1
|
Leira EC, Planas AM, Chauhan AK, Chamorro A. Uric Acid: A Translational Journey in Cerebroprotection That Spanned Preclinical and Human Data. Neurology 2023; 101:1068-1074. [PMID: 37848338 PMCID: PMC10752646 DOI: 10.1212/wnl.0000000000207825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 10/19/2023] Open
Abstract
Uric acid (UA) is a strong endogenous antioxidant that neutralizes the toxicity of peroxynitrite and other reactive species on the neurovascular unit generated during and after acute brain ischemia. The realization that a rapid reduction of UA levels during an acute ischemic stroke was associated with a worse stroke outcome paved the way to investigate the value of exogenous UA supplementation to counteract the progression of redox-mediated ischemic brain damage. The long translational journey for UA supplementation recently reached a critical milestone when the results of the multicenter NIH stroke preclinical assessment network (SPAN) were reported. In a novel preclinical paradigm, 6 treatment candidates including UA supplementation were selected and tested in 6 independent laboratories following predefined criteria and strict methodological rigor. UA supplementation was the only intervention in SPAN that exceeded the prespecified efficacy boundary with male and female animals, young mice, young rats, aging mice, obese mice, and spontaneously hypertensive rats. This unprecedented achievement will allow UA to undergo clinical testing in a pivotal clinical trial through a NIH StrokeNet thrombectomy endovascular platform created to assess new treatment strategies in patients treated with mechanical thrombectomy. UA is a particularly appealing adjuvant intervention for mechanical thrombectomy because it targets the microcirculatory hypoperfusion and oxidative stress that limits the efficacy of this therapy. This descriptive review aims to summarize the translational development of UA supplementation, highlighting those aspects that likely contributed to its success. It includes having a well-defined target and mechanism of action, and an approach that simultaneously integrated rigorous preclinical assessment, with epidemiologic and preliminary human intervention studies. Validation of the clinical value of UA supplementation in a pivotal trial would confirm the translational value of the SPAN paradigm in preclinical research.
Collapse
Affiliation(s)
- Enrique C Leira
- From the Department of Neurology (E.L., A.C.), and Departments of Neurosurgery & Epidemiology (E.L.), University of Iowa, Iowa City; Institute of Biomedical Research of Barcelona (IIBB) (A.M.P.), Spanish National Research Council (CSIC); August Pi i Sunyer Biomedical Research Institute (IDIBAPS) (A.M.P., A.C.), Barcelona, Spain; Department of Internal Medicine (A.K.C.), University of Iowa, Iowa City; and Hospital Clinic (A.C.), University of Barcelona, Spain
| | - Anna M Planas
- From the Department of Neurology (E.L., A.C.), and Departments of Neurosurgery & Epidemiology (E.L.), University of Iowa, Iowa City; Institute of Biomedical Research of Barcelona (IIBB) (A.M.P.), Spanish National Research Council (CSIC); August Pi i Sunyer Biomedical Research Institute (IDIBAPS) (A.M.P., A.C.), Barcelona, Spain; Department of Internal Medicine (A.K.C.), University of Iowa, Iowa City; and Hospital Clinic (A.C.), University of Barcelona, Spain
| | - Anil K Chauhan
- From the Department of Neurology (E.L., A.C.), and Departments of Neurosurgery & Epidemiology (E.L.), University of Iowa, Iowa City; Institute of Biomedical Research of Barcelona (IIBB) (A.M.P.), Spanish National Research Council (CSIC); August Pi i Sunyer Biomedical Research Institute (IDIBAPS) (A.M.P., A.C.), Barcelona, Spain; Department of Internal Medicine (A.K.C.), University of Iowa, Iowa City; and Hospital Clinic (A.C.), University of Barcelona, Spain
| | - Angel Chamorro
- From the Department of Neurology (E.L., A.C.), and Departments of Neurosurgery & Epidemiology (E.L.), University of Iowa, Iowa City; Institute of Biomedical Research of Barcelona (IIBB) (A.M.P.), Spanish National Research Council (CSIC); August Pi i Sunyer Biomedical Research Institute (IDIBAPS) (A.M.P., A.C.), Barcelona, Spain; Department of Internal Medicine (A.K.C.), University of Iowa, Iowa City; and Hospital Clinic (A.C.), University of Barcelona, Spain.
| |
Collapse
|
2
|
Fuchs M, Viel C, Lehto A, Lau H, Klein J. Oxidative stress in rat brain during experimental status epilepticus: effect of antioxidants. Front Pharmacol 2023; 14:1233184. [PMID: 37767398 PMCID: PMC10520702 DOI: 10.3389/fphar.2023.1233184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Antioxidants have been proposed as a treatment for diseases of the central nervous system. However, few studies actually studied their effects in the brain. To test central actions of antioxidants, we used the lithium-pilocarpine (Li-Pilo) model of status epilepticus (SE) in the rat in which seizures are accompanied by significant oxidative stress. We used in vivo microdialysis to determine isoprostane levels during SE in real time and brain homogenates for other measures of oxidative stress. Six different antioxidants were tested in acute and preventive experiments (vitamin C, vitamin E, ebselen, resveratrol, n-tert-butyl-α-phenylnitrone and coenzyme Q10). None of the antioxidants had an effect when given acutely during SE. In contrast, when antioxidants were given for 3 days prior to seizure induction, vitamins C and E reduced isoprostane formation by 58% and 65%, respectively. Pretreatment with the other antioxidants was ineffective. In brain homogenates prepared after 90 min of seizures, SE decreased the ratio of reduced vs. oxidized glutathione (GSH/GSSG ratio) from 60.8 to 7.50 and caused a twofold increase of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels and protein carbonyls. Pretreatment with vitamin C or vitamin E mitigated these effects and increased the GSH/GSSG ratio to 23.9 and 28.3, respectively. Again, the other antioxidants were not effective. We conclude that preventive treatment with vitamin C or vitamin E ameliorates seizure-induced oxidative damage in the brain. Several well-studied antioxidants were inactive, possibly due to limited brain permeability or a lack of chain-breaking antioxidant activity in hydrophilic compounds.
Collapse
Affiliation(s)
| | | | | | | | - Jochen Klein
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Hearing loss drug discovery and medicinal chemistry: Current status, challenges, and opportunities. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:1-91. [PMID: 35753714 DOI: 10.1016/bs.pmch.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.
Collapse
|
4
|
Abstract
Ischemic stroke, which is caused by a sudden clot in the blood vessels, may cause severe brain tissue damage and has become a leading cause of death globally. Currently, thrombolysis is the gold standard primary treatment of ischemic stroke in clinics. However, the short therapeutic window of opportunity limits thrombolysis utility. Secondary cerebral damage caused by stroke is also an urgent problem. In this review, we discuss the present methods of treating ischemic stroke in clinics and their limitations. Various new drug delivery strategies targeting ischemic stroke lesions have also been summarized, including pharmaceutical methods, diagnostic approaches and other routes. These strategies could change the pharmacokinetic behavior, improve targeted delivery or minimize side effects. A better understanding of the novel approaches utilized to facilitate drug delivery in ischemic stroke would improve outcomes.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Rong Yan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Jingjing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
5
|
Gao HY, Huang CH, Mao L, Shao B, Shao J, Yan ZY, Tang M, Zhu BZ. First Direct and Unequivocal Electron Spin Resonance Spin-Trapping Evidence for pH-Dependent Production of Hydroxyl Radicals from Sulfate Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14046-14056. [PMID: 33064470 DOI: 10.1021/acs.est.0c04410] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, the sulfate radical (SO4•-) has been found to exhibit broad application prospects in various research fields such as chemical, biomedical, and environmental sciences. It has been suggested that SO4•- could be transformed into a more reactive hydroxyl radical (•OH); however, no direct and unequivocal experimental evidence has been reported yet. In this study, using an electron spin resonance (ESR) secondary radical spin-trapping method coupled with the classic spin-trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and the typical •OH-scavenging agent dimethyl sulfoxide (DMSO), we found that •OH can be produced from three SO4•--generating systems from weakly acidic (pH = 5.5) to alkaline conditions (optimal at pH = 13.0), while SO4•- is the predominant radical species at pH < 5.5. A comparative study with three typical •OH-generating systems strongly supports the above conclusion. This is the first direct and unequivocal ESR spin-trapping evidence for •OH formation from SO4•- over a wide pH range, which is of great significance to understand and study the mechanism of many SO4•--related reactions and processes. This study also provides an effective and direct method for unequivocally distinguishing •OH from SO4•-.
Collapse
Affiliation(s)
- Hui-Ying Gao
- Science and Technology College, North China Electric Power University, Baoding 071051, P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhu-Ying Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Joint Institute of Environmental Sciences of Hong Kong Baptist University and the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
6
|
Nozohouri S, Sifat AE, Vaidya B, Abbruscato TJ. Novel approaches for the delivery of therapeutics in ischemic stroke. Drug Discov Today 2020; 25:535-551. [PMID: 31978522 DOI: 10.1016/j.drudis.2020.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Here, we review novel approaches to deliver neuroprotective drugs to salvageable penumbral brain areas of stroke injury with the goals of offsetting ischemic brain injury and enhancing recovery.
Collapse
Affiliation(s)
- Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
7
|
McCaig C, Ataliotis P, Shtaya A, Omar AS, Green AR, Kind CN, Pereira AC, Naray-Fejes-Toth A, Fejes-Toth G, Yáñez-Muñoz RJ, Murray JT, Hainsworth AH. Induction of the cell survival kinase Sgk1: A possible novel mechanism for α-phenyl-N-tert-butyl nitrone in experimental stroke. J Cereb Blood Flow Metab 2019; 39:1111-1121. [PMID: 29260627 PMCID: PMC6545623 DOI: 10.1177/0271678x17746980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Nitrones (e.g. α-phenyl-N-tert-butyl nitrone; PBN) are cerebroprotective in experimental stroke. Free radical trapping is their proposed mechanism. As PBN has low radical trapping potency, we tested Sgk1 induction as another possible mechanism. PBN was injected (100 mg/kg, i.p.) into adult male rats and mice. Sgk1 was quantified in cerebral tissue by microarray, quantitative RT-PCR and western analyses. Sgk1+/+ and Sgk1-/- mice were randomized to receive PBN or saline immediately following transient (60 min) occlusion of the middle cerebral artery. Neurological deficit was measured at 24 h and 48 h and infarct volume at 48 h post-occlusion. Following systemic PBN administration, rapid induction of Sgk1 was detected by microarray (at 4 h) and confirmed by RT-PCR and phosphorylation of the Sgk1-specific substrate NDRG1 (at 6 h). PBN-treated Sgk1+/+ mice had lower neurological deficit ( p < 0.01) and infarct volume ( p < 0.01) than saline-treated Sgk1+/+ mice. PBN-treated Sgk1-/- mice did not differ from saline-treated Sgk1-/- mice. Saline-treated Sgk1-/- and Sgk1+/+ mice did not differ. Brain Sgk3:Sgk1 mRNA ratio was 1.0:10.6 in Sgk1+/+ mice. Sgk3 was not augmented in Sgk1-/- mice. We conclude that acute systemic treatment with PBN induces Sgk1 in brain tissue. Sgk1 may play a part in PBN-dependent actions in acute brain ischemia.
Collapse
Affiliation(s)
- Catherine McCaig
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
| | - Paris Ataliotis
- Institute for Medical & Biomedical
Education, St George’s University of London, London, UK
| | - Anan Shtaya
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
| | - Ayan S Omar
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
| | - A Richard Green
- School of Life Sciences, University of
Nottingham, Nottingham, UK
| | - Clive N Kind
- Leicester School of Pharmacy,
De
Montfort University, Leicester, UK
| | - Anthony C Pereira
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
- Department of Neurology, St George’s
University Hospitals NHS Foundation Trust, London, UK
| | - Aniko Naray-Fejes-Toth
- Molecular & Systems Biology
Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Geza Fejes-Toth
- Molecular & Systems Biology
Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre for Biomedical
Sciences, School of Biological Sciences,
Royal
Holloway, University of London, Egham,
Surrey, UK
| | - James T Murray
- School of Biochemistry and Immunology,
Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2,
Ireland
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
- Department of Neurology, St George’s
University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Panahi Y, Mojtahedzadeh M, Najafi A, Rajaee SM, Torkaman M, Sahebkar A. Neuroprotective Agents in the Intensive Care Unit: -Neuroprotective Agents in ICU. J Pharmacopuncture 2018; 21:226-240. [PMID: 30652049 PMCID: PMC6333194 DOI: 10.3831/kpi.2018.21.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/09/2018] [Accepted: 11/14/2018] [Indexed: 01/31/2023] Open
Abstract
Neuroprotection or prevention of neuronal loss is a complicated molecular process that is mediated by various cellular pathways. Use of different pharmacological agents as neuroprotectants has been reported especially in the last decades. These neuroprotective agents act through inhibition of inflammatory processes and apoptosis, attenuation of oxidative stress and reduction of free radicals. Control of this injurious molecular process is essential to the reduction of neuronal injuries and is associated with improved functional outcomes and recovery of the patients admitted to the intensive care unit. This study reviews neuroprotective agents and their mechanisms of action against central nervous system damages.
Collapse
Affiliation(s)
- Yunes Panahi
- Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran,
Iran
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran,
Iran
| | - Mojtaba Mojtahedzadeh
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran,
Iran
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran,
Iran
| | - Atabak Najafi
- Gastrointestinal Pharmacology Interest Group(GPIG), Universal Scientific Education and Research Network(USERN), Tehran,
Iran
| | - Seyyed Mahdi Rajaee
- Gastrointestinal Pharmacology Interest Group(GPIG), Universal Scientific Education and Research Network(USERN), Tehran,
Iran
| | - Mohammad Torkaman
- Department of Pediatrics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran,
Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad,
Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad,
Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,
Iran
| |
Collapse
|
9
|
Chamorro Á. Neuroprotectants in the Era of Reperfusion Therapy. J Stroke 2018; 20:197-207. [PMID: 29886725 PMCID: PMC6007301 DOI: 10.5853/jos.2017.02901] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 01/06/2023] Open
Abstract
For decades, numerous pharmacological and non-pharmacological strategies have been evaluated without success to limit the consequences of the ischemic cascade, but more rarely the therapies were explored as add on remedies on individuals also receiving reperfusion therapies. It is plausible that these putative neuroprotectants never reached the ischemic brain in adequate concentrations. Currently, the concept of neuroprotection incorporates cerebral perfusion as an obligatory substrate upon which ischemic brain survival depends, and it is plausible that some of the compounds tested in previous neuroprotection trials might have resulted in more favorable results if reperfusion therapies had been co-administered. Nonetheless, pharmacological or mechanical thrombectomy are frequently powerless to fully reperfuse the ischemic brain despite achieving a high rate of recanalization. This review covers in some detail the importance of the microcirculation, and the barriers that may hamper flow reperfusion at the microcirculatory level. It describes the main mechanisms leading to microcirculatory thrombosis including oxidative/nitrosative stress and refers to recent efforts to ameliorate brain perfusion in combination with the co-administration of neuroprotectants mainly aimed at harnessing oxidative/nitrosative brain damage.
Collapse
Affiliation(s)
- Ángel Chamorro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic and August Pi I Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Xiong XY, Liu L, Yang QW. Refocusing Neuroprotection in Cerebral Reperfusion Era: New Challenges and Strategies. Front Neurol 2018; 9:249. [PMID: 29740385 PMCID: PMC5926527 DOI: 10.3389/fneur.2018.00249] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Pathophysiological processes of stroke have revealed that the damaged brain should be considered as an integral structure to be protected. However, promising neuroprotective drugs have failed when translated to clinical trials. In this review, we evaluated previous studies of neuroprotection and found that unsound patient selection and evaluation methods, single-target treatments, etc., without cerebral revascularization may be major reasons of failed neuroprotective strategies. Fortunately, this may be reversed by recent advances that provide increased revascularization with increased availability of endovascular procedures. However, the current improved effects of endovascular therapy are not able to match to the higher rate of revascularization, which may be ascribed to cerebral ischemia/reperfusion injury and lacking of neuroprotection. Accordingly, we suggest various research strategies to improve the lower therapeutic efficacy for ischemic stroke treatment: (1) multitarget neuroprotectant combinative therapy (cocktail therapy) should be investigated and performed based on revascularization; (2) and more efforts should be dedicated to shifting research emphasis to establish recirculation, increasing functional collateral circulation and elucidating brain–blood barrier damage mechanisms to reduce hemorrhagic transformation. Therefore, we propose that a comprehensive neuroprotective strategy before and after the endovascular treatment may speed progress toward improving neuroprotection after stroke to protect against brain injury.
Collapse
Affiliation(s)
- Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Liang Liu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
11
|
Tang JD, Lampe KJ. From de novo peptides to native proteins: advancements in biomaterial scaffolds for acute ischemic stroke repair. Biomed Mater 2018; 13:034103. [DOI: 10.1088/1748-605x/aaa4c3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr 2017; 62:20-38. [PMID: 29371752 PMCID: PMC5773834 DOI: 10.3164/jcbn.17-62] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Edaravone is a low-molecular-weight antioxidant drug targeting peroxyl radicals among many types of reactive oxygen species. Because of its amphiphilicity, it scavenges both lipid- and water-soluble peroxyl radicals by donating an electron to the radical. Thus, it inhibits the oxidation of lipids by scavenging chain-initiating water-soluble peroxyl radicals and chain-carrying lipid peroxyl radicals. In 2001, it was approved in Japan as a drug to treat acute-phase cerebral infarction, and then in 2015 it was approved for amyotrophic lateral sclerosis (ALS). In 2017, the U.S. Food and Drug Administration also approved edaravone for treatment of patients with ALS. Its mechanism of action was inferred to be scavenging of peroxynitrite. In this review, we focus on the radical-scavenging characteristics of edaravone in comparison with some other antioxidants that have been studied in clinical trials, and we summarize its pharmacological action and clinical efficacy in patients with acute cerebral infarction and ALS.
Collapse
Affiliation(s)
- Kazutoshi Watanabe
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahiko Tanaka
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| | - Satoshi Yuki
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, 17-10 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Manabu Hirai
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, 3-2-10 Dosho-machi, Chuo-ku, Osaka 541-8505, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| |
Collapse
|
13
|
Oliveira C, Benfeito S, Fernandes C, Cagide F, Silva T, Borges F. NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Med Res Rev 2017; 38:1159-1187. [PMID: 29095519 DOI: 10.1002/med.21461] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
The biological effects attributed to nitric oxide (• NO) and nitroxyl (HNO) have been extensively studied, propelling their array of putative clinical applications beyond cardiovascular disorders toward other age-related diseases, like cancer and neurodegenerative diseases. In this context, the unique properties and reactivity of the N-O bond enabled the development of several classes of compounds with potential clinical interest, among which • NO and HNO donors, nitrones, and nitroxides are of particular importance. Although primarily studied for their application as cardioprotective agents and/or molecular probes for radical detection, continuous efforts have unveiled a wide range of pharmacological activities and, ultimately, therapeutic applications. These efforts are of particular significance for diseases in which oxidative stress plays a key pathogenic role, as shown by a growing volume of in vitro and in vivo preclinical data. Although in its early stages, these efforts may provide valuable guidelines for the development of new and effective N-O-based drugs for age-related disorders. In this report, we review recent advances in the chemistry of NO and HNO donors, nitrones, and nitroxides and discuss its pharmacological significance and potential therapeutic application.
Collapse
Affiliation(s)
- Catarina Oliveira
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Carlos Fernandes
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Tiago Silva
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
HPN-07, a free radical spin trapping agent, protects against functional, cellular and electrophysiological changes in the cochlea induced by acute acoustic trauma. PLoS One 2017; 12:e0183089. [PMID: 28832600 PMCID: PMC5568441 DOI: 10.1371/journal.pone.0183089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress is considered a major cause of the structural and functional changes associated with auditory pathologies induced by exposure to acute acoustic trauma AAT). In the present study, we examined the otoprotective effects of 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07), a nitrone-based free radical trap, on the physiological and cellular changes in the auditory system of chinchilla following a six-hour exposure to 4 kHz octave band noise at 105 dB SPL. HPN-07 has been shown to suppress oxidative stress in biological models of a variety of disorders. Our results show that administration of HPN-07 beginning four hours after acoustic trauma accelerated and enhanced auditory/cochlear functional recovery, as measured by auditory brainstem responses (ABR), distortion product otoacoustic emissions (DPOAE), compound action potentials (CAP), and cochlear microphonics (CM). The normally tight correlation between the endocochlear potential (EP) and evoked potentials of CAP and CM were persistently disrupted after noise trauma in untreated animals but returned to homeostatic conditions in HPN-07 treated animals. Histological analyses revealed several therapeutic advantages associated with HPN-07 treatment following AAT, including reductions in inner and outer hair cell loss; reductions in AAT-induced loss of calretinin-positive afferent nerve fibers in the spiral lamina; and reductions in fibrocyte loss within the spiral ligament. These findings support the conclusion that early intervention with HPN-07 following an AAT efficiently blocks the propagative ototoxic effects of oxidative stress, thereby preserving the homeostatic and functional integrity of the cochlea.
Collapse
|
15
|
|
16
|
Fong JJ, Rhoney DH. NXY-059: Review of Neuroprotective Potential for Acute Stroke. Ann Pharmacother 2016; 40:461-71. [PMID: 16507608 DOI: 10.1345/aph.1e636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To review available literature on the pharmacology, pharmacokinetics, efficacy, and tolerability of NXY-059, an Investigational agent with a potential role in the treatment of acute stroke. Data Sources: Information was obtained from a MEDLINE search (1966–February 2006) of English-language literature utilizing the following search terms: NXY-059, cerovive, nitrones, neuroprotection, free radical trapper, and secondary neurologic injury. Study Selection and Data Extraction: Data from animal and human trials were evaluated to summarize the mechanism of action, efficacy, and safety of NXY-059. All published and unpublished trials and abstracts citing NXY-059 were selected. Data Synthesis: NXY-059 is an intravenous, nitrone-based, free radical trapping agent in Phase III trials for treatment of acute stroke. In various animal models, NXY-059 has shown reductions in infarct volume and neurologic deficits. Pharmacokinetic studies indicate that NXY-059 displays a predictable pharmacokinetic profile and primarily undergoes renal elimination. Results from 2 Phase II clinical trials showed favorable results for the safety and tolerability of the drug. A recent analysis of one of the Phase III trials showed a statistically significant reduction in the primary outcome of disability after acute stroke in patients who received NXY-059 compared with placebo. Conclusions: NXY-059 is a novel agent undergoing worldwide Phase III trials. Initial safety and efficacy data have not revealed any serious adverse events requiring special monitoring and/or precautions, with the exception of drug accumulation in patients with renal insufficiency. The potential benefit of this agent can change the current management algorithm for acute stroke and may represent significant advancement for the care of these patients.
Collapse
Affiliation(s)
- Jeffrey J Fong
- Tufts-New England Medical Center, Northeastern University School of Pharmacy, Boston, MA, USA
| | | |
Collapse
|
17
|
Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 2016; 15:869-881. [DOI: 10.1016/s1474-4422(16)00114-9] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/15/2016] [Accepted: 03/03/2016] [Indexed: 01/04/2023]
|
18
|
Nash KM, Ahmed S. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2033-40. [PMID: 26255114 DOI: 10.1016/j.nano.2015.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/23/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, but when produced in excess lead to the augmented pathogenesis of various diseases. Among these, ischemia reperfusion injury, Alzheimer's disease and rheumatoid arthritis are particularly important. Since ROS can be counteracted by a variety of antioxidants, natural and synthetic antioxidants have been developed. However, due to the ubiquitous production of ROS in living systems, poor in vivo efficiency of these agents and lack of target specificity, the current clinical modalities to treat oxidative stress damage are limited. Advances in the developing field of nanomedicine have yielded nanoparticles that can prolong antioxidant activity, and target specificity of these agents. This article reviews recent advances in antioxidant nanoparticles and their applications to manage oxidative stress-mediated diseases. FROM THE CLINICAL EDITOR Production of reactive oxygen species (ROS) is a purely physiological process in many disease conditions. However, excessive and uncontrolled production will lead to oxidative stress and further tissue damage. Advances in nanomedicine have provided many novel strategies to try to combat and counteract ROS. In this review article, the authors comprehensively highlighted the current status and future developments in using nanotechnology for providing novel therapeutic options in this field.
Collapse
Affiliation(s)
- Kevin M Nash
- Department of Pharmacology, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA.
| |
Collapse
|
19
|
Xu J, Li X, Wu J, Dai WM. Synthesis of 5-alkyl-5-aryl-1-pyrroline N-oxides from 1-aryl-substituted nitroalkanes and acrolein via Michael addition and nitro reductive cyclization. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): a randomised, double-blind phase 2b/3 trial. Lancet Neurol 2014; 13:453-60. [PMID: 24703208 DOI: 10.1016/s1474-4422(14)70054-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Uric acid is an antioxidant with neuroprotective effects in experimental models of stroke. We assessed whether uric acid therapy would improve functional outcomes at 90 days in patients with acute ischaemic stroke. METHODS URICO-ICTUS was a randomised, double-blind, placebo-controlled, phase 2b/3 trial that recruited patients with acute ischaemic stroke admitted to ten Spanish stroke centres. Patients were included if they were aged 18 years or older, had received alteplase within 4·5 h of symptom onset, and had an eligible National Institutes of Health Stroke Scale (NIHSS) score (>6 and ≤25) and premorbid (assessed by anamnesis) modified Rankin Scale (mRS) score (≤2). Patients were randomly allocated (1:1) to receive uric acid 1000 mg or placebo (both infused intravenously in 90 min during the infusion of alteplase), stratified by centre and baseline stroke severity. The primary outcome was the proportion of patients with excellent outcome (ie, an mRS score of 0-1, or 2 if premorbid score was 2) at 90 days, analysed in the target population (all randomly assigned patients who had been correctly diagnosed with ischaemic stroke and had begun study medication). The study is registered with ClinicalTrials.gov, number NCT00860366. FINDINGS Between July 1, 2011, and April 30, 2013, we randomly assigned 421 patients, of whom 411 (98%) were included in the target population (211 received uric acid and 200 received placebo). 83 (39%) patients who received uric acid and 66 (33%) patients who received placebo had an excellent outcome (adjusted risk ratio 1·23 [95% CI 0·96-1·56]; p=0·099). No clinically relevant or statistically significant differences were reported between groups with respect to death (28 [13%] patients who received uric acid vs 31 [16%] who received placebo), symptomatic intracerebral haemorrhage (nine [4%] vs six [3%]), and gouty arthritis (one [<1%] vs four [2%]). 516 adverse events occurred in the uric acid group and 532 in the placebo group, of which 61 (12%) and 67 (13%), respectively, were serious adverse events (p=0·703). INTERPRETATION The addition of uric acid to thrombolytic therapy did not increase the proportion of patients who achieved excellent outcome after stroke compared with placebo, but it did not lead to any safety concerns. FUNDING Institute of Health Carlos III of the Spanish Ministry of Health and Fundación Doctor Melchor Colet.
Collapse
|
21
|
Lapchak PA, McKim JM. CeeTox™ Analysis of CNB-001 a Novel Curcumin-Based Neurotrophic/Neuroprotective Lead Compound to Treat Stroke: Comparison with NXY-059 and Radicut. Transl Stroke Res 2013; 2:51-9. [PMID: 21494575 DOI: 10.1007/s12975-010-0034-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the present study, we used a comprehensive cellular toxicity (CeeTox) analysis panel to determine the toxicity profile for CNB-001 [4-((1E)-2-(5-(4-hydroxy-3-methoxystyryl-)-1-phenyl-1H-pyrazoyl-3-yl)vinyl)-2-methoxy-phenol)], which is a hybrid molecule created by combining cyclohexyl bisphenol A, a molecule with neurotrophic activity and curcumin, a spice with neuro-protective activity. CNB-001 is a lead development compound since we have recently shown that CNB-001 has significant preclinical efficacy both in vitro and in vivo. In this study, we compared the CeeTox profile of CNB-001 with two neuroprotective molecules that have been clinically tested for efficacy: the hydrophilic free radical spin trap agent NXY-059 and the hydrophobic free radical scavenger edaravone (Radicut). CeeTox analyses using a rat hepatoma cell line (H4IIE) resulted in estimated C(Tox) value (i.e., sustained concentration expected to produce toxicity in a rat 14-day repeat dose study) of 42 μM for CNB-001 compared with >300 μM for both NXY-059 and Radicut. The CeeTox panel suggests that CNB-001 produces some adverse effects on cellular adenosine triphosphate content, membrane toxicity, glutathione content, and cell mass (or number), but only with high concentrations of the drug. After a 24-h exposure, the drug concentration that produced a half-maximal response (TC(50)) on the measures noted above ranges from 55 to 193 μM. Moreover, all CNB-001-induced changes in the markers were coincident with loss of cell number, prior to acute cell death as measured by membrane integrity, suggesting a cytostatic effect of CNB-001. NXY-059 and Radicut did not have acute toxic effects on H4IIE cells. We also found that CNB-001 resulted in an inhibition of ethoxyresorufin-o-deethylase activity, indicating that the drug may affect cytochrome P4501A activity and that CNB-001 was metabolically unstable using a rat microsome assay system. For CNB-001, an estimated in vitro efficacy/toxicity ratio is 183-643-fold, suggesting that there is a significant therapeutic safety window for CNB-001 and that it should be further developed as a novel neuroprotective agent to treat stroke.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, Burns and Allen Research Institute, 110 N. George Burns Road, D-2091, Los Angeles, CA 90048, USA
| | | |
Collapse
|
22
|
Biglarnia AR, Emanuelsson C, Quach M, Clausen F, Larsson E, Schneider MKJ, Tufveson G, Lorant T. The free radical scavenger S-PBN significantly prolongs DSG-mediated graft survival in experimental xenotransplantation. Xenotransplantation 2012; 19:166-76. [PMID: 22702468 DOI: 10.1111/j.1399-3089.2012.00700.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Nitrones such as 2-sulfo-phenyl-N-tert-butyl nitrone (S-PBN) are known to trap and stabilize free radicals and to reduce inflammation. Recently, S-PBN was shown to reduce infiltration of T lymphocytes and the expression of adhesion molecules on the endothelium in experimental traumatic brain injury. We hypothesized that S-PBN could reduce infiltration of T lymphocytes during cell-mediated xenograft rejection and thereby increase graft survival. The concordant mouse-to-rat heart transplantation model was used to test the hypothesis. In this model, grafts undergo acute humoral xenograft rejection (AHXR) almost invariably on day 3 and succumb to cell-mediated rejection on approximately day 8 if AHXR is inhibited by treatment with 15-deoxyspergualin (DSG). MATERIAL AND METHODS Hearts from Naval Medical Research Institute (NMRI) mice were transplanted to the neck vessels of Lewis rats. Recipients were treated with S-PBN (n=9), DSG (n=9), S-PBN and DSG in combination (n=10) or left untreated (n=9) for survival studies. S-PBN was given daily intraperitoneally at a dose of 150 mg/kg body weight (BW) on day -1 to 30, and DSG was given daily intraperitoneally at a dose of 10 mg/kg BW on day -1 to 4 and 5 mg/kg BW on day 5 to 21. Nine additional recipients were given S-PBN only on days -1 and 0 in combination with continuous DSG treatment. Grafts were monitored until they stopped beating. Additional recipients were treated with S-PBN (n=5), DSG (n=5), S-PBN and DSG in combination (n=6) or left untreated (n=5) for morphological, immunohistochemical and flow cytometry analyses on days 2 and 6 after transplantation. RESULTS S-PBN treatment in combination with DSG resulted in increased median graft survival compared to DSG treatment alone (14 vs. 7 days; P=0.019). Lower number of T lymphocytes on day 6 (P=0.019) was observed by ex vivo propagation and flow cytometry when combining S-PBN with DSG, whereas immunohistochemical analyses demonstrated a significant reduction in the number of infiltrated CD4+, but not TCR+, cells. S-PBN treatment alone had no impact on graft survival compared to untreated rats (3 vs. 3 days). No differences were seen in ICAM-1 and VCAM-1 expression or in morphology between the groups. CONCLUSION The combination of S-PBN and DSG treatment increases xenograft survival. The main effect of S-PBN appears to be in direct connection with the transplantation. Because of its low toxicity, S-PBN could become useful in combination with other immunosuppressants to reduce cell-mediated xenograft rejection.
Collapse
Affiliation(s)
- Ali-Reza Biglarnia
- Department of Surgical Sciences, Section of Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gooyit M, Suckow MA, Schroeder VA, Wolter WR, Mobashery S, Chang M. Selective gelatinase inhibitor neuroprotective agents cross the blood-brain barrier. ACS Chem Neurosci 2012; 3:730-6. [PMID: 23077716 DOI: 10.1021/cn300062w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/30/2012] [Indexed: 01/19/2023] Open
Abstract
SB-3CT, a potent and selective inhibitor of matrix metalloproteinase-2 and -9, has shown efficacy in several animal models of neurological diseases. One of the greatest challenges in the development of therapeutics for neurological diseases is the inability of drugs to cross the blood-brain barrier. A sensitive bioanalytical method based on ultraperformance liquid chromatography with multiple-reaction monitoring detection was developed to measure levels of SB-3CT, its active metabolite, the α-methyl analogue, and its p-hydroxy metabolite in plasma and brain. The compounds are rapidly absorbed and are readily distributed to the brain. The pharmacokinetic properties of these gelatinase inhibitors and the efficacy shown by SB-3CT in animal models of stroke, subarachnoid hemorrhage, and spinal cord injury indicate that this class of compounds holds considerable promise in the treatment of diseases of the central nervous system.
Collapse
Affiliation(s)
- Major Gooyit
- Department
of Chemistry and
Biochemistry, University of Notre Dame,
Notre Dame, Indiana 46556, United States
| | - Mark A. Suckow
- Freimann Life Sciences Center
and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Valerie A. Schroeder
- Freimann Life Sciences Center
and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William R. Wolter
- Freimann Life Sciences Center
and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department
of Chemistry and
Biochemistry, University of Notre Dame,
Notre Dame, Indiana 46556, United States
| | - Mayland Chang
- Department
of Chemistry and
Biochemistry, University of Notre Dame,
Notre Dame, Indiana 46556, United States
| |
Collapse
|
24
|
Lapchak PA. CeeTox Analysis to De-risk Drug Development: The Three Antioxidants (NXY-059, Radicut, and STAZN). Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Amaro S, Chamorro Á. Translational Stroke Research of the Combination of Thrombolysis and Antioxidant Therapy. Stroke 2011; 42:1495-9. [DOI: 10.1161/strokeaha.111.615039] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stroke is an enormous public health problem with an imperative need for more effective therapy. Recombinant tissue plasminogen activator is the only licensed drug for acute stroke, but its efficacy may be limited by the toxicity of the compound and by reperfusion injury. The coadministration of neuroprotective drugs could augment the value of thrombolytic therapy, but the evidence in support of this approach is scarce. The use of the free radical trapping NXY-059, either with or without recombinant tissue plasminogen activator, was not successful in Phase III studies. However, these results could reflect its weak antioxidant capacity, poor blood–brain barrier penetration, and lack of synergism with recombinant tissue plasminogen activator as well as the overly broad treatment window used in the reported trials. This article contends that further translational research should explore newer antioxidant drugs in combination with thrombolytic agents, but only if the combination yields additive or synergistic effects in preclinical thromboembolic models or in biomarker-assisted Phase II studies. Edaravone and novel nitrones endowed with a better pharmacokinetic profile or multitarget and thrombolytic activity are discussed as well as the latest research data on uric acid, a strong endogenous antioxidant in blood that is early consumed after acute stroke. The coadministration of uric acid and recombinant tissue plasminogen activator has shown to provide synergistic neuroprotection in experimental thromboembolic models and to lessen several biomarkers of oxidative stress in patients with acute stroke. The clinical efficacy of uric acid is currently under investigation in a Phase III trial that follows current recommendations of also evaluating surrogate biomarkers of treatment effects.
Collapse
Affiliation(s)
- Sergio Amaro
- From the Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Institute Investigacions Biomèdicas August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ángel Chamorro
- From the Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Institute Investigacions Biomèdicas August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Abstract
BACKGROUND Hyperglycemia exacerbates focal ischemic brain damage supposedly through various mechanisms. One such mechanism is oxidative stress involving reactive oxygen and nitrogen species (RONS) production. Nitrones attenuate oxidative stress in various models of brain injury. Sodium 2-sulfophenyl-N-tert-butyl nitrone (S-PBN) can be administered experimentally and has been shown to be neuroprotective in experimental brain trauma. AIMS OF THE STUDY We hypothesized that S-PBN might be neuroprotective in hyperglycemic focal cerebral ischemia. MATERIAL AND METHODS Rats were made hyperglycemic by an intraperitoneal bolus injection of glucose (2 g/kg) and then subjected to 90 min transient middle cerebral artery occlusion (MCAO). They were randomized to a therapeutic regime of S-PBN (156 mg/kg) or saline given intravenously. Neurological testing according to Bederson and tetrazolium red staining were performed after 1 day. RESULTS S-PBN improved the neurological performance at day 1 both in Bederson score (1.3+/-0.8 versus 2.7+/-0.48) and on the inclined plane (74.5%+/-4.6 (S-PBN) versus 66%+/-8.3 (control), P<0.05) but did not reduce the infarct size. Physiological data did not differ between groups. CONCLUSION S-PBN may improve neurological performance at short-term survival (1 day) in the present model of hyperglycemic-ischemic brain injury in rats. This effect appeared not to be primarily related to reduced infarct size.
Collapse
Affiliation(s)
- Maria Molnar
- Department of Surgical Sciences, Section of Anesthesiology and Intensive Care, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
27
|
Xu Y, Kalyanaraman B. Synthesis and ESR studies of a novel cyclic nitrone spin trap attached to a phosphonium group-a suitable trap for mitochondria-generated ROS? Free Radic Res 2009; 41:1-7. [PMID: 17164173 DOI: 10.1080/10715760600911147] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study we report the synthesis and biological application of a novel cyclic nitrone spin trap containing a phosphonium cation. This new spin trap ([4-(2-methyl-1-oxy-3, 4-dihydro-2H-pyrrole-2-carbonyloxy)-butyl]-triphenyl-phosphonium bromide, MitoBMPOBr) is a derivative of the cyclic nitrone, 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO). MitoBMPOBr forms radical adducts upon trapping of superoxide and hydroxyl radicals that exhibit highly distinct and characteristic EPR spectra. The stability of these adducts is comparable to those of BMPO. Because of the presence of a positively-charged phosphonium moiety, MitoBMPOBr may be suitable for trapping reactive oxygen species (ROS) in the mitochondria.
Collapse
Affiliation(s)
- Yingkai Xu
- Department of Biophysics, the Medical College of Wisconsin, Free Radical Research Center, Milwaukee, WI 53226, USA
| | | |
Collapse
|
28
|
Clausen F, Marklund N, Lewén A, Hillered L. The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat. J Neurotrauma 2009; 25:1449-57. [PMID: 19118455 DOI: 10.1089/neu.2008.0585] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) are important contributors to the secondary injury cascade following traumatic brain injury (TBI), and ROS inhibition has consistently been shown to be neuroprotective following experimental TBI. NXY-059, a nitrone free radical trapping compound, has been shown to be neuroprotective in models of ischemic stroke but has not been evaluated in experimental TBI. In the present study, a continuous 24-h intravenous infusion of NXY-059 or vehicle was initiated 30 min following a severe lateral fluid percussion brain injury (FPI) in adult rats (n=22), and histological and behavioral outcomes were evaluated. Sham-injured animals (n=22) receiving identical drug infusion were used as controls. Visuospatial learning was evaluated in the Morris water maze at post-injury days 11-14, followed by a probe trial (memory test) at day 18. The animals were sacrificed at day 18, and loss of hemispheric brain tissue was measured in microtubule-associated protein (MAP)-2 stained sections. Brain-injured, NXY-059-treated animals showed a significant reduction of visuospatial learning deficits when compared to the brain-injured, vehicle-treated control animals (p < 0.05). NXY-059-treated animals significantly reduced the loss of hemispheric tissue compared to brain-injured controls (43.0 +/- 11 mm3 versus 74.4 +/- 19 mm3, respectively; p < 0.01). The results show that post-injury treatment with NXY-059 significantly attenuated the loss of injured brain tissue and improved cognitive outcome, suggesting a major role for ROS in the pathophysiology of TBI.
Collapse
Affiliation(s)
- Fredrik Clausen
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
29
|
Bath PMW, Gray LJ, Bath AJG, Buchan A, Miyata T, Green AR. Effects of NXY-059 in experimental stroke: an individual animal meta-analysis. Br J Pharmacol 2009; 157:1157-71. [PMID: 19422398 DOI: 10.1111/j.1476-5381.2009.00196.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Disodium 2,4-disulphophenyl-N-tert-butylnitrone (NXY-059) was neuroprotective in experimental stroke models but ineffective in a large clinical trial. This first-ever individual animal meta-analysis was used to assess the preclinical studies. EXPERIMENTAL APPROACH Studies were obtained from AstraZeneca and PubMed searches. Data for each animal were obtained from the lead author of each study and/or AstraZeneca. Published summary data were used if individual data were not available. Infarct volume and motor impairment were standardized to reflect different species and scales. Standardized mean difference (SMD), coefficients from multilevel models and 95% confidence intervals (95% CI) are presented. KEY RESULTS Fifteen studies (26 conditions, 12 laboratories) involving rats (544), mice (9) and marmosets (32) were identified (NXY-059: 332, control: 253) with individual data for 442 animals. Four studies were unpublished. Studies variably used randomization (40%), blinding of surgeon (53%) and outcome assessor (67%). NXY-059 reduced total (SMD -1.17, 95% CI -1.50 to -0.84), cortical (SMD -2.17, 95% CI -2.99 to -1.34) and subcortical (-1.43, 95% CI -2.20 to -0.86) lesion volume; efficacy was seen in transient, permanent and thrombotic ischaemia, up to 180 min post occlusion. NXY-059 reduced motor impairment (SMD -1.66, 95% CI -2.18 to -1.14) and neglect. Evidence for performance, attrition and publication bias was present. CONCLUSIONS AND IMPLICATIONS NXY-059 was neuroprotective in experimental stroke although bias may have resulted in efficacy being overestimated. Efficacy in young, healthy, male animals is a poor predictor of clinical outcome. We suggest the use of preclinical meta-analysis before initiation of future clinical trials.
Collapse
Affiliation(s)
- P M W Bath
- Stroke Trials Unit, University of Nottingham, Clinical Sciences Building, City Hospital Campus, Hucknall Road, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Lapchak PA, Zivin JA. The lipophilic multifunctional antioxidant edaravone (radicut) improves behavior following embolic strokes in rabbits: A combination therapy study with tissue plasminogen activator. Exp Neurol 2009; 215:95-100. [DOI: 10.1016/j.expneurol.2008.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 01/17/2023]
|
31
|
Floyd RA, Kopke RD, Choi CH, Foster SB, Doblas S, Towner RA. Nitrones as therapeutics. Free Radic Biol Med 2008; 45:1361-74. [PMID: 18793715 PMCID: PMC2796547 DOI: 10.1016/j.freeradbiomed.2008.08.017] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 01/20/2023]
Abstract
Nitrones have the general chemical formula X-CH=NO-Y. They were first used to trap free radicals in chemical systems and then subsequently in biochemical systems. More recently several nitrones, including alpha-phenyl-tert-butylnitrone (PBN), have been shown to have potent biological activity in many experimental animal models. Many diseases of aging, including stroke, cancer development, Parkinson disease, and Alzheimer disease, are known to have enhanced levels of free radicals and oxidative stress. Some derivatives of PBN are significantly more potent than PBN and have undergone extensive commercial development for stroke. Recent research has shown that PBN-related nitrones also have anti-cancer activity in several experimental cancer models and have potential as therapeutics in some cancers. Also, in recent observations nitrones have been shown to act synergistically in combination with antioxidants in the prevention of acute acoustic-noise-induced hearing loss. The mechanistic basis of the potent biological activity of PBN-related nitrones is not known. Even though PBN-related nitrones do decrease oxidative stress and oxidative damage, their potent biological anti-inflammatory activity and their ability to alter cellular signaling processes cannot readily be explained by conventional notions of free radical trapping biochemistry. This review is focused on our studies and others in which the use of selected nitrones as novel therapeutics has been evaluated in experimental models in the context of free radical biochemical and cellular processes considered important in pathologic conditions and age-related diseases.
Collapse
Affiliation(s)
- Robert A Floyd
- Experimental Therapeutics Research Program, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Over the last decade, important advances have been made to support the fact that reactive oxygen species (ROS) are generated and play a harmful role during the acute and late stages of cerebral ischemia. Several drugs, such as radical scavengers and antioxidants, have been evaluated in preclinical and clinical studies. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one; Radicut, Mitsubishi Tanabe Pharma Corporation) is a novel antioxidant that is currently used in Japan for the treatment of patients in the acute stage of cerebral infarction. Edaravone scavenges ROS and inhibits proinflammatory responses after brain ischemia in animals and humans. In particular, postischemic inflammation, leading to brain edema and infarction due to neuronal damage and endothelial cell death, can be ameliorated by edaravone. In addition to these antistroke effects, edaravone has also been shown to prevent oxidative damage to various extracerebral organs. Therefore, in addition to its usefulness in the treatment of stroke, edaravone is expected to play an integral role in the treatment of many oxidative stress-related diseases.
Collapse
Affiliation(s)
- Toshiaki Watanabe
- Department of REDOX Medicinal Science, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
33
|
Papadakis M, Nagel S, Buchan AM. Development and efficacy of NXY-059 for the treatment of acute ischemic stroke. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.3.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NXY-059 is a neuroprotective compound that prevents ischemic damage by trapping free radicals. Preclinical animal stroke models demonstrated that the agent is able to reduce histological damage and improve behavioral outcome. Phase II studies showed that NXY-059 administration does not cause any serious adverse events and it is well tolerated by both healthy volunteers and stroke patients. The first Phase III trial indicated that NXY-059 treatment results in a small, but significant improvement of the primary neurological outcome, as measured by the modified Rankin scale. However, NXY-059 did not improve coprimary outcomes assessed by the NIH Stroke Scale (NIHSS) and the Barthel index. For patients receiving thrombolysis together with NXY-059, there was an associated reduction of symptomatic intracerebral hemorrhage. Although NXY-059 showed positive results in this Phase III study, a larger scale Phase III study revealed that the efficacy of NXY-059 is not better than placebo in treating acute stroke patients. Hence, NXY-059 failed to materialize as an effective acute stroke treatment. This article summarizes the path of the drug from bench to bedside and points out what possibly went wrong. How such an outcome can be prevented in future trials for neuroprotective agents will also be discussed.
Collapse
Affiliation(s)
- Michalis Papadakis
- John Radcliffe Hospital, Acute Stroke Programme, Nuffield Department of Clinical Medicine, Oxford, OX3 9DU, UK
| | - Simon Nagel
- John Radcliffe Hospital, Acute Stroke Programme, Nuffield Department of Clinical Medicine, Oxford, OX3 9DU, UK and, University of Heidelberg, Department of Neurology, INF 400, 69120 Heidelberg, Germany
| | - Alastair M Buchan
- John Radcliffe Hospital, Acute Stroke Programme, Nuffield Department of Clinical Medicine, Oxford, OX3 9DU, UK
| |
Collapse
|
34
|
Soto-Otero R, Méndez-Álvarez E, Sánchez-Iglesias S, Zubkov FI, Voskressensky LG, Varlamov AV, de Candia M, Altomare C. Inhibition of 6-hydroxydopamine-induced oxidative damage by 4,5-dihydro-3H-2-benzazepine N-oxides. Biochem Pharmacol 2008; 75:1526-37. [DOI: 10.1016/j.bcp.2007.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/27/2007] [Accepted: 12/31/2007] [Indexed: 11/29/2022]
|
35
|
Green AR. Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br J Pharmacol 2008; 153 Suppl 1:S325-38. [PMID: 18059324 PMCID: PMC2268079 DOI: 10.1038/sj.bjp.0707594] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/24/2007] [Accepted: 10/30/2007] [Indexed: 12/27/2022] Open
Abstract
Stroke is a major cause of both death and disability. However, there are no pharmacological treatments used in most countries other than recombinant tissue plasminogen activator, a thrombolytic, and this is only used in about 4% of patients presenting after an acute ischaemic stroke. One novel thrombolytic (desmoteplase) has just been reported to have failed in a Phase IIb/III trial, but other thrombolytics and reperfusion agents remain in development. The picture with neuroprotectant agents, that is compounds that act to preserve neurones following an acute cerebral ischaemic insult, is even more bleak. Despite the development of over 1,000 compounds, many proving effective in animal models of stroke, none has demonstrated efficacy in patients in the over 100 clinical trials conducted. This includes NXY-059, which was developed in accordance with the guidelines proposed by an academic-industry roundtable group (STAIR). This review examines the available data on compounds currently in development. It also proposes that the failure of translation between efficacy in preclinical models and patients is likely to terminate most current neuroprotective drug development. It is suggested that animal models must be made more representative of the patient condition (with other co-morbid conditions) and suggests that since stroke is primarily a cardiovascular disease with a neurological outcome, more research on the neurovascular unit would be valuable. New approaches on neuroinflammation, neurorestoration and neurorepair are also likely to gain prominence in the search for new drugs to treat this major clinical problem.
Collapse
Affiliation(s)
- A R Green
- Institute of Neuroscience, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
36
|
Hainsworth AH, Bhuiyan N, Green AR. The nitrone disodium 2,4-sulphophenyl-N-tert-butylnitrone is without cytoprotective effect on sodium nitroprusside-induced cell death in N1E-115 neuroblastoma cells in vitro. J Cereb Blood Flow Metab 2008; 28:24-8. [PMID: 17554259 DOI: 10.1038/sj.jcbfm.9600517] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Disodium 2,4-sulphophenyl-N-tert-butylnitrone (NXY-059) is a novel free radical-trapping compound that is neuroprotective in both rodent and primate models of acute ischaemic stroke. Neuroprotection in vitro by NXY-059 has not been reported previously, and we have now investigated whether such an effect can be detected using a simple cell culture model of neurotoxicity. Neuron-like cells of the neuroblastoma-derived clonal cell line N1E-115 were exposed to the free radical-generating agent sodium nitroprusside (SNP), which produced a concentration-dependent reduction in mitochondrial complex II activity 24 h later (EC(50) approximately 100 micromolar). Cell death induced by SNP (100 micromolar), assessed either by an increased proportion of apoptotic nuclear morphology or by mitochondrial complex II activity, was inhibited by a cocktail of known antioxidants (ascorbate, reduced glutathione, and dithiothreitol, all at 100 micromolar) but not by NXY-059 at a concentration known to be neuroprotective in vivo (300 micromolar). Disodium 2,4-sulphophenyl-N-tert-butylnitrone was also without effect on H(2)O(2)-mediated cytotoxicity. These results support recent data suggesting that in vivo NXY-059 probably acts at the neurovascular unit rather than at an intracellular site as a neuroprotective agent.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Division of Cardiac and Vascular Sciences, Department of Clinical Neurosciences, St George's University of London, London, UK.
| | | | | |
Collapse
|
37
|
Clausen F, Lorant T, Lewén A, Hillered L. T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J Neurotrauma 2007; 24:1295-307. [PMID: 17711391 DOI: 10.1089/neu.2006.0258] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Infiltration of T lymphocytes is a key feature in transplant rejection and in several autoimmune disorders, but the role of T lymphocytes in traumatic brain injury (TBI) is largely unknown. Here we studied trafficking of immune cells in the brain after experimental TBI. We found that scavenging of reactive oxygen species (ROS) at the endothelial level dramatically reduced the infiltration of activated T lymphocytes. Immune cell infiltration was studied 12 h to 7 days after controlled cortical contusion in rats by ex vivo propagation of T lymphocytes (TcR+, CD8+), neutrophils (MPO+), and macrophages/microglia (ED-1+) from biopsies taken from injured cortex and analyzed by flow cytometry, as well as by quantitative immunohistochemistry. T lymphocyte and neutrophil infiltration peaked at 24 h and macrophages/microglia at 7 days post-injury. Pretreatment with 2-sulfophenyl-N-tert-butyl nitrone (S-PBN) produced a dramatic reduction of TcR+ T lymphocytes and a significantly smaller attenuation of neutrophil infiltration at 24 h post-injury, but did not affect CD8+ T lymphocytes or macrophages/microglia. S-PBN significantly reduced the expression of the endothelial adhesion molecules ICAM-1 and VCAM at 24 h for following TBI. We conclude that ROS inhibition at the endothelial level influenced T lymphocyte and neutrophil infiltration following TBI. We submit that the reduction of T lymphocyte infiltration is a key feature in improving TBI outcome after S-PBN treatment. Our data suggest that targeting T lymphocyte trafficking to the injured brain at the microvascular level is a novel concept of neuroprotection in TBI and warrants further exploration.
Collapse
Affiliation(s)
- Fredrik Clausen
- Department of Neuroscience, Section of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | |
Collapse
|
38
|
Williams HE, Claybourn M, Green AR. Investigating the free radical trapping ability of NXY-059, S-PBN and PBN. Free Radic Res 2007; 41:1047-52. [PMID: 17729123 DOI: 10.1080/10715760701557161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The spin trapping ability of the nitrones 2,4-disulphophenyl-N-tert-butyl nitrone (NXY-059), 2-sulphophenyl-N-tert-butyl nitrone (S-PBN) and alpha-phenyl-N-tert-butyl nitrone (PBN) for both hydroxyl and methanol radicals was investigated using electron paramagnetic resonance (EPR) spectroscopy. The radicals of interest were generated in situ in the spectrometer under constant flow conditions in the presence of each nitrone. The spin adducts formed were detected by EPR spectroscopy. This approach allowed for quantitative comparison of the EPR spectra of the spin adducts of each nitrone. The results obtained showed that NXY-059 trapped a greater number of hydroxyl and methanol radicals than the other two nitrones, under the conditions studied.
Collapse
Affiliation(s)
- Helen E Williams
- AstraZeneca, Pharmaceutical & Analytical R&D, Macclesfield, Cheshire, UK.
| | | | | |
Collapse
|
39
|
The use of the Chandler loop to examine the interaction potential of NXY-059 on the thrombolytic properties of rtPA on human thrombi in vitro. Br J Pharmacol 2007; 153:124-31. [PMID: 17982476 DOI: 10.1038/sj.bjp.0707543] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Recombinant tissue-type plasminogen activator (rtPA) is the only globally approved treatment for acute ischaemic stroke. Other potential treatments might be administered with rtPA, making it important to discover whether compounds interfere with rtPA-induced lysis. We evaluated methods for examining the effect of the neuroprotectant NXY-059 on the lytic property of rtPA. EXPERIMENTAL APPROACH Plasma clot formation and lysis in the presence of rtPA and NXY-059 was measured as the change in plasma turbidity. The effect of NXY-059 on rtPA-induced lysis was similarly assessed on preformed clots. Lysis of the thrombus formed in a Chandler loop measured release of fluorescent-tagged fibrinogen that had been incorporated during thrombus formation. Thrombi were exposed to both rtPA and NXY-059 throughout lysis in the presence of 80% autologous plasma and the release of label during lysis was measured. KEY RESULTS Data interpretation is limited in the clot lysis experiments because either the rtPA was present during clot formation or the drug was added to a clot formed in static conditions. In contrast, thrombi were formed in dynamic flow conditions in the Chandler loop and the time course of lysis in plasma was examined. rtPA increased thrombolysis and the antifibrinolytic trans-4-(aminomethyl) cyclohexane carboxylic acid (AMCA) inhibited lysis. Lysis induced by rtPA was unaltered by NXY-059. CONCLUSIONS AND IMPLICATIONS The Chandler loop method provides a reliable technique for examining the effect of compounds on rtPA-induced lysis in vitro and demonstrated that NXY-059 does not alter rtPA-induced lysis at clinically relevant concentrations of either drug.
Collapse
|
40
|
Abstract
Acute ischaemic stroke is a leading cause of death in the majority of industrialised countries and also in many developing countries. Free radicals are generated in the brain during ischaemic injury and these radicals are involved in the secondary injury processes. Several free radical scavengers have been developed and some of them have progressed into clinical trials. One of them, edaravone, has been approved by the regulatory authority in Japan for the treatment of stroke patients. Another scavenger, disodium 4-[(tert-butylimino)methyl] benzene-1,3-disulfonate N-oxide (NXY-059; disufenton), has demonstrated efficacy in a phase III clinical trial (SAINT [Stroke Acute Ischaemic NXY-059 Treatment study]-I) involving a large number of stroke patients. Unfortunately, SAINT II did not show efficacy in the treatment of stroke patients. The purpose of this article is to review the current development of antioxidant strategies, update recent findings for NXY-059 in the treatment of stroke patients, and discuss the future development of neuroprotective agents. Although the development of neuroprotective strategies for the treatment of stroke is challenging, progress in molecular and cellular neuroscience will uncover new information about stroke mechanisms, which should result in the realisation of neuroprotective therapy for this disease.
Collapse
Affiliation(s)
- Chen X Wang
- Stroke Research Laboratory, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
41
|
Lapchak PA, Araujo DM. Advances in hemorrhagic stroke therapy: conventional and novel approaches. Expert Opin Emerg Drugs 2007; 12:389-406. [PMID: 17874968 DOI: 10.1517/14728214.12.3.389] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatments for spontaneous intracerebral, thrombolytic-induced and intraventricular hemorrhages (IVH) are still at the preclinical or early clinical investigational stages. There has been some renewed interest in the use of surgical evacuation surgery or thrombolytics to remove hematomas, but these techniques can be used only for specific types of brain bleeding. The STICH (Surgical Trial in Intracerebral Haemorrhage) clinical trials should provide some insight into the potential for such techniques to counteract hematoma-induced damage and subsequently, morbidity and mortality. More recently, clinical trials (ATACH [Antihypertensive Treatment in Acute Cerebral Hemorrhage] and INTERACT [Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial]) have begun testing whether or not regulating blood pressure affects the well-being of hemorrhage patients, but the findings thus far have not conclusively demonstrated a positive result. More promising trials, such as the early stage CHANT (Cerebral Hemorrhagic And NXY-059 Treatment) and the late stage FAST (Factor VIIa for Acute Hemorrhagic Stroke Treatment), have addressed whether or not manipulating oxidative stress and components of the blood coagulation cascade can achieve an improved prognosis following spontaneous hemorrhages. However, CHANT was halted prematurely because although it showed that the spin trap agent NXY-059 was safe, it also demonstrated that the drug was ineffective in treating acute ischemic stroke. In addition, the recombinant activated factor VII FAST trial recently concluded with only modestly positive results. Despite a beneficial effect on the primary end point of reducing hemorrhage volume, controlling the coagulation cascade with recombinant factor VIIa did not decrease the mortality rate. Consequently, Novo Nordisk has abandoned further development of the drug for the treatment of intracerebral hemorrhaging. Even though progress in hemorrhage therapy that successfully reduces the escalating morbidity and mortality rate associated with brain bleeding is slow, perseverance and applied translational drug development will eventually be productive. The urgent need for such therapy becomes more evident in light of concerns related to uncontrolled high blood pressure in the general population, increased use of blood thinners by the elderly (e.g., warfarin) and thrombolytics by acute ischemic stroke patients, respectively. The future of drug development for hemorrhage may require a multifaceted approach, such as combining drugs with diverse mechanisms of action. Because of the substantial benefit of factor VIIa in reducing hemorrhage volume, it should be considered as a prime drug candidate included in combination therapy as an off-label use if the FAST trial proves that the risk of thromboembolic events is not increased with drug administration. Other promising drugs that may be considered in combination include uncompetitive NMDA receptor antagonists (such as memantine), antioxidants, metalloprotease inhibitors, statins and erythropoietin analogs, all of which have been shown to reduce hemorrhage and behavioral deficits in one or more animal models.
Collapse
Affiliation(s)
- Paul A Lapchak
- University of California San Diego, Department of Neuroscience, MTF 316, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA.
| | | |
Collapse
|
42
|
Lyden PD, Shuaib A, Lees KR, Davalos A, Davis SM, Diener HC, Grotta JC, Ashwood TJ, Hardemark HG, Svensson HH, Rodichok L, Wasiewski WW, Ahlberg G. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT Trial. Stroke 2007; 38:2262-9. [PMID: 17569876 DOI: 10.1161/strokeaha.106.472746] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE NXY-059 is a free radical-trapping neuroprotectant developed for use in acute ischemic stroke. To facilitate prompt administration of treatment, potentially before neuroimaging, we investigated the safety of NXY-059 in patients with intracerebral hemorrhage (ICH). METHODS We randomized 607 patients within 6 hours of acute ICH to receive 2270 mg intravenous NXY-059 over 1 hour and then up to 960 mg/h over 71 hours, or matching placebo, in addition to standard care. The primary outcome was safety: the mortality and the frequency of adverse events, and the change from baseline for a variety of serum, imaging, and electrophysiological measurements. We also studied the overall distribution of disability scores on the modified Rankin Scale (mRS) and the Barthel index. RESULTS We treated 300 patients with NXY-059 and 303 with placebo. Treatment groups were well matched for prognostic variables including Glasgow Coma Scale, risk factors, and age. The mean National Institute of Health Stroke Scale score on admission was 14 in both groups. The baseline hemorrhage volume was 22.4+/-20.1 mL in the NXY-059 group and 23.3+/-22.8 mL in the placebo group (mean+/-SD). Most hemorrhages were related to hypertension or anticoagulant use. Mortality was similar in both groups: 20.3% for NXY-059 and 19.8% for placebo-treated patients. The proportion of patients who experienced an adverse event was the same for both groups, whereas for serious adverse events the proportion was slightly higher in the NXY-059 group. However, no pattern emerged to indicate a safety concern. Serum potassium fell transiently in both groups, lower in the NXY-059 group. There were no differences in 3-month function, disability, or neurological deficit scores. The odds ratio for an improved outcome in 3-month mRS scores in the NXY-059 group was 1.01 (95% CI 0.75, 1.35). CONCLUSIONS NXY-059 given within 6 hours of acute ICH has a good safety and tolerability profile, with no adverse effect on important clinical outcomes.
Collapse
|
43
|
Lapchak PA. The phenylpropanoid micronutrient chlorogenic acid improves clinical rating scores in rabbits following multiple infarct ischemic strokes: Synergism with tissue plasminogen activator. Exp Neurol 2007; 205:407-13. [PMID: 17439814 DOI: 10.1016/j.expneurol.2007.02.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/19/2007] [Accepted: 02/20/2007] [Indexed: 11/26/2022]
Abstract
The present study assessed whether chlorogenic acid (CGA), a phenylpropanoid molecule that has multiple mechanisms of action would be useful to attenuate behavioral deficits associated with embolic strokes using the rabbit small clot embolic stroke model (RSCEM). Quantal analysis for each treatment determines the quantity of microclots (mg) that produce neurologic dysfunction in 50% of a group of animals (P(50)), with intervention considered beneficial if it increases the P(50) compared to controls. CGA (50 mg/kg) injected 5 min post-embolization significantly increased behavioral function and the P(50) to 3.61+/-0.52 mg (n=19) compared to 1.58+/-0.15 mg (n=26) in controls. In addition, CGA also increased the P(50) to 2.57+/-0.28 mg (n=18) when administered 1 h post-embolization, but was ineffective when given 3 h following embolization (P(50)=1.22+/-0.24 mg, n=18). For combination studies with the thrombolytic tissue plasminogen activator (tPA), we used tPA at a standard dose of 3.3 mg/kg, which significantly increased the P(50) to 2.89+/-0.29 mg (n=17) when administered 1 h after embolization, but not 3 h after embolization (P(50)=1.54+/-0.27 mg, n=18). However, when tPA (3.3 mg/kg) was combined with CGA (50 mg/kg) and administered 3 h following embolization, there was a significant increase in behavioral function as evidenced by an increase in the P(50) value to 3.40+/-0.76 mg (n=23). In conclusion, as a mono-therapy CGA effectively reduced behavioral deficits when given up to 1 h following embolic strokes in rabbits. Moreover, there was a synergistic effect of the combination of tPA with CGA when administered 3 h following embolization. The results show that the therapeutic window for a standard effective dose of tPA could be increased by administration of CGA, suggesting that it may be most useful as a co-therapy with a standard thrombolytic treatment regimen.
Collapse
Affiliation(s)
- Paul A Lapchak
- University of California San Diego, Department of Neuroscience, 9500 Gilman Drive MTF316, La Jolla, CA 92093-0624, USA.
| |
Collapse
|
44
|
Lapchak PA, Araujo DM. Advances in ischemic stroke treatment: neuroprotective and combination therapies. Expert Opin Emerg Drugs 2007; 12:97-112. [PMID: 17355216 DOI: 10.1517/14728214.12.1.97] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thrombolysis with intravenous alteplase (recombinant tissue-type plasminogen activator) continues to be the sole recourse for acute ischemic stroke therapy, provided that patients seek treatment preferably within 3 h of stroke onset. The narrow window of efficacy, coupled with the significant risk of hemorrhage and the high mortality rate, preclude the use of alteplase beyond this time frame. Moreover, in part because of safety concerns, only a small percentage (6-15%) of eligible patients is treated with alteplase. Clearly, safer and more effective treatments that focus on improving the shortcomings of the present thrombolysis for stroke need to be identified. Therefore, newer thrombolytics are being developed with the goal of minimizing side effects, while also shortening the time of cerebral reperfusion and extending the therapeutic window of efficacy. Besides thrombolytics, new and potentially useful drugs and devices are also being studied either as monotherapeutic agents or for use in conjunction with alteplase. In animal models of stroke, neuroprotective agents that affect various components of the ischemic injury cascade that results in neurodegeneration have shown promise for the latter. Examples of such agents include spin traps that block oxidative stress, metalloprotease inhibitors that prevent vascular damage, anti-inflammatory drugs that suppress inflammation and transcranial infrared laser irradiation, which promotes recovery of function. Ideally, a successful combination of neuroprotectant (drug or device) and thrombolytic therapy for stroke would minimize the side effects of thrombolysis followed by supplementary neuroprotection thereafter.
Collapse
Affiliation(s)
- Paul A Lapchak
- Stroke Research Scientist, University of California San Diego, Department of Neuroscience, La Jolla, CA 92093-0624, USA.
| | | |
Collapse
|
45
|
Abstract
The brain and nervous system are prone to oxidative stress, and are inadequately equipped with antioxidant defense systems to prevent 'ongoing' oxidative damage, let alone the extra oxidative damage imposed by the neurodegenerative diseases. Indeed, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in protein clearance constitute complex intertwined pathologies that conspire to kill neurons. After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
46
|
Green AR, Shuaib A. Therapeutic strategies for the treatment of stroke. Drug Discov Today 2006; 11:681-93. [PMID: 16846795 DOI: 10.1016/j.drudis.2006.06.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/21/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
Acute ischaemic stroke is a major health problem with no effective treatments apart from the thrombolytic recombinant tissue plasminogen activator (rt-PA), which must be given within 3h of stroke onset. However, rt-PA increases the risk of symptomatic intracranial haemorrhage and is administered to <5% of stroke patients. New perfusion-enhancing compounds are in development but the risk:benefit ratio remains to be determined. Many neuroprotective drugs have been studied but all those that reached clinical development have failed to demonstrate efficacy. However, adherence to recently published guidelines on preclinical development has resulted in one novel compound (NXY-059) demonstrating efficacy in a Phase III trial, providing encouragement for the validity of the concept of neuroprotection. There are a variety of new neuroprotective compounds in the early stages of investigation and some could prove clinically effective, provided appropriate preclinical development guidelines are observed.
Collapse
Affiliation(s)
- A Richard Green
- Global Discovery CNS & Pain Control, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, LE11 5RH, UK.
| | | |
Collapse
|
47
|
Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener HC, Grotta J, Lyden P, Shuaib A, Hårdemark HG, Wasiewski WW. NXY-059 for acute ischemic stroke. N Engl J Med 2006; 354:588-600. [PMID: 16467546 DOI: 10.1056/nejmoa052980] [Citation(s) in RCA: 470] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND NXY-059 is a free-radical-trapping agent that is neuroprotective in animal models of stroke. We tested whether it would reduce disability in humans after acute ischemic stroke. METHODS We conducted a randomized, double-blind, placebo-controlled trial involving 1722 patients with acute ischemic stroke who were randomly assigned to receive a 72-hour infusion of placebo or intravenous NXY-059 within 6 hours after the onset of the stroke. The primary outcome was disability at 90 days, as measured according to scores on the modified Rankin scale for disability (range, 0 to 5, with 0 indicating no residual symptoms and 5 indicating bedbound, requiring constant care). RESULTS Among the 1699 subjects included in the efficacy analysis, NXY-059 significantly improved the overall distribution of scores on the modified Rankin scale, as compared with placebo (P=0.038 by the Cochran-Mantel-Haenszel test). The common odds ratio for improvement across all categories of the scale was 1.20 (95 percent confidence interval, 1.01 to 1.42). Mortality and rates of serious and nonserious adverse events were each similar in the two groups. NXY-059 did not improve neurologic functioning as measured according to the National Institutes of Health Stroke Scale (NIHSS): the difference between the two groups in the change from baseline scores was 0.1 point (95 percent confidence interval, -1.4 to 1.1; P=0.86). Likewise, no improvement was observed according to the Barthel index (P=0.14). In a post hoc analysis of patients who also received alteplase, NXY-059 was associated with a lower incidence of any hemorrhagic transformation (P=0.001) and symptomatic intracranial hemorrhage (P=0.036). CONCLUSIONS The administration of NXY-059 within six hours after the onset of acute ischemic stroke significantly improved the primary outcome (reduced disability at 90 days), but it did not significantly improve other outcome measures, including neurologic functioning as measured by the NIHSS score. Additional research is needed to confirm whether NXY-059 is beneficial in ischemic stroke. (ClinicalTrials.gov number, NCT00119626.).
Collapse
Affiliation(s)
- Kennedy R Lees
- Acute Stroke Unit and Cerebrovascular Clinic, University Department of Medicine and Therapeutics, Gardiner Institute, Western Infirmary, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Green AR, Lanbeck-Vallén K, Ashwood T, Lundquist S, Lindström Böö E, Jonasson H, Campbell M. Brain penetration of the novel free radical trapping neuroprotectant NXY-059 in rats subjected to permanent focal ischemia. Brain Res 2006; 1072:224-6. [PMID: 16448628 DOI: 10.1016/j.brainres.2005.12.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/24/2005] [Accepted: 12/05/2005] [Indexed: 11/16/2022]
Abstract
The penetration of the free radical trapping neuroprotectant NXY-059 into the brain has been examined in rats subjected to permanent middle cerebral artery occlusion (pMCAO). NXY-059 (125 mg/kg bolus followed by 125 mg/kg/h) was infused for 4 h 45 min starting 15 min after right pMCAO or sham operation. At 5 h, there was a similar plasma total NXY-059 concentration (micromol/L) in both groups [sham: 623 +/- 44 (6); pMCAO: 605 +/- 43 (5)] and a similar drug concentration (nmol/g) in the right cortex [sham: 6.92 +/- 1.05 (6); pMCAO: 6.14 +/- 2.18 (6)]. A subsequent experiment in normal rats, infusing NXY-059 at both a similar and higher concentration (252 mg/kg bolus and 252 mg/kg/h), demonstrated that the concentration of NXY-059 in cortex increased linearly with respect to the plasma concentration. These data demonstrate that NXY-059 does penetrate brain tissue in control animals and ischemic tissue of animals subjected to pMCAO.
Collapse
Affiliation(s)
- A Richard Green
- AstraZeneca R&D Charnwood, Bakewell Rd., Loughborough LE11 5RH, Sweden
| | | | | | | | | | | | | |
Collapse
|
49
|
Lockhart B, Roger A, Bonhomme N, Goldstein S, Lestage P. In vivo neuroprotective effects of the novel imidazolyl nitrone free-radical scavenger (Z)-alpha-[2-thiazol-2-yl)imidazol-4-yl]-N-tert-butylnitrone (S34176). Eur J Pharmacol 2005; 511:127-36. [PMID: 15792780 DOI: 10.1016/j.ejphar.2005.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 01/24/2005] [Accepted: 01/28/2005] [Indexed: 11/26/2022]
Abstract
Herein, we report an extensive investigation of the neuroprotective effects of the compound (Z)-alpha-[2-thiazol-2-yl)imidazol-4-yl]-N-tert-butylnitrone (S34176) and the prototypic nitrone alpha-phenyl-N-tert-butylnitrone (PBN), in different in vivo paradigms of neuronal degeneration. Administration of S34176 (75 mg/kg i.p.) 30 min before transient (10 min) global ischaemia in Wistar rats significantly prevented delayed neuronal cell death in the hippocampal CA1 area 7 days post-ischaemia (24% vs. 73% in ischaemia control; P<0.05) whereas PBN was inactive under similar conditions. Furthermore, oral administration of S34176 (30 mg/kg) 60 min before and during (1 x 30 mg/kg p.o.) 6 days post-ischaemia, in combination with an acute post-ischaemia sub-protective dose (3 x 10 mg/kg i.p.) of the glutamate receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), resulted in an increased neuroprotective action (29% cell loss in drug-treated vs. 84% in ischaemia control P<0.001) compared to either compound alone. S34176 (20 mg/kg i.p.) also partially prevented kainic acid-induced neuronal cell death at 7 days post-exposure in the CA1 (41% in drug-treated vs. 74% for kainate-treated controls; P<0.01) and CA3 hippocampal region (22% vs. 53%; P<0.01). Under similar conditions, S34176 administered orally (40 mg/kg) produced a more marked protection against kainate-induced neuronal cell loss in the CA1 (13% in drug-treated vs. 82%; P<0.001) and CA3 areas (10% vs. 52%; P<0.001). Sub-chronic oral administration of S34176 (10 mg/kg) also partially reduced kainate-induced hippocampal cell death in the CA1 (53% vs. 77%; P<0.01) and CA3 (23% vs. 53%; P<0.01) areas. Dopamine depletion in the striatum of C57BL/6 mice induced by systemic D-methamphetamine injection was significantly reduced by S34176 (40+/-5% vs. 11.5+/-8%; P<0.001) (150 mg/kg i.p.) whereas PBN was inactive under similar conditions. S34176 represents a new centrally acting nitrone-based radical scavenger with neuroprotective properties in in vivo models of delayed neuronal cell death, and supports the therapeutic potential of this class of compound for the treatment of cerebral pathologies implicating chronic neurodegeneration.
Collapse
Affiliation(s)
- Brian Lockhart
- Division of Cerebral Pathology, 125, Chemin de ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | |
Collapse
|
50
|
Balogh GT, Vukics K, Könczöl A, Kis-Varga A, Gere A, Fischer J. Nitrone derivatives of trolox as neuroprotective agents. Bioorg Med Chem Lett 2005; 15:3012-5. [PMID: 15896960 DOI: 10.1016/j.bmcl.2005.04.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/31/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
Synthesis of nitrone derivatives of trolox is described. Their biological evaluation was performed in vitro for scavenging different free radicals, inhibiting Fe(2+)-induced lipid peroxidation, and in vivo in a permanent middle cerebral artery occlusion model in mice. New compounds exert pharmacological activities comparable to or better than those of trolox or nitrone-type reference compounds.
Collapse
Affiliation(s)
- György T Balogh
- Gedeon Richter Ltd, Budapest H-1475, 10. PO Box 27, Hungary.
| | | | | | | | | | | |
Collapse
|