1
|
Chou H, Godbeer L, Allsworth M, Boyle B, Ball ML. Progress and challenges of developing volatile metabolites from exhaled breath as a biomarker platform. Metabolomics 2024; 20:72. [PMID: 38977623 PMCID: PMC11230972 DOI: 10.1007/s11306-024-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The multitude of metabolites generated by physiological processes in the body can serve as valuable biomarkers for many clinical purposes. They can provide a window into relevant metabolic pathways for health and disease, as well as be candidate therapeutic targets. A subset of these metabolites generated in the human body are volatile, known as volatile organic compounds (VOCs), which can be detected in exhaled breath. These can diffuse from their point of origin throughout the body into the bloodstream and exchange into the air in the lungs. For this reason, breath VOC analysis has become a focus of biomedical research hoping to translate new useful biomarkers by taking advantage of the non-invasive nature of breath sampling, as well as the rapid rate of collection over short periods of time that can occur. Despite the promise of breath analysis as an additional platform for metabolomic analysis, no VOC breath biomarkers have successfully been implemented into a clinical setting as of the time of this review. AIM OF REVIEW This review aims to summarize the progress made to address the major methodological challenges, including standardization, that have historically limited the translation of breath VOC biomarkers into the clinic. We highlight what steps can be taken to improve these issues within new and ongoing breath research to promote the successful development of the VOCs in breath as a robust source of candidate biomarkers. We also highlight key recent papers across select fields, critically reviewing the progress made in the past few years to advance breath research. KEY SCIENTIFIC CONCEPTS OF REVIEW VOCs are a set of metabolites that can be sampled in exhaled breath to act as advantageous biomarkers in a variety of clinical contexts.
Collapse
|
2
|
Le T, Priefer R. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Talanta 2023; 265:124767. [PMID: 37327663 DOI: 10.1016/j.talanta.2023.124767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
Although there are new approaches in both cancer treatment and diagnosis, overall mortality is a major concern. New technologies have attempted to look at breath volatile organic compounds (VOCs) detection to diagnose cancer. Gas Chromatography and Mass Spectrometry (GC - MS) have remained the gold standard of VOC analysis for decades, but it has limitations in differentiating VOCs between cancer subtypes. To increase efficacy and accuracy, new methods to analyze these breath VOCs have been introduced, such as Solid Phase Microextraction/Gas Chromatography-Mass Spectrometry (SPME/GC-MS), Selected Ion Flow Tube - Mass Spectrometry (SIFT-MS), Proton Transfer Reaction - Mass Spectrometry (PRT-MS), Ion Mobility Spectrometry (IMS), and Colorimetric Sensors. This article highlights new technologies that have been studied and applied in the detection and quantification of breath VOCs for possible cancer diagnoses.
Collapse
Affiliation(s)
- Tien Le
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Ma, United States
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Ma, United States.
| |
Collapse
|
3
|
Savito L, Scarlata S, Bikov A, Carratù P, Carpagnano GE, Dragonieri S. Exhaled volatile organic compounds for diagnosis and monitoring of asthma. World J Clin Cases 2023; 11:4996-5013. [PMID: 37583852 PMCID: PMC10424019 DOI: 10.12998/wjcc.v11.i21.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
The asthmatic inflammatory process results in the generation of volatile organic compounds (VOCs), which are subsequently secreted by the airways. The study of these elements through gas chromatography-mass spectrometry (GC-MS), which can identify individual molecules with a discriminatory capacity of over 85%, and electronic-Nose (e-NOSE), which is able to perform a quick onboard pattern-recognition analysis of VOCs, has allowed new prospects for non-invasive analysis of the disease in an "omics" approach. In this review, we aim to collect and compare the progress made in VOCs analysis using the two methods and their instrumental characteristics. Studies have described the potential of GC-MS and e-NOSE in a multitude of relevant aspects of the disease in both children and adults, as well as differential diagnosis between asthma and other conditions such as wheezing, cystic fibrosis, COPD, allergic rhinitis and last but not least, the accuracy of these methods compared to other diagnostic tools such as lung function, FeNO and eosinophil count. Due to significant limitations of both methods, it is still necessary to improve and standardize techniques. Currently, e-NOSE appears to be the most promising aid in clinical practice, whereas GC-MS, as the gold standard for the structural analysis of molecules, remains an essential tool in terms of research for further studies on the pathophysiologic pathways of the asthmatic inflammatory process. In conclusion, the study of VOCs through GC-MS and e-NOSE appears to hold promise for the non-invasive diagnosis, assessment, and monitoring of asthma, as well as for further research studies on the disease.
Collapse
Affiliation(s)
- Luisa Savito
- Department of Internal Medicine, Unit of Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Universitario Campus Bio Medico, Rome 00128, Italy
| | - Simone Scarlata
- Department of Internal Medicine, Unit of Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Universitario Campus Bio Medico, Rome 00128, Italy
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Pierluigi Carratù
- Department of Internal Medicine "A.Murri", University of Bari "Aldo Moro", Bari 70124, Italy
| | | | - Silvano Dragonieri
- Department of Respiratory Diseases, University of Bari, Bari 70124, Italy
| |
Collapse
|
4
|
Kartavenka K, Panuwet P, Greenwald R, Ehret KM, D'Souza PE, Barr DB, Ryan PB. Quantification of malondialdehyde in exhaled breath condensate using pseudo two-dimensional ultra-performance liquid chromatography coupled with single quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:210-216. [PMID: 30611078 PMCID: PMC6358417 DOI: 10.1016/j.jchromb.2018.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 11/21/2022]
Abstract
We developed a robust analytical method for quantification of malondialdehyde (MDA) in exhaled breath condensate (EBC) via derivatization with 2,4-dinitrophenylhydrazine (DNPH). The target MDA-DNPH hydrazone was separated by ultra-performance liquid chromatography using two reversed-phase analytical columns (C18 and phenyl-hexyl) inter-connected via a two-position, six-port switching valve to a single-quadrupole mass spectrometer. The target derivative was analyzed under positive electrospray ionization using single ion monitoring mode (m/z = 235 for the target derivative, and m/z = 237 for its labeled isotopic analog). This pseudo two-dimensional chromatographic separation provided optimum separation conditions for the target derivative resulting in the limit of detection of 0.58 nM in EBC sample (or 36.2 pmol on-column amount), which is comparable to those reported previously using different techniques, including tandem mass spectrometry. Based on the calibration solutions, the method had a linear quantification range of 1.0-200 nM (r2 = 0.998). The method showed good relative recoveries (92.2-102.0%) and acceptable precisions (3.6-12.2% for inter-day precision, and 4.3-12.4% for intra-day precision for two quality control levels, prepared from 5 nM and 25 nM solutions). The derivative was found to be stable at room temperature for 48 h or during analysis. The method was used to analyze 205 exhaled breath condensate samples collected from individuals from a healthy population of student athletes. MDA was detected in approximately 95% of these samples, with concentrations ranging from 1.16 to 149.63 nM. The median concentration was 6.82 nM, (IQR 4.08-9.88). These data demonstrate that our method can be successfully used to measure MDA in population studies.
Collapse
Affiliation(s)
- Kostya Kartavenka
- Department of Environmental Health, Rollins School of Public Health, Emory University, United States of America
| | - Parinya Panuwet
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Rollins School of Public Health, Emory University, United States of America.
| | - Roby Greenwald
- Department of Environmental Health, School of Public Health, Georgia State University, United States of America
| | - Karen M Ehret
- Department of Environmental Health, Rollins School of Public Health, Emory University, United States of America
| | - Priya Esilda D'Souza
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Rollins School of Public Health, Emory University, United States of America
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, United States of America; Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Rollins School of Public Health, Emory University, United States of America
| | - P Barry Ryan
- Department of Environmental Health, Rollins School of Public Health, Emory University, United States of America; Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Rollins School of Public Health, Emory University, United States of America
| |
Collapse
|
5
|
Rocha J, Eduardo-Figueira M, Barateiro A, Fernandes A, Brites D, Bronze R, Duarte CMM, Serra AT, Pinto R, Freitas M, Fernandes E, Silva-Lima B, Mota-Filipe H, Sepodes B. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin Pharmacol Toxicol 2015; 116:398-413. [PMID: 25287116 DOI: 10.1111/bcpt.12335] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
Abstract
Rosmarinic acid is a polyphenolic compound and main constituent of Rosmarinus officinalis and has been shown to possess antioxidant and anti-inflammatory properties. We aimed to evaluate the anti-inflammatory properties of rosmarinic acid and of an extract of R. officinalis in local inflammation (carrageenin-induced paw oedema model in the rat), and further evaluate the protective effect of rosmarinic acid in rat models of systemic inflammation: liver ischaemia-reperfusion (I/R) and thermal injury models. In the local inflammation model, rosmarinic acid was administered at 10, 25 and 50 mg/kg (p.o.), and the extract was administered at 10 and 25 mg/kg (equivalent doses to rosmarinic acid groups) to male Wistar rats. Administration of rosmarinic acid and extract at the dose of 25 mg/kg reduced paw oedema at 6 hr by over 60%, exhibiting a dose-response effect, suggesting that rosmarinic was the main contributor to the anti-inflammatory effect. In the liver I/R model, rosmarinic acid was administered at 25 mg/kg (i.v.) 30 min. prior to the induction of ischaemia and led to the significant reduction in the serum concentration of transaminases (AST and ALT) and LDH. In the thermal injury model, rosmarinic acid was administered at 25 mg/kg (i.v.) 5 min. prior to the induction of injury and significantly reduced multi-organ dysfunction markers (liver, kidney, lung) by modulating NF-κB and metalloproteinase-9. For the first time, the anti-inflammatory potential of rosmarinic acid has been identified, as it causes a substantial reduction in inflammation, and we speculate that it might be useful in the pharmacological modulation of injuries associated to inflammation.
Collapse
Affiliation(s)
- Joao Rocha
- iMed.ULisboa, Faculty of Pharmacy - University of Lisbon, Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Real time analysis of volatile organic compounds (VOCs) in centenarians. Respir Physiol Neurobiol 2015; 209:47-51. [DOI: 10.1016/j.resp.2014.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/17/2014] [Indexed: 01/12/2023]
|
7
|
Muñoz X, Bustamante V, Lopez-Campos JL, Cruz MJ, Barreiro E. Usefulness of noninvasive methods for the study of bronchial inflammation in the control of patients with asthma. Int Arch Allergy Immunol 2015; 166:1-12. [PMID: 25765083 DOI: 10.1159/000371849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bronchial asthma is one of the most prevalent respiratory conditions. Although it is defined as an inflammatory disease, the current guidelines for both diagnosis and follow-up of patients are based only on clinical and lung function parameters. Current research is focused on finding markers that can accurately predict future risk, and on assessing the ability of these markers to guide medical treatment and thus improve prognosis. The use of noninvasive methods to study airway inflammation is gaining increasing support. The study of eosinophils in induced sputum has proved useful for the diagnosis of asthma; however, its clinical implementation is complex. Some studies have shown that the measurement of exhaled nitric oxide (FeNO) may also be useful to establish disease phenotypes and improve control. Others have found that the measurement of pH and certain markers of oxidative stress, cytokines and prostanoids in exhaled breath condensate (EBC) may also be useful as well as the measurement of the temperature of exhaled breath and the analysis of volatile organic compounds (VOCs). In conclusion, since asthma is an inflammatory disease, it seems appropriate to try to control it through the study of airway inflammation using noninvasive methods. In this regard, the analysis of induced sputum cells has proved very useful, although the clinical implementation of this technique seems difficult. Other techniques such as temperature measurement, the analysis of FeNO, the analysis of the VOCs in exhaled breath, or the study of certain biomarkers in EBC require further study in order to determine their clinical applicability.
Collapse
Affiliation(s)
- Xavier Muñoz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | |
Collapse
|
8
|
Lao X, Chen S, Dai Y, Song Y. Cellular stress response and pulmonary inflammation. Microbes Infect 2014; 16:871-6. [PMID: 25172396 DOI: 10.1016/j.micinf.2014.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 01/02/2023]
Abstract
Innate immunity as the first line of the immune system, provides initial protection against various pathogens and infections. Recent studies suggest a link between cell stress response and immune response upon exogenous insults in the lung. The key proteins in cellular stress responses were demonstrated to be involved in the activation and regulation of the immune signaling pathways. Further research on the function of these stress proteins in innate immunity defenses, particularly in pulmonary diseases and inflammation may help to clarify the disease pathogenesis and provide potential therapeutic treatments for various infectious and inflammatory lung diseases.
Collapse
Affiliation(s)
- Xiangda Lao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shujing Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanrong Dai
- Department of Pulmonary Medicine, The Second Affiliated Hospital, Wenzhou Medical University, China.
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Brenner DR, Scherer D, Muir K, Schildkraut J, Boffetta P, Spitz MR, Le Marchand L, Chan AT, Goode EL, Ulrich CM, Hung RJ. A review of the application of inflammatory biomarkers in epidemiologic cancer research. Cancer Epidemiol Biomarkers Prev 2014; 23:1729-51. [PMID: 24962838 DOI: 10.1158/1055-9965.epi-14-0064] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways, including increased levels of DNA adduct formation, increased angiogenesis, and altered antiapoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute-phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers, we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker, including strengths, weaknesses, and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multifaceted approaches to examine the relationship between inflammatory markers and their roles in cancer development.
Collapse
Affiliation(s)
- Darren R Brenner
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. Department of Cancer Epidemiology and Prevention, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | | | | | - Andrew T Chan
- Dana Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany. Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Breath tests in respiratory and critical care medicine: from research to practice in current perspectives. BIOMED RESEARCH INTERNATIONAL 2013; 2013:702896. [PMID: 24151617 PMCID: PMC3789325 DOI: 10.1155/2013/702896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022]
Abstract
Today, exhaled nitric oxide has been studied the most, and most researches have now focused on asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes, the majority of breath volatile organic compounds, have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are improved in the future.
Collapse
|
11
|
Yang SR, Rahman I, Trosko JE, Kang KS. Oxidative stress-induced biomarkers for stem cell-based chemical screening. Prev Med 2012; 54 Suppl:S42-9. [PMID: 22197760 DOI: 10.1016/j.ypmed.2011.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/30/2011] [Indexed: 12/23/2022]
Abstract
Stem cells have been considered for their potential in pharmaceutical research, as well as for stem cell-based therapy for many diseases. Despite the potential for their use, the challenge remains to examine the safety and efficacy of stem cells for their use in therapies. Recently, oxidative stress has been strongly implicated in the functional regulation of cell behavior of stem cells. Therefore, development of rapid and sensitive biomarkers, related to oxidative stress is of growing importance in stem cell-based therapies for treating various diseases. Since stem cells have been implicated as targets for carcinogenesis and might be the origin of "cancer stem cells", understanding of how oxidative stress-induced signaling, known to be involved in the carcinogenic process could lead to potential screening of cancer chemopreventive and chemotherapeutic agents. An evaluation of antioxidant states reducing equivalents like GSH and superoxide dismutase (SOD), as well as reactive oxygen species (ROS) and nitric oxide (NO) generation, can be effective markers in stem cell-based therapies. In addition, oxidative adducts, such as 4-hydroxynonenal, can be reliable markers to detect cellular changes during self-renewal and differentiation of stem cells. This review highlights the biomarker development to monitor oxidative stress response for stem cell-based chemical screening.
Collapse
Affiliation(s)
- Se-Ran Yang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Abstract
Inflammation is a major component of the vicious cycle characterizing cystic fibrosis (CF) pulmonary disease. If untreated, this inflammatory process irreversibly damages the airways, leading to bronchiectasis and ultimately respiratory failure. Anti-inflammatory drugs for CF lung disease appear to have beneficial effects on disease progression. These agents include oral corticosteroids and ibuprofen, as well as azithromycin, which, in addition to its antimicrobial effects, also possess anti-inflammatory properties. Inhaled corticosteroids, antioxidants, nutritional supplements, and protease inhibitors have a limited impact on the disease. Adverse effects limit therapy with oral corticosteroids and ibuprofen. Azithromycin appears to be safe and effective, and is thus the most promising anti-inflammatory therapy available for patients with CF. Pharmacologic therapy with anti-inflammatory agents should be started early in the disease course, before extensive irreversible lung damage has occurred. To optimize anti-inflammatory therapy, it is necessary to understand the mechanism of action of these agents in the CF lung, to determine which of these agents would provide the most benefit to patients with CF, and to determine which therapies should be initiated at what age or stage of lung disease.
Collapse
Affiliation(s)
- Tacjana Pressler
- CF Centre Copenhagen, Department of Paediatrics, University Hospital Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
13
|
Robroeks CMHHT, Roozeboom MH, de Jong PA, Tiddens HAWM, Jöbsis Q, Hendriks HJ, Yntema JBL, Brackel HL, van Gent R, Robben S, Dompeling E. Structural lung changes, lung function, and non-invasive inflammatory markers in cystic fibrosis. Pediatr Allergy Immunol 2010; 21:493-500. [PMID: 20546526 DOI: 10.1111/j.1399-3038.2009.00872.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic airway inflammation and recurrent infections, resulting in (ir)reversible structural lung changes and a progressive decline in lung function. The objective of this study was to investigate the relationship between non-invasive inflammatory markers (IM) in exhaled breath condensate (EBC), lung function indices and structural lung changes, visualized by high resolution computed tomography (HRCT) scans in CF. In 34 CF patients, lung function indices (forced expiratory volume in 1 s, forced vital capacity [FVC], residual volume, and total lung capacity [TLC]) and non-invasive IM (exhaled nitric oxide, and condensate acidity, nitrate, nitrite, 8-isoprostane, hydrogen peroxide, interferon-gamma) were assessed. HRCT scans were scored in a standardized and validated way, a composite score and component scores were calculated. In general, the correlations between non-invasive IM and structural lung changes, and between IM and lung function were low (correlation coefficients <0.40). Patients with positive sputum Pseudomonas cultures had higher EBC nitrite levels and higher parenchymal HRCT subscores than patients with Pseudomonas-negative cultures (p < 0.05). Multiple linear regression models demonstrated that FVC was significantly predicted by hydrogen peroxide in EBC, and the scores of bronchiectasis and mosaic perfusion (Pearson correlation coefficient R = 0.78, p < 0.001). TLC was significantly predicted by 8-isoprostane, nitrate, hydrogen peroxide in EBC, and the mucous plugging subscore (R = 0.92, p < 0.01). Static and dynamic lung function indices in this CF group were predicted by the combination of non-invasive IM in EBC and structural lung changes on HRCT imaging. Future longitudinal studies should reveal whether non-invasive monitoring of airway inflammation in CF adds to better follow-up of patients.
Collapse
|
14
|
Abstract
Collagens are major constituents of connective tissues in the animal kingdom. During aging and inflammatory-related diseases, the collagen network undergoes oxidation that leads to structural and biochemical alterations within the collagen molecule. Collagen oxidation appears to be a key determinant of aging and a critical physiopathologic mechanism of numerous diseases. Further, the detection of oxidized-collagen peptides seems to be a promising approach for the diagnosis and the prognosis of inflammatory diseases. This chapter reviews the structural and biochemical changes to collagen induced by reactive oxygen and nitrogen species and discusses recent data on the use of collagen-derived biomarkers for measuring oxidative damage.
Collapse
|
15
|
Tamura S, Tsukahara H, Ueno M, Maeda M, Kawakami H, Sekine K, Mayumi M. Evaluation of a urinary multi-parameter biomarker set for oxidative stress in children, adolescents and young adults. Free Radic Res 2009; 40:1198-205. [PMID: 17050173 DOI: 10.1080/10715760600895191] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The involvement of reactive oxygen species (ROS) and oxidative stress in pediatric diseases is an important concern, but oxidative stress status in healthy young subjects and appropriate methods for its measurement remain unclear. This study evaluated a comprehensive set of urinary biomarkers for oxidative stress in healthy children, adolescents and young adults. Results show that urinary excretion of acrolein-lysine, 8-hydroxy-2'-deoxyguanosine (8-OHdG), nitrite/nitrate and pentosidine were highest in the youngest subjects and decreased to constant levels by early adolescence. Urinary acrolein-lysine, 8-OHdG, nitrite/nitrate and pentosidine showed significant inverse correlations with age, but pyrraline did not change significantly with age. No significant differences in biomarkers were apparent between males and females. Younger subjects grow rapidly and sustain immune activation, and are probably exposed to high concentrations of ROS and nitric oxide. Consequently, they are more vulnerable to oxidation of lipids, proteins, DNA and carbohydrates. Normal reported values in this study are a basis for future studies of disease mechanisms involving oxidative stress and for future trials using antioxidant therapies for oxidative stress-related diseases in the pediatric field.
Collapse
Affiliation(s)
- Satoshi Tamura
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with a high incidence of morbidity and mortality. Cigarette smoke-induced oxidative stress is intimately associated with the progression and exacerbation of COPD and therefore targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to have beneficial outcome in the treatment of COPD. Among the various antioxidants tried so far, thiol antioxidants and mucolytic agents, such as glutathione, N-acetyl-L-cysteine, N-acystelyn, erdosteine, fudosteine and carbocysteine; Nrf2 activators; and dietary polyphenols (curcumin, resveratrol, and green tea catechins/quercetin) have been reported to increase intracellular thiol status along with induction of GSH biosynthesis. Such an elevation in the thiol status in turn leads to detoxification of free radicals and oxidants as well as inhibition of ongoing inflammatory responses. In addition, specific spin traps, such as alpha-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a SOD mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo in the lung. Since a variety of oxidants, free radicals and aldehydes are implicated in the pathogenesis of COPD, it is possible that therapeutic administration of multiple antioxidants and mucolytics will be effective in management of COPD. However, a successful outcome will critically depend upon the choice of antioxidant therapy for a particular clinical phenotype of COPD, whose pathophysiology should be first properly understood. This article will review the various approaches adopted to enhance lung antioxidant levels, antioxidant therapeutic advances and recent past clinical trials of antioxidant compounds in COPD.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
17
|
Lane AN, Fan TWM, Higashi RM, Tan J, Bousamra M, Miller DM. Prospects for clinical cancer metabolomics using stable isotope tracers. Exp Mol Pathol 2009; 86:165-73. [PMID: 19454273 DOI: 10.1016/j.yexmp.2009.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Indexed: 01/15/2023]
Abstract
Metabolomics provides a readout of the state of metabolism in cells or tissue and their responses to external perturbations. For this reason, the approach has great potential in clinical diagnostics. For more than two decades, we have been using stable isotope tracer approaches to probe cellular metabolism in greater detail. The ability to enrich common compounds with rare isotopes such as carbon ((13)C) and nitrogen ((15)N) is the only practical means by which metabolic pathways can be traced, which entails following the fate of individual atoms from the source molecule to products via metabolic transformation. Changes in regulation of pathways are therefore captured by this approach, which leads to deeper understanding of the fundamental biochemistry of cells. Using lessons learned from pathways tracing in cells and organs, we have been applying this methodology to human cancer patients in a clinical setting. Here we review the methodologies and approaches to stable isotope tracing in cells, animal models and in humans subjects.
Collapse
|
18
|
Maniscalco M, De Laurentiis G, Pentella C, Mormile M, Sanduzzi A, Carratù P, Sofia M. Exhaled breath condensate as matrix for toluene detection: A preliminary study. Biomarkers 2008; 11:233-40. [PMID: 16760132 DOI: 10.1080/13547500600692992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The study was designed to investigate whether exhaled breath condensate, obtained by cooling exhaled air in spontaneous breathing, could be a suitable matrix for toluene quantitative analyses. Nine healthy subjects were exposed for a short period (20 min) to a known concentration of toluene. Exhaled breath condensate samples were collected before and at the end of the exposure, while the environmental concentration of toluene was continuously monitored. Toluene was analysed by head-space gas-chromatography mass spectrometry, and assay repeatability was also estimated in vitro. Baseline and post-exposure measurement of hippuric acid, the urinary toluene metabolite, was performed to assess current toluene exposure. Before the exposure toluene concentrations in the exhaled breath condensate were lower than the detectable limit in all subjects, while after the exposure toluene was detectable with a median value 0.35 microg l-1 (range 0.15-0.55 microg l-1) in all the exhaled breath condensate samples. As compared with the standard calibration in distilled water, the curves obtained by exhaled breath condensate were linear and comparable with the range examined in vivo for toluene. A significant correlation was found between the environmental toluene levels and toluene in the exhaled breath condensate at the end of exposure. Furthermore, a significant relationship between increased exhaled breath condensate toluene levels and urinary hippuric acid after the exposure was found. In conclusion, exhaled breath condensate is a promising matrix for toluene assessment, although its application in humans requires further investigations.
Collapse
Affiliation(s)
- M Maniscalco
- Department of Respiratory Medicine, A. O. Monaldi, University Federico II of Naples, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Tarlo SM, Balmes J, Balkissoon R, Beach J, Beckett W, Bernstein D, Blanc PD, Brooks SM, Cowl CT, Daroowalla F, Harber P, Lemiere C, Liss GM, Pacheco KA, Redlich CA, Rowe B, Heitzer J. Diagnosis and management of work-related asthma: American College Of Chest Physicians Consensus Statement. Chest 2008; 134:1S-41S. [PMID: 18779187 DOI: 10.1378/chest.08-0201] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND A previous American College of Chest Physicians Consensus Statement on asthma in the workplace was published in 1995. The current Consensus Statement updates the previous one based on additional research that has been published since then, including findings relevant to preventive measures and work-exacerbated asthma (WEA). METHODS A panel of experts, including allergists, pulmonologists, and occupational medicine physicians, was convened to develop this Consensus Document on the diagnosis and management of work-related asthma (WRA), based in part on a systematic review, that was performed by the University of Alberta/Capital Health Evidence-Based Practice and was supplemented by additional published studies to 2007. RESULTS The Consensus Document defined WRA to include occupational asthma (ie, asthma induced by sensitizer or irritant work exposures) and WEA (ie, preexisting or concurrent asthma worsened by work factors). The Consensus Document focuses on the diagnosis and management of WRA (including diagnostic tests, and work and compensation issues), as well as preventive measures. WRA should be considered in all individuals with new-onset or worsening asthma, and a careful occupational history should be obtained. Diagnostic tests such as serial peak flow recordings, methacholine challenge tests, immunologic tests, and specific inhalation challenge tests (if available), can increase diagnostic certainty. Since the prognosis is better with early diagnosis and appropriate intervention, effective preventive measures for other workers with exposure should be addressed. CONCLUSIONS The substantial prevalence of WRA supports consideration of the diagnosis in all who present with new-onset or worsening asthma, followed by appropriate investigations and intervention including consideration of other exposed workers.
Collapse
Affiliation(s)
| | - John Balmes
- University of California San Francisco, San Francisco, CA
| | | | | | - William Beckett
- University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Paul D Blanc
- University of California San Francisco, San Francisco, CA
| | | | | | | | - Philip Harber
- University of California, Los Angeles, Los Angeles, CA
| | | | | | | | | | - Brian Rowe
- University of Alberta, Calgary, AB, Canada
| | - Julia Heitzer
- American College of Chest Physicians, Northbrook, IL
| |
Collapse
|
20
|
Czebe K, Antus B, Varga M, Csiszér E. Pulmonary infections after lung transplantation. Orv Hetil 2008; 149:99-109. [DOI: 10.1556/oh.2008.28233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A tüdőtranszplantáció napjainkban már rutinszerűen végzett beavatkozássá vált a végstádiumú parenchymás és vascularis tüdőbetegségekben. Az elmúlt két évtized során több mint 20 ezer tüdőtranszplantációt végeztek a világon. Az immunszuppresszív szerek fejlődésének eredményeként az életet veszélyeztető akut rejekciók száma jelentősen csökkent, az első éven belüli halálozás csupán 2%-át okozza. A legnagyobb arányban az infekciók felelősek a korai és a késői morbiditásért és mortalitásért. A posztoperatív első 30 napon belüli halálozás 21,2%-a, az első éven belüli halálozás 40%-a infekciós eredetű. Az első hónapban a betegek 35–70%-ánál bakteriális pneumónia alakul ki, amelynek kb. felét Gram-negatív pálcák okozzák, dominálóan Pseudomonas-törzsek. A betegek a műtétet követően antibiotikus profilaxisban részesülnek, amit aztán a donortüdőből kimutatott törzs rezisztenciatesztje alapján módosíthatunk. A korai posztoperatív időszakban az invazív gomba- (Aspergillus-, Candida-) és CMV-infekciók a 100 napig tartó inhalatív amphotericin és szisztémás valganciklovir-profilaxis hatására kevesebb mint 10–10%-ban lépnek fel. Számuk a profilaxis befejezte után emelkedik. A későbbiekben kialakuló bronchiolitis obliterans szindróma (BOS) szintén hajlamosít a fertőzésekre. Ennek jelentőségét az adja, hogy 5 évvel a műtét után a betegek kb. 50%-ánál detektálható a BOS. Az infekciók sikeres leküzdésének alapja a rutinszerűen, illetve a tünetek fellépte után minél hamarabb elvégzett kontroll (laboratóriumi, radiológiai, légzésfunkciós, köpet- és bronchoszkópos vizsgálatok), majd a célzott terápia bevezetése. A munka célja a tüdőtranszplantáltaknál jelentkező leggyakoribb infekciók klinikai manifesztációjának, diagnosztikájának és kezelésének áttekintése.
Collapse
Affiliation(s)
- Krisztina Czebe
- 1 Országos Korányi Tbc- és Pulmonológiai Intézet III. Tüdőbelosztály Budapest Pihenő út 1. 1529
| | | | - Marina Varga
- 3 Semmelweis Egyetem, Általános Orvostudományi Kar Transzplantációs és Sebészeti Klinika Budapest
| | - Eszter Csiszér
- 1 Országos Korányi Tbc- és Pulmonológiai Intézet III. Tüdőbelosztály Budapest Pihenő út 1. 1529
| |
Collapse
|
21
|
Abstract
Oxidative stress is an important feature in the pathogenesis of COPD. Targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to be beneficial in the treatment of COPD. Antioxidant agents such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn), dietary polyphenols (curcumin, resveratrol, green tea, catechins/quercetin), erdosteine, and carbocysteine lysine salt, all have been reported to control nuclear factor-kappaB (NF-κ B) activation, regulation of glutathione biosynthesis genes, chromatin remodeling, and hence inflammatory gene expression. Specific spin traps such as α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo. Since a variety of oxidants, free radicals, and aldehydes are implicated in the pathogenesis of COPD, it is possible that therapeutic administration of multiple antioxidants will be effective in the treatment of COPD. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in COPD are discussed.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|
22
|
Abstract
The role of oxidative stress has been well appreciated in the development of sepsis-induced acute lung injury (ALI). Oxidative stress in sepsis-induced ALI is believed to be initiated by products of activated lung macrophages and infiltrated neutrophils, promptly propagating to lung epithelial and endothelial cells. This leads to tissue damage and organ dysfunction. On stimulation, neutrophils (PMNs) enable their migration machinery. The lung undergoes changes favoring adhesion and transmigration of PMNs, resulting in PMN accumulation in lung, which is a characteristic of sepsis-induced ALI. Oxidative stress turns on the redox-sensitive transcription factors (NF-kappaB, AP-1), resulting in a large output of proinflammatory cytokines and chemokines, which further aggravate inflammation and oxidative stress. During the process, transcription factor nuclear factor-erythroid 2-p45-related factor 2 (Nrf2) and heme oxygenase (HO) appear to play the counterbalancing roles to limit the propagation of oxidative stress and inflammatory responses in lung. Many antioxidants have been tested to treat sepsis-induced ALI in animal models and in patients with sepsis. However, the results are inconclusive. In this article, we focus on the current understanding of the pathogenesis of sepsis-induced ALI and novel antioxidant strategies for therapeutic purposes.
Collapse
Affiliation(s)
- Ren-Feng Guo
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602, USA.
| | | |
Collapse
|
23
|
Yeh MY, Burnham EL, Moss M, Brown LAS. Non-invasive evaluation of pulmonary glutathione in the exhaled breath condensate of otherwise healthy alcoholics. Respir Med 2007; 102:248-55. [PMID: 17977706 DOI: 10.1016/j.rmed.2007.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 08/21/2007] [Accepted: 09/12/2007] [Indexed: 12/01/2022]
Abstract
BACKGROUND Chronic alcoholism is associated with an elevated risk for pulmonary infection and a 3-fold chance for incidence and mortality of acute respiratory distress syndrome with critical injury. Limited sampling of the alveolar lining fluid has restricted clinical studies of the role of glutathione (GSH) redox balance in pulmonary function and diseased states. Non-invasive sampling in the exhaled breath condensate (EBC) to monitor alveolar GSH would facilitate research in pulmonary oxidative stress. METHODS EBC was collected from otherwise healthy subjects with and without a history of alcohol abuse. Reduced and oxidized EBC glutathione (GSH and GSSG, respectively), pH, and hydrogen peroxide were measured. RESULTS GSH was statistically decreased in alcohol abusers only when normalized to protein (4.7nmol/mg protein [0.75, 11.4] vs. 13.4 [7.8, 26.4], p=0.03). In contrast, GSSG was significantly elevated in the EBC from alcohol abusers when compared to controls, 5.62 [0.45, 8.94] vs. 0.50nM [0.38, 0.80], p=0.03. Thus, a greater percentage was in the oxidized GSSG form when subjects abused alcohol (35.3% [11.8, 58.1] vs. 5.2 [3.6, 6.1], p<0.001). These concentrations represented a 40mV shift in GSH redox state towards a more oxidized state. CONCLUSIONS Proper sample preparation was essential to prevent GSH loss and artificial oxidation. The shift in redox potential or %GSSG, which were not affected by dilution, may serve as better markers of pulmonary oxidative stress. Furthermore, these data suggested that the oxidant stress observed in the lavage fluid of otherwise healthy alcoholics could be measured non-invasively in the EBC.
Collapse
Affiliation(s)
- Mary Y Yeh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
24
|
Belda-Iniesta C, de Castro Carpeño J, Carrasco JA, Moreno V, Casado Sáenz E, Feliu J, Sereno M, García Río F, Barriuso J, González Barón M. New screening method for lung cancer by detecting volatile organic compounds in breath. Clin Transl Oncol 2007; 9:364-8. [PMID: 17594950 DOI: 10.1007/s12094-007-0068-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lung cancer is a frequent cause of cancer-related deaths in the world. There is no valid screening process and this limits its detection to the late stages, with consequently high mortality rates. Volatile organic compounds (VOC) are chemical compounds (mainly the products of cell catabolism) found as gases in the human breath. Different methods have been developed to analyse VOCs and to compare them in healthy subjects and lung cancer patients. In this review, we summarise the different techniques used to analyse VOC. Many reports have been published with promising results similar to those achieved with accepted screening methods such as mammography. These methods show good perspectives on lung cancer screening.
Collapse
Affiliation(s)
- C Belda-Iniesta
- Translational Oncology Unit (CSIC/UAM), Medical Oncology Division, University Hospital La Paz, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Goldoni M, Caglieri A, Corradi M, Poli D, Rusca M, Carbognani P, Mutti A. Chromium in exhaled breath condensate and pulmonary tissue of non-small cell lung cancer patients. Int Arch Occup Environ Health 2007; 81:487-93. [PMID: 17724608 DOI: 10.1007/s00420-007-0242-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 08/14/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Chromium in exhaled breath condensate (EBC) has recently been proposed as a biomarker of pulmonary exposure. The aim of this study was to measure the Cr levels in the EBC and pulmonary tissue of patients with early, operable non-small cell lung cancer (NSCLC) who had not been occupationally exposed to Cr before and after tumour resection and to correlate Cr in lung tissue with that in EBC. METHODS Cr levels in the EBC and pulmonary tissue of 20 NSCLC patients were measured by means of electrothermal atomic absorption before and after tumour resection. Cr levels were also measured in the urine of 15 of these patients. RESULTS The pre-surgery EBC Cr levels of the NSCLC patients were not different from those of the controls, but both EBC and urinary Cr levels increased after surgery. There was a significant correlation between Cr levels in EBC and pulmonary tissue (R = 0.55, P = 0.01), but not between these and urinary Cr levels. CONCLUSION Cr levels in EBC and urine of NSCLC patients were increased after surgical intervention. Measured Cr EBC levels were by one order of magnitude lower than those observed in moderately exposed workers. This fact, together with the correlation between Cr in EBC and in pulmonary tissue, confirms that EBC is a promising biological fluid to test pulmonary exposure to Cr, giving complementary information to that provided by urinary Cr, not correlated with EBC and tissue.
Collapse
Affiliation(s)
- Matteo Goldoni
- Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Chen H, Wortmann A, Zhang W, Zenobi R. Rapid in vivo fingerprinting of nonvolatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Angew Chem Int Ed Engl 2007; 46:580-3. [PMID: 17080471 DOI: 10.1002/anie.200602942] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huanwen Chen
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, HCI E 329, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Wenqing Cao
- a Los Alamos National Laboratory , Los Alamos, New Mexico, USA
| | - Yixiang Duan
- a Los Alamos National Laboratory , Los Alamos, New Mexico, USA
| |
Collapse
|
28
|
Abstract
Humans emit a complex array of volatile and nonvolatile molecules that are influenced by an individual's genetics, health, diet, and stress. Olfaction is the most ancient of our distal senses and may be used to evaluate food and environmental toxins as well as recognize kin and potential predators. Many body odors evolved to be olfactory messengers, which convey information between individuals. Consequently, those practicing the healing arts have used olfaction to aid in their diagnosis of disease since the dawn of medical practice. Studies using modern instrumental analyses have focused upon analysis of breath volatiles for biomarkers of internal diseases. In these studies, a subject's oral health status appears to seldom be considered. However, saliva and properly collected alveolar air samples must pass over or come in contact with the posterior dorsal surface of the tongue, a site of bacterial plaque development and source of halitosis-related volatiles. Because of our basic research into the nature of human body odors, our lab has received referrals of people with idiopathic malodor production, from either the oral cavity or body. We developed a protocol to help differentiate individuals with chronic halitosis from those with the genetic, odor-producing metabolic disorder trimethylaminuria (TMAU). In our referred population, TMAU is the largest cause of undiagnosed body odor. Many TMAU-positive individuals present with oral symptoms of dysguesia and halitosis as well as body odor. We present data regarding the presentation of our referred subjects as well as the analytical results from a small number of these subjects regarding their oral levels of halitosis-related malodorants and trimethylamine.
Collapse
Affiliation(s)
- Chris L Whittle
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
29
|
Chapple ILC, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000 2007; 43:160-232. [PMID: 17214840 DOI: 10.1111/j.1600-0757.2006.00178.x] [Citation(s) in RCA: 539] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Iain L C Chapple
- Unit of Periodontology, The University of Birmingham School of Dentistry, Birmingham, UK
| | | |
Collapse
|
30
|
Chen H, Wortmann A, Zhang W, Zenobi R. Rapid In Vivo Fingerprinting of Nonvolatile Compounds in Breath by Extractive Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200602942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Cepelak I, Dodig S. Exhaled breath condensate: a new method for lung disease diagnosis. ACTA ACUST UNITED AC 2007; 45:945-52. [PMID: 17867983 DOI: 10.1515/cclm.2007.326] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Analysis of exhaled breath composition in lung disease patients can indirectly point to biochemical changes that occur in the fluid lining airway surfaces. The parameters of redox and acid-base changes, and of inflammatory changes relevant in the pathogenesis of most pulmonary diseases are currently most widely determined in exhaled breath condensate. The collection of exhaled breath condensate is a safe, non-invasive, easy and simple diagnostic procedure that is suitable for longitudinal studies and applicable in patients of all age groups, irrespective of the disease severity. In spite of many scientific studies involving lung disease patients, methodology for exhaled breath condensate collection and analysis has not yet been realized for daily utilization. Additional studies of the exact origin of condensate constituents and standardization of the overall analytical process, including collection, storage, analysis and result interpretation, are needed. Irrespective of these limitations, further investigation of this sample type is fully justified by the fact that classical specimens used in the management of pulmonary disease are either obtained by invasive procedures (e.g., induced sputum, biopsy, bronchoalveolar lavage) or cannot provide appropriate information (e.g., urine, serum). Analysis of exhaled breath condensate in the future might contribute significantly to our understanding of the physiological and pathophysiological processes in lungs, to early detection, diagnosis and follow up of disease progression, and to evaluation of therapeutic response.
Collapse
Affiliation(s)
- Ivana Cepelak
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
32
|
Rosias PPR, Den Hartog GJM, Robroeks CMHHT, Bast A, Donckerwolcke RAMG, Heynens JWCM, Suykerbuyk J, Hendriks HJE, Jöbsis Q, Dompeling E. Free radicals in exhaled breath condensate in cystic fibrosis and healthy subjects. Free Radic Res 2006; 40:901-9. [PMID: 17015269 DOI: 10.1080/10715760500522648] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many markers of airway inflammation and oxidative stress can be measured non-invasively in exhaled breath condensate (EBC). However, no attempt has been made to directly detect free radicals using electron paramagnetic resonance (EPR) spectroscopy. Condensate was collected in 14 children with cystic fibrosis (CF) and seven healthy subjects. Free radicals were trapped by 5,5-dimethyl-1-pyrroline-N-oxide. EPR spectra were recorded using a Bruker EMX spectrometer. Secondly, to study the source of oxygen centered radical formation, catalase or hydrogen peroxide was added to the condensate. Radicals were detected in 18 out of 21 condensate samples. Analysis of spectra indicated that both oxygen and carbon centered radicals were trapped. Within-subject reproducibility was good in all but one subject. Quantitatively, there was a trend towards higher maximal peak heights of both oxygen and carbon centered radicals in the children with CF. Catalase completely suppressed the signals in condensate. Addition of hydrogen peroxide resulted in increased radical signal intensity. Detection of free radicals in EBC of children with CF and healthy subjects is feasible using EPR spectroscopy.
Collapse
Affiliation(s)
- Philippe P R Rosias
- Department of Pediatric Pulmonology, University Hospital of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lemineur T, Deby-Dupont G, Preiser JC. Biomarkers of oxidative stress in critically ill patients: what should be measured, when and how? Curr Opin Clin Nutr Metab Care 2006; 9:704-10. [PMID: 17053423 DOI: 10.1097/01.mco.0000247467.41661.f3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW This review is dedicated to updating the knowledge on oxidative stress in critically ill patients with an intense inflammatory reaction, and to link it with recent findings supporting the possible involvement of oxidative injuries in systems and organs that frequently fail in the critically ill. RECENT FINDINGS Some direct or indirect biomarkers of oxidative stress have been validated in critically ill patients, and further support the major role of oxidative stress in these conditions. SUMMARY The assessment of oxidative stress, defined as the association between an increased production of oxygen-derived species and an exhaustion of the stores of antioxidants, requires a multimodal approach. Oxidative damage itself can be much better estimated by quantifying the oxidative byproducts of the lipids and proteins associated with an evaluation of the remaining stores of the corresponding functional antioxidants, or the activity of antioxidant enzymes, than by global tests of the total oxidative damage or the total antioxidant stores. Recent clinical data confirm an important role of increased oxidative stress in the acute dysfunctions of the respiratory, renal and cerebral systems.
Collapse
Affiliation(s)
- Thierry Lemineur
- Department of General Intensive Care, University Hospital Centre, University of Liege, Domaine Universitaire du Sart-Tilman, B 35, B-4000 Liège, Belgium
| | | | | |
Collapse
|
34
|
Romero PV, Rodríguez B, Martínez S, Cañizares R, Sepúlveda D, Manresa F. [Analysis of oxidative stress in exhaled breath condensate from patients with severe pulmonary infections]. Arch Bronconeumol 2006; 42:113-9. [PMID: 16545248 DOI: 10.1016/s1579-2129(06)60128-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Oxidative stress is an intrinsic part of the chain of events leading to inflammation of the airways caused by bacterial infection. The aim of this study was to determine whether analysis of exhaled breath condensate from patients with severe lung infections reveals changes in the redox state at the airway surface. PATIENTS AND METHODS The study included a total of 48 subjects divided into 4 groups: individuals without respiratory disease (n=14), patients with multilobar pneumonia (n=13), patients who had chronic obstructive pulmonary disease with superinfection (n=14), and mechanically ventilated patients with severe pneumonia (n=7). A sample of exhaled breath condensate was obtained within the first 72 hours of hospital admission and the concentrations of nitrite, nitrate, 8-isoprostane, and myeloperoxidase (MPO) were determined. RESULTS Significant differences in the concentrations of nitrite, 8-isoprostane, and MPO were observed between patients and individuals without respiratory disease but no differences were found between the 3 patient groups. The concentration of MPO was correlated with the concentrations of 8-isoprostane and nitrate, which were normalized to the nitrite concentration. CONCLUSIONS Analysis of the concentrations of 8-isoprostane and MPO in exhaled breath condensate allows assessment of oxidative stress in the airways of patients with severe lung infections.
Collapse
Affiliation(s)
- P V Romero
- Servicio de Neumología, Hospital Universitario de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
35
|
Reinhold P, Jaeger J, Schroeder C. Evaluation of methodological and biological influences on the collection and composition of exhaled breath condensate. Biomarkers 2006; 11:118-42. [PMID: 16766389 DOI: 10.1080/13547500600572764] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this inter-species comparison (calves and pigs) was to identify methodological and biological influences on the collection and composition of exhaled breath condensate (EBC). A total of 352 EBC samples were collected, whilst variables of ventilation were registered in parallel. Partial pressure of carbon dioxide (pCO2) and pH were analysed in non-degassed EBC samples. The concentration of total protein in EBC was measured colorimetrically. In both species, lung function was evaluated before and after EBC collection. Statistical analyses were performed to study the effect of EBC collection on lung function and to identify the influence of ventilatory variables on the collection and composition of EBC. Collection of EBC did not affect lung function. Despite the volume of EBC collected per unit time being primarily dependent on ventilation per unit time, species-specific conditions during the EBC collection process resulted in different dependences of EBC collection from other variables of ventilation (i.e. maximal airflow during expiration or expired tidal volume kg-1 body weight). The concentration of protein ml(-1) EBC increased with the expired volume per min and with peak expiratory flow. Although the pCO2 in fresh EBC was significantly negatively dependent on the duration of collection, comparable pHs (5.6 - 6.2) were measured in EBC of both calves and pigs. The obtained data may help one standardize EBC collection in different species.
Collapse
Affiliation(s)
- P Reinhold
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Jena, Germany.
| | | | | |
Collapse
|
36
|
Psathakis K, Mermigkis D, Papatheodorou G, Loukides S, Panagou P, Polychronopoulos V, Siafakas NM, Bouros D. Exhaled markers of oxidative stress in idiopathic pulmonary fibrosis. Eur J Clin Invest 2006; 36:362-7. [PMID: 16634841 DOI: 10.1111/j.1365-2362.2006.01636.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Expired breath condensate (EBC) has never been used to explore the level of oxidative stress in idiopathic pulmonary fibrosis (IPF). Therefore, the aim of this study was to measure the levels of H2O2 and 8-isoprostane, as biomarkers of oxidative stress, in the EBC of patients with IPF. MATERIALS AND METHODS We investigated 16 patients with IPF and 15 healthy subjects as the control group. The levels of H2O2 and 8-isoprostane were measured in the EBC of all subjects and were compared between the IPF and control groups. In patients with IPF, H2O2 and 8-isoprostane were further correlated with pulmonary function tests (PFTs), the resting pO2 and the differential cell count from the bronchoalveolar lavage fluid (BALF). RESULTS The mean (95%CI) concentration of H2O2 was increased in the patients with IPF compared with the normal subjects (0.36, 0.24-0.47 microM vs. 0.16, 0.10-0.23 microM, P=0.003). The mean (95%CI) concentration of 8-isoprostane was also increased in the patients with IPF compared with the controls (74, 38-110 pg mL-1 vs. 33, 28-39 pg mL-1, P=0.02). In the patients with IPF, the diffusing capacity of the lung for carbon monoxide was negatively correlated with the levels of H2O2 in EBC (P=0.03, r=-0.58). No other correlation was found between the oxidative stress markers in the EBC and PFT values, pO2 or BALF cell count. CONCLUSIONS Our data suggest that H2O2 and 8-isoprostane are increased in the EBC of patients with IPF. H2O2 may be correlated with the severity of the disease in IPF.
Collapse
Affiliation(s)
- K Psathakis
- Department of Pneumonology and the Clinical Research Unit, Army General Hospital of Athens, and Department of Pneumonology, University Hospital of Heraklion, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Romero P, Rodríguez B, Martínez S, Cañizares R, Sepúlveda D, Manresa F. Estrés oxidativo en el condensado exhalado de pacientes con infección pulmonar grave. Arch Bronconeumol 2006. [DOI: 10.1157/13085559] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Tarlo SM. Cough: occupational and environmental considerations: ACCP evidence-based clinical practice guidelines. Chest 2006; 129:186S-196S. [PMID: 16428709 DOI: 10.1378/chest.129.1_suppl.186s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVES This section of the guideline aims to review the role of occupational and environmental factors in causing and contributing to cough. It also aims to indicate when such causes should be considered in a clinical setting, and a general approach to assessment and management. METHODS A review was performed of published data between 1985 and 2004 using PubMed. The search terms used included "air pollution," "sick building syndrome," "occupational asthma," "occupational lung disease," "hypersensitivity pneumonitis" (HP), "cigarette smoke," and "asthma." Selected articles were chosen when meeting the objectives, but the extent of articles available and the limited space for this section does not permit a fully comprehensive review of all of these areas, for which the reader is referred to other sections of this clinical practice guideline, the published literature, textbooks of occupational lung disease, or more specific review articles. RESULTS/CONCLUSIONS Almost any patient presenting with cough may have an occupational or environmental cause of or contribution to their cough. The importance of this is that recognition and intervention may result in full or partial improvement of the cough, may limit the need for medication/symptomatic treatment, and may improve the long-term prognosis. Nonoccupational environmental contributing factors for upper and lower airway causes of cough include indoor irritant and allergenic agents such as cigarette smoke, cooking fumes, animals, dust mites, fungi, and cockroaches. Causes of HP indoors include birds and fungal antigens. Outdoor pollutants and allergens also contribute to upper and lower airway causes of cough. Occupational exposures can cause hypersensitivity responses leading to rhinitis and upper airway cough syndrome, previously referred to as postnasal drip syndrome, as well as asthma, HP, chronic beryllium disease, and hard metal disease, as well as irritant or toxic responses. The diagnosis is only reached by initially considering possible occupational and environmental factors, and by obtaining an appropriate medical history to determine relevant exposures, followed by objective investigations. This may require referral to a center of expertise.
Collapse
|
39
|
Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem 2006; 52:601-23. [PMID: 16484333 DOI: 10.1373/clinchem.2005.061408] [Citation(s) in RCA: 1086] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative/nitrosative stress, a pervasive condition of increased amounts of reactive oxygen/nitrogen species, is now recognized to be a prominent feature of many acute and chronic diseases and even of the normal aging process. However, definitive evidence for this association has often been lacking because of recognized shortcomings with biomarkers and/or methods available to assess oxidative stress status in humans. Emphasis is now being placed on biomarkers of oxidative stress, which are objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to therapeutic intervention. To be a predictor of disease, a biomarker must be validated. Validation criteria include intrinsic qualities such as specificity, sensitivity, degree of inter- and intraindividual variability, and knowledge of the confounding and modifying factors. In addition, characteristics of the sampling and analytical procedures are of relevance, including constraints and noninvasiveness of sampling, stability of potential biomarkers, and the simplicity, sensitivity, specificity, and speed of the analytical method. Here we discuss some of the more commonly used biomarkers of oxidative/nitrosative damage and include selected examples of human studies.
Collapse
|
40
|
Lärstad M, Söderling AS, Caidahl K, Olin AC. Selective quantification of free 3-nitrotyrosine in exhaled breath condensate in asthma using gas chromatography/tandem mass spectrometry. Nitric Oxide 2005; 13:134-44. [PMID: 16006156 DOI: 10.1016/j.niox.2005.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 05/13/2005] [Accepted: 05/17/2005] [Indexed: 11/20/2022]
Abstract
Reactive nitrogen species can cause oxidative modifications of certain amino acid residues in proteins, notably the modification of tyrosine to 3-nitrotyrosine (3-NT), which is a potentially useful marker of oxidative stress. Since lung diseases are associated with airway inflammation and oxidative stress, quantification of 3-NT in exhaled breath condensate (EBC) may provide a non-invasive means for monitoring ongoing inflammatory processes. 3-NT-like immunoreactivity has previously been detected in EBC, but no definitive evidence for the presence of 3-NT in EBC is available. Here, a method based on gas chromatography/negative ion chemical ionization/tandem mass spectrometry was established for the quantification of free 3-NT in EBC. The detection limit was 0.56 pM (corresponding to 3.0 amol microl(-1) sample injected) and the method was found to give linear results (r2 > 0.999) in the concentration range of 0-5.0 nM. The coefficient of variation (CV) for within-day and between-day precision were 11 and 12%, respectively. No artifactual nitration was observed during sample processing. The method was applied to study subjects with asthma (n = 8), and healthy subjects (n = 10), but only a slight non-significant increase in 3-NT levels was found in the former group (median [interquartile ranges]; 99 [50-547] amol s(-1) vs. 75 [35-147] amol s(-1)). No correlation with exhaled nitric oxide (NO), pulmonary function or EBC levels of total protein was observed. The 3-NT levels were much lower compared to previously reported levels, based on immunochemical measurements. The method does not allow the simultaneous quantification of tyrosine in samples.
Collapse
Affiliation(s)
- Mona Lärstad
- Department of Occupational Medicine, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
41
|
Gencer M, Ceylan E, Aksoy N, Uzun K. Association of serum reactive oxygen metabolite levels with different histopathological types of lung cancer. Respiration 2005; 73:520-4. [PMID: 16432293 DOI: 10.1159/000088895] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 05/26/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oxygen is required for respiration and the energetic processes that enable aerobic life. Costs associated with oxygen use are free radical and reactive oxygen metabolite (ROM) formations, which create oxidative stress and contribute to various processes including aging, degenerative diseases and cancer. Additionally, they may have a role in the pathogenesis of lung cancer with different histopathological types. OBJECTIVES In this study, we aimed to investigate the degree of oxidative stress in different types of carcinoma such as small cell carcinoma and non-small cell carcinoma, including epidermoid carcinoma and adenocarcinoma, and to find out whether the degree of oxidative stress shows any difference among them and whether it can be used as an index for their differential diagnosis. METHODS Thirty-eight patients with lung cancer and 26 healthy persons were included in the study. Of the patients with lung cancer, 14 had epidermoid carcinoma, 12 adenocarcinoma and 12 small cell carcinoma. Serum ROM levels were detected by using an available commercial kit according to the manufacturer's instructions. RESULTS The ROM levels were significantly lower in the controls than in the patients (p<0.001). Although all subtypes had significantly high ROM levels compared with the controls, the highest significance was found in the small cell carcinoma (p<0.001), and then in the adenocarcinoma and epidermoid carcinoma (p<0.01 and p<0.01, respectively). CONCLUSIONS In the light of these data, it might be possible to conclude that the serum ROM levels increase in patients with different types of lung cancers and may be an index parameter for lung cancer. It could be thought that this increase, particularly in small cell carcinoma, may contribute to its poor progression.
Collapse
Affiliation(s)
- Mehmet Gencer
- Department of Chest Diseases, Faculty of Medicine, Harran University, Sanliurfa, Turkey.
| | | | | | | |
Collapse
|
42
|
Rahman I, Biswas SK. Non-invasive biomarkers of oxidative stress: reproducibility and methodological issues. Redox Rep 2005; 9:125-43. [PMID: 15327743 DOI: 10.1179/135100004225005219] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress is the hallmark of various chronic inflammatory lung diseases. Increased concentrations of reactive oxygen species (ROS) in the lungs of such patients are reflected by elevated concentrations of oxidative stress markers in the breath, airways, lung tissue and blood. Traditionally, the measurement of these biomarkers has involved invasive procedures to procure the samples or to examine the affected compartments, to the patient's discomfort. As a consequence, there is a need for less or non-invasive approaches to measure oxidative stress. The collection of exhaled breath condensate (EBC) has recently emerged as a non-invasive sampling method for real-time analysis and evaluation of oxidative stress biomarkers in the lower respiratory tract airways. The biomarkers of oxidative stress such as H2O2, F2-isoprostanes, malondialdehyde, 4-hydroxy-2-nonenal, antioxidants, glutathione and nitrosative stress such as nitrate/nitrite and nitrosated species have been successfully measured in EBC. The reproducibility, sensitivity and specificity of the methodologies used in the measurements of EBC oxidative stress biomarkers are discussed. Oxidative stress biomarkers also have been measured for various antioxidants in disease prognosis. EBC is currently used as a research and diagnostic tool in free radical research, yielding information on redox disturbance and the degree and type of inflammation in the lung. It is expected that EBC can be exploited to detect specific levels of biomarkers and monitor disease severity in response to appropriate prescribed therapy/treatment.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, USA.
| | | |
Collapse
|
43
|
Abstract
Chronic inflammation and oxidative stress are important features in the pathogenesis of COPD. The increased oxidative stress in patients with COPD is the result of an increased burden of inhaled oxidants, as well as increased amounts of reactive oxygen species (ROS) generated by various inflammatory, immune and epithelial cells of the airways. Oxidative stress has important implications on several events of lung physiology and for the pathogenesis of COPD. These include oxidative inactivation of antiproteases and surfactants, mucus hypersecretion, membrane lipid peroxidation, mitochondrial respiration, alveolar epithelial injury, remodeling of extracellular matrix, and apoptosis. An increased level of ROS produced in the airways is reflected by increased markers of oxidative stress in the airspaces, sputum, breath, lungs, and blood in patients with COPD. The biomarkers of oxidative stress such as H2O2, F2-isoprostanes, malondialdehyde and 4-hydroxy-2-nonenal have been successfully measured in breath condensate. ROS and aldehydes play a key role in enhancing the inflammation through the activation of mitogen-activated protein kinases and redox-sensitive transcription factors such as nuclear factor kappa B and activator protein-1. Oxidative stress also alters nuclear histone acetylation and deacetylation leading to increased gene expression of pro-inflammatory mediators in the lung. Oxidative stress may play a role in the poor clinical efficacy of corticosteroids in the treatment of COPD. Since a variety of oxidants, free radicals, and aldehydes are implicated in the pathogenesis of COPD it is likely that a combination of antioxidants may be effective in the treatment of COPD. Antioxidant compounds may also be of therapeutic value in monitoring oxidative biomarkers indicating disease progression. Various approaches to enhance the lung antioxidant screen and the clinical effectiveness of antioxidant compounds in the treatment of COPD are discussed.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
44
|
Roberts DCK. Biomarkers for chronic disease. Curr Opin Lipidol 2004; 15:477-8. [PMID: 15243222 DOI: 10.1097/01.mol.0000137232.22891.f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142:231-55. [PMID: 15155533 PMCID: PMC1574951 DOI: 10.1038/sj.bjp.0705776] [Citation(s) in RCA: 1520] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 02/06/2023] Open
Abstract
Free radicals and other reactive species (RS) are thought to play an important role in many human diseases. Establishing their precise role requires the ability to measure them and the oxidative damage that they cause. This article first reviews what is meant by the terms free radical, RS, antioxidant, oxidative damage and oxidative stress. It then critically examines methods used to trap RS, including spin trapping and aromatic hydroxylation, with a particular emphasis on those methods applicable to human studies. Methods used to measure oxidative damage to DNA, lipids and proteins and methods used to detect RS in cell culture, especially the various fluorescent "probes" of RS, are also critically reviewed. The emphasis throughout is on the caution that is needed in applying these methods in view of possible errors and artifacts in interpreting the results.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, MD 7 #03-08, 8 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|