1
|
Luo D, Ni X, Yang H, Feng L, Chen Z, Bai L. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. Eur J Pharm Sci 2024; 192:106630. [PMID: 37949195 DOI: 10.1016/j.ejps.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Peptide drugs through nasal mucous membrane, such as insulin and calcitonin have been widely used in the medical field. There are always two sides to a coin. One side, intranasal drug delivery can imitate the secretion pattern in human body, having advantages of physiological structure and convenient use. Another side, the low permeability of nasal mucosa, protease environment and clearance effect of nasal cilia hinder the intranasal absorption of peptide drugs. Researchers have taken multiple means to achieve faster therapeutic concentration, lower management dose, and fewer side effects for better nasal preparations. To improve the peptide drugs absorption, various strategies had been explored via the nasal mucosa route. In this paper, we reviewed the achievements of 18 peptide drugs in the past decade about the perspectives of the efficacy, mechanism of enhancing intranasal absorption and safety. The most studies were insulin and calcitonin. As a result, absorption enhancers, nanoparticles (NPs) and bio-adhesive system are the most widely used. Among them, chitosan (CS), cell penetrating peptides (CPPs), tight junction modulators (TJMs), soft NPs and gel/hydrogel are the most promising strategies. Moreover, two or three strategies can be combined to prepare drug vectors. In addition, spray freeze dried (SFD), self-emulsifying nano-system (SEN), and intelligent glucose reaction drug delivery system are new research directions in the future.
Collapse
Affiliation(s)
- Dan Luo
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China
| | - Xiaoqing Ni
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, Sichuan, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Zhaoqun Chen
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Su J, Liu Y, Sun H, Naeem A, Xu H, Qu Y, Wang C, Li Z, Lu J, Wang L, Wang X, Wu J, Sun L, Zhang J, Wang Z, Yang R, Wu L. Visualization of nasal powder distribution using biomimetic human nasal cavity model. Acta Pharm Sin B 2024; 14:392-404. [PMID: 38261815 PMCID: PMC10792963 DOI: 10.1016/j.apsb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 01/25/2024] Open
Abstract
Nasal drug delivery efficiency is highly dependent on the position in which the drug is deposited in the nasal cavity. However, no reliable method is currently available to assess its impact on delivery performance. In this study, a biomimetic nasal model based on three-dimensional (3D) reconstruction and three-dimensional printing (3DP) technology was developed for visualizing the deposition of drug powders in the nasal cavity. The results showed significant differences in cavity area and volume and powder distribution in the anterior part of the biomimetic nasal model of Chinese males and females. The nasal cavity model was modified with dimethicone and validated to be suitable for the deposition test. The experimental device produced the most satisfactory results with five spray times. Furthermore, particle sizes and spray angles were found to significantly affect the experimental device's performance and alter drug distribution, respectively. Additionally, mometasone furoate (MF) nasal spray (NS) distribution patterns were investigated in a goat nasal cavity model and three male goat noses, confirming the in vitro and in vivo correlation. In conclusion, the developed human nasal structure biomimetic device has the potential to be a valuable tool for assessing nasal drug delivery system deposition and distribution.
Collapse
Affiliation(s)
- Jiawen Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Yan Liu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongyu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huipeng Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yue Qu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Caifen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zeru Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianhua Lu
- Nantong Haimen People's Hospital, Nantong 226199, China
| | - Lulu Wang
- National Institutes for Food and Drug Control, Beijing 100000, China
| | - Xiaofeng Wang
- National Institutes for Food and Drug Control, Beijing 100000, China
| | - Jie Wu
- Nantong Haimen People's Hospital, Nantong 226199, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Lixin Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiwen Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Zhigang Wang
- Nantong Haimen People's Hospital, Nantong 226199, China
| | - Rui Yang
- Shenyang Pharmaceutical University, Shenyang 110016, China
- National Institutes for Food and Drug Control, Beijing 100000, China
| | - Li Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| |
Collapse
|
3
|
Sarangi M, Padhi S, Rath G. Non-Invasive Delivery of Insulin for Breaching Hindrances against Diabetes. Crit Rev Ther Drug Carrier Syst 2024; 41:1-64. [PMID: 38608132 DOI: 10.1615/critrevtherdrugcarriersyst.2023048197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Insulin is recognized as a crucial weapon in managing diabetes. Subcutaneous (s.c.) injections are the traditional approach for insulin administration, which usually have many limitations. Numerous alternative (non-invasive) slants through different routes have been explored by the researchers for making needle-free delivery of insulin for attaining its augmented absorption as well as bioavailability. The current review delineating numerous pros and cons of several novel approaches of non-invasive insulin delivery by overcoming many of their hurdles. Primary information on the topic was gathered by searching scholarly articles from PubMed added with extraction of data from auxiliary manuscripts. Many approaches (discussed in the article) are meant for the delivery of a safe, effective, stable, and patient friendly administration of insulin via buccal, oral, inhalational, transdermal, intranasal, ocular, vaginal and rectal routes. Few of them have proven their clinical efficacy for maintaining the glycemic levels, whereas others are under the investigational pipe line. The developed products are comprising of many advanced micro/nano composite technologies and few of them might be entering into the market in near future, thereby garnishing the hopes of millions of diabetics who are under the network of s.c. insulin injections.
Collapse
Affiliation(s)
| | - Sasmita Padhi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, Pin-201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
4
|
Viswanadhan Vasantha P, Sherafudeen SP, Rahamathulla M, Mathew ST, Murali S, Alshehri S, Shakeel F, Alam P, Sirhan AY, Narayana Iyer BA. Combination of Cellulose Derivatives and Chitosan-Based Polymers to Investigate the Effect of Permeation Enhancers Added to In Situ Nasal Gels for the Controlled Release of Loratadine and Chlorpheniramine. Polymers (Basel) 2023; 15:polym15051206. [PMID: 36904447 PMCID: PMC10006938 DOI: 10.3390/polym15051206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
The purpose of the study is to develop and assess mucoadhesive in situ nasal gel formulations of loratadine and chlorpheniramine maleate to advance the bioavailability of the drug as compared to its conventional dosage forms. The influence of various permeation enhancers, such as EDTA (0.2% w/v), sodium taurocholate (0.5% w/v), oleic acid (5% w/v), and Pluronic F 127 (10% w/v), on the nasal absorption of loratadine and chlorpheniramine from in situ nasal gels containing different polymeric combinations, such as hydroxypropyl methylcellulose, Carbopol 934, sodium carboxymethylcellulose, and chitosan, is studied. Among these permeation enhancers, sodium taurocholate, Pluronic F127 and oleic acid produced a noticeable increase in the loratadine in situ nasal gel flux compared with in situ nasal gels without permeation enhancer. However, EDTA increased the flux slightly, and in most cases, the increase was insignificant. However, in the case of chlorpheniramine maleate in situ nasal gels, the permeation enhancer oleic acid only showed a noticeable increase in flux. Sodium taurocholate and oleic acid seems to be a better and efficient enhancer, enhancing the flux > 5-fold compared with in situ nasal gels without permeation enhancer in loratadine in situ nasal gels. Pluronic F127 also showed a better permeation, increasing the effect by >2-fold in loratadine in situ nasal gels. In chlorpheniramine maleate in situ nasal gels with EDTA, sodium taurocholate and Pluronic F127 were equally effective, enhancing chlorpheniramine maleate permeation. Oleic acid has a better effect as permeation enhancer in chlorpheniramine maleate in situ nasal gels and showed a maximum permeation enhancement of >2-fold.
Collapse
Affiliation(s)
- Prasanth Viswanadhan Vasantha
- Department of Pharmaceutics, Mount Zion College of Pharmaceutical Sciences and Research, Chayalode P.O. Ezhamkulam, Pathanamthitta Dist, Adoor 691556, India
- Correspondence: (P.V.V.); (M.R.)
| | - Sheri Peedikayil Sherafudeen
- Department of Pharmaceutics, Mar Discorous College of Pharmacy, Alathara, Sreekariyam, Thiruvananthapuram Dist, Thiruvananthapuram 695017, India
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, P.O. Box 62223, Abha 61421, Saudi Arabia
- Correspondence: (P.V.V.); (M.R.)
| | | | - Sandhya Murali
- Department of Pharmaceutics, Mount Zion College of Pharmaceutical Sciences and Research, Chayalode P.O. Ezhamkulam, Pathanamthitta Dist, Adoor 691556, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Bhageerathy Anantha Narayana Iyer
- Department of Pharmaceutics, Mount Zion College of Pharmaceutical Sciences and Research, Chayalode P.O. Ezhamkulam, Pathanamthitta Dist, Adoor 691556, India
| |
Collapse
|
5
|
Li S, Co CM, Izuagbe S, Hong Y, Liao J, Borrelli J, Tang L. Biomolecules-releasing click chemistry-based bioadhesives for repairing acetabular labrum tears. J Orthop Res 2022; 40:2646-2655. [PMID: 35112388 DOI: 10.1002/jor.25290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/07/2021] [Accepted: 01/30/2022] [Indexed: 02/04/2023]
Abstract
Currently, there are no effective clinical or experimental treatments to fully restore the function of the torn acetabular labrum. To fill the gap, here, we report the finding of progenitor cells in labral tissue, which can be recruited and stimulated to repair torn acetabular labral tissue. This study aimed to develop a biomolecule releasing bioadhesive which can speed up labral tissue healing by eliciting autologous labral progenitor cellular responses. A click chemistry-based bioadhesive, capable of releasing biomolecules, was synthesized to exert ~3× adhesion strength compared with fibrin glue. Via the release of platelet-derived growth factor (PDGF), the adhesive was shown to actively recruit and stimulate the proliferation of labral progenitor cells to the tear sites and within the adhesive. Finally, the ability of this biomolecules-releasing adhesive designed to promote labral tissue regeneration was evaluated using discarded human acetabular labrum tissue compared with surgical suture ex vivo. Histological analysis shows that PDGF-releasing bioadhesive yielded significantly more labrum cell responses and extracellular matrix protein (proteoglycan and collagen) production at the tear tissue site than surgical suture controls. The results confirm that the new PDGF-releasing bioadhesive can activate the responses of autologous labral progenitor cells to significantly improve labral tissue regeneration. Clinical significance: These PDGF-releasing bioadhesives may serve as a new and effective tool for repairing and regenerating acetabular labrum tears.
Collapse
Affiliation(s)
- Shuxin Li
- Department of Research & Development, Progenitec Inc., Arlington, Texas, USA
| | - Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Samira Izuagbe
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Joseph Borrelli
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Liping Tang
- Department of Research & Development, Progenitec Inc., Arlington, Texas, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
6
|
Sabbagh F, Kim BS. Microneedles for transdermal drug delivery using clay-based composites. Expert Opin Drug Deliv 2022; 19:1099-1113. [DOI: 10.1080/17425247.2022.2119220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
7
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE, King MW. Chitosan based bioadhesives for biomedical applications: A review. Carbohydr Polym 2022; 282:119100. [DOI: 10.1016/j.carbpol.2022.119100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/02/2022]
|
8
|
Rajput A, Butani S. Donepezil HCl Liposomes: Development, Characterization, Cytotoxicity, and Pharmacokinetic Study. AAPS PharmSciTech 2022; 23:74. [PMID: 35149912 DOI: 10.1208/s12249-022-02209-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/04/2022] [Indexed: 01/24/2023] Open
Abstract
The current research work aims to study the pharmacokinetic and nasal ciliotoxicity of donepezil liposome-based in situ gel to treat Alzheimer's disease. The physicochemical properties and first-pass metabolism of donepezil HCl result in low concentrations reaching the brain post oral administration. To overcome this problem, donepezil HCl-loaded liposomes were formulated using the ethanol injection method. The donepezil HCl-loaded liposomes were spherical with a size of 103 ± 6.2 nm, polydispersity index of 0.108 ± 0.008, and entrapment efficiency of 93 ± 5.33 %. The optimized in situ gel with donepezil HCl-loaded liposomes showed 80.11 ± 7.77 % drug permeation than donepezil HCl solution-based in situ gel (13.12 ± 4.84 %) across sheep nasal mucosa. The nasal ciliotoxicity study indicated the safety of developed formulation for administration via nasal route. The pharmacokinetics and biodistribution study of developed formulation showed higher drug concentration (1239.61 ± 123.60 pg/g) in the brain after nasal administration indicating its better potential via the nasal pathway. To treat Alzheimer's disease, the administration of liposome-based in situ gel through the nasal pathway can therefore be considered as an effective and promising mode of drug delivery.
Collapse
|
9
|
Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. Int J Biol Macromol 2021; 190:417-432. [PMID: 34450151 DOI: 10.1016/j.ijbiomac.2021.08.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Since chitosan's excellent pharmacokinetic and chemical properties, it is an attractive and promising carbohydrate biopolymer in biomedical applications. Chitosan's beneficial function in the defense and propagation of pancreatic β cells, reducing hyperglycemia, and avoiding diabetes mellitus associated with impaired lipid metabolism has been demonstrated in several studies. Additionally, chitosan has also been used in various nanocarriers to deliver various antidiabetic drugs to reduce glucose levels. Herein, the first to provide the currently available potential benefits of chitosan in diabetes mellitus treatment focuses on chitosan-based nanocarriers for oral administration of various antidiabetic drugs nasal and subcutaneous passages. Moreover, chitosan is used to activate and deliver stem cells and differentiate them into cells similar to pancreatic beta cells as a new type of treatment for type one diabetes mellitus. The results of this review will be helpful in the development of promising treatments and better control of diabetes mellitus.
Collapse
|
10
|
Chin LY, Tan JYP, Choudhury H, Pandey M, Sisinthy SP, Gorain B. Development and optimization of chitosan coated nanoemulgel of telmisartan for intranasal delivery: A comparative study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Charalambous M, Volk HA, Van Ham L, Bhatti SFM. First-line management of canine status epilepticus at home and in hospital-opportunities and limitations of the various administration routes of benzodiazepines. BMC Vet Res 2021; 17:103. [PMID: 33663513 PMCID: PMC7934266 DOI: 10.1186/s12917-021-02805-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marios Charalambous
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
12
|
Sarkar S, Das D, Dutta P, Kalita J, Wann SB, Manna P. Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr Polym 2020; 247:116594. [PMID: 32829787 DOI: 10.1016/j.carbpol.2020.116594] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
|
13
|
Chitosan Hydrogel Doped with PEG-PLA Nanoparticles for the Local Delivery of miRNA-146a to Treat Allergic Rhinitis. Pharmaceutics 2020; 12:pharmaceutics12100907. [PMID: 32977497 PMCID: PMC7598290 DOI: 10.3390/pharmaceutics12100907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
To prepare a binary formulation delivering miRNA-146 and evaluate a nucleic acid nasal delivery system by investigating its pharmacodynamic effects in allergic rhinitis. The gel/NPs/miR-146a thermosensitive in situ chitosan hydrogel carrying a nucleic acid was prepared and evaluated for its characteristics, including temperature sensitivity, gel strength, mucosal adhesion and drug release profile. After nasal administration of the formulation to ovalbumin-sensitized rats, the treatment of allergic rhinitis was verified by assessing nasal symptoms, hematology, hematoxylin-eosin (HE) staining and immunohistochemistry. Western Blot(WB) was used to analyze nasal inflammatory factors as well as miRNA-146-related factors, and the miR146 expression level was measured by PCR. Subsequently, the effects of the gel/NPs/miR-146a binary formulation were evaluated for the nasal delivery of nucleic acids in rhinitis therapy. The prepared binary formulation quickly formed a gel in the nasal cavity at a temperature of 34 °C with good mucosal adhesion, which delivered nucleic acids into the nasal mucosa stably and continuously. Gel/NPs/miR-146a was able to sustain the delivery of miRNA into the mucosa after nasal administration. When compared with the monolithic formulations, the gel/NPs/miR-146a binary formulation performed better regarding its nucleic acid delivery ability and pharmacodynamic effects. The gel/NPs/miR-146a binary preparation has a suitable nasal mucosal drug delivery ability and has a positive pharmacodynamic effect for the treatment of ovalbumin-induced rhinitis in rats. It can serve as a potential nucleic acid delivery platform for the treatment of allergic rhinitis.
Collapse
|
14
|
In situ gel of lamotrigine for augmented brain delivery: development characterization and pharmacokinetic evaluation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00436-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Salade L, Wauthoz N, Goole J, Amighi K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int J Pharm 2019; 561:47-65. [PMID: 30822505 DOI: 10.1016/j.ijpharm.2019.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Nasal delivery offers many benefits over other conventional routes of delivery (e.g. oral or intravenous administration). Benefits include, among others, a fast onset of action, non-invasiveness and direct access to the central nervous system. The nasal cavity is not only limited to local application (e.g. rhinosinusitis) but can also provide direct access to other sites in the body (e.g. the central nervous system or systemic circulation). However, both the anatomy and the physiology of the nose impose their own limitations, such as a small volume for delivery or rapid mucociliary clearance. To meet nasal-specific criteria, the formulator has to complete a plethora of tests, in vitro and ex vivo, to assess the efficacy and tolerance of a new drug-delivery system. Moreover, depending on the desired therapeutic effect, the delivery of the drug should target a specific pathway that could potentially be achieved through a modified release of this drug. Therefore, this review focuses on specific techniques that should be performed when a nasal formulation is developed. The review covers both the tests recommended by regulatory agencies (e.g. the Food and Drug Administration) and other complementary experiments frequently performed in the field.
Collapse
Affiliation(s)
- Laurent Salade
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Karim Amighi
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
16
|
Gatti THH, Eloy JO, Ferreira LMB, Silva ICD, Pavan FR, Gremião MPD, Chorilli M. Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000117314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Kaplan M, Tuğcu-Demiröz F, Vural İ, Çelebi N. Development and characterization of gels and liposomes containing ovalbumin for nasal delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Wong CY, Martinez J, Dass CR. Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities. J Pharm Pharmacol 2016; 68:1093-108. [DOI: 10.1111/jphp.12607] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/10/2016] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
Diabetes mellitus is characterised by progressive β-cell destruction and loss of function, or loss of ability of tissues to respond to insulin. Daily subcutaneous insulin injection is standard management for people with diabetes, although patient compliance is hard to achieve due to the inconvenience of injections, so other forms of delivery are being tested, including oral administration. This review summarises the developments in oral insulin administration.
Methods
The PubMed database was consulted to compile this review comparing conventional subcutaneous injection of insulin to the desired oral delivery.
Key findings
Oral administration of insulin has potential benefits in reducing pain and chances of skin infection, improving the portal levels of insulin and avoiding side effects such as hyperinsulinemia, weight gain and hypoglycaemia. Although oral delivery of insulin is an ideal administration route for patients with diabetes, several physiological barriers have to be overcome. An expected low oral bioavailability can be attributed to its high molecular weight, susceptibility to enzymatic proteolysis and low diffusion rate across the mucin barrier.
Conclusions
Strategies for increasing the bioavailability of oral insulin include the use of enzyme inhibitors, absorption enhancers, mucoadhesive polymers and chemical modification for endogenous receptor-mediated absorption. These may help significantly increase patient compliance and disease management.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy, Curtin University, Bentley, Australia
| | - Jorge Martinez
- School of Pharmacy, Curtin University, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy, Curtin University, Bentley, Australia
- Curtin Biosciences Research Precinct, Bentley, Australia
| |
Collapse
|
19
|
Lungare S, Bowen J, Badhan R. Development and Evaluation of a Novel Intranasal Spray for the Delivery of Amantadine. J Pharm Sci 2016; 105:1209-20. [PMID: 26886345 DOI: 10.1016/j.xphs.2015.12.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 12/19/2022]
Abstract
The aim of this study was to develop and characterize an intranasal delivery system for amantadine hydrochloride (AMT). Optimal formulations consisted of a thermosensitive polymer Pluronic® 127 and either carboxymethyl cellulose or chitosan which demonstrated gel transition at nasal cavity temperatures (34 ± 1°C). Rheologically, the loss tangent (Tan δ) confirmed a 3-stage gelation phenomena at 34 ± 1°C and non-Newtonian behavior. Storage of optimized formulation carboxymethyl cellulose and optimal formulation chitosan at 4°C for 8 weeks resulted in repeatable release profiles at 34°C when sampled, with a Fickian mechanism earlier on but moving toward anomalous transport by week 8. Polymers (Pluronic® 127, carboxymethyl cellulose, and chitosan) demonstrated no significant cellular toxicity to human nasal epithelial cells up to 4 mg/mL and up to 1 mM for AMT (IC50: 4.5 ± 0.05 mM). Optimized formulation carboxymethyl cellulose and optimal formulation chitosan demonstrated slower release across an in vitro human nasal airway model (43%-44% vs 79 ± 4.58% for AMT). Using a human nasal cast model, deposition into the olfactory regions (potential nose-to-brain) was demonstrated on nozzle insertion (5 mm), whereas tilting of the head forward (15°) resulted in greater deposition in the bulk of the nasal cavity.
Collapse
Affiliation(s)
- Shital Lungare
- School of Life and Health Sciences, Department of Pharmacy, Aston University, Birmingham, UK
| | - James Bowen
- Department of Engineering and Innovation, The Open University, Milton Keynes, UK; School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Raj Badhan
- Aston Research Centre for Healthy Ageing, Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
20
|
Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:205-15. [PMID: 26834457 PMCID: PMC4716722 DOI: 10.2147/dddt.s93937] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Zabih Ullah
- Department of Research, Prince Sultan, Military Medical City, Saudi Arabia
| | - Mohammad Tariq
- Department of Research, Prince Sultan, Military Medical City, Saudi Arabia
| | - Amal Fatani
- Department of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 2014; 190:189-200. [DOI: 10.1016/j.jconrel.2014.05.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 01/07/2023]
|
22
|
Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv 2014; 23:681-93. [PMID: 24901207 DOI: 10.3109/10717544.2014.920431] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. OBJECTIVE The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. METHODS Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. RESULTS AND CONCLUSION The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.
Collapse
Affiliation(s)
- Amrish Kumar
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Aditya Nath Pandey
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| | - Sunil Kumar Jain
- a Department of Pharmaceutics , Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , Chhattisgarh , India
| |
Collapse
|
23
|
Abstract
Alginic acid nanoparticles (NPs) containing insulin, with nicotinamide as permeation enhancer were developed for sublingual delivery. The lower concentration of proteolytic enzymes, lower thickness and enhanced retention due to bioadhesive property, were relied on for enhanced insulin absorption. Insulin-loaded NPs were prepared by mild and aqueous based nanoprecipitation process. NPs were negatively charged and had a mean size of ∼200 nm with low dispersity index. Insulin loading capacities of >95% suggested a high association of insulin with alginic acid. Fourier Transform Infra-Red Spectroscopy (FTIR) spectra and DSC (Differential Scanning Calorimetry) thermogram of insulin-loaded NPs revealed the association of insulin with alginic acid. Circular dichroism (CD) spectra confirmed conformational stability, while HPLC analysis confirmed chemical stability of insulin in the NPs. Sublingually delivered NPs with nicotinamide exhibited high pharmacological availability (>100%) and bioavailability (>80%) at a dose of 5 IU/kg. The high absolute pharmacological availability of 20.2% and bioavailability of 24.1% in comparison with subcutaneous injection at 1 IU/kg, in the streptozotocin-induced diabetic rat model, suggest the insulin-loaded alginic acid NPs as a promising sublingual delivery system of insulin.
Collapse
Affiliation(s)
- Nilam H Patil
- a Department of Pharmaceutical Science and Technology , Institute of Chemical Technology , Mumbai , Maharashtra , India
| | - Padma V Devarajan
- a Department of Pharmaceutical Science and Technology , Institute of Chemical Technology , Mumbai , Maharashtra , India
| |
Collapse
|
24
|
Kwon KC, Verma D, Singh ND, Herzog R, Daniell H. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 2013; 65:782-99. [PMID: 23099275 PMCID: PMC3582797 DOI: 10.1016/j.addr.2012.10.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/26/2012] [Accepted: 10/17/2012] [Indexed: 12/19/2022]
Abstract
Among 12billion injections administered annually, unsafe delivery leads to >20million infections and >100million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1 diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Dheeraj Verma
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Nameirakpam D. Singh
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Roland Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Cancer and Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| |
Collapse
|
25
|
Farid RM, Etman MA, Nada AH, Ebian AEAR. Formulation and in vitro evaluation of salbutamol sulphate in situ gelling nasal inserts. AAPS PharmSciTech 2013; 14:712-8. [PMID: 23516112 PMCID: PMC3666017 DOI: 10.1208/s12249-013-9956-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/05/2013] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to formulate salbutamol sulfate (SS), a model drug, as mucoadhesive in situ gelling inserts having a high potential as nasal drug delivery system bypassing the first-pass metabolism. In situ gelling inserts, each containing 1.4% SS and 2% gel-forming polymer, hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Na), sodium alginate (AL), and chitosan (CH) were prepared. The inserts were investigated for their different physicochemical properties. The weight of inserts was 16-27 mg, drug content was 3.9-4.2 mg, thickness ranged between 15 and 28 μm and surface pH was 5-7. Cumulative drug released from the inserts exhibited extended release for more than 10 h following the decreasing order: CH>AL>CMC Na>HPMC. The drug release from CMC Na and AL inserts followed zero-order kinetics while HPMC and CH inserts exhibited non-Fickian diffusion mechanism. The inserts exhibited different water uptake (7-23%) with the smallest values for CH. Differential scanning calorimetry study pointed out possible interaction of SS and oppositely charged anionic polymers (CMC Na and AL). The mucoadhesive in situ gelling inserts exhibited satisfactory mucoadhesive and extended drug release characteristics. The inserts could be used for nasal delivery of SS over about 12 h; bypassing the hepatic first-pass metabolism without potential irritation.
Collapse
Affiliation(s)
- Ragwa M Farid
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt.
| | | | | | | |
Collapse
|
26
|
Abstract
Recent advances in the fields of molecular biology and biotechnology have allowed for the large-scale production and subsequent exploitation of the therapeutic potential of protein- and peptide-based drugs. The facilitation of delivery of this class of drugs must be tailored to meet the requirements and often the limitations dictated by the route of delivery chosen. The aim of this review is to comprehensively discuss several routes of drug delivery, detailing the uses and exploitation of each, from origins to present day approaches. Specific reference is made to the compatibility or incompatibility of each approach in the facilitation of the delivery of drugs of protein origin. Additionally, the physiological nature of the delivery route and the inherent physiological obstacles that must be considered when determining the most suitable approach to drug design and delivery enhancement are also addressed. Examples of novel protein-based drug designs and delivery methodologies that illustrate such enhancement strategies are explored.
Collapse
|
27
|
|
28
|
Sharma N, Kulkarni GT, Sharma A, Bhatnagar A, Kumar N. Natural mucoadhesive microspheres of Abelmoschus esculentus polysaccharide as a new carrier for nasal drug delivery. J Microencapsul 2013; 30:589-98. [PMID: 23379506 DOI: 10.3109/02652048.2013.764941] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work describes the preparation and evaluation of mucoadhesive microspheres, using Abelmoschus esculentus polysaccharide as a novel carrier for safe and effective delivery of rizatriptan benzoate into nasal cavity. The polysaccharide was extracted from the fruit of A. esculentus and mucoadhesive microspheres were prepared by emulsification, followed by crosslinking using epichlorohydrin. Prepared microspheres were evaluated for size, morphology, swelling properties, mucoadhesive strength, encapsulation efficiency and drug release. Microspheres were found to release 50% of drug within 15 min and rest of the drug was released within 60 min. The drug release was found to decrease with increasing concentration of polysaccharide. To determine the retention time of the microspheres in the nasal cavity of rabbits, the microspheres were radiolabelled with (99m)Tc and subjected to gamma scintigraphy. The results showed a significant improvement in the nasal retention of the microspheres as compared to the aqueous solution of radiolabelled free-drug.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutical Sciences, Jawaharlal Nehru Technological University, Kukatpalli, Hyderabad, India.
| | | | | | | | | |
Collapse
|
29
|
Nazar H, Caliceti P, Carpenter B, El-Mallah AI, Fatouros DG, Roldo M, van der Merwe SM, Tsibouklis J. A once-a-day dosage form for the delivery of insulin through the nasal route: in vitro assessment and in vivo evaluation. Biomater Sci 2013; 1:306-314. [DOI: 10.1039/c2bm00132b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Abstract
The concept of mucoadhesion and the molecular design requirements for the synthesis of mucoadhesive agents are both well understood and, as a result, hydrogel formulations that may be applied to mucosal surfaces are readily accessible. Nanosized hydrogel systems that make use of biological recognition or targeting motifs, by reacting to disease-specific environmental triggers and/or chemical signals to affect drug release, are now emerging as components of a new generation of therapeutics that promise improved residence time, faster response to stimuli and triggered release.
Collapse
|
31
|
Alsarra IA, Hamed AY, Alanazi FK, Neau SH. Rheological and mucoadhesive characterization of poly(vinylpyrrolidone) hydrogels designed for nasal mucosal drug delivery. Arch Pharm Res 2011; 34:573-82. [PMID: 21544722 DOI: 10.1007/s12272-011-0407-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/23/2010] [Accepted: 09/11/2010] [Indexed: 11/30/2022]
Abstract
Poly(vinylpyrrolidone) (PVP) hydrogels were crosslinked by gamma irradiation to add structure and rigidity, and then rheological and mucoadhesive properties were evaluated. The effects of PVP concentration, radiation dose, and additives, such as poly(ethylene glycol) (PEG) and glycerol, on rheological properties were investigated. In an oscillatory analysis, an increase in polymer concentrations increased the storage modulus (G') and the loss modulus (G″) but decreased the loss tangent (tan δ < 1). The relationships between G'or G″ and the frequency levelled off at higher frequencies, which is indicative of polymer chain entanglement and network formation. Each of the 6% PVP hydrogels exhibited plastic flow with rheopectic behavior. PVP concentration, radiation dose, and the presence of PEG or glycerol influenced the rheological and mucoadhesive properties of the hydrogels. However, adding acyclovir to the formulation did not have a profound effect on the rheological behavior of the hydrogels. The results suggest that a 3% PVP hydrogel with 1% PEG crosslinked with 20 kGy is the most appropriate hydrogel. The results demonstrated the successful complementary application of oscillatory and flow rheometry to characterize and develop a hydrogel for mucosal drug administration.
Collapse
Affiliation(s)
- Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | | | | | | |
Collapse
|
32
|
Patil SB, Sawant KK. Development, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal delivery. J Microencapsul 2011; 26:432-43. [PMID: 18932060 DOI: 10.1080/02652040802456726] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present research work was aimed at development and optimization of alginate mucoadhesive microspheres of carvedilol for nasal delivery to avoid first pass metabolism and to improve the therapeutic efficacy in the treatment of hypertension and angina pectoris. The microspheres were prepared by a water-in-oil (w/o) emulsification technique. A 2(3) factorial design was employed with drug : polymer ratio, calcium chloride concentration and cross-linking time as independent variables while particle size of the microspheres and in vitro mucoadhesion were the dependent variables. Regression analysis was performed to identify the best formulation conditions. Particle size was analysed by dynamic laser light diffraction technique and found to be in the range of 26.36-54.32 microm, which is favourable for intranasal absorption. The shape and surface characteristics were determined by scanning electron microscopy (SEM) which depicted the spherical nature and nearly smooth surfaces of the microspheres. The percentage encapsulation efficiency was found to be in the range between 36.62-56.18. In vitro mucoadhesion was performed by adhesion number using sheep nasal mucosa and was observed in a range from 69.25-85.28. Differential scanning calorimetry and X-ray diffraction results indicated a molecular level dispersion of carvedilol in the microspheres. In vitro release studies in pH 6.2 phosphate buffer indicated non-Fickian or anomalous type of transport for the release of carvedilol from the microspheres.
Collapse
Affiliation(s)
- Sanjay B Patil
- New Drug Delivery Research Laboratory, TIFAC Center of Relevance and Excellence in NDDS, Pharmacy Department, The M. S. University of Baroda, Fatehgunj, Vadodara, Gujarat, India
| | | |
Collapse
|
33
|
Luppi B, Bigucci F, Cerchiara T, Zecchi V. Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opin Drug Deliv 2010; 7:811-28. [DOI: 10.1517/17425247.2010.495981] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
|
35
|
Chugh Y, Kapoor P, Kapoor AK. Intranasal drug delivery: a novel approach. Indian J Otolaryngol Head Neck Surg 2009; 61:90-4. [PMID: 23120612 PMCID: PMC3449992 DOI: 10.1007/s12070-009-0044-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yashpal Chugh
- Department of Pharmacology, MLN Medical College, Allahabad, India
| | | | - A. K. Kapoor
- Department of Pharmacology, MLN Medical College, Allahabad, India
| |
Collapse
|
36
|
Alsarra IA, Hamed AY, Mahrous GM, El Maghraby GM, Al-Robayan AA, Alanazi FK. Mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Drug Dev Ind Pharm 2009; 35:352-62. [PMID: 18770068 DOI: 10.1080/03639040802360510] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The study evaluated different mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Gels containing poly-N-vinyl-2-pyrrolidone (PVP) were prepared with crosslinking achieved by irradiation with a radiation dose of 15 kGy being as efficient as 20 kGy. Gels containing chitosan and carbopol were also evaluated. The mucoadhesive properties of gels were measured by a modification of a classical tensile experiment, employing a tensile tester and using freshly excised sheep nasal mucosa. Considering the mucoadhesive force, chitosan gel and gel prepared with 3% PVP in presence of polyethylene glycol (PEG) 600 were the most efficient. The in vitro drug release depended on the gel composition. Higher release rates were obtained from PVP gels compared to chitosan or carbopol gels. The release rate of drug from PVP gels was increased further in presence of PEG or glycerol. Histopathological investigations proved that the PVP was a safe hydrogel to be used for mucosal delivery. The PEG in gel formulations caused less damages to the nasal mucosal compared to formulation containing glycerol.
Collapse
Affiliation(s)
- Ibrahim A Alsarra
- Kayyali Chair for Pharmaceutical Industry, Pharmaceutical Technology Center, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Alsarra IA, Hamed AY, Alanazi FK. Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug Deliv 2008; 15:313-21. [PMID: 18763162 DOI: 10.1080/10717540802035251] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Intranasal route is one of the most attractive routes for distributing drugs to systemic circulation. Liposomes are used as biocompatible carriers to improve delivery properties across nasal mucosa. The objective of the present study was to formulate acyclovir liposomes and partition into poly-N-vinyl-2-pyrrolidone. Entrapment efficiency showed that multilamellar and unilamellar liposomes were 43.2% +/- 0.83 and 21% +/- 1.01, respectively. The bioavailability of acyclovir from nasal mucoadhesive gel was 60.72% compared with intravenous route. The use of liposomes acyclovir and mucoadhesive gel not only promoted the prolonged contact between the drug and the absorptive sites in the nasal cavity, but also facilitated direct absorption through the nasal mucosa.
Collapse
Affiliation(s)
- Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|
39
|
Enescu D, Olteanu CE. FUNCTIONALIZED CHITOSAN AND ITS USE IN PHARMACEUTICAL, BIOMEDICAL, AND BIOTECHNOLOGICAL RESEARCH. CHEM ENG COMMUN 2008. [DOI: 10.1080/00986440801958808] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 2007; 59:1521-46. [PMID: 17881081 DOI: 10.1016/j.addr.2007.08.019] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 08/16/2007] [Indexed: 11/22/2022]
Abstract
The quest to eliminate the needle from insulin delivery and to replace it with non- or less-invasive alternative routes has driven rigorous pharmaceutical research to replace the injectable forms of insulin. Recently, various approaches have been studied involving many strategies using various technologies that have shown success in delivering insulin, which are designed to overcome the inherent barriers for insulin uptake across the gastrointestinal tract, mucosal membranes and skin. This review examines some of the many attempts made to develop alternative, more convenient routes for insulin delivery to avoid existing long-term dependence on multiple subcutaneous injections and to improve the pharmacodynamic properties of insulin. In addition, this article concentrates on the successes in this new millennium in developing potential non-invasive technologies and devices, and on major new milestones in modern insulin delivery for the effective treatment of diabetes.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, Shinagawa, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
41
|
Furubayashi T, Inoue D, Kamaguchi A, Higashi Y, Sakane T. Influence of formulation viscosity on drug absorption following nasal application in rats. Drug Metab Pharmacokinet 2007; 22:206-11. [PMID: 17603222 DOI: 10.2133/dmpk.22.206] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this research is to clarify the influence of the viscosity of the nasal formulation on in vivo nasal drug absorption and its mechanism using an in vitro Caco-2 system. The drug solution was made viscous by the addition of dextran (Dex). The disappearance of FITC-labeled Dextran (FD, a marker of the dosing solution) applied with control solution followed monoexponential kinetics, while FD applied with Dex solution showed biexponential elimination. The mean residence time of FD in the nasal cavity was increased with the increase in Dex concentration. The nasal absorption of acyclovir was similar in the formulation with low viscosity, increased in the formulation with moderate viscosity and markedly decreased in the formulation with high viscosity. The result from the normal Caco-2 transport study could not explain the relation of in vivo drug absorption with viscosity, while the modified Caco-2 system provided data partly reflecting the change in in vivo absorption in rats. In conclusion, the residence of the applied solution in the nasal cavity was enhanced by the addition of Dex in a viscosity-dependent manner. Moderate viscosity of the dosing solution improved the in vivo nasal absorption of acyclovir, while higher viscosity decreased it.
Collapse
|
42
|
Al-Ghananeem AM, Malkawi AH, Crooks PA. Scopolamine sublingual spray: an alternative route of delivery for the treatment of motion sickness. Drug Dev Ind Pharm 2007; 33:577-82. [PMID: 17520450 DOI: 10.1080/03639040600943848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to develop a sublingual drug delivery spray formulation of scopolamine hydrobromide (L-(-)-hyoscine hydrobromide) and to determine the absolute bioavailability of scopolamine hydrobromide following sublingual delivery and to investigate the effect of a bioadhesive on the pharmacokinetic parameters of this drug in a rabbit model. Rabbits received a single scopolamine free base equivalent sublingual dose of 100 microg/kg and this was compared to intravenous administration of the drug. Blood samples were collected at different time points, and plasma scopolamine concentrations were determined using a new sensitive and specific LC/MS analytical method which utilized electrospray ionization detection. The bioavailability of sublingual scopolamine was determined by comparing plasma concentrations after sublingual spray delivery with equivalent intravenous doses. Following delivery of the sublingual spray dose, the average Cmax was 1024.4+/-177 ng/mL, and the AUC value was found to be 61067.6+/-9605 ng.min/mL. Relative to the intravenous dose (100% bioavailability), the bioavailability was 79.8% after sublingual spray administration. The addition of 2% chitosan, a bio-adhesive material and an absorption enhancer, showed a significant improvement in scopolamine sublingual absorption (p<0.05) was observed. Considering the limitations of delivering scopolamine orally or transdermally to patients who experience motion sickness, the sublingual route of administration using a spray delivery dosage form, is a potential alternative modality for the prevention of nausea and vomiting associated with motion sickness.
Collapse
Affiliation(s)
- Abeer M Al-Ghananeem
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082, USA.
| | | | | |
Collapse
|
43
|
Dai WG, Dong LC. Characterization of physiochemical and biological properties of an insulin/lauryl sulfate complex formed by hydrophobic ion pairing. Int J Pharm 2007; 336:58-66. [PMID: 17174492 DOI: 10.1016/j.ijpharm.2006.11.035] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 08/16/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
An insulin/lauryl sulfate complex was prepared by hydrophobic ion pairing (HIP). The physiochemical and biological properties of the HIP complex were characterized using octanol/water partition measurement, isothermal titration calorimetry (ITC), ultraviolet-circular dichroism (UV-CD) and Fourier transform infrared spectroscopy (FTIR). Sodium dodecyl sulfate (SDS) bound to the insulin in a stoichiometric manner. The formed complex exhibited lipophilicity, and its insulin retained its native structure integrity. The in vivo bioactivity of the complex insulin was evaluated in rats by monitoring the plasma glucose level after intravenous (i.v.) injection, and the glucose level was compared with that for free insulin. The pharmacodynamic study result in rats showed that the complex insulin had in vivo bioactivity comparable to free insulin.
Collapse
Affiliation(s)
- Wei-Guo Dai
- ALZA Corporation, 1900 Charleston Road, Mountain View, CA 94039, USA.
| | | |
Collapse
|
44
|
Aiedeh KM, Taha MO, Al-Hiari Y, Bustanji Y, Alkhatib HS. Effect of Ionic Crosslinking on the Drug Release Properties ofChitosan Diacetate Matrices. J Pharm Sci 2007; 96:38-43. [PMID: 17031867 DOI: 10.1002/jps.20764] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chitosan diacetate (CDA) was prepared by alkylating the amino moieties of chitosan with mono-iodoacetic acid. Subsequently, CDA was cross-linked with Al3+, Zn2+, and Ca2+ ions to yield three ionotropically crosslinked polymeric matrices. These composite matrices were characterized employing infrared spectroscopy (IR) and differential scanning calorimetry (DSC). Subsequently, they were loaded with caffeine, as a model drug, and were assessed as sustained release carriers by evaluating their caffeine release profiles. Interestingly, only CDA-Zn2+ complex sustained the release of caffeine effectively in a zero-order manner. The drug release and thermal behavior of the tested matrices agree with the relative strength of the ionic or coordination character of the bonds. This, in turn, depends on the position of the complexing ions on the electrophilic softness/hardness scale.
Collapse
Affiliation(s)
- Khaled M Aiedeh
- Faculty of Pharmacy, University of Jordan, Queen Rania St., Amman 11942, Jordan.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Optimal glycaemic control is necessary to prevent diabetes-related complications. An intensive treatment, which could mimic physiological insulin secretion, would be the best one. However subcutaneous insulin treatment is not physiologic and represents a heavy burden for patients with type 1 and type 2 diabetes mellitus. Consequently, more acceptable, at least as effective, alternative routes of insulin delivery have been developed over the past years. Up to now, only pulmonary administration of insulin (inhaled insulin) has become a feasible alternative to cover mealtime insulin requirements and one of the various administration systems was recently approved for clinical use in Europe and the United States. But, due to advances in technology, other routes, such as transdermal or oral (buccal and intestinal) insulin administration, could become feasible in a near future, and they could be combined together to offer non-invasive, efficacious and more physiological way of insulin administration to patients with diabetes.
Collapse
Affiliation(s)
- V Lassmann-Vague
- Service d'Endocrinologie, Maladies Métaboliques et Nutrition, Hôpital Sainte-Marguerite, Marseille, France.
| | | |
Collapse
|
46
|
González C, Kanevsky D, De Marco R, Di Girolamo G, Santoro S. Non-invasive routes for insulin administration: current state and perspectives. Expert Opin Drug Deliv 2006; 3:763-70. [PMID: 17076598 DOI: 10.1517/17425247.3.6.763] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diabetes mellitus is a chronic disease that usually requires multiple insulin injections to achieve adequate glycaemic control. This represents a major cause of reduced compliance to treatment. Consequently, other routes for insulin administration have been explored. During recent years, much progress in the development of inhaled insulin has been made. Inhaled insulin has shown favourable properties, such as a rapid onset of action, improved bioavailability and good tolerability; thereby providing satisfaction and ease of administration. However, long-term safety of inhaled insulin needs to be assessed, and the cost would be higher than injectable insulin. Nasal, oral and transdermal insulins are undergoing early phases of pharmacological development. The purpose of this review is to describe the latest developments in the area of non-invasive routes for insulin delivery.
Collapse
Affiliation(s)
- Claudio González
- Department of Pharmacology, Instituto Universitario, CEMIC, Galvan 4102, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|