolmann MA, Poulin E, Rosen J, Hemraj-Naraine D, Burns MD. Phenotypic Convergence Is Stronger and More Frequent in Herbivorous Fishes. Integr Comp Biol 2024; 64:1467-1483. [PMID: 38724441 DOI: 10.1093/icb/icae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 11/22/2024] Open
Abstract
Constraints on phenotypic evolution can lead to patterns of convergent evolution, by limiting the "pool" of potential phenotypes in the face of endogenous (functional, developmental) or exogenous (competition, predation) selective pressures. Evaluation of convergence depends on integrating ecological and morphological data within a robust, comparative phylogenetic context. The staggering diversity of teleost fishes offers a multitude of lineages adapted for similar ecological roles and, therefore, offers numerous replicated evolutionary experiments for exploring phenotypic convergence. However, our understanding of fish feeding systems has been primarily shaped by marine species, with the monolithic exception of freshwater cichlids. Here we use piranhas and pacus (Serrasalmidae) to explore the evolution of different feeding ecologies and their morphological proxies in Neotropical freshwater environments. Specifically, we explore whether convergence is more widespread among plant-eating fishes, arising from strong constraints on phenotypic evolution in herbivores. Using osteological micro-computed tomographic imaging (μCT), we describe the major axes of morphological variation in pacus and piranhas, regarding their diet and feeding behaviors. Next, we evaluated whether herbivorous niches are less labile than other dietary guilds and whether herbivorous species' phenotypes evolve at a slower evolutionary rate than other taxa. We then assess how convergent herbivorous taxa are, using three different suites of morphological characters (dental, jaw, and abdominal morphometrics). Ecologically, herbivory is not a dead end, exhibiting similar observed transition rates as those between carnivores and omnivores. However, we documented widespread convergence in herbivores and that herbivores have slower rates of phenotypic evolution than carnivores. Most instances of convergence are found in herbivorous taxa, specifically in frugivores and folivores. Moreover, instances of "complete" convergence, indicated by positive convergence metrics observed in more than one morphometric dataset, were only found in herbivores. Herbivores do appear to evolve under constrained circumstances, but this has not limited their ecological ability.
Collapse
Affiliation(s)
- M A Kolmann
- Department of Biology, University of Louisville, Louisville, KY 40208, USA
| | - E Poulin
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - J Rosen
- Department of Biology, University of Louisville, Louisville, KY 40208, USA
| | - D Hemraj-Naraine
- Department of Biology, University of Louisville, Louisville, KY 40208, USA
| | - M D Burns
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
21
|
Costas SM, Baranzelli MC, Giaquinta A, Cocucci AA. Pappus phenotypes and flight performance across evolutionary history in the daisy family. ANNALS OF BOTANY 2024; 134:863-876. [PMID: 39081217 PMCID: PMC11560378 DOI: 10.1093/aob/mcae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/29/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND AND AIMS Diversity in pappus shapes and size in Asteraceae suggests an adaptive response to dispersion challenges adjusting diaspores to optimal phenotypic configurations. Here, by analysing the relationship among pappus-cypsela size relationships, flight performance and pappus types in an evolutionary context, we evaluate the role of natural selection acting on the evolution of diaspore configuration at a macro-ecological scale in the daisy family. METHODS To link pappus-cypsela size relationships with flight performance we collected published data on these traits from 82 species. This allowed us to translate morphometric traits in flight performance for 150 species represented in a fully resolved backbone phylogeny of the daisy family. Through ancestral reconstructions and evolutionary model selection, we assessed whether flight performance was associated with and constrained by different pappus types. Additionally, we evaluated, through phylogenetic regressions, whether species with different pappus types exhibited evolutionary allometric pappus-cypsela size relationships. RESULTS The setose pappus type had the highest flight performances and represented the most probable ancestral state in the family. Stepwise changes in pappus types independently led from setose to multiple instances of pappus loss with associated reduction in flight performance. Flight performance evolution was best modelled as constrained by five adaptive regimes represented by specific pappus types which correspond to specific optimal diaspore configurations that are distinct in pappus-cypsela allometric relationships. CONCLUSIONS Evolutionary modelling suggests natural selection as the main factor of diaspore configuration changes which proceeded towards five optima, often overcoming constraints imposed by allometric relationships and favouring evolution in certain directions. With the perspective that natural selection is the main process driving the observed patterns, various biotic and abiotic are suggested as principal drivers of transitions in diaspore configurations along space and time in the daisy family history. The results also allow discussion of evolutionary changes in a historical context.
Collapse
Affiliation(s)
- Santiago M Costas
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional deCórdoba, Córdoba, 5000, Argentina
| | - Matías C Baranzelli
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional deCórdoba, Córdoba, 5000, Argentina
| | - Adrián Giaquinta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional deCórdoba, Córdoba, 5000, Argentina
| | - Andrea A Cocucci
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional deCórdoba, Córdoba, 5000, Argentina
| |
Collapse
|
22
|
Burns MD, Satterfield DR, Peoples N, Chan H, Barley AJ, Yuan ML, Roberts-Hugghis AS, Russell KT, Hess M, Williamson SL, Corn KA, Mihalitsis M, Wainwright DK, Wainwright PC. Complexity and weak integration promote the diversity of reef fish oral jaws. Commun Biol 2024; 7:1433. [PMID: 39496908 PMCID: PMC11535403 DOI: 10.1038/s42003-024-07148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
Major trade-offs often manifest as axes of diversity in organismal functional systems. Overarching trade-offs may result in high trait integration and restrict the trajectory of diversification to be along a single axis. Here, we explore the diversification of the feeding mechanism in coral reef fishes to establish the role of trade-offs and complexity in a spectacular ecological radiation. We show that the primary axis of variation in the measured musculo-skeletal traits is aligned with a trade-off between mobility and force transmission, spanning species that capture prey with suction and those that bite attached prey. We found weak or no covariation between about half the traits, reflecting deviations from the trade-off axis. The dramatic trophic range found among reef fishes occurs along the primary trade-off axis, with numerous departures that use a mosaic of trait combinations to adapt the feeding mechanism to diverse challenges. We suggest that morphological evolution both along and independent of a major axis of variation is a widespread mechanism of diversification in complex systems where a global trade-off shapes major patterns of diversity. Significant additional diversity emerges as systems use weak integration and complexity to assemble functional units with many trait combinations that meet varying ecological demands.
Collapse
Affiliation(s)
- M D Burns
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, USA.
- Department of Evolution & Ecology, University of California, Davis, CA, USA.
| | - D R Satterfield
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - N Peoples
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - H Chan
- Department of Biosciences, Rice University, Houston, TX, USA
| | - A J Barley
- School of Mathematical and Natural Sciences, Arizona State University-West Valley Campus, Glendale, AZ, USA
| | - M L Yuan
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - A S Roberts-Hugghis
- Department of Evolution & Ecology, University of California, Davis, CA, USA
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| | - K T Russell
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - M Hess
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - S L Williamson
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - K A Corn
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - M Mihalitsis
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - D K Wainwright
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - P C Wainwright
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| |
Collapse
|
23
|
Wölfer J, Hautier L. Inferring the locomotor ecology of two of the oldest fossil squirrels: influence of operationalization, trait, body size and machine learning method. Proc Biol Sci 2024; 291:20240743. [PMID: 39532140 PMCID: PMC11557241 DOI: 10.1098/rspb.2024.0743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/26/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Correlations between morphology and lifestyle of extant taxa are useful for predicting lifestyles of extinct relatives. Here, we infer the locomotor behaviour of Palaeosciurus goti from the middle Oligocene and Palaeosciurus feignouxi from the lower Miocene of France using their femoral morphology and different machine learning methods. We used two ways to operationalize morphology, in the form of a geometric morphometric shape dataset and a multivariate dataset of 11 femoral traits. The predictive models were built and tested using more than half (180) of the extant species of squirrel relatives. Both traditional models such as linear discriminant analysis and more sophisticated models like neural networks had the greatest predictive power. However, the predictive power also depended on the operationalization and the femoral traits used to build the model. We also found that predictive power tended to improve with increasing body size. Contrary to previous suggestions, the older species, P. goti, was most likely arboreal, whereas P. feignouxi was more likely terrestrial. This provides further evidence that arboreality was already the most common locomotor ecology among the earliest squirrels, while a predominantly terrestrial locomotor behaviour evolved shortly afterwards, before the vast establishment of grasslands in Europe.
Collapse
Affiliation(s)
- Jan Wölfer
- Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, Germany
| | - Lionel Hautier
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Univ de Montpellier, CNRS, IRD, Montpellier, Cedex 5, France
| |
Collapse
|
24
|
Troyer EM, Evans KM, Goatley CHR, Friedman M, Carnevale G, Nicholas B, Kolmann M, Bemis KE, Arcila D. Evolutionary innovation accelerates morphological diversification in pufferfishes and their relatives. Evolution 2024; 78:1869-1882. [PMID: 39258573 DOI: 10.1093/evolut/qpae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Evolutionary innovations have played an important role in shaping the diversity of life on Earth. However, how these innovations arise and their downstream effects on patterns of morphological diversification remain poorly understood. Here, we examine the impact of evolutionary innovation on trait diversification in tetraodontiform fishes (pufferfishes, boxfishes, ocean sunfishes, and allies). This order provides an ideal model system for studying morphological diversification owing to their range of habitats and divergent morphologies, including the fusion of the teeth into a beak in several families. Using three-dimensional geometric morphometric data for 176 extant and fossil species, we examine the effect of skull integration and novel habitat association on the evolution of innovation. Strong integration may be a requirement for rapid trait evolution and facilitating the evolution of innovative structures, like the tetraodontiform beak. Our results show that the beak arose in the presence of highly conserved patterns of integration across the skull, suggesting that integration did not limit the range of available phenotypes to tetraodontiforms. Furthermore, we find that beaks have allowed tetraodontiforms to diversify into novel ecological niches, irrespective of habitat. Our results suggest that general rules pertaining to evolutionary innovation may be more nuanced than previously thought.
Collapse
Affiliation(s)
- Emily M Troyer
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, United States
| | - Kory M Evans
- Biosciences Department, Rice University, Houston, TX, United States
| | - Christopher H R Goatley
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, Hampshire, United Kingdom
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
- Function, Evolution and Anatomy Research (FEAR) Lab, School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy
| | - Benjamin Nicholas
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Matthew Kolmann
- Department of Biology, University of Louisville, Louisville, KY, United States
| | - Katherine E Bemis
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
- National Systematics Laboratory, Office of Science and Technology, NOAA Fisheries, Washington, DC, United States
| | - Dahiana Arcila
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
25
|
Bianchini G, Hagemann M, Sánchez-Baracaldo P. Stochastic Character Mapping, Bayesian Model Selection, and Biosynthetic Pathways Shed New Light on the Evolution of Habitat Preference in Cyanobacteria. Syst Biol 2024; 73:644-665. [PMID: 38934241 PMCID: PMC11505929 DOI: 10.1093/sysbio/syae025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis paving the way for complex life. Studying the evolution and ecological niche of cyanobacteria and their ancestors is crucial for understanding the intricate dynamics of biosphere evolution. These organisms frequently deal with environmental stressors such as salinity and drought, and they employ compatible solutes as a mechanism to cope with these challenges. Compatible solutes are small molecules that help maintain cellular osmotic balance in high-salinity environments, such as marine waters. Their production plays a crucial role in salt tolerance, which, in turn, influences habitat preference. Among the 5 known compatible solutes produced by cyanobacteria (sucrose, trehalose, glucosylglycerol, glucosylglycerate, and glycine betaine), their synthesis varies between individual strains. In this study, we work in a Bayesian stochastic mapping framework, integrating multiple sources of information about compatible solute biosynthesis in order to predict the ancestral habitat preference of Cyanobacteria. Through extensive model selection analyses and statistical tests for correlation, we identify glucosylglycerol and glucosylglycerate as the most significantly correlated with habitat preference, while trehalose exhibits the weakest correlation. Additionally, glucosylglycerol, glucosylglycerate, and glycine betaine show high loss/gain rate ratios, indicating their potential role in adaptability, while sucrose and trehalose are less likely to be lost due to their additional cellular functions. Contrary to previous findings, our analyses predict that the last common ancestor of Cyanobacteria (living at around 3180 Ma) had a 97% probability of a high salinity habitat preference and was likely able to synthesize glucosylglycerol and glucosylglycerate. Nevertheless, cyanobacteria likely colonized low-salinity environments shortly after their origin, with an 89% probability of the first cyanobacterium with low-salinity habitat preference arising prior to the Great Oxygenation Event (2460 Ma). Stochastic mapping analyses provide evidence of cyanobacteria inhabiting early marine habitats, aiding in the interpretation of the geological record. Our age estimate of ~2590 Ma for the divergence of 2 major cyanobacterial clades (Macro- and Microcyanobacteria) suggests that these were likely significant contributors to primary productivity in marine habitats in the lead-up to the Great Oxygenation Event, and thus played a pivotal role in triggering the sudden increase in atmospheric oxygen.
Collapse
Affiliation(s)
- Giorgio Bianchini
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS81SS, UK
| | - Martin Hagemann
- Universität Rostock, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | | |
Collapse
|
26
|
Peckenpaugh B, Moyle LC. Females drive postmating reproductive trait evolution across Drosophila species, but not via remating rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618555. [PMID: 39464019 PMCID: PMC11507895 DOI: 10.1101/2024.10.15.618555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
While traits that contribute to premating sexual interactions are known to be wildly diverse, much less is known about the diversity of postmating (especially female) reproductive traits and the mechanisms shaping this diversity. To assess the rate, pattern, and potential drivers of postmating reproductive trait evolution, we analyzed male and female traits across up to 30 Drosophila species within a phylogenetic comparative framework. In addition to postmating reproductive morphology (e.g., sperm length, reproductive tract length and mass), we also quantified mating behaviors including female remating rate-a common proxy for the strength of postmating sexual selection. We found evidence for strong coevolution between male and female postmating traits (specifically sperm length and sperm storage organ size). However, remating rate was not associated with the rate of evolution or exaggeration of either male or female postmating reproductive morphology, once phylogenetic relatedness was accounted for. We infer that female-mediated and intersexual selection predominantly drive the evolution of our postmating morphological traits, including via divergent male and female interests in controlling paternity. In comparison, remating rate has a complex and likely secondary role in shaping this evolution, in part because this trait can be both a driver and a product of postmating selection.
Collapse
Affiliation(s)
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
27
|
Pyke AT, Wilson DJ, Michie A, Mackenzie JS, Imrie A, Cameron J, Doggett SL, Haniotis J, Herrero LJ, Caly L, Lynch SE, Mee PT, Madzokere ET, Ramirez AL, Paramitha D, Hobson-Peters J, Smith DW, Weir R, Sullivan M, Druce J, Melville L, Robson J, Gibb R, van den Hurk AF, Duchene S. Independent repeated mutations within the alphaviruses Ross River virus and Barmah Forest virus indicates convergent evolution and past positive selection in ancestral populations despite ongoing purifying selection. Virus Evol 2024; 10:veae080. [PMID: 39411152 PMCID: PMC11477980 DOI: 10.1093/ve/veae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Ross River virus (RRV) and Barmah Forest virus (BFV) are arthritogenic arthropod-borne viruses (arboviruses) that exhibit generalist host associations and share distributions in Australia and Papua New Guinea (PNG). Using stochastic mapping and discrete-trait phylogenetic analyses, we profiled the independent evolution of RRV and BFV signature mutations. Analysis of 186 RRV and 88 BFV genomes demonstrated their viral evolution trajectories have involved repeated selection of mutations, particularly in the nonstructural protein 1 (nsP1) and envelope 3 (E3) genes suggesting convergent evolution. Convergent mutations in the nsP1 genes of RRV (residues 248 and 441) and BFV (residues 297 and 447) may be involved with catalytic enzyme mechanisms and host membrane interactions during viral RNA replication and capping. Convergent E3 mutations (RRV site 59 and BFV site 57) may be associated with enzymatic furin activity and cleavage of E3 from protein precursors assisting viral maturation and infectivity. Given their requirement to replicate in disparate insect and vertebrate hosts, convergent evolution in RRV and BFV may represent a dynamic link between their requirement to selectively 'fine-tune' intracellular host interactions and viral replicative enzymatic processes. Despite evidence of evolutionary convergence, selection pressure analyses did not reveal any RRV or BFV amino acid sites under strong positive selection and only weak positive selection for nonstructural protein sites. These findings may indicate that their alphavirus ancestors were subject to positive selection events which predisposed ongoing pervasive convergent evolution, and this largely supports continued purifying selection in RRV and BFV populations during their replication in mosquito and vertebrate hosts.
Collapse
Affiliation(s)
- Alyssa T Pyke
- Public Health Virology Laboratory, Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O. Box 594, Archerfield, Coopers Plains, Queensland, Australia
| | - Daniel J Wilson
- Big Data Institute, Oxford Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford OX3 7LF, United Kingdom
- Department for Continuing Education, University of Oxford, 1 Wellington Square, Oxford OX1 2JA, United Kingdom
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - John S Mackenzie
- Faculty of Health Sciences, Curtin University, G.P.O. Box U1987, Bentley, Western Australia 6845, Australia
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Jane Cameron
- Public Health Virology Laboratory, Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O. Box 594, Archerfield, Coopers Plains, Queensland, Australia
| | - Stephen L Doggett
- NSW Health Pathology, Westmead Hospital, 166-174 Hawkesbury Road Westmead, Sydney, New South Wales 2145, Australia
| | - John Haniotis
- NSW Health Pathology, Westmead Hospital, 166-174 Hawkesbury Road Westmead, Sydney, New South Wales 2145, Australia
| | - Lara J Herrero
- Gold Coast Campus, Institute for Glycomics, Griffith University, 1 Parklands Drive, Southport, Queensland 4215, Australia
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Eugene T Madzokere
- Gold Coast Campus, Institute for Glycomics, Griffith University, 1 Parklands Drive, Southport, Queensland 4215, Australia
| | - Ana L Ramirez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
- The Jackson Laboratory, 10 Discovery Drive Connecticut, Farmington, CT 06032, United States of America
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, The University of Queensland, Bdg 68 Cooper Road, St. Lucia, Queensland 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Bdg 68 Cooper Road, St. Lucia, Queensland 4072, Australia
| | - David W Smith
- NSW Health Pathology, Westmead Hospital, 166-174 Hawkesbury Road Westmead, Sydney, New South Wales 2145, Australia
- School of Medicine, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Richard Weir
- Department of Primary Industries and Fisheries, Berrimah Veterinary Laboratory, P.O. Box 3000, Darwin, Northern Territory 0801, Australia
| | - Mitchell Sullivan
- Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O Box 594 Archerfield, Coopers Plains, Queensland 4108, Australia
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Lorna Melville
- Department of Primary Industries and Fisheries, Berrimah Veterinary Laboratory, P.O. Box 3000, Darwin, Northern Territory 0801, Australia
| | - Jennifer Robson
- Department of Microbiology and Molecular Pathology, Sullivan Nicolaides Pathology, P.O. Box 2014 Fortitude Valley, Brisbane, Queensland 4006, Australia
| | - Robert Gibb
- Serology, Pathology Queensland Central Laboratory, Royal Brisbane and Women’s Hospital, 40 Butterfield Street Herston, Brisbane, Queensland 4029, Australia
| | - Andrew F van den Hurk
- Public Health Virology Laboratory, Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O. Box 594, Archerfield, Coopers Plains, Queensland, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
- Evolutionary Dynamics of Infectious Diseases, Department of Computational Biology, Institut Pasteur, 28 Rue du Dr Roux, Paris 75015, France
| |
Collapse
|
28
|
Bickel B, Giraud AL, Zuberbühler K, van Schaik CP. Language follows a distinct mode of extra-genomic evolution. Phys Life Rev 2024; 50:211-225. [PMID: 39153248 DOI: 10.1016/j.plrev.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
As one of the most specific, yet most diverse of human behaviors, language is shaped by both genomic and extra-genomic evolution. Sharing methods and models between these modes of evolution has significantly advanced our understanding of language and inspired generalized theories of its evolution. Progress is hampered, however, by the fact that the extra-genomic evolution of languages, i.e. linguistic evolution, maps only partially to other forms of evolution. Contrasting it with the biological evolution of eukaryotes and the cultural evolution of technology as the best understood models, we show that linguistic evolution is special by yielding a stationary dynamic rather than stable solutions, and that this dynamic allows the use of language change for social differentiation while maintaining its global adaptiveness. Linguistic evolution furthermore differs from technological evolution by requiring vertical transmission, allowing the reconstruction of phylogenies; and it differs from eukaryotic biological evolution by foregoing a genotype vs phenotype distinction, allowing deliberate and biased change. Recognising these differences will improve our empirical tools and open new avenues for analyzing how linguistic, cultural, and biological evolution interacted with each other when language emerged in the hominin lineage. Importantly, our framework will help to cope with unprecedented scientific and ethical challenges that presently arise from how rapid cultural evolution impacts language, most urgently from interventional clinical tools for language disorders, potential epigenetic effects of technology on language, artificial intelligence and linguistic communicators, and global losses of linguistic diversity and identity. Beyond language, the distinctions made here allow identifying variation in other forms of biological and cultural evolution, developing new perspectives for empirical research.
Collapse
Affiliation(s)
- Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland.
| | - Anne-Lise Giraud
- Department of Basic Neurosciences, University of Geneva, Switzerland; Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, France
| | - Klaus Zuberbühler
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland; Institute of Biology, University of Neuchâtel, Switzerland; School of Psychology and Neuroscience, University of St Andrews, United Kingdom
| | - Carel P van Schaik
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland; Department of Evolutionary Biology and Environmental Science, University of Zurich, Switzerland; Max Planck Institute for Animal Behavior, Konstanz, Germany
| |
Collapse
|
29
|
Barido-Sottani J, Schwery O, Warnock RCM, Zhang C, Wright AM. Practical guidelines for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC). OPEN RESEARCH EUROPE 2024; 3:204. [PMID: 38481771 PMCID: PMC10933576 DOI: 10.12688/openreseurope.16679.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 06/06/2024]
Abstract
Phylogenetic estimation is, and has always been, a complex endeavor. Estimating a phylogenetic tree involves evaluating many possible solutions and possible evolutionary histories that could explain a set of observed data, typically by using a model of evolution. Values for all model parameters need to be evaluated as well. Modern statistical methods involve not just the estimation of a tree, but also solutions to more complex models involving fossil record information and other data sources. Markov chain Monte Carlo (MCMC) is a leading method for approximating the posterior distribution of parameters in a mathematical model. It is deployed in all Bayesian phylogenetic tree estimation software. While many researchers use MCMC in phylogenetic analyses, interpreting results and diagnosing problems with MCMC remain vexing issues to many biologists. In this manuscript, we will offer an overview of how MCMC is used in Bayesian phylogenetic inference, with a particular emphasis on complex hierarchical models, such as the fossilized birth-death (FBD) model. We will discuss strategies to diagnose common MCMC problems and troubleshoot difficult analyses, in particular convergence issues. We will show how the study design, the choice of models and priors, but also technical features of the inference tools themselves can all be adjusted to obtain the best results. Finally, we will also discuss the unique challenges created by the incorporation of fossil information in phylogenetic inference, and present tips to address them.
Collapse
Affiliation(s)
- Joëlle Barido-Sottani
- Institut de Biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, Île-de-France, 75005, France
| | - Orlando Schwery
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, 70402, USA
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Rachel C. M. Warnock
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, 91054, Germany
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - April Marie Wright
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, 70402, USA
| |
Collapse
|
30
|
Vargas-Pinilla P, S Oliveira Fam B, Medina Tavares G, Lima T, Landau L, Paré P, de Cássia Aleixo Tostes R, Pissinatti A, Falótico T, Costa-Neto C, Maestri R, Bortolini MC. From molecular variations to behavioral adaptations: Unveiling adaptive epistasis in primate oxytocin system. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24947. [PMID: 38783700 DOI: 10.1002/ajpa.24947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Our primary objective was to investigate the variability of oxytocin (OT) and the GAMEN binding motif within the LNPEP oxytocinase in primates. MATERIALS AND METHODS We sequenced the LNPEP segment encompassing the GAMEN motif in 34 Platyrrhini species, with 21 of them also sequenced for the OT gene. Our dataset was supplemented with primate sequences of LNPEP, OT, and the oxytocin receptor (OTR) sourced from public databases. Evolutionary analysis and coevolution predictions were made followed by the macroevolution analysis of relevant amino acids associated with phenotypic traits, such as mating systems, parental care, and litter size. To account for phylogenetic structure, we utilized two distinct statistical tests. Additionally, we calculated binding energies focusing on the interaction between Callithtrix jacchus VAMEN and Pro8OT. RESULTS We identified two novel motifs (AAMEN and VAMEN), challenging the current knowledge of motif conservation in placental mammals. Coevolution analysis demonstrated a correlation between GAMEN, AAMEN, and VAMEN and their corresponding OTs and OTRs. Callithrix jacchus exhibited a higher binding energy between VAMEN and Pro8OT than orthologous molecules found in humans (GAMEN and Leu8OT). DISCUSSION The coevolution of AAMEN and VAMEN with their corresponding OTs and OTRs suggests a functional relationship that could have contributed to specific reproductive and adaptive behaviors, including paternal care, social monogamy, and twin births, prominent traits in Cebidae species, such as marmosets and tamarins. Our findings underscore the coevolution of taxon-specific amino acids among the three studied molecules, shedding light on the oxytocinergic system as an adaptive epistatic repertoire in primates.
Collapse
Affiliation(s)
- Pedro Vargas-Pinilla
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Farmacologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Bibiana S Oliveira Fam
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gustavo Medina Tavares
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thaynara Lima
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luane Landau
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Pâmela Paré
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Tiago Falótico
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudio Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Renan Maestri
- Laboratório de Ecomorfologia e Macroevolução, Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Cátira Bortolini
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
Blackburn DG, Hughes DF. Phylogenetic analysis of viviparity, matrotrophy, and other reproductive patterns in chondrichthyan fishes. Biol Rev Camb Philos Soc 2024; 99:1314-1356. [PMID: 38562006 DOI: 10.1111/brv.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
The reproductive diversity of extant cartilaginous fishes (class Chondrichthyes) is extraordinarily broad, reflecting more than 400 million years of evolutionary history. Among their many notable reproductive specialisations are viviparity (live-bearing reproduction) and matrotrophy (maternal provision of nutrients during gestation). However, attempts to understand the evolution of these traits have yielded highly discrepant conclusions. Here, we compile and analyse the current knowledge on the evolution of reproductive diversity in Chondrichthyes with particular foci on the frequency, phylogenetic distribution, and directionality of evolutionary changes in their modes of reproduction. To characterise the evolutionary transformations, we amassed the largest empirical data set of reproductive parameters to date covering nearly 800 extant species and analysed it via a comprehensive molecular-based phylogeny. Our phylogenetic reconstructions indicated that the ancestral pattern for Chondrichthyes is 'short single oviparity' (as found in extant holocephalans) in which females lay successive clutches (broods) of one or two eggs. Viviparity has originated at least 12 times, with 10 origins among sharks, one in batoids, and (based on published evidence) another potential origin in a fossil holocephalan. Substantial matrotrophy has evolved at least six times, including one origin of placentotrophy, three separate origins of oophagy (egg ingestion), and two origins of histotrophy (uptake of uterine secretions). In two clades, placentation was replaced by histotrophy. Unlike past reconstructions, our analysis reveals no evidence that viviparity has ever reverted to oviparity in this group. Both viviparity and matrotrophy have arisen by a variety of evolutionary sequences. In addition, the ancestral pattern of oviparity has given rise to three distinct egg-laying patterns that increased clutch (brood) size and/or involved deposition of eggs at advanced stages of development. Geologically, the ancestral oviparous pattern arose in the Paleozoic. Most origins of viviparity and matrotrophy date to the Mesozoic, while a few that are represented at low taxonomic levels are of Cenozoic origin. Coupled with other recent work, this review points the way towards an emerging consensus on reproductive evolution in chondrichthyans while offering a basis for future functional and evolutionary analyses. This review also contributes to conservation efforts by highlighting taxa whose reproductive specialisations reflect distinctive evolutionary trajectories and that deserve special protection and further investigation.
Collapse
Affiliation(s)
- Daniel G Blackburn
- Department of Biology & Electron Microscopy Center, Trinity College, 300 Summit St, Hartford, Connecticut, 06106, USA
| | - Daniel F Hughes
- Department of Biology, Coe College, 1220 First Avenue NE, Cedar Rapids, Iowa, 52402, USA
| |
Collapse
|
32
|
Boerma DB, Swartz SM. Roosting ecology drives the evolution of diverse bat landing maneuvers. iScience 2024; 27:110381. [PMID: 39045098 PMCID: PMC11263957 DOI: 10.1016/j.isci.2024.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Bats and birds are the only living vertebrates capable of powered flight. However, bats differ from birds in that their flight required the evolution of ascending landing maneuvers that achieve their iconic head-under-heels roosting posture. We examined the evolution of landing flight in bats and tested its association with the physical properties of roosts. Bats performed four maneuvers, each correlated with patterns of peak impact force, impulse, and roosting ecology, a critical aspect of bat biology. Our findings indicate that the common ancestor of bats performed simple, four-limbed landings, similar to extant gliding mammals, and that rotationally complex landings enhancing control over impact forces coevolved multiple times with shifts to stiff, horizontal roosts. These results suggest landing biomechanics is central to bat biology: it was critical to flight adaptation in the past, mediates roost use in the present, and may affect bats' ability to respond to deforestation in the future.
Collapse
Affiliation(s)
- David B. Boerma
- Department of Biology, Pace University, New York, NY 10038, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Sharon M. Swartz
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
33
|
Messeder JVS, Carlo TA, Zhang G, Tovar JD, Arana C, Huang J, Huang CH, Ma H. A highly resolved nuclear phylogeny uncovers strong phylogenetic conservatism and correlated evolution of fruit color and size in Solanum L. THE NEW PHYTOLOGIST 2024; 243:765-780. [PMID: 38798267 DOI: 10.1111/nph.19849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Mutualisms between plants and fruit-eating animals were key to the radiation of angiosperms. Still, phylogenetic uncertainties limit our understanding of fleshy-fruit evolution, as in the case of Solanum, a genus with remarkable fleshy-fruit diversity, but with unresolved phylogenetic relationships. We used 1786 nuclear genes from 247 species, including 122 newly generated transcriptomes/genomes, to reconstruct the Solanum phylogeny and examine the tempo and mode of the evolution of fruit color and size. Our analysis resolved the backbone phylogeny of Solanum, providing high support for its clades. Our results pushed back the origin of Solanum to 53.1 million years ago (Ma), with most major clades diverging between 35 and 27 Ma. Evolution of Solanum fruit color and size revealed high levels of trait conservatism, where medium-sized berries that remain green when ripe are the likely ancestral form. Our analyses revealed that fruit size and color are evolutionary correlated, where dull-colored fruits are two times larger than black/purple and red fruits. We conclude that the strong phylogenetic conservatism shown in the color and size of Solanum fruits could limit the influences of fruit-eating animals on fleshy-fruit evolution. Our findings highlight the importance of phylogenetic constraints on the diversification of fleshy-fruit functional traits.
Collapse
Affiliation(s)
- João Vitor S Messeder
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Graduate Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tomás A Carlo
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Graduate Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guojin Zhang
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Juan David Tovar
- Programa de Pós-Graduação em Botânica, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, 69060-001, Brazil
| | - César Arana
- Museo de Historia Natural and Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, 15072, Peru
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia University, Hohhot, 010000, China
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
34
|
Camarillo H, Burress ED, Muñoz MM. Four-bar Geometry is Shared among Ecologically DivergentFish Species. Integr Org Biol 2024; 6:obae019. [PMID: 38949169 PMCID: PMC11211069 DOI: 10.1093/iob/obae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/29/2024] [Indexed: 07/02/2024] Open
Abstract
Understanding the factors that influence morphological evolution is a major goal in biology. One such factor is the ability to acquire and process prey. Prey hardness and evasiveness are important properties that can impact evolution of the jaws. Similar diets and biomechanical systems have repeatedly evolved among fish lineages, providing an opportunity to test for shared patterns of evolution across distantly related organisms. Four-bar linkages are structures often used by animals to transmit force and motion during feeding and that provide an excellent system to understand the impact of diet on morphological and biomechanical evolution. Here, we tested how diet influences the evolutionary dynamics of the oral four-bar linkage system in wrasses (Family: Labridae) and cichlids (Family: Cichlidae). We found that shifts in prey hardness/evasiveness are associated with limited modifications in four-bar geometry across these two distantly related fish lineages. Wrasse and cichlid four-bar systems largely exhibit many-to-one mapping in response to dietary shifts. Across two iconic adaptive radiations of fish, an optimal four-bar geometry has largely been co-opted for different dietary functions during their extensive ecological diversification. Given the exceptional jaw diversity of both lineages, many-to-one mapping of morphology to mechanical properties may be a core feature of fish adaptive radiation.
Collapse
Affiliation(s)
- H Camarillo
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
| | - E D Burress
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - M M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
35
|
Schachner ER, Moore AJ, Martinez A, Diaz RE, Echols MS, Atterholt J, W P Kissane R, Hedrick BP, Bates KT. The respiratory system influences flight mechanics in soaring birds. Nature 2024; 630:671-676. [PMID: 38867039 DOI: 10.1038/s41586-024-07485-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
The subpectoral diverticulum (SPD) is an extension of the respiratory system in birds that is located between the primary muscles responsible for flapping the wing1,2. Here we survey the pulmonary apparatus in 68 avian species, and show that the SPD was present in virtually all of the soaring taxa investigated but absent in non-soarers. We find that this structure evolved independently with soaring flight at least seven times, which indicates that the diverticulum might have a functional and adaptive relationship with this flight style. Using the soaring hawks Buteo jamaicensis and Buteo swainsoni as models, we show that the SPD is not integral for ventilation, that an inflated SPD can increase the moment arm of cranial parts of the pectoralis, and that pectoralis muscle fascicles are significantly shorter in soaring hawks than in non-soaring birds. This coupling of an SPD-mediated increase in pectoralis leverage with force-specialized muscle architecture produces a pneumatic system that is adapted for the isometric contractile conditions expected in soaring flight. The discovery of a mechanical role for the respiratory system in avian locomotion underscores the functional complexity and heterogeneity of this organ system, and suggests that pulmonary diverticula are likely to have other undiscovered secondary functions. These data provide a mechanistic explanation for the repeated appearance of the SPD in soaring lineages and show that the respiratory system can be co-opted to provide biomechanical solutions to the challenges of flight and thereby influence the evolution of avian volancy.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| | - Andrew J Moore
- Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Aracely Martinez
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Raul E Diaz
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, USA
| | | | - Jessie Atterholt
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Roger W P Kissane
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Karl T Bates
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
36
|
Sekhavati Y, Strait D. Estimating ancestral ranges and biogeographical processes in early hominins. J Hum Evol 2024; 191:103547. [PMID: 38781711 DOI: 10.1016/j.jhevol.2024.103547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Historical biogeography provides crucial insights into understanding the evolutionary history of hominins. We applied maximum-likelihood and biogeographical stochastic mapping to infer the ancestral ranges of hominins and estimate the frequency of biogeographical events. These events were inferred using two time-calibrated phylogenetic trees that differ in the position of Australopithecus sediba. Results suggest that regardless of which phylogeny was selected, Northcentral Africa was the preferred ancestral region for the ancestor of the Homo-Pan clade, as well as the ancestor of Sahelanthropus and later hominins. The northern and middle part of eastern Africa was the preferred ancestral region for several clades originating at subsequent deep nodes of the trees (∼5-4 Ma). The choice of tree topology had one important effect on results: whether hominin ancestors appearing after ∼4 Ma were widespread or endemic. These different patterns highlight the biogeographic significance of the phylogenetic relationships of A. sediba. Overall, the results showed that dispersal, local extinction, and sympatry played vital roles in creating the hominin distribution, whereas vicariance and jump dispersal were not as common. The results suggested symmetry in the directionality of dispersals. Distance probably influenced how rapidly taxa colonized a new region, and dispersals often followed the closest path. These findings are potentially impacted by the imperfection of the fossil record, suggesting that the results should be interpreted cautiously.
Collapse
Affiliation(s)
- Yeganeh Sekhavati
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - David Strait
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA; Palaeo-Research Institute, University of Johannesburg, Cnr Kingsway and University Road Auckland Park, PO Box 524, Auckland Park 2006, South Africa
| |
Collapse
|
37
|
São-Mateus WMB, Fernandes MF, Queiroz LPD, Meireles JE, Jardim JG, Delgado-Salinas A, Dorado Ó, Lima HCD, Rodríguez RR, González Gutiérrez PA, Lewis GP, Wojciechowski MF, Cardoso D. Molecular phylogeny and divergence time of Harpalyce (Leguminosae, Papilionoideae), a lineage with amphitropical diversification in seasonally dry forests and savannas. Mol Phylogenet Evol 2024; 194:108031. [PMID: 38360081 DOI: 10.1016/j.ympev.2024.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Our knowledge of the systematics of the papilionoid legume tribe Brongniartieae has greatly benefitted from recent advances in molecular phylogenetics. The tribe was initially described to include species marked by a strongly bilabiate calyx and an embryo with a straight radicle, but recent research has placed taxa from the distantly related core Sophoreae and Millettieae within it. Despite these advances, the most species-rich genera within the Brongniartieae are still not well studied, and their morphological and biogeographical evolution remains poorly understood. Comprising 35 species, Harpalyce is one of these poorly studied genera. In this study, we present a comprehensive, multi-locus molecular phylogeny of the Brongniartieae, with an increased sampling of Harpalyce, to investigate morphological and biogeographical evolution within the group. Our results confirm the monophyly of Harpalyce and indicate that peltate glandular trichomes and a strongly bilabiate calyx with a carinal lip and three fused lobes are synapomorphies for the genus, which is internally divided into three distinct ecologically and geographically divergent lineages, corresponding to the previously recognized sections. Our biogeographical reconstructions demonstrate that Brongniartieae originated in South America during the Eocene, with subsequent pulses of diversification in South America, Mesoamerica, and Australia. Harpalyce also originated in South America during the Miocene at around 20 Ma, with almost synchronous later diversification in South America and Mexico/Mesoamerica beginning 10 Ma, but mostly during the Pliocene. Migration of Harpalyce from South to North America was accompanied by a biome and ecological shift from savanna to seasonally dry forest.
Collapse
Affiliation(s)
- Wallace M B São-Mateus
- Programa de Pós-Graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970, Natal, Rio Grande do Norte, Brazil.
| | - Moabe Ferreira Fernandes
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., Ondina, 40170-115 Salvador, Bahia, Brazil; Department of Geography, University of Exeter, Exeter, UK; Royal Botanic Gardens, Kew, Richmond TW93AE, UK
| | - Luciano Paganucci de Queiroz
- Universidade Estadual de Feira de Santana (HUEFS), Av. Transnordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil
| | - José Eduardo Meireles
- School of Biology and Ecology, University of Maine, 5735 Hitchner Hall, 04469 Orono, ME, USA
| | - Jomar Gomes Jardim
- Universidade Federal do Sul da Bahia, Centro de Formação em Ciências Agroflorestais, Campus Jorge Amado, 45613-204 Itabuna, Bahia, Brazil; Herbário Centro de Pesquisas do Cacau - CEPEC, Km 29, Rod. Ilhéus-Itabuna, 45603-811 Itabuna, Bahia, Brazil
| | - Alfonso Delgado-Salinas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-233, 04510 Coyoacán, Cd. México, Mexico
| | - Óscar Dorado
- Centro de Educación Ambiental e Investigación Sierra de Huautla, Universidad Autónoma del Estado de Morelos, Mexico
| | - Haroldo Cavalcante de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915 22460-030 Rio de Janeiro, Brazil
| | - Rosa Rankin Rodríguez
- Jardín Botánico Nacional, Universidad de la Habana, Carretera "El Rocío", km 3.5, Calabazar C.P. 19230, Boyeros, La Habana, Cuba
| | - Pedro Alejandro González Gutiérrez
- Centro de Investigaciones y Servicios Ambientales de Holguín (CISAT), CITMA, Calle 18 sn, entre 1ª y Maceo, Reparto "El Llano", Holguín 80 100, Cuba
| | | | | | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., Ondina, 40170-115 Salvador, Bahia, Brazil; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915 22460-030 Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Gilman IS, Heyduk K, Maya-Lastra C, Hancock LP, Edwards EJ. Predicting photosynthetic pathway from anatomy using machine learning. THE NEW PHYTOLOGIST 2024; 242:1029-1042. [PMID: 38173400 DOI: 10.1111/nph.19488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Plants with Crassulacean acid metabolism (CAM) have long been associated with a specialized anatomy, including succulence and thick photosynthetic tissues. Firm, quantitative boundaries between non-CAM and CAM plants have yet to be established - if they indeed exist. Using novel computer vision software to measure anatomy, we combined new measurements with published data across flowering plants. We then used machine learning and phylogenetic comparative methods to investigate relationships between CAM and anatomy. We found significant differences in photosynthetic tissue anatomy between plants with differing CAM phenotypes. Machine learning-based classification was over 95% accurate in differentiating CAM from non-CAM anatomy, and had over 70% recall of distinct CAM phenotypes. Phylogenetic least squares regression and threshold analyses revealed that CAM evolution was significantly correlated with increased mesophyll cell size, thicker leaves, and decreased intercellular airspace. Our findings suggest that machine learning may be used to aid the discovery of new CAM species and that the evolutionary trajectory from non-CAM to strong, obligate CAM requires continual anatomical specialization.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, The University of Connecticut, Storrs, CT, 06269, USA
| | - Carlos Maya-Lastra
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Biology, Angelo State University, San Angelo, TX, 76909, USA
| | - Lillian P Hancock
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
39
|
DeLeo DM, Bessho-Uehara M, Haddock SH, McFadden CS, Quattrini AM. Evolution of bioluminescence in Anthozoa with emphasis on Octocorallia. Proc Biol Sci 2024; 291:20232626. [PMID: 38654652 PMCID: PMC11040251 DOI: 10.1098/rspb.2023.2626] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Bioluminescence is a widespread phenomenon that has evolved multiple times across the tree of life, converging among diverse fauna and habitat types. The ubiquity of bioluminescence, particularly in marine environments where it is commonly used for communication and defense, highlights the adaptive value of this trait, though the evolutionary origins and timing of emergence remain elusive for a majority of luminous organisms. Anthozoan cnidarians are a diverse group of animals with numerous bioluminescent species found throughout the world's oceans, from shallow waters to the light-limited deep sea where bioluminescence is particularly prominent. This study documents the presence of bioluminescent Anthozoa across depth and explores the diversity and evolutionary origins of bioluminescence among Octocorallia-a major anthozoan group of marine luminous organisms. Using a phylogenomic approach and ancestral state reconstruction, we provide evidence for a single origin of bioluminescence in Octocorallia and infer the age of occurrence to around the Cambrian era, approximately 540 Ma-setting a new record for the earliest timing of emergence of bioluminescence in the marine environment. Our results further suggest this trait was largely maintained in descendants of a deep-water ancestor and bioluminescent capabilities may have facilitated anthozoan diversification in the deep sea.
Collapse
Affiliation(s)
- Danielle M. DeLeo
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, USA
| | - Manabu Bessho-Uehara
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Steven H.D. Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Dept of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | | | - Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
40
|
Maggioni D, Schuchert P, Ostrovsky AN, Schiavo A, Hoeksema BW, Pica D, Piraino S, Arrigoni R, Seveso D, Montalbetti E, Galli P, Montano S. Systematics and character evolution of capitate hydrozoans. Cladistics 2024; 40:107-134. [PMID: 38112464 DOI: 10.1111/cla.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023] Open
Abstract
Capitate hydrozoans are a morphologically and ecologically diverse hydrozoan suborder, currently including about 200 species. Being grouped in two clades, Corynida and Zancleida, these hydrozoans still show a number of taxonomic uncertainties at the species, genus and family levels. Many Capitata species established symbiotic relationships with other benthic organisms, including bryozoans, other cnidarians, molluscs and poriferans, as well as with planktonic dinoflagellates for mixotrophic relationships and with bacteria for thiotrophic ectosymbioses. Our study aimed at providing an updated and comprehensive phylogeny reconstruction of the suborder, at modelling the evolution of selected morphological and ecological characters, and at testing evolutionary relationships between the symbiotic lifestyle and the other characters, by integrating taxonomic, ecological and evolutionary data. The phylogenetic hypotheses here presented shed light on the evolutionary relationships within Capitata, with most families and genera being recovered as monophyletic. The genus Zanclea and family Zancleidae, however, were divided into four divergent clades, requiring the establishment of the new genus Apatizanclea and the new combinations for species in Zanclea and Halocoryne genera. The ancestral state reconstructions revealed that symbiosis arose multiple times in the evolutionary history of the Capitata, and that homoplasy is a common phenomenon in the group. Correlations were found between the evolution of symbiosis and morphological characters, such as the perisarc. Overall, our results highlighted that the use of genetic data and a complete knowledge of the life cycles are strongly needed to disentangle taxonomic and systematic issues in capitate hydrozoans. Finally, the colonization of tropical habitat appears to have influenced the evolution of a symbiotic lifestyle, playing important roles in the evolution of the group.
Collapse
Affiliation(s)
- Davide Maggioni
- Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Milan, 20126, Italy
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
| | | | - Andrew N Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, 1090, Austria
| | - Andrea Schiavo
- Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, 20133, Italy
| | - Bert W Hoeksema
- Marine Evolution and Ecology Group, Naturalis Biodiversity Center, Leiden, 2333 CR, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Daniela Pica
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, Amendolara, 87071, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, 73100, Italy
- National Interuniversity Consortium for Marine Science (CoNISMa), Rome, 00196, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM), Genoa Marine Centre (GMC), Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa, 16126, Italy
| | - Davide Seveso
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
| | - Paolo Galli
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Simone Montano
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| |
Collapse
|
41
|
Kraisitudomsook N, Ahrendt S, Riley R, LaButti K, Lipzen A, Daum C, Barry K, Grigoriev IV, Rämä T, Martin F, Smith ME. On the origin of bird's nest fungi: Phylogenomic analyses of fungi in the Nidulariaceae (Agaricales, Basidiomycota). Mol Phylogenet Evol 2024; 193:108010. [PMID: 38195011 DOI: 10.1016/j.ympev.2024.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/15/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
Nidulariaceae, also known as bird's nest fungi, is an understudied group of mushroom-forming fungi. The common name is derived from their nest-like morphology. Bird's nest fungi are ubiquitous wood decomposers or saprobes on dung. Recent studies showed that species in the Nidulariaceae form a monophyletic group with five sub-clades. However, phylogenetic relationships among genera and placement of Nidulariaceae are still unclear. We present phylogenomic analyses of bird's nest fungi and related Agaricales fungi to gain insight into the evolution of Nidulariaceae. A species tree with 17 newly generated genomes of bird's nest fungi and representatives from all major clades of Agaricales was constructed using 1044 single-copy genes to explore the intergeneric relationships and pinpoint the placement of Nidulariaceae within Agaricales. We corroborated the hypothesis that bird's nest fungi are sister to Squamanitaceae, which includes mushroom-shaped fungi with a stipe and pileus that are saprobes and mycoparasites. Lastly, stochastic character mapping of discrete traits on phylogenies (SIMMAP) suggests that the ancestor of bird's nest fungi likely possessed an evanescent, globose peridium without strings attaching to the spore packets (funiculi). This analysis suggests that the funiculus was gained twice and that the persistent, cupulate peridium form was gained at least four times and lost once. However, alternative coding schemes and datasets with a wider array of Agaricales produced conflicting results during ancestral state reconstruction, indicating that there is some uncertainty in the number of peridium transitions and that taxon sampling may significantly alter ancestral state reconstructions. Overall, our results suggest that several key morphological characters of Nidulariaceae have been subject to homoplasy.
Collapse
Affiliation(s)
- Nattapol Kraisitudomsook
- Plant Pathology Department, Institute of Food and Agricultural Sciences (UF-IFAS), University of Florida, Gainesville, FL 32607, USA; Department of Biology, Faculty of Science and Technology, Muban Chombueng Rajabhat University, Ratchaburi 70150, Thailand.
| | - Steven Ahrendt
- U.S Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Robert Riley
- U.S Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Kurt LaButti
- U.S Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Anna Lipzen
- U.S Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Chris Daum
- U.S Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Kerrie Barry
- U.S Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, 110 Koshland Hall, Berkeley, CA 94720, USA
| | - Teppo Rämä
- The Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø N-9037, Norway
| | - Francis Martin
- University of Lorraine, National Research Institute for Agriculture, Food, and Environment (INRAE), Tree-Microbe Interactions Department, Champenoux 54280, France.
| | - Matthew E Smith
- Plant Pathology Department, Institute of Food and Agricultural Sciences (UF-IFAS), University of Florida, Gainesville, FL 32607, USA.
| |
Collapse
|
42
|
Yu D, Ren Y, Uesaka M, Beavan AJS, Muffato M, Shen J, Li Y, Sato I, Wan W, Clark JW, Keating JN, Carlisle EM, Dearden RP, Giles S, Randle E, Sansom RS, Feuda R, Fleming JF, Sugahara F, Cummins C, Patricio M, Akanni W, D'Aniello S, Bertolucci C, Irie N, Alev C, Sheng G, de Mendoza A, Maeso I, Irimia M, Fromm B, Peterson KJ, Das S, Hirano M, Rast JP, Cooper MD, Paps J, Pisani D, Kuratani S, Martin FJ, Wang W, Donoghue PCJ, Zhang YE, Pascual-Anaya J. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat Ecol Evol 2024; 8:519-535. [PMID: 38216617 DOI: 10.1038/s41559-023-02299-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.
Collapse
Affiliation(s)
- Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Alan J S Beavan
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Iori Sato
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - James W Clark
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Joseph N Keating
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Emily M Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Richard P Dearden
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Emma Randle
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Robert S Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - James F Fleming
- Keio University Institute for Advanced Biosciences, Tsuruoka, Japan
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, Nishinomiya, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
| | - Cristiano Bertolucci
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Naoki Irie
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jonathan P Rast
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jordi Paps
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.
- Department of Animal Biology, Faculty of Science, University of Málaga (UMA), Málaga, Spain.
- Edificio de Bioinnovación, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
43
|
Popescu SM, Tigae C, Dobrițescu A, Ștefănescu DM. Exploring the Climatic Niche Evolution of the Genus Falco (Aves: Falconidae) in Europe. BIOLOGY 2024; 13:113. [PMID: 38392331 PMCID: PMC10886973 DOI: 10.3390/biology13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
By integrating species distribution modeling techniques, phylogenetic comparative methods, and climatic data, we analyzed how European falcon climatic niches have changed over evolutionary time in order to understand their tempo and mode of evolution and gain phylogenetic insights related to the ecological context of falcon evolution. For this purpose, we tested the relative contributions of niche conservatism, convergent evolution, and divergent evolution in the evolutionary history of this group of species in Europe. The occupation of climatic niche spaces by falcon species in Europe was not similar, considering that their climatic niche evolution was characterized by heterotachy, especially after ca. 4 Mya. Our results indicate that convergent evolution and niche divergence played an important role in the evolutionary history of these species, with no significant evidence of closely related species retaining their fundamental niche over time (phylogenetic niche conservatism). In most analyses, less closely related falcon species occupied similar climatic environments. We found that speciation in the European genus Falco was influenced by climatic niche differentiation, more prevalent in the last 4 million years, with the main climatic niche shifts occurring between closely related falcon species.
Collapse
Affiliation(s)
- Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| | - Cristian Tigae
- Faculty of Science, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| | - Aurelian Dobrițescu
- Faculty of Science, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| | - Dragoș Mihail Ștefănescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| |
Collapse
|
44
|
Xu XM, Xu H, Yang Z, Wei Z, Gu JY, Liu DH, Liu QR, Zhu SX. Phylogeny, biogeography, and character evolution of Anaphalis (Gnaphalieae, Asteraceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1336229. [PMID: 38384761 PMCID: PMC10879626 DOI: 10.3389/fpls.2024.1336229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
The HAP clade, mainly including Helichrysum Mill, Anaphalis DC., and Pseudognaphalium Kirp., is a major component of tribe Gnaphalieae (Asteraceae). In this clade, Anaphalis represents the largest genus of Asian Gnaphalieae. The intergeneric relationships among Anaphalis and its related genera and the infrageneric taxonomy of this genus are complex and remain controversial. However, there are few studies that have focused on these issues. Herein, based on the current most comprehensive sampling of the HAP clade, especially Anaphalis, we conducted phylogenetic analyses using chloroplast (cp) genome and nuclear ribosomal DNA (nrDNA) to evaluate the relationships within HAP clade, test the monophyly of Anaphalis, and examine the infrageneric taxonomy of this genus. Meanwhile, the morphological characters were verified to determine the circumscription and infrageneric taxonomy system of Anaphalis. Additionally, the biogeographical history, diversification processes, and evolution of crucial morphological characters were estimated and inferred. Our phylogenetic analyses suggested that Anaphalis is polyphyletic because it nested with Helichrysum and Pseudognaphalium. Two and four main clades of Anaphalis were identified in cp genome and nrDNA trees, respectively. Compared with nrDNA trees, the cp genome trees were more effective for phylogenetic resolution. After comprehensively analyzing morphological and phylogenetic evidence, it was concluded that the achene surface ornamentation and leaf base showed less homoplasy and supported the two Anaphalis lineages that were inferred from cp genome. Our biogeographical analyses based on cp genome indicated that HAP clade underwent rapid diversification from late Miocene to Pliocene. The two Anaphalis lineages appeared to have originated in Africa, then spread to Western and Southern Asia, and subsequently moved into Southwestern China forming a diversity center. The dispersal patterns of the two Anaphalis lineages were different. One dispersed around the world, except in Africa and South America. The other one dispersed to Eastern and Southeastern Asia from the ancestral origin region.
Collapse
Affiliation(s)
- Xue-Min Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - He Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jun-Yu Gu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Resource Research Institute, Henan Provincial Third Institute of Resources and Environment Investigation, Zhengzhou, China
| | - Dan-Hui Liu
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumchi, China
| | - Quan-Ru Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shi-Xin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Burin G, Campbell LCE, Renner SS, Kiers ET, Chomicki G. Mutualisms drive plant trait evolution beyond interaction-related traits. Ecol Lett 2024; 27:e14379. [PMID: 38361469 DOI: 10.1111/ele.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Mutualisms have driven the evolution of extraordinary structures and behavioural traits, but their impact on traits beyond those directly involved in the interaction remains unclear. We addressed this gap using a highly evolutionarily replicated system - epiphytes in the Rubiaceae forming symbioses with ants. We employed models that allow us to test the influence of discrete mutualistic traits on continuous non-mutualistic traits. Our findings are consistent with mutualism shaping the pace of morphological evolution, strength of selection and long-term mean of non-mutualistic traits in function of mutualistic dependency. While specialised and obligate mutualisms are associated with slower trait change, less intimate, facultative and generalist mutualistic interactions - which are the most common - have a greater impact on non-mutualistic trait evolution. These results challenge the prevailing notion that mutualisms solely affect the evolution of interaction-related traits via stabilizing selection and instead demonstrate a broader role for mutualisms in shaping trait evolution.
Collapse
Affiliation(s)
| | | | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, Missouri, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
46
|
Arnette SD, Simonitis LE, Egan JP, Cohen KE, Kolmann MA. True grit? Comparative anatomy and evolution of gizzards in fishes. J Anat 2024; 244:260-273. [PMID: 37770122 PMCID: PMC10780153 DOI: 10.1111/joa.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
Gut morphology frequently reflects the food organisms digest. Gizzards are organs of the gut found in archosaurs and fishes that mechanically reduce food to aid digestion. Gizzards are thought to compensate for edentulism and/or provide an advantage when consuming small, tough food items (e.g., phytoplankton and algae). It is unknown how widespread gizzards are in fishes and how similar these structures are among different lineages. Here, we investigate the distribution of gizzards across bony fishes to (1) survey different fishes for gizzard presence, (2) compare the histological structure of gizzards in three species, (3) estimate how often gizzards have evolved in fishes, and (4) explore whether anatomical and ecological traits like edentulism and microphagy predict gizzard presence. According to our analyses, gizzards are rare across bony fishes, evolving only six times in a broad taxonomic sampling of 51 species, and gizzard presence is not clearly correlated with factors like gut length or dentition. We find that gizzard morphology varies among the lineages where one is present, both macroscopically (presence of a crop) and microscopically (varying tissue types). We conclude that gizzards likely aid in the mechanical reduction of food in fishes that have lost an oral dentition in their evolutionary past; however, the relative scarcity of gizzards suggests they are just one of many possible solutions for processing tough, nutrient-poor food items. Gizzards have long been present in the evolutionary history of fishes, can be found in a wide variety of marine and freshwater clades, and likely have been overlooked in many taxa.
Collapse
Affiliation(s)
- S D Arnette
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington, USA
| | - L E Simonitis
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington, USA
- Florida Atlantic University, Boca Raton, Florida, USA
| | - J P Egan
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, Idaho, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, Minnesota, USA
| | - K E Cohen
- University of Florida, Gainesville, Florida, USA
| | - M A Kolmann
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
47
|
Bowles AMC, Williamson CJ, Williams TA, Donoghue PCJ. Cryogenian Origins of Multicellularity in Archaeplastida. Genome Biol Evol 2024; 16:evae026. [PMID: 38333966 PMCID: PMC10883732 DOI: 10.1093/gbe/evae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Earth was impacted by global glaciations during the Cryogenian (720 to 635 million years ago; Ma), events invoked to explain both the origins of multicellularity in Archaeplastida and radiation of the first land plants. However, the temporal relationship between these environmental and biological events is poorly established, due to a paucity of molecular and fossil data, precluding resolution of the phylogeny and timescale of archaeplastid evolution. We infer a time-calibrated phylogeny of early archaeplastid evolution based on a revised molecular dataset and reappraisal of the fossil record. Phylogenetic topology testing resolves deep archaeplastid relationships, identifying two clades of Viridiplantae and placing Bryopsidales as sister to the Chlorophyceae. Our molecular clock analysis infers an origin of Archaeplastida in the late-Paleoproterozoic to early-Mesoproterozoic (1712 to 1387 Ma). Ancestral state reconstruction of cytomorphological traits on this time-calibrated tree reveals many of the independent origins of multicellularity span the Cryogenian, consistent with the Cryogenian multicellularity hypothesis. Multicellular rhodophytes emerged 902 to 655 Ma while crown-Anydrophyta (Zygnematophyceae and Embryophyta) originated 796 to 671 Ma, broadly compatible with the Cryogenian plant terrestrialization hypothesis. Our analyses resolve the timetree of Archaeplastida with age estimates for ancestral multicellular archaeplastids coinciding with the Cryogenian, compatible with hypotheses that propose a role of Snowball Earth in plant evolution.
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
48
|
Revell LJ. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 2024; 12:e16505. [PMID: 38192598 PMCID: PMC10773453 DOI: 10.7717/peerj.16505] [Citation(s) in RCA: 159] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/31/2023] [Indexed: 01/10/2024] Open
Abstract
Phylogenetic comparative methods comprise the general endeavor of using an estimated phylogenetic tree (or set of trees) to make secondary inferences: about trait evolution, diversification dynamics, biogeography, community ecology, and a wide range of other phenomena or processes. Over the past ten years or so, the phytools R package has grown to become an important research tool for phylogenetic comparative analysis. phytools is a diverse contributed R library now consisting of hundreds of different functions covering a variety of methods and purposes in phylogenetic biology. As of the time of writing, phytools included functionality for fitting models of trait evolution, for reconstructing ancestral states, for studying diversification on trees, and for visualizing phylogenies, comparative data, and fitted models, as well numerous other tasks related to phylogenetic biology. Here, I describe some significant features of and recent updates to phytools, while also illustrating several popular workflows of the phytools computational software.
Collapse
Affiliation(s)
- Liam J. Revell
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
49
|
Zhao M, Kurtis SM, Humbel EA, Griffith EV, Liu T, Braun EL, Buchholz R, Kimball RT. Bare parts in the Galliformes: the evolution of a multifunctional structure. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231695. [PMID: 38204797 PMCID: PMC10776217 DOI: 10.1098/rsos.231695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
A morphological trait can have multiple functions shaped by varying selective forces. Bare parts in birds, such as wattles, casques and combs, are known to function in both signalling and thermoregulation. Studies have demonstrated such structures are targets of sexual selection via female choice in several species of Galliformes (junglefowl, turkeys and grouse), though other studies have shown some role in thermoregulation (guineafowl). Here, we tested fundamental hypotheses regarding the evolution and maintenance of bare parts in Galliformes. Using a phylogeny that included nearly 90% of species in the order, we evaluated the role of both sexual and natural selection in shaping the function of bare parts across different clades. We found a combination of both environmental and putative sexually selected traits strongly predicted the variation of bare parts for both males and females across Galliformes. When the analysis is restricted to the largest family, Phasianidae (pheasants, junglefowl and allies), sexually selected traits were the primary predictors of bare parts. Our results suggest that bare parts are important for both thermoregulation and sexual signalling across Galliformes but are primarily under strong sexual selection within the Phasianidae.
Collapse
Affiliation(s)
- Min Zhao
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sarah M. Kurtis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ellen A. Humbel
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Emily V. Griffith
- Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA 19104, USA
| | - Tong Liu
- College of Life Science, Jilin Agricultural University, Jilin, People's Republic of China
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Richard Buchholz
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
50
|
Martínez-Aquino A, García-Teh JG, Ceccarelli FS, Aguirre-Macedo ML, Vidal-Martínez VM. Integrative taxonomy of Serrasentis gibsoni n. sp. (Acanthocephala: Isthmosacanthidae) from flatfishes in the Gulf of Mexico. J Helminthol 2023; 97:e96. [PMID: 38073427 DOI: 10.1017/s0022149x23000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The Isthmosacanthidae acanthocephalan species of the genus Serrasentis are parasites of marine teleosts and an elasmobranch. In this study, Serrasentis gibsoni n. sp. is described from the intestines of four flatfish species (Paralichthyidae), namely Ancyclopsetta quadrocellata, Cyclopsetta chittendeni, Syacium gunteri, and S. papillosum from 10 oceanic sites in the Gulf of Mexico (GoM). Twenty sequences of the 'barcoding' region of cytochrome C oxidase subunit I gene were obtained from 20 adults of Serrasentis gibsoni n. sp. Additionally, five sequences of the barcoding region were obtained from five adults of rhadinorhynchid Gorgorhynchus lepidus from C. chittendeni, S. papillosum and one species of Haemulidae, Haemulom aurolineatum, from five oceanic sites from the GoM. Two phylogenetic approaches were followed: Bayesian inference and maximum likelihood. In both phylogenetic reconstructions, the sequences of Serrasentis gibsoni n. sp. were recovered as a monophyletic group within the genus Serrasentis and placed as a sister group to G. lepidus. However, due to the lack of molecular data for species of the Isthmosacanthidae and Rhadinorhynchidea, these phylogenetic inferences must be taken with caution. Serrasentis gibsoni n. sp. is the first species of Serrasentis described from Paralichthyidae flatfish species from marine waters of the Americas and from the GoM. Based on the barcoding data set analyzed, Serrasentis gibsoni n. sp. appears to have high intraspecific genetic variation; thus, it is necessary to continue exploring the genetic diversity of this species to infer its intraspecific evolutionary patterns.
Collapse
Affiliation(s)
- A Martínez-Aquino
- Laboratorio de Biología Evolutiva de Parásitos, Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Transpeninsular 3917, Fraccionamiento Playitas, Ensenada, Baja California, 22860, Mexico
| | - J G García-Teh
- Laboratorio de Patología Acuática, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Cordemex, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán, 97310, Mexico
| | - F S Ceccarelli
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana, Ensenada, Baja California, 22860, Mexico
| | - M L Aguirre-Macedo
- Laboratorio de Patología Acuática, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Cordemex, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán, 97310, Mexico
| | - V M Vidal-Martínez
- Laboratorio de Patología Acuática, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Cordemex, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán, 97310, Mexico
| |
Collapse
|