1
|
Ali A, Chaudhary A, Sharma A, Siddiqui N, Anurag, Parihar VK. Exploring role of citrus fruits in comorbid neurodegenerative disorders associated with psoriasis. Metab Brain Dis 2024; 40:62. [PMID: 39671136 DOI: 10.1007/s11011-024-01479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/09/2024] [Indexed: 12/14/2024]
Abstract
A neurodegenerative illness is a disorder in which the brain and/or spinal cord's neurons, or nerve cells, gradually deteriorate and disappear. These illnesses often get worse with time and can seriously affect movement, cognition, and other neurological functions. Psoriasis is a long-term autoimmune skin condition marked by fast skin cell growth that results in red, elevated areas coated in silvery-white scales. It can affect several body parts, such as the elbows, knees, scalp, and lower back, and it is not communicable. The build-up of amyloid beta [Aβ] protein is linked to elevated levels of reactive oxygen species (ROS) (Kim et al. 2020). These ROS can trigger multiple pathways, including MAPK, NFkB, JAK/STAT, and interleukin 1 beta (IL-1β), ultimately playing a role in the development of neurodegenerative illnesses like Alzheimer's disease (AD) and psoriasis. People who have psoriasis are more likely to acquire AD, as psoriasis is a chronic inflammatory skin condition that is genetically connected. Because of the antioxidants and anti-inflammatory properties of citrus fruits neurodegenerative and psoriasis disease may be prevented. The neuroprotective action of bioactives in citrus fruits involves the inhibition of inflammation through the control of p38 mitogen-activated protein kinase (MAPK) and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Due to their immunomodulatory and anti-inflammatory qualities, polyphenols may be able to control the immune response in psoriasis. We performed a thorough review in order to investigate for the first time to understand the role of citrus fruits in comorbid neurodegenerative disorders associated with psoriasis. For better understanding into the possible applications of citrus fruits in treating psoriasis and neurodegenerative disease would require additional studies focusing directly on the relationship between citrus fruits consumption in managing neurodegenerative and psoriasis disease.
Collapse
Affiliation(s)
- Adil Ali
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Ankit Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India.
| | - Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Anurag
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Hajipur, 844102, India
| | - Vipan Kumar Parihar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| |
Collapse
|
2
|
Wang M, Qu Y, Wang S, Qu Z. Oxidative stress regulates glycogen synthase kinase-3 in lymphocytes of diabetes mellitus patients complicated with cerebral infarction. Open Med (Wars) 2024; 19:20241095. [PMID: 39655056 PMCID: PMC11627032 DOI: 10.1515/med-2024-1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/03/2024] [Accepted: 11/03/2024] [Indexed: 12/12/2024] Open
Abstract
Objective To explore the role of oxidative stress on glycogen synthase kinase-3 in lymphocytes of diabetes mellitus (DM) patients complicated with cerebral infarction (CI). Materials and methods A total of 186 DM patients were enrolled according to the inclusion criteria and exclusion criteria, including 89 DM patients alone (DM group) and 97 DM patients with CI (DM + CI) group. Eighty-one patients with CI were selected as the CI group, and 80 normal subjects over 50 years were selected as the control group. Superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) content in serum were determined by colorimetric assays. Phosphorylation of GSK-3β was measured by enzyme-linked immunosorbent assay. Results (1) Compared with the control group, the SOD and GSH-Px activities in the DM group and DM + CI group were decreased, accompanied by higher MDA content. Furthermore, phosphorylation of GSK-3β was decreased. (2) In the DM + CI group, SOD activity was decreased on days 7 and 10 and month 3 compared to the CI group and was decreased on day 7 compared to the DM group. MDA content was increased from day 0 to month 3 compared to the CI group. On days 1, 7, and 10, GSH-Px activity was lower than the DM group, and on day 10 and month 3, it was lower than the CI group. Phosphorylation of GSK-3β was decreased on days 7 and 10 compared to the DM group and was decreased from day 1 to month 3 compared to the CI group. Conclusion In the present study, we demonstrated that the oxidative stress in peripheral lymphocytes of DM patients complicated with CI was stronger, and the GSK-3 activity was higher. It suggested that oxidative stress might enhance the GSK-3 activity, which might provide a diagnostic and therapeutic approach for DM complicated with CI, and targeting GSK-3 is a promising therapeutic target for the treatment of type 2 diabetes and its complications.
Collapse
Affiliation(s)
- Man Wang
- Department of Rehabilitation, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ying Qu
- Department of Neurology, Kunming Medical University, Kunming650500, China
| | - Shujin Wang
- Department of Neurology, The First Hospital of Zibo Affiliated to Weifang Medical University, Zibo, 25520, China
| | - Zhongsen Qu
- Department of Rehabilitation, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
3
|
Pramana A, Kurnia D, Firmanda A, Rossi E, Ar NH, Putri VJ. Using palm oil residue for food nutrition and quality: from palm fatty acid distillate to vitamin E toward sustainability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39258508 DOI: 10.1002/jsfa.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
Increasing global palm oil production yields a valuable palm fatty acid distillate (PFAD) - a rich vitamin E (Vit-E) source and multifunctional ingredient in the food agro-industry - that can be utilized to achieve sustainability. This article reviews trends in the use and role of PFAD and its Vit-E in the food sector and proposes an integrated agro-industrial concept toward sustainability. Vit-E can be separated from PFAD with diverse and impactful pharmaceutical activities, including antioxidant, anti-inflammatory, anticancer and anti-ultraviolet effects. Based on in vivo experimental tests, PFAD and Vit-E supplementation can enhance the productivity and quality of livestock-based food products. PFAD is a plasticizer and antistatic packaging material in food packaging systems, and its derivatives can be used as food additives. Meanwhile, the Vit-E molecule in packaging can extend food shelf life by maintaining color stability, reducing lipid oxidation and rancidity, adding antimicrobial properties, and influencing changes in packaging properties such as water vapor, tensile strength, melting point and other physical properties. Toward sustainability, an integrated agro-industrial design has been proposed to implement clean production, increase the added value of palm oil industry residues, minimize environmental risks and increase profits to achieve long-term social welfare. In conclusion, PFAD residues and their Vit-E content have shown broad benefits in the food sector and prospects toward sustainability. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Dihan Kurnia
- Department of Animal Science, Politeknik Pertanian Negeri Payakumbuh, Lima Puluh Kota, Indonesia
| | - Afrinal Firmanda
- Department of Chemical Engineering, Faculty of Engineering, University of Indonesia, Depok, Indonesia
| | - Evy Rossi
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Nur Hasnah Ar
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Vivin Jenika Putri
- Department of Agricultural Technology, Faculty of Agricultural, Lancang Kuning University, Pekanbaru, Indonesia
| |
Collapse
|
4
|
Noguchi N, Niki E. Vitamin E nomenclature. Is RRR-α-tocopherol the only vitamin E? Free Radic Biol Med 2024; 221:257-260. [PMID: 38754742 DOI: 10.1016/j.freeradbiomed.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
It has generally been accepted that vitamin E refers to a group of tocochromanols, α-, β-, γ-, and δ-tocopherols and the corresponding four tocotrienols. Recently, Azzi and colleagues proposed to restrict the term vitamin E only to RRR-α-tocopherol, not to other tocopherols and tocotrienols (Azzi A et al. Free Radic Biol Med. 2023; 207:178-180. doi: 10.1016/j.freeradbiomed.2023.06.029). The aim of this paper is to express our opinion on the nomenclature of vitamin E based on available scientific data. In our opinion, it would be inappropriate to exclude all the tocochromanols other than RRR-α-tocopherol from the vitamin E group at this stage when the molecular mechanisms showing how vitamin E deficiency causes diseases such as ataxia and how vitamin E prevents/reverses such diseases are not elucidated. Understanding of whole functions of tocochromanols including underlying mechanisms and dynamics is essential before revision of currently accepted definition of vitamin E. The potential roles of γ-tocopherol and tocotrienols are discussed despite whether they are vitamin function should be clarified in the future studies.
Collapse
Affiliation(s)
- Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| | - Etsuo Niki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo, Japan.
| |
Collapse
|
5
|
Abdel-Mohsen HA, Ismail MM, Moussa Moussa R. Hazardous impacts of heavy metal pollution on biometric and biochemical composition of pearl oyster Pinctada radiata from five sites along Alexandria coast, with reference to its potential health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23262-23282. [PMID: 38418790 PMCID: PMC10997703 DOI: 10.1007/s11356-024-32571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
This study investigated the effect of heavy metals on the pearl oyster Pinctada radiata from 5 sites along the coast of Alexandria, with focus on its ecological health and potential risks to human consumption. Pollution results showed that Abu-Qir had the highest Cu and Cd values. Montaza and Eastern Harbor had the highest Fe and Pb values, respectively. Statistically, differences in metal concentrations among study sites were significant (p < 0.05). Non-carcinogenic risk (TTHQ) of tested metals and carcinogenic ones of Cd and Pb showed "high risk" on human health by consuming pearl oysters. Morphometric measurements and condition indices were studied to assess growth patterns and health in relation to heavy metals exposure. Key findings showed detectable declines in size and condition index in Eastern Harbor, whereas Abu-Qir recorded the highest values. This condition index performance presented Abu-Qir, Mammora, and Miami as ideal locations for spat collection and oyster rearing, potentially enhancing Egyptian pearl farming. Average values of spatial proximate contents of pearl oyster showed that it was rich in proteins (33.07-58.52%) with low fat content (1.39-1.87%) and carbohydrates (9.72-17.63%). Biochemical composition of pearl oyster demonstrated its high nutritional value which supported its promotion as a functional food for human consumption. The calorie content of pearl oyster was less than 2 Kcal, making this species an alternative source of healthy food to reduce obesity. Regression analysis indicated that Cu, Cd, and Pb had significant effect on 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, calories, vitamins, and pigment content of the collected oysters.
Collapse
Affiliation(s)
- Hala Ahmed Abdel-Mohsen
- Marine Pollution Laboratory, Environment Department, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mona Mohamed Ismail
- Taxonomy and Biodiversity of Aquatic Biota Laboratory, Environment Department, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Ragia Moussa Moussa
- Invertebrate Aquaculture Laboratory, Aquaculture Department, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| |
Collapse
|
6
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 349] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
7
|
Noguchi N, Saito Y, Niki E. Actions of Thiols, Persulfides, and Polysulfides as Free Radical Scavenging Antioxidants. Antioxid Redox Signal 2023; 39:728-743. [PMID: 37154744 PMCID: PMC10619894 DOI: 10.1089/ars.2022.0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Significance: The essential roles of thiol compounds as redox signaling mediators and protectors have been established. Recently, the roles of persulfides and polysulfides as mediators involved in numerous physiological processes have been revealed. Recent Advances: Recently, it became possible to detect and measure persulfides and polysulfides in human fluids and tissues and their physiological functions, including cellular signaling and protection against oxidative stress, have been reported, but the underlying mechanisms and dynamics remain elusive. Critical Issues: Physiological functions of thiol compounds have been studied, focusing primarily on two-electron redox reactions. In contrast, the contribution of one-electron redox mechanisms, that is, free radical-mediated oxidation and antioxidation, has received much less attention. Considering the important effects of free radical-mediated oxidation of biological molecules on pathophysiology, the antioxidant functions of thiol compounds as free radical scavengers are challenging issues. Future Directions: The antioxidant actions and dynamics of thiols, hydropersulfides, and hydropolysulfides as free radical scavenging antioxidants and their physiological significance remain to be established. Antioxid. Redox Signal. 39, 728-743.
Collapse
Affiliation(s)
- Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Etsuo Niki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Japan
| |
Collapse
|
8
|
Çiçek S. α-tocopherol ameliorates copper II oxide nanoparticles-induced cytotoxic, biochemical, apoptotic, and genotoxic damages in the rainbow trout gonad cells-2 (RTG-2) culture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104168. [PMID: 37295739 DOI: 10.1016/j.etap.2023.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
We investigated the effects of α-tocopherol on oxidative stress-caused damage caused by copper II oxide nanoparticles (CuO NPs) on Oncorhynchus mykiss gonadal cells (RTG-2) for 24 and 48 h. α-Tocopherol reversed the cell death and alterations in the expressions of genes such as sod1, gpx1a, gpx4b, and igf2 caused by CuO NPs; it also supported the expressions of cat, igf1, and gapdh genes caused by CuO NPs for 24 h and promoted alterations in the expressions of the sod2, gh1, and igf1 genes for 48 h. Additionally, α-tocopherol reversed the caspase 3/7 activity increased by CuO NPs for 24 h and supported it's decrease for 48 h. α-Tocopherol supported the increase in tail DNA (%) affected by CuO NPs for 24 h and reversed it for 48 h. Therefore, α-tocopherol may have the potential to protect against cellular alterations induced by CuO NPs in a time-dependent manner.
Collapse
Affiliation(s)
- Semra Çiçek
- Department of Animal Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum 25240, Turkey.
| |
Collapse
|
9
|
Sobh ZK, Abd-Elhameed A. The therapeutic benefit of antioxidants on the outcome of acute aluminum phosphide poisoning: a systemic review and meta-analysis. Toxicol Res (Camb) 2023; 12:345-354. [PMID: 37397917 PMCID: PMC10311134 DOI: 10.1093/toxres/tfad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/04/2023] Open
Abstract
This systematic review and meta-analysis pool evidence available from clinical trials to verify the effect of antioxidants on the outcome of acute aluminum phosphide (AlP) poisoning. A systematic review complied with "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) Protocols. Meta-analysis was conducted on 10 studies that fulfill eligibility criteria. Four antioxidants were implemented: N-Acetyl cysteine (NAC), L-Carnitine, Vitamin E, and Co-enzyme Q10 (Co Q10). Risk of bias, publication bias, and heterogeneity were assessed to ensure the results' reliability. Antioxidants significantly decrease mortality of acute AlP poisoning around three folds (OR = 2.684, 95% CI: 1.764-4.083; P < .001) and decrease the need for intubation and mechanical ventilation by two folds (OR = 2.391, 95% CI 1.480-3.863; P < .001) compared with control. Subgroup analysis revealed that NAC significantly decreases mortality by nearly three folds (OR = 2.752, 95% CI: 1.580-4.792; P < .001), and vitamin E significantly decreases mortality by nearly six folds (OR = 5.667, 95% CI: 1.178-27.254; P = .03) compared with control. L-Carnitine showed a borderline significance (P = .050). Co Q10 decreased the mortality compared with the control; however, the difference was not statistically significant (P = .263). This meta-analysis provides solid evidence regarding the efficacy of antioxidants in improving the outcome of acute AlP poisoning with reference to NAC. Wide confidence interval and small relative weight affect reliability regarding vitamin E efficacy. Future clinical trials and meta-analyses are recommended. To our knowledge, no previous meta-analysis was conducted to investigate the efficacy of treatment modalities for acute AlP poisoning.
Collapse
Affiliation(s)
- Zahraa K Sobh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Alexandria University Alexandria, 21517, Egypt
| | - Asmaa Abd-Elhameed
- Biomedical Informatics and Medical Statistics Department, Medical Research Institute, Alexandria University, Alexandria 21524, Egypt
| |
Collapse
|
10
|
Tao R, Zhang Q, Duan J, Chen R, Yao L, Zhang R, Dong G, Chen H. Construction and evaluation of an antioxidant synergistic system containing vitamin C and vitamin E. J Microencapsul 2023; 40:157-170. [PMID: 36825613 DOI: 10.1080/02652048.2023.2183276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
AIMS The aim of this study is to develop a liposome that could exert unparalleled antioxidant effects. In the present study, a vitamin C (VC)/vitamin E (VE)-co-loaded multivesicular liposome (VCVE-MVL) was constructed. METHODS Vitamins were encapsulated in soybean phosphatidylcholine (SPC) and cholesterol (CHO) by multi-emulsification method. The concentration of VC was determined by Fast Blue method. The concentration of VE was determined by high performance liquid chromatography (HPLC). Vitamin antioxidant capacity in vitro and in vivo was determined using β-carotene bleaching. RESULTS VCVE-MVL with particle diameter of 848.55 ± 0.29 nm and SPAN of 0.16 ± 0.11 were obtained. The encapsulation efficiency of VC reached 48.51% (w/w)±0.15. Compared with VC/VE solution, VCVE-MVL had a higher permeation efficiency. In addition, the in vitro and ex-vivo antioxidant tests verified the adequate antioxidant activity of VCVE-MVL. CONCLUSIONS In conclusion, the antioxidant synergistic system we constructed and demonstrated its potential applications in the cosmetics industry.
Collapse
Affiliation(s)
- Ran Tao
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qianyu Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jialing Duan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ran Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Liyun Yao
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ruiteng Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Gang Dong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Huali Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Jesus A, Mota S, Torres A, Cruz MT, Sousa E, Almeida IF, Cidade H. Antioxidants in Sunscreens: Which and What For? Antioxidants (Basel) 2023; 12:antiox12010138. [PMID: 36670999 PMCID: PMC9854756 DOI: 10.3390/antiox12010138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/08/2023] Open
Abstract
Ultraviolet (UV) radiation promotes the generation of reactive oxygen species (ROS) and nitrogen species (RNS), resulting in skin damage. Cosmetic industries have adopted a strategy to incorporate antioxidants in sunscreen formulations to prevent or minimize UV-induced oxidative damage, boost photoprotection effectiveness, and mitigate skin photoaging. Many antioxidants are naturally derived, mainly from terrestrial plants; however, marine organisms have been increasingly explored as a source of new potent antioxidant molecules. This work aims to characterize the frequency of the use of antioxidants in commercial sunscreens. Photoprotective formulations currently marketed in parapharmacies and pharmacies were analyzed with respect to the composition described on the label. As a result, pure compounds with antioxidant activity were found. The majority of sunscreen formulations contained antioxidants, with vitamin E and its derivatives the most frequent. A more thorough analysis of these antioxidants is also provided, unveiling the top antioxidant ingredients found in sunscreens. A critical appraisal of the scientific evidence regarding their effectiveness is also performed. In conclusion, this work provides an up-to-date overview of the use of antioxidants in commercial sunscreens for a better understanding of the advantages associated with their use in photoprotective formulations.
Collapse
Affiliation(s)
- Ana Jesus
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sandra Mota
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Torres
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Center of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Correspondence: (E.S.); (I.F.A.)
| | - Isabel F. Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.)
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Center of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
12
|
Al-Khdour MS, Khabour OF, Al-Eitan LN, Alzoubi KH. Genotoxicity of nedaplatin in cultured lymphocytes: modulation by vitamin E. Drug Chem Toxicol 2023; 46:176-180. [PMID: 34965829 DOI: 10.1080/01480545.2021.2015369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nedaplatin is a chemotherapeutic agent used widely in cancer therapy. Nedaplatin has been shown to cause DNA damage to cells via the induction of oxidative stress. Vitamin E (Vit E) has an anti-mutagenic activity that can protect cells from DNA damaging agents. The objective of this study is to examine the genotoxic and cytotoxic effects of nedaplatin in human cultured lymphocytes. In addition, modulation of such effects by Vit E was also examined. The frequencies of sister chromatid exchange (SCE) and chromosomal aberrations (CAs) were used as an indicator for genotoxicity. The mitotic and proliferative indices were used to examine the cytotoxic effects of nedaplatin. The results showed that nedaplatin significantly elevated SCE and CA frequencies in human lymphocytes (p ˂ 0.01). The increases in the frequencies of SCE and CA caused by nedaplatin were lowered by pretreatment treatment with Vit E (p < 0.05). Nedaplatin significantly lowered mitotic index but Vit E pretreatment did not modulate this effect. These results suggest that Vit E has the potential to ameliorate the genotoxicity of nedaplatin in cultured lymphocytes.
Collapse
Affiliation(s)
- Muntaha S Al-Khdour
- Department of Applied Biological Sciences, Faculty of Science, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Laith N Al-Eitan
- Department of Applied Biological Sciences, Faculty of Science, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
Sánchez-Sánchez L, Fernández R, Ganfornina MD, Astigarraga E, Barreda-Gómez G. Protective Actions of α-Tocopherol on Cell Membrane Lipids of Paraquat-Stressed Human Astrocytes Using Microarray Technology, MALDI-MS and Lipidomic Analysis. Antioxidants (Basel) 2022; 11:2440. [PMID: 36552648 PMCID: PMC9774397 DOI: 10.3390/antiox11122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is one of the main contributors to some neurodegenerative disorders. The early detection of senescent cells or their related effects is a key aspect in treating disease progression. In this functional deterioration, oxidative stress and lipid peroxidation play an important role. Endogenous antioxidant compounds, such as α-tocopherol (vitamin E), can mitigate these undesirable effects, particularly lipid peroxidation, by blocking the reaction between free radicals and unsaturated fatty acid. While the antioxidant actions of α-tocopherol have been studied in various systems, monitoring the specific effects on cell membrane lipids at scales compatible with large screenings has not yet been accomplished. Understanding the changes responsible for this protection against one of the consequences of senescence is therefore necessary. Thus, the goal of this study was to determinate the changes in the lipid environment of a Paraquat-treated human astrocytic cell line, as a cellular oxidative stress model, and the specific actions of the antioxidant, α-tocopherol, using cell membrane microarray technology, MALDI-MS and lipidomic analysis. The stress induced by Paraquat exposure significantly decreased cell viability and triggered membrane lipid changes, such as an increase in certain species of ceramides that are lipid mediators of apoptotic pathways. The pre-treatment of cells with α-tocopherol mitigated these effects, enhancing cell viability and modulating the lipid profile in Paraquat-treated astrocytes. These results demonstrate the lipid modulation effects of α-tocopherol against Paraquat-promoted oxidative stress and validate a novel analytical high-throughput method combining cell cultures, microarray technology, MALDI-MS and multivariate analysis to study antioxidant compounds against cellular senescence.
Collapse
Affiliation(s)
- Laura Sánchez-Sánchez
- Research and Development Department, IMG Pharma Biotech S.L, 48160 Derio, Spain
- Instituto de Biología y Genética Molecular (IBGM), Unidad de Excelencia, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Roberto Fernández
- Research and Development Department, IMG Pharma Biotech S.L, 48160 Derio, Spain
| | - Maria Dolores Ganfornina
- Instituto de Biología y Genética Molecular (IBGM), Unidad de Excelencia, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L, 48160 Derio, Spain
| | | |
Collapse
|
14
|
Potential Antioxidant Multitherapy against Complications Occurring in Sepsis. Biomedicines 2022; 10:biomedicines10123088. [PMID: 36551843 PMCID: PMC9775396 DOI: 10.3390/biomedicines10123088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Septic shock currently represents one of the main causes of mortality in critical patient units with an increase in its incidence in recent years, and it is also associated with a high burden of morbidity in surviving patients. Within the pathogenesis of sepsis, oxidative stress plays an important role. The excessive formation of reactive oxygen species (ROS) leads to mitochondrial damage and vasomotor dysfunction that characterizes those patients who fall into septic shock. Currently, despite numerous studies carried out in patients with septic shock of different causes, effective therapies have not yet been developed to reduce the morbidity and mortality associated with this pathology. Despite the contribution of ROS in the pathophysiology of sepsis and septic shock, most studies performed in humans, with antioxidant monotherapies, have not resulted in promising data. Nevertheless, some interventions with compounds such as ascorbate, N-acetylcysteine, and selenium would have a positive effect in reducing the morbidity and mortality associated with this pathology. However, more studies are required to demonstrate the efficacy of these therapies. Taking into account the multifactorial features of the pathophysiology of sepsis, we put forward the hypothesis that a supplementation based on the association of more than one antioxidant compound should result in a synergistic or additive effect, thus improving the beneficial effects of each of them alone, potentially serving as a pharmacological adjunct resource to standard therapy to reduce sepsis complications. Therefore, in this review, it is proposed that the use of combined antioxidant therapies could lead to a better clinical outcome of patients with sepsis or septic shock, given the relevance of oxidative stress in the pathogenesis of this multi-organ dysfunction.
Collapse
|
15
|
Investigating the Tocopherol Contents of Walnut Seed Oils Produced in Different European Countries Analyzed by HPLC-UV: A Comparative Study on the Basis of Geographical Origin. Foods 2022; 11:foods11223719. [PMID: 36429311 PMCID: PMC9689442 DOI: 10.3390/foods11223719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
A rapid HPLC-UV method was developed for the determination of tocopherols in walnut seed oils. The method was validated and the LODs ranged between 0.15 and 0.30 mg/kg, while the LOQs were calculated over the range of 0.50 to 1.00 mg/kg. The accuracy values ranged between 90.8 and 97.1% for the within-day assay (n = 6) and between 90.4 and 95.8% for the between-day assay (n = 3 × 3), respectively. The precision of the method was evaluated and the RSD% values were lower than 6.1 and 8.2, respectively. Overall, 40 samples of walnuts available on the Greek market, originating from four different European countries (Greece, Ukraine, France, and Bulgaria), were processed into oils and analyzed. One-way ANOVA was implemented in order to investigate potential statistically significant disparities between the concentrations of tocopherols in the walnut oils on the basis of the geographical origin, and Tukey's post hoc test was also performed to examine exactly which varieties differed. The statistical analysis of the results demonstrated that the Ukrainian walnut seed oils exhibited significantly higher total concentrations compared to the rest of the samples.
Collapse
|
16
|
Elouafy Y, El Idrissi ZL, El Yadini A, Harhar H, Alshahrani MM, AL Awadh AA, Goh KW, Ming LC, Bouyahya A, Tabyaoui M. Variations in Antioxidant Capacity, Oxidative Stability, and Physicochemical Quality Parameters of Walnut ( Juglans regia) Oil with Roasting and Accelerated Storage Conditions. Molecules 2022; 27:molecules27227693. [PMID: 36431794 PMCID: PMC9696496 DOI: 10.3390/molecules27227693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
Walnut oil, like all vegetable oils, is chemically unstable because of the sensitivity of its unsaturated fatty acids to the oxidation phenomenon. This phenomenon is based on a succession of chemical reactions, under the influence of temperature or storage conditions, that always lead to a considerable change in the quality of the oil by promoting the oxidation of unsaturated fatty acids through the degradation of their C-C double bonds, leading to the formation of secondary oxidation products that reduce the nutritional values of the oil. This research examines the oxidative stability of roasted and unroasted cold-pressed walnut oils under accelerated storage conditions. The oxidative stability of both oils was evaluated using physicochemical parameters: chemical composition (fatty acids, phytosterols, and tocopherols), pigment content (chlorophyll and carotenoids), specific extinction coefficients (K232 and K270), and quality indicators (acid and peroxide value) as well as the evaluation of radical scavenging activity by the DPPH method. The changes in these parameters were evaluated within 60 days at 60 ± 2 °C. The results showed that the levels of total phytosterols, the parameters of the acid and peroxide value, K232 and K270, increased slightly for both oils as well as the total tocopherol content and the antioxidant activity affected by the roasting process. In contrast, the fatty acid profiles did not change considerably during the 60 days of our study. After two months of oil treatment at 60 °C, the studied oils still showed an excellent physicochemical profile, which allows us to conclude that these oils are stable and can withstand such conditions. This may be due to the considerable content of tocopherols (vitamin E), which acts as an antioxidant.
Collapse
Affiliation(s)
- Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Zineb Lakhlifi El Idrissi
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Adil El Yadini
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah AL Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
- Correspondence: (K.W.G.); (A.B.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
- Correspondence: (K.W.G.); (A.B.)
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| |
Collapse
|
17
|
Kargozar S, Hooshmand S, Hosseini SA, Gorgani S, Kermani F, Baino F. Antioxidant Effects of Bioactive Glasses (BGs) and Their Significance in Tissue Engineering Strategies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196642. [PMID: 36235178 PMCID: PMC9573515 DOI: 10.3390/molecules27196642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022]
Abstract
Elevated levels of oxidative stress are usually observed following injuries, leading to impaired tissue repair due to oxidation-related chronic inflammation. Several attempts have been made to manage this unfavorable situation, and the use of biomaterials with antioxidant activity is showing great promise in tissue engineering and regenerative medicine approaches. Bioactive glasses (BGs) are a versatile group of inorganic substances that exhibit an outstanding regenerative capacity for both hard and soft damaged tissues. The chemical composition of BGs provides a great opportunity for imparting specific biological activities to them. On this point, BGs may easily become antioxidant substances through simple physicochemical modifications. For example, particular antioxidant elements (mostly cerium (Ce)) can be added to the basic composition of the glasses. On the other hand, grafting natural antioxidant substances (e.g., polyphenols) on the BG surface is feasible for making antioxidant substitutes with promising results in vitro. Mesoporous BGs (MBGs) were demonstrated to have unique merits compared with melt-derived BGs since they make it possible to load antioxidants and deliver them to the desired locations. However, there are actually limited in vivo experimental studies on the capability of modified BGs for scavenging free radicals (e.g., reactive oxygen species (ROS)). Therefore, more research is required to determine the actual potential of BGs in decreasing oxidative stress and subsequently improving tissue repair and regeneration. The present work aims to highlight the potential of different types of BGs in modulating oxidative stress and subsequently improving tissue healing.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: S.K: (S.K.); (F.B.)
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Farzad Kermani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Correspondence: S.K: (S.K.); (F.B.)
| |
Collapse
|
18
|
Kaneko T, Mita Y, Nozawa-Kumada K, Yazaki M, Arisawa M, Niki E, Noguchi N, Saito Y. Antioxidant action of persulfides and polysulfides against free radical-mediated lipid peroxidation. Free Radic Res 2022; 56:677-690. [PMID: 36630595 DOI: 10.1080/10715762.2023.2165918] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrogen sulfide, hydropersulfides, and hydropolysulfides have been revealed to play important physiological roles such as cell signaling and protection against oxidative stress, but the underlying mechanisms and dynamics of action remain elusive. It is generally accepted that these species act by two-electron redox mechanisms, while the involvement of one-electron redox chemistry has received less attention. In this study, the radical-scavenging activity of hydrogen persulfide, hydrogen polysulfides (HSnH n = 2-4), and diallyl- or dialkyl-sulfides (RSnR, n = 1-4) was measured. Furthermore, their antioxidant effects against free radical-mediated human plasma lipid peroxidation were assessed by measuring lipid hydroperoxides. It was found that disodium disulfide, trisulfide, and tetrasulfide acted as potent peroxyl radical scavengers, the rate constant for scavenging peroxyl radical being 3.5 × 105, 4.0 × 105, and 6.0 × 105 M-1 s-1 in PBS pH 7.4 at 37 °C respectively and that they inhibited plasma lipid peroxidation efficiently, the efficacy is increased with the catenation number. Disodium tetrasulfide was 1.5 times as reactive as Trolox toward peroxyl radical and inhibited plasma lipid peroxidation more efficiently than ascorbate and Trolox. On the other hand, diallyl- and dialkyl-sulfides did not exert significant radical-scavenging activity, nor did they inhibit lipid peroxidation efficiently, except for diallyl tetrasulfide, which suppressed plasma lipid peroxidation, despite less significantly than disodium tetrasulfide. Collectively, this study shows that hydrogen persulfide and hydrogen polysulfides act as potent radical-scavenging antioxidants and that, in addition to two-electron redox mechanisms, one electron redox reaction may also play important role in the in vivo defense against deleterious oxidative stress.
Collapse
Affiliation(s)
- Takayuki Kaneko
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuichiro Mita
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Masana Yazaki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Mieko Arisawa
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Etsuo Niki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Tokyo, Japan
| | - Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Miazek K, Beton K, Śliwińska A, Brożek-Płuska B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022; 12:biom12081087. [PMID: 36008981 PMCID: PMC9406122 DOI: 10.3390/biom12081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of β-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of β-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (β-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that β-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.
Collapse
Affiliation(s)
- Krystian Miazek
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
- Correspondence:
| | - Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
20
|
Oxidative Stress: What Is It? Can It Be Measured? Where Is It Located? Can It Be Good or Bad? Can It Be Prevented? Can It Be Cured? Antioxidants (Basel) 2022; 11:antiox11081431. [PMID: 35892633 PMCID: PMC9329886 DOI: 10.3390/antiox11081431] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The meaning, the appropriate usage and the misusage of the terms oxidative stress, oxidative eustress, and oxidative distress have been evaluated. It has been realized that the terms oxidative stress and oxidative damage are often used inappropriately as synonyms. The usage of the term eustress (intended as good stress) is unsuitable to indicate signaling by reactive molecular an event that can be finalistically considered either good or bad, depending on the circumstances. The so defined oxidative distress is an oxidative damage but not an oxidative stress. What is measured and defined as oxidative stress is in fact an oxidative damage. Damaging oxidations and signaling oxidant events (good or bad) can be present, also simultaneously, in different and multiple location of a cell, tissue or body and the measure of an oxidant event in body fluids or tissue specimen can only be the sum of non-separatable events, sometimes of opposite sign. There is no officially approved therapy to prevent or cure oxidative stress or oxidative damage.
Collapse
|
21
|
Anetor GO, Nwobi NL, Igharo GO, Sonuga OO, Anetor JI. Environmental Pollutants and Oxidative Stress in Terrestrial and Aquatic Organisms: Examination of the Total Picture and Implications for Human Health. Front Physiol 2022; 13:931386. [PMID: 35936919 PMCID: PMC9353710 DOI: 10.3389/fphys.2022.931386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
There is current great international concern about the contribution of environmental pollution to the global burden of disease particularly in the developing, low- and medium-income countries. Industrial activities, urbanization, developmental projects as well as various increased anthropogenic activities involving the improper generation, management and disposal of pollutants have rendered today's environment highly polluted with various pollutants. These pollutants include toxic metals (lead, cadmium, mercury, arsenic), polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and diesel exhaust particles most of which appear to be ubiquitous as well as have long-term environmental persistence with a wide range of toxicities such as oxidative stress among others. Oxidative stress, which may arise from increased production of damaging free radicals emanating from increased pollutant burden and depressed bioavailability of antioxidant defenses causes altered biochemical and physiological mechanisms and has been implicated in all known human pathologies most of which are chronic. Oxidative stress also affects both flora and fauna and plants are very important components of the terrestrial environment and significant contributors of nutrients for both man and animals. It is also remarkable that the aquatic environment in which sea animals and creatures are resident is also highly polluted, leading to aquatic stress that may affect the survival of the aquatic animals, sharing in the oxidative stress. These altered terrestrial and aquatic environments have an overarching effect on human health. Antioxidants neutralize the damaging free radicals thus, they play important protective roles in the onset, progression and severity of the unmitigated generation of pollutants that ultimately manifest as oxidative stress. Consequently, human health as well as that of aquatic and terrestrial organisms may be protected from environmental pollution by mitigating oxidative stress and employing the principles of nutritional medicine, essentially based on antioxidants derived mainly from plants, which serve as the panacea of the vicious state of environmental pollutants consequently, the health of the population. Understanding the total picture of oxidative stress and integrating the terrestrial and aquatic effects of environmental pollutants are central to sustainable health of the population and appear to require multi-sectoral collaborations from diverse disciplinary perspectives; basically the environmental, agricultural and health sectors.
Collapse
Affiliation(s)
- Gloria Oiyahumen Anetor
- Department of Human Kinetics and Health Education, National Open University of Nigeria, Abuja, Nigeria
| | - Nnenna Linda Nwobi
- Department of Chemical Pathology, BenCarson School of Medicine, Babcock University, Ilishan, Nigeria
| | - Godwin Osaretin Igharo
- Department of Medical Laboratory Science, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin, Nigeria
| | | | - John Ibhagbemien Anetor
- Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
22
|
Kocaman AY, Asfuroğlu K. The genotoxic effects of perchloroethylene in human peripheral blood lymphocytes and the possible ameliorative role of α-tocopherol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39576-39586. [PMID: 33763835 DOI: 10.1007/s11356-021-13523-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Perchloroethylene (PCE), also known as tetrachloroethylene, is a commercially important chlorinated solvent commonly used in dry cleaning, textile processing, and metal degreasing industries. According to the available studies, the potential genotoxic impacts of this chlorinated solvent on human beings are still controversial. The present work was carried out to determine the genotoxic effects of PCE on human peripheral blood lymphocytes (PBLs) using chromosome aberrations (CAs) and cytokinesis-block micronucleus (CBMN) tests. Additionally, the antigenotoxic potential of α-tocopherol (α-Toc), a well-known antioxidant agent, on human lymphocytes treated with PCE in vitro was assessed. The cells were exposed for 48 h to PCE (25, 50, 100, and 150 μg/mL) alone as well as in combination with α-Toc (100 μg/mL). The findings of the study suggested that, relative to solvent control, PCE significantly increased the structural CA and MN formation for all concentrations. However, simultaneous treatment of PCE and α-Toc caused a significant reduction of CAs and MNi as compared to cultures treated with PCE alone. Besides, the results showed that PCE has cytotoxic effects on human PBLs as indicated by the significant decrease in mitotic index (MI) and nuclear division index (NDI). Nevertheless, the co-treatment of α-Toc with PCE did not reduce the cytotoxicity of PCE at a significant level. In conclusion, it can be suggested that PCE is genotoxic and cytotoxic in human PBLs, and α-Toc has an antigenotoxic effect on PCE-induced genotoxicity but has no significant effect on the cytotoxicity triggered by PCE.
Collapse
Affiliation(s)
- Ayşe Yavuz Kocaman
- Department of Biology, Faculty of Sciences and Letters, Hatay Mustafa Kemal University, 31000, Antakya, Hatay, Turkey.
| | - Kübra Asfuroğlu
- Basic and Applied Sciences Institute, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| |
Collapse
|