1
|
Hong S, Zhang Y, Zhang Q, Su Z, Hu G, Wang L, Yu S, Zhu X, Jia G. Health risks of rare earth elements exposure: Impact on mitochondrial DNA copy number and micronucleus frequency. J Environ Sci (China) 2025; 151:150-160. [PMID: 39481929 DOI: 10.1016/j.jes.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 11/03/2024]
Abstract
Toxic effects in terms of mitochondria and hereditary substances have been characterized in vitro for individual rare earth elements, while, the joint effects of mixed elements exposure in the population remain ambiguous. Based on the Occupational Chromate Exposure Dynamic Cohort of China, this study investigated the relationship between 15 blood rare earth elements (cerium, dysprosium, erbium, europium, gadolinium, holmium, lanthanum, lutetium, neodymium, praseodymium, samarium, terbium, thulium, yttrium, and ytterbium) and mitochondrial DNA copy number (MtDNACN) as well as peripheral blood lymphocyte micronucleus frequency (MNF). The elastic net was used to select elements highly correlated with effect indicators, whose dose-response relationships were further illustrated by restricted cubic splines. Bayesian kernel regression was employed to explore the combined effects of elements and the contributions of single element. The results showed that most rare earth elements were positively correlated with effect indicators, with yttrium showing the strongest association (β (95% CI): 0.139 (0.1089 - 0.189) for MtDNACN, 0.937 (0.345 - 1.684) for MNF). In the mixed exposure model, with the exposure level fixed at the 50th percentile as the reference, the effect estimates on MtDNACN and MNF increased by 0.228 and 0.598 units, respectively, at the 75th percentile. The single effect analysis implied that yttrium, lanthanum and terbium contributed the most to the elevation of MtDNACN, while yttrium posed the highest risk for genetic damage, accordingly, we provided recommendations to prioritize these elements of concern. In addition, we observed a chief mediating effect of MtDNACN on the elevation of MNF caused by lanthanum, whereas further mechanistic exploration is required to confirm this finding.
Collapse
Affiliation(s)
- Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Guiping Hu
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, China.
| | - Li Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Shanfa Yu
- Henan Institute for Occupational Medicine, Zhengzhou 450052, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, Beijing 102308, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China.
| |
Collapse
|
2
|
Constantin M, Chifiriuc MC, Vrancianu CO, Petrescu L, Cristian RE, Crunteanu I, Grigore GA, Chioncel M. Insights into the effects of lanthanides on mammalian systems and potential applications. ENVIRONMENTAL RESEARCH 2024; 263:120235. [PMID: 39461700 DOI: 10.1016/j.envres.2024.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Lanthanides, a group of elements with unique chemical properties, have garnered significant attention for their varied biological effects, ranging from cytotoxic to protective, depending on concentration, cell type, and exposure conditions. This review provides a detailed examination of the biological interactions of lanthanides with mammalian systems, including humans, by exploring their impact on different cell lines and organisms. Through a systematic assessment of current research, this work highlights the dual nature of lanthanides, identifying them as both potential therapeutic agents and environmental toxins. Furthermore, it underscores the importance of understanding their mechanisms to mitigate health risks, particularly for those exposed occupationally or via environmental sources. The review concludes with an overview of knowledge gaps and future research directions necessary for unlocking the therapeutic potential of lanthanides while ensuring safety and sustainability in their applications.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, 060031, Bucharest, Romania; The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, District 5, Bucharest, Romania.
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics, DAFAB, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania.
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Ioana Crunteanu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania
| | - Mariana Chioncel
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
3
|
Raghunath SM, Jei JB, Muthukumar B. Characterization of nanoceria-modified silicone soft liners: Surface morphology, hardness, wettability, cytotoxicity, and antifungal properties in artificial saliva - An in vitro study. J Oral Biol Craniofac Res 2024; 14:614-619. [PMID: 39252797 PMCID: PMC11381783 DOI: 10.1016/j.jobcr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Statement of problem Soft liners are essential for denture wearers, which aids in the healing of soft tissue injuries caused by rough denture base surfaces. Silicone soft liners, while effective, can accumulate biofilm over time, necessitating enhancement. Purpose This in vitro study aimed to assess the efficacy of silicone soft liners incorporating varying concentrations of cerium oxide nanoparticles. Materials and methods A stainless-steel die as per ISO standard 10139-2-2018 (35 × 6 mm), Using G*Power 3.0.10 software, 400 samples were prepared with 95 % confidence interval and 80 % power. Samples were divided into five groups: surface morphology (Group A), surface hardness (Group B), wettability (Group C), cytotoxicity (Group D), and antifungal property (Group E). Each group was subdivided based on cerium oxide nanoparticle concentrations. Samples were stored in artificial saliva until evaluation. Surface morphology was examined via scanning electron microscopy (SEM), surface hardness using Shore A Durometer, wettability by drop shape analysis, cytotoxicity via MTT assay, and antifungal properties using crystal violet staining.Data were assessed for normal distribution using Kolmogorov-Smirnov and Shapiro-Wilk tests. Results SEM analysis showed optimal nanoparticle dispersion in Group A2(0.25 %) and A3 (0.5 %). Group B2 (0.25 %) exhibited the lowest mean surface hardness, decreasing from day 1 to day 30. Group C3 demonstrated the most hydrophobic surface across days. Group D2 exhibited the least cytotoxicity at all time intervals. Group E4 displayed the highest antifungal activity. Conclusion Within study limitations, silicone soft liners modified with 0.25 % and 0.5 % cerium oxide nanoparticles exhibited superior properties in surface hardness and cytotoxicity. Optimal surface morphology and wettability were observed with 0.5 % concentration, while antifungal efficacy peaked at 1 %. These findings suggest clinical potential for treating damaged oral tissues. Clinical implications Soft liners modified with 0.25 % and 0.5 % cerium oxide nanoparticles may benefit patients with oral tissue abuse, offering enhanced therapeutic properties.
Collapse
|
4
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
5
|
Abedi Tameh F, Mohamed HEA, Aghababaee L, Akbari M, Alikhah Asl S, Javadi MH, Aucamp M, Cloete KJ, Soleimannejad J, Maaza M. In-vitro cytotoxicity of biosynthesized nanoceria using Eucalyptus camaldulensis leaves extract against MCF-7 breast cancer cell line. Sci Rep 2024; 14:17465. [PMID: 39075175 PMCID: PMC11286930 DOI: 10.1038/s41598-024-68272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Cerium oxide nanoparticles possess unique properties that make them promising candidates in various fields, including cancer treatment. Among the proposed synthesis methods for CNPs, biosynthesis using natural extracts, offers an eco-friendly and convenient approach for producing CNPs, particularly for biomedical applications. In this study, a novel method of biosynthesis using the aqueous extract of Eucalyptus camaldulensis leaves was used to synthesize CNPs. Scanning electron microscopy and Transmission electron microscopy (TEM) techniques revealed that the synthesized CNPs exhibit a flower-like morphology. The particle size of CNPs obtained using Powder X-ray diffraction peaks and TEM as 13.43 and 39.25 nm. Energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy confirmed the effect of biomolecules during the synthesis process and the formation of CNPs. The cytotoxicity of biosynthesized samples was evaluated using the MTT method demonstrating the potential of these samples to inhibit MCF-7 cancerous cells. The viability of the MCF-7 cell line conducted by live/dead imaging assay confirmed the MTT cytotoxicity method and indicated their potential to inhibit cancerous cells. Furthermore, the successful uptake of CNPs by MCF-7 cancer cells, as demonstrated by confocal microscopy, provides evidence that the intracellular pathway contributes to the anticancer activity of the CNPs. In general, results indicate that the biosynthesized CNPs exhibit significant cytotoxicity against the MCF-7 cancerous cell line, attributed to their high surface area.
Collapse
Affiliation(s)
- Fatemeh Abedi Tameh
- UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 0003, South Africa.
- School of Chemistry, College of Science, University of Tehran, P.O. Box 141556455, Tehran, Iran.
| | - Hamza Elsayed Ahmed Mohamed
- UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 0003, South Africa
| | - Leila Aghababaee
- Neuroscience Laboratory, Institute of Biochemistry and Biophysics (IBB), Bio Organic, University of Tehran, Tehran, 1417614335, Iran
| | - Mahmood Akbari
- UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 0003, South Africa.
| | - Shervin Alikhah Asl
- UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 0003, South Africa
| | - Mohammad Hasan Javadi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155‑9516, Tehran, Iran
| | - Marique Aucamp
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Drive, Bellville, 7130, Cape Town, South Africa
| | - Karen Jacqueline Cloete
- UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 0003, South Africa
| | - Janet Soleimannejad
- School of Chemistry, College of Science, University of Tehran, P.O. Box 141556455, Tehran, Iran
| | - Malik Maaza
- UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, 0003, South Africa
| |
Collapse
|
6
|
Türkmen EU, Arslan P, Erkoç F, Günal AÇ, Duran H. The cerium oxide nanoparticles toxicity induced physiological, histological and biochemical alterations in freshwater mussels, Unio crassus. J Trace Elem Med Biol 2024; 83:127371. [PMID: 38176319 DOI: 10.1016/j.jtemb.2023.127371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Releasing of cerium oxide nanoparticles (nano-CeO2) to the nature has increased due to the widespread use in many fields ranging from cosmetics to the food industry. Therefore, nano-CeO2 has been included in the Organization for Economic Co-operation and Development's (OECD) priority list for engineering nanomaterials. In this study, the effects of nano-CeO2 on the freshwater mussels were investigated to reveal the impact on the freshwater systems on model organism. METHODS First, the chemical and structural properties of nano-CeO2 were characterized in details. Second, the freshwater mussels were exposed to environmentally relevant concentrations of nano-CeO2 as 10 mg, 25 mg and 50 mg/L during 48-h and 7-d. Third, after the exposure periods, hemolymph and tissue samples were taken to analyse the Total Hemocyte Counts (THCs) histology and oxidative stress parameters (total antioxidant status, glutathione, glutathione-S-transferase, and advanced oxidative protein products). RESULTS Significant decrease of the THCs was observed in the nano-CeO2 exposed mussels compared to the control group (P < 0.05). The histological results showed a positive association between nano-CeO2 exposure concentration in the water and level of tissue damage and histopathological alterations were detected in the gill and the digestive gland tissues. Oxidative stress parameters were slightly affected after exposure to nano-CeO2 (P > 0.05). In conclusion, this study showed that acute exposure of freshwater mussels to nano-CeO2 did not pose significant biological risk. However, it has been proven that mussels are able to accumulate nano-CeO2 significantly in their bodies. CONCLUSION This suggests that nano-CeO2 may be a potential risk to other organisms in the ecosystem through trophic transfer in the food-web based on their habitat and niche in the ecosystem.
Collapse
Affiliation(s)
- Ezgi Uluer Türkmen
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Türkiye
| | - Pınar Arslan
- Department of Biology, Faculty of Science, Çankırı Karatekin University, 18100 Çankırı, Türkiye
| | - Figen Erkoç
- Department of Biology Education, Gazi Faculty of Education, Gazi University, Teknikokullar, Ankara, Türkiye; Department of Biomedical Engineering, Faculty of Engineering, Başkent University, Etimesgut, Ankara, Türkiye
| | - Aysel Çağlan Günal
- Department of Biology Education, Gazi Faculty of Education, Gazi University, Teknikokullar, Ankara, Türkiye; Environmental Health and Environmental Sciences Program, Health Services Vocational School, Gazi University, Ankara, Türkiye.
| | - Hatice Duran
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Türkiye; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Türkiye
| |
Collapse
|
7
|
Pérez Gutiérrez RM, Rodríguez-Serrano LM, Laguna-Chimal JF, de la Luz Corea M, Paredes Carrera SP, Téllez Gomez J. Geniposide and Harpagoside Functionalized Cerium Oxide Nanoparticles as a Potential Neuroprotective. Int J Mol Sci 2024; 25:4262. [PMID: 38673848 PMCID: PMC11049985 DOI: 10.3390/ijms25084262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease is associated with protein aggregation, oxidative stress, and the role of acetylcholinesterase in the pathology of the disease. Previous investigations have demonstrated that geniposide and harpagoside protect the brain neurons, and cerium nanoparticles (CeO2 NPs) have potent redox and antioxidant properties. Thus, the effect of nanoparticles of Ce NPs and geniposide and harpagoside (GH/CeO2 NPs) on ameliorating AD pathogenesis was established on AlCl3-induced AD in mice and an aggregation proteins test in vitro. Findings of spectroscopy analysis have revealed that GH/CeO2 NPs are highly stable, nano-size, spherical in shape, amorphous nature, and a total encapsulation of GH in cerium. Treatments with CeO2 NPs, GH/CeO2 NPs, and donepezil used as positive control inhibit fibril formation and protein aggregation, protect structural modifications in the BSA-ribose system, have the ability to counteract Tau protein aggregation and amyloid-β1-42 aggregation under fibrillation condition, and are able to inhibit AChE and BuChE. While the GH/CeO2 NPs, treatment in AD induced by AlCl3 inhibited amyloid-β1-42, substantially enhanced the memory, the cognition coordination of movement in part AD pathogenesis may be alleviated through reducing amyloidogenic pathway and AChE and BuChE activities. The findings of this work provide important comprehension of the chemoprotective activities of iridoids combined with nanoparticles. This could be useful in the development of new therapeutic methods for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rosa Martha Pérez Gutiérrez
- Natural Products Research Laboratory, Higher School of Chemical Engineering and Extractive Industries, National Polytechnic Institute (IPN), Av. National Polytechnic Institute S/N, Mexico City 07708, Mexico
| | - Luis Miguel Rodríguez-Serrano
- Faculty of Psychology, Universidad Anáhuac México Norte, Huixquilucan 52786, CP, Mexico; (L.M.R.-S.); (J.F.L.-C.); (J.T.G.)
| | - José Fidel Laguna-Chimal
- Faculty of Psychology, Universidad Anáhuac México Norte, Huixquilucan 52786, CP, Mexico; (L.M.R.-S.); (J.F.L.-C.); (J.T.G.)
| | - Mónica de la Luz Corea
- Polymer Research Laboratory, Higher School of Chemical Engineering and Extractive Industries, National Polytechnic Institute (IPN), Av. Instituto Politécnico Nacional S/N, Mexico City 07708, Mexico;
| | - Silvia Patricia Paredes Carrera
- Sustainable Nanomaterials Laboratory, Higher School of Chemical Engineering and Industries Extractives, National Polytechnic Institute (IPN), Av. National Polytechnic Institute S/N, Mexico City 07708, Mexico;
| | - Julio Téllez Gomez
- Faculty of Psychology, Universidad Anáhuac México Norte, Huixquilucan 52786, CP, Mexico; (L.M.R.-S.); (J.F.L.-C.); (J.T.G.)
| |
Collapse
|
8
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Gomte SS, Jadhav PV, Jothi Prasath V R N, Agnihotri TG, Jain A. From lab to ecosystem: Understanding the ecological footprints of engineered nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:33-73. [PMID: 38063467 DOI: 10.1080/26896583.2023.2289767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Nanotechnology has attained significant attention from researchers in past decades due to its numerous advantages, such as biocompatibility, biodegradability, and improved stability over conventional drug delivery systems. The fabrication of engineered nanoparticles (ENPs), including carbon nanotubes (CNTs), fullerenes, metallic and metal oxide-based NPs, has been steadily increasing day due to their wide range of applications from household to industrial applications. Fabricated ENPs can release different materials into the environment during their fabrication process. The effect of such materials on the environment is the primary concern with due diligence on the safety and efficacy of prepared NPs. In addition, an understanding of chemistry, reactivity, fabrication process, and viable mechanism of NPs involved in the interaction with the environment is very important. To date, only a limited number of techniques are available to assess ENPs in the natural environment which makes it difficult to ascertain the impact of ENPs in natural settings. This review extensively examines the environmental effects of ENPs and briefly discusses useful tools for determining NP size, surface charge, surface area, and external appearance. In conclusion, the review highlights the potential risks associated with ENPs and suggests possible solutions.
Collapse
Affiliation(s)
- Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Pratiksha Vasant Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Naga Jothi Prasath V R
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| |
Collapse
|
10
|
Hosseini SA, Khatami M, Asadollahi A, Yaghoobi H. Cerium Oxide Nanoparticles Synthesis using Alhagi Maurorum Leaf Extract and Evaluation of Their Cytotoxic Effect on Breast Cancer Cell Lines and Antibacterial Effects. Anticancer Agents Med Chem 2024; 24:1056-1062. [PMID: 38685807 DOI: 10.2174/0118715206296523240424072939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Green synthesis offers a fast, simple, and economical method for producing metallic nanoparticles.The basis of this method is to obtain nanoparticles using natural materials, such as plants, fungi, and bacteria, instead of harmful and expensive chemical-reducing agents. In this study, CeO2NPs were produced using Alhagi maurorum extract, and their anticancer and antibacterial activities were evaluated. METHODS Alhagi maurorum extract was prepared according to a previously described protocol, and CeO2NPs were synthesized from the salt of this extract. The resulting nanoparticles were characterized using Transmission electron microscopy (TEM), scanning electron microscope (SEM), and X-ray diffraction (XRD) techniques. The antibacterial and cytotoxic effects of the nanoparticles were measured by MIC, MBC, and MTT assays, respectively. The results were analyzed using one-way analysis of variance (ANOVA) using Prism software. RESULTS The MTT assay on breast cancer cell lines showed that the cytotoxic effect of CeO2NPs on cell lines was concentration-dependent. In addition, this nanoparticle was more effective against Gram-positive bacteria. CONCLUSION These nanoparticles can be used as cancer drug delivery systems with specific targeting at low concentrations in addition to anticancer treatments. It can also have biological and medicinal applications, such as natural food preservation and wound dressing.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirkian Asadollahi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Li L, Shen Y, Tang Z, Yang Y, Fu Z, Ni D, Cai X. Engineered nanodrug targeting oxidative stress for treatment of acute kidney injury. EXPLORATION (BEIJING, CHINA) 2023; 3:20220148. [PMID: 38264689 PMCID: PMC10742205 DOI: 10.1002/exp.20220148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/23/2023] [Indexed: 01/25/2024]
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function, and is associated with a high risk of death. Many pathological changes happen in the process of AKI, including crucial alterations to oxidative stress levels. Numerous efforts have thus been made to develop effective medicines to scavenge excess reactive oxygen species (ROS). However, researchers have encountered several significant challenges, including unspecific biodistribution, high biotoxicity, and in vivo instability. To address these problems, engineered nanoparticles have been developed to target oxidative stress and treat AKI. This review thoroughly discusses the methods that empower nanodrugs to specifically target the glomerular filtration barrier and presents the latest achievements in engineering novel ROS-scavenging nanodrugs in clustered sections. The analysis of each study's breakthroughs and imperfections visualizes the progress made in developing effective nanodrugs with specific biodistribution and oxidative stress-targeting capabilities. This review fills the blank of a comprehensive outline over current progress in applying nanotechnology to treat AKI, providing potential insights for further research.
Collapse
Affiliation(s)
- Liwen Li
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| | - Yining Shen
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| | - Zhongmin Tang
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonWisconsinUSA
| | - Yuwen Yang
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| | - Zi Fu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Dalong Ni
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Xiaojun Cai
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| |
Collapse
|
12
|
Ren X, Zhuang H, Zhang Y, Zhou P. Cerium oxide nanoparticles-carrying human umbilical cord mesenchymal stem cells counteract oxidative damage and facilitate tendon regeneration. J Nanobiotechnology 2023; 21:359. [PMID: 37789395 PMCID: PMC10546722 DOI: 10.1186/s12951-023-02125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Tendon injuries have a high incidence and limited treatment options. Stem cell transplantation is essential for several medical conditions like tendon injuries. However, high local concentrations of reactive oxygen species (ROS) inhibit the activity of transplanted stem cells and hinder tendon repair. Cerium oxide nanoparticles (CeONPs) have emerged as antioxidant agents with reproducible reducibility. RESULTS In this study, we synthesized polyethylene glycol-packed CeONPs (PEG-CeONPs), which were loaded into the human umbilical cord mesenchymal stem cells (hUCMSCs) to counteract oxidative damage. H2O2 treatment was performed to evaluate the ROS scavenging ability of PEG-CeONPs in hUCMSCs. A rat model of patellar tendon defect was established to assess the effect of PEG-CeONPs-carrying hUCMSCs in vivo. The results showed that PEG-CeONPs exhibited excellent antioxidant activity both inside and outside the hUCMSCs. PEG-CeONPs protect hUCMSCs from senescence and apoptosis under excessive oxidative stress. Transplantation of hUCMSCs loaded with PEG-CeONPs reduced ROS levels in the tendon injury area and facilitated tendon healing. Mechanistically, NFκB activator tumor necrosis factor α and MAPK activator dehydrocrenatine, reversed the therapeutic effect of PEG-CeONPs in hUCMSCs, indicating that PEG-CeONPs act by inhibiting the NFκB and MAPK signaling pathways. CONCLUSIONS The carriage of the metal antioxidant oxidase PEG-CeONPs maintained the ability of hUCMSCs in the injured area, reduced the ROS levels in the microenvironment, and facilitated tendon regeneration. The data presented herein provide a novel therapeutic strategy for tendon healing and new insights into the use of stem cells for disease treatment.
Collapse
Affiliation(s)
- Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huangming Zhuang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuelong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Yadav S, Chamoli S, Kumar P, Maurya PK. Structural and functional insights in polysaccharides coated cerium oxide nanoparticles and their potential biomedical applications: A review. Int J Biol Macromol 2023; 246:125673. [PMID: 37406905 DOI: 10.1016/j.ijbiomac.2023.125673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Cerium oxide nanoparticles have now significant presence in biomedical fields due to their wide applications; however, challenges regarding their safety and biocompatibility persist. Polysaccharides based biopolymers have inherent hydroxyl and carboxyl groups, enabling them to govern the surface functionalization of cerium oxide nanoparticles, hence their chemical and physical characteristics. Because of this, polysaccharides such as dextran, alginate, pullulan, chitosan, polylactic acid, starch, and pectin are practical substitutes for the conventional coatings used to synthesize cerium oxide nanoparticles. This review discusses the effect of biopolymer coatings on the properties of cerium oxide nanoparticles, such as size, stability, aggregation, and biocompatibility. Additionally, it also summarises various biomedical applications of polysaccharides coated cerium oxide nanoparticles, such as in bone tissue regeneration, liver inflammation, wound healing, and antibacterial and anticancer activities. Biocompatible cerium oxide nanoparticles will surely improve their applications in the biomedical field.
Collapse
Affiliation(s)
- Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Shivangi Chamoli
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Piyush Kumar
- School of Health Sciences and Technology, Bidholi Campus, UPES, Dehradun, Uttarakhand 248007, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
14
|
Zhao Q, Donskyi IS, Xiong Z, Liu D, Page TM, Zhang S, Deng S, Xu Y, Zeng J, Wu F, Zhang X. Recent Advances in the Biological Responses to Nano-black Phosphorus: Understanding the Importance of Intrinsic Properties and Cell Types. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11373-11388. [PMID: 37470763 DOI: 10.1021/acs.est.3c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.
Collapse
Affiliation(s)
- Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taylor M Page
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Xu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
15
|
Zadokar A, Negi S, Kumar P, Bhargava B, Sharma R, Irfan M. Molecular insights into rare earth element (REE)-mediated phytotoxicity and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84829-84849. [PMID: 37138125 DOI: 10.1007/s11356-023-27299-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Rare earth elements (REEs) that include 15 lanthanides, scandium, and yttrium are a special class of elements due to their remarkable qualities such as magnetism, corrosion resistance, luminescence, and electroconductivity. Over the last few decades, the implication of REEs in agriculture has increased substantially, which was driven by rare earth element (REE)-based fertilizers to increase crop growth and yield. REEs regulate different physiological processes by modulating the cellular Ca2+ level, chlorophyll activities, and photosynthetic rate, promote the protective role of cell membranes, and increase the plant's ability to withstand various stresses and other environmental factors. However, the use of REEs in agriculture is not always beneficial because REEs regulate plant growth and development in dose-dependent manner and excessive usage of them negatively affects plants and agricultural yield. Moreover, increasing applications of REEs together with technological advancement is also a rising concern as they adversely impact all living organisms and disturb different ecosystems. Several animals, plants, microbes, and aquatic and terrestrial organisms are subject to acute and long-term ecotoxicological impacts of various REEs. This concise overview of REEs' phytotoxic effects and implications on human health offers a context for continuing to sew fabric scraps to this incomplete quilt's many layers and colors. This review deals with the applications of REEs in different fields, specifically agriculture, the molecular basis of REE-mediated phytotoxicity, and the consequences for human health.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, -176061, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
16
|
Abdullayev Y, Karimova N, Schenberg LA, Ducati LC, Autschbach J. Computational predictions on Brønsted acidic ionic liquid-catalyzed carbon dioxide conversion to five-membered heterocyclic carbonyl derivatives. Phys Chem Chem Phys 2023; 25:8624-8630. [PMID: 36891907 DOI: 10.1039/d2cp05877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Experimentally conducted reactions between CO2 and various substrates (i.e., ethylenediamine (EDA), ethanolamine (ETA), ethylene glycol (EG), mercaptoethanol (ME), and ethylene dithiol (EDT)) are considered in a computational study. The reactions were previously conducted under harsh conditions utilizing toxic metal catalysts. We computationally utilize Brønsted acidic ionic liquid (IL) [Et2NH2]HSO4 as a catalyst aiming to investigate and propose 'greener' pathways for future experimental studies. Computations show that EDA is the best to fixate CO2 among the tested substrates: the nucleophilic EDA attack on CO2 is calculated to have a very small energy barrier to overcome (TS1EDA, ΔG‡ = 1.4 kcal mol-1) and form I1EDA (carbamic acid adduct). The formed intermediate is converted to cyclic urea (PEDA, imidazolidin-2-one) via ring closure and dehydration of the concerted transition state (TS2EDA, ΔG‡ = 32.8 kcal mol-1). Solvation model analysis demonstrates that nonpolar solvents (hexane, THF) are better for fixing CO2 with EDA. Attaching electron-donating and -withdrawing groups to EDA does not reduce the energy barriers. Modifying the IL via changing the anion part (HSO4-) central S atom with 6 A and 5 A group elements (Se, P, and As) shows that a Se-based IL can be utilized for the same purpose. Molecular dynamics (MD) simulations reveal that the IL ion pairs can hold substrates and CO2 molecules via noncovalent interactions to ease nucleophilic attack on CO2.
Collapse
Affiliation(s)
- Yusif Abdullayev
- Department of Chemical Engineering, Baku Engineering University, Hasan Aliyev str. 120, Baku, Absheron, AZ0101, Azerbaijan.
- Institute of Petrochemical Processes, Azerbaijan National Academy of Sciences, Hojaly ave. 30, Baku, AZ1025, Azerbaijan
| | - Nazani Karimova
- Department of Chemical Engineering, Baku Engineering University, Hasan Aliyev str. 120, Baku, Absheron, AZ0101, Azerbaijan.
| | - Leonardo A Schenberg
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000, São Paulo, SP, Brazil
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000, São Paulo, SP, Brazil
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| |
Collapse
|
17
|
Zhang L, Liu X, Mao Y, Rong S, Chen Y, Qi Y, Cai Z, Li H. Inhibition of melanoma using a nanoceria-based prolonged oxygen-generating phototherapy hydrogel. Front Oncol 2023; 13:1126094. [PMID: 37007107 PMCID: PMC10060878 DOI: 10.3389/fonc.2023.1126094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/23/2023] [Indexed: 03/18/2023] Open
Abstract
Tumor hypoxic environment is an inevitable obstacle for photodynamic therapy (PDT) of melanoma. Herein, a multifunctional oxygen-generating hydrogel loaded with hyaluronic acid-chlorin e6 modified nanoceria and calcium peroxide (Gel-HCeC-CaO2) was developed for the phototherapy of melanoma. The thermo-sensitive hydrogel could act as a sustained drug delivery system to accumulate photosensitizers (chlorin e6, Ce6) around the tumor, followed by cellular uptake mediated by nanocarrier and hyaluronic acid (HA) targeting. The moderate sustained oxygen generation in the hydrogel was produced by the reaction of calcium peroxide (CaO2) with infiltrated H2O in the presence of catalase mimetic nanoceria. The developed Gel-HCeC-CaO2 could efficiently alleviate the hypoxia microenvironment of tumors as indicated by the expression of hypoxia-inducible factor -1α (HIF-1α), meeting the “once injection, repeat irradiation” strategy and enhanced PDT efficacy. The prolonged oxygen-generating phototherapy hydrogel system provided a new strategy for tumor hypoxia alleviation and PDT.
Collapse
Affiliation(s)
- Lidong Zhang
- Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoguang Liu
- Department of Gynecology, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yinghua Mao
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Shu Rong
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Yonghong Chen
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Zhipeng Cai
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Hong Li
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
- *Correspondence: Hong Li,
| |
Collapse
|
18
|
Ceria Nanoparticles Alleviated Osteoarthritis through Attenuating Senescence and Senescence-Associated Secretory Phenotype in Synoviocytes. Int J Mol Sci 2023; 24:ijms24055056. [PMID: 36902483 PMCID: PMC10003033 DOI: 10.3390/ijms24055056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Accumulation of senescent cells is the prominent risk factor for osteoarthritis (OA), accelerating the progression of OA through a senescence-associated secretory phenotype (SASP). Recent studies emphasized the existence of senescent synoviocytes in OA and the therapeutic effect of removing senescent synoviocytes. Ceria nanoparticles (CeNP) have exhibited therapeutic effects in multiple age-related diseases due to their unique capability of ROS scavenging. However, the role of CeNP in OA remains unknown. Our results revealed that CeNP could inhibit the expression of senescence and SASP biomarkers in multiple passaged and hydrogen-peroxide-treated synoviocytes by removing ROS. In vivo, the concentration of ROS in the synovial tissue was remarkably suppressed after the intra-articular injection of CeNP. Likewise, CeNP reduced the expression of senescence and SASP biomarkers as determined by immunohistochemistry analysis. The mechanistic study showed that CeNP inactivated the NFκB pathway in senescent synoviocytes. Finally, safranin O-fast green staining showed milder destruction of articular cartilage in the CeNP-treated group compared with the OA group. Overall, our study suggested that CeNP attenuated senescence and protected cartilage from degeneration via scavenging ROS and inactivating the NFκB signaling pathway. This study has potentially significant implications in the field of OA as it provides a novel strategy for OA treatment.
Collapse
|
19
|
Coutinho Almeida-da-Silva CL, Cabido LF, Chin WC, Wang G, Ojcius DM, Li C. Interactions between silica and titanium nanoparticles and oral and gastrointestinal epithelia: Consequences for inflammatory diseases and cancer. Heliyon 2023; 9:e14022. [PMID: 36938417 PMCID: PMC10020104 DOI: 10.1016/j.heliyon.2023.e14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Engineered nanoparticles (NPs) composed of elements such as silica and titanium, smaller than 100 nm in diameter and their aggregates, are found in consumer products such as cosmetics, food, antimicrobials and drug delivery systems, and oral health products such as toothpaste and dental materials. They may also interact accidently with epithelial tissues in the intestines and oral cavity, where they can aggregate into larger particles and induce inflammation through pathways such as inflammasome activation. Persistent inflammation can lead to precancerous lesions. Both the particles and lesions are difficult to detect in biopsies, especially in clinical settings that screen large numbers of patients. As diagnosis of early stages of disease can be lifesaving, there is growing interest in better understanding interactions between NPs and epithelium and developing rapid imaging techniques that could detect foreign particles and markers of inflammation in epithelial tissues. NPs can be labelled with fluorescence or radioactive isotopes, but it is challenging to detect unlabeled NPs with conventional imaging techniques. Different current imaging techniques such as synchrotron radiation X-ray fluorescence spectroscopy are discussed here. Improvements in imaging techniques, coupled with the use of machine learning tools, are needed before diagnosis of particles in biopsies by automated imaging could move usefully into the clinic.
Collapse
Affiliation(s)
| | - Leticia Ferreira Cabido
- Department of Oral and Maxillofacial Surgery, University of the Pacific, San Francisco, CA, USA
| | - Wei-Chun Chin
- Department of Bioengineering, University of California, Merced, CA, USA
| | - Ge Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, San Francisco, CA, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, CA, USA
| |
Collapse
|
20
|
Insights from a Bibliometrics-Based Analysis of Publishing and Research Trends on Cerium Oxide from 1990 to 2020. Int J Mol Sci 2023; 24:ijms24032048. [PMID: 36768372 PMCID: PMC9916443 DOI: 10.3390/ijms24032048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
The purpose of this study is to evaluate the literature for research trends on cerium oxide from 1990 to 2020 and identify gaps in knowledge in the emerging application(s) of CeONP. Bibliometric methods were used to identify themes in database searches from PubMed, Scopus and Web of Science Core Collection using SWIFT-Review, VOSviewer and SciMAT software programs. A systematic review was completed on published cerium oxide literature extracted from the Scopus database (n = 17,115), identifying themes relevant to its industrial, environmental and biomedical applications. A total of 172 publications were included in the systematic analysis and categorized into four time periods with research themes identified; "doping additives" (n = 5, 1990-1997), "catalysts" (n = 32, 1998-2005), "reactive oxygen species" (n = 66, 2006-2013) and "pathology" (n = 69, 2014-2020). China and the USA showed the highest number of citations and publications for cerium oxide research from 1990 to 2020. Longitudinal analysis showed CeONP has been extensively used for various applications due to its catalytic properties. In conclusion, this study showed the trend in research in CeONP over the past three decades with advancements in nanoparticle engineering like doping, and more recently surface modification or functionalization to further enhanced its antioxidant abilities. As a result of recent nanoparticle engineering developments, research into CeONP biological effects have highlighted its therapeutic potential for a range of human pathologies such as Alzheimer's disease. Whilst research over the past three decades show the versatility of cerium oxide in industrial and environmental applications, there are still research opportunities to investigate the potential beneficial effects of CeONP in its application(s) on human health.
Collapse
|
21
|
Negrescu AM, Killian MS, Raghu SNV, Schmuki P, Mazare A, Cimpean A. Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. J Funct Biomater 2022; 13:jfb13040274. [PMID: 36547533 PMCID: PMC9780975 DOI: 10.3390/jfb13040274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In the last few years, the progress made in the field of nanotechnology has allowed researchers to develop and synthesize nanosized materials with unique physicochemical characteristics, suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles (MONPs) have gained increasing interest due to their excellent properties, which to a great extent differ from their bulk counterpart. However, despite such positive advantages, a substantial body of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles' physicochemical properties, therefore, better control over the synthetic parameters will not only lead to favorable surface characteristics but may also increase biocompatibility and consequently lower cytotoxicity. Taking into consideration the enormous biomedical potential of MONPs, the present review will discuss the most recent developments in this field referring mainly to synthesis methods, physical and chemical characterization and biological effects, including the pro-regenerative and antitumor potentials as well as antibacterial activity. Moreover, the last section of the review will tackle the pressing issue of the toxic effects of MONPs on various tissues/organs and cell lines.
Collapse
Affiliation(s)
- Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Manuela S. Killian
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Swathi N. V. Raghu
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, 772 07 Olomouc, Czech Republic
- Chemistry Department, King Abdulaziz University, Jeddah 80203, Saudi Arabia
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan
- Correspondence:
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
22
|
The Anticancer Role of Cerium Oxide Nanoparticles by Inducing Antioxidant Activity in Esophageal Cancer and Cancer Stem-Like ESCC Spheres. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3268197. [PMID: 36506910 PMCID: PMC9731761 DOI: 10.1155/2022/3268197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
Introduction Esophagus squamous cell carcinoma (ESCC) has a poor prognosis, a high rate of metastasis, and rapid clinical progression. One hypothesis is that therapeutic failure is due to the presence of cancer stem cells (CSC). Previous studies showed the anticancer effect of cerium oxide nanoparticles (CNP) in different cancer cells. In this study, we aim to evaluate the effect of cerium oxide nanoparticles on cell antioxidants, toxicity, as well as cell oxidant level in esophageal cancer (YM1) and cancer stem cell-like (CSC-LC) cell lines. Method YM1 and CSC-LC spheres were treated with CNP at different concentrations. The cell viability was assessed by using the MTT test. Antioxidant levels (SOD (superoxide dismutase, CAT (catalase), thiol, and TAC (total antioxidant capacity)), antioxidant genes expression (SOD and CAT), ROS (reactive oxygen species), and MDA (malondialdehyde) levels were assessed in both cell lines. Results CSC-LC had significantly elevated SOX4 and OCT4 pluripotent genes. The ROS and MDA levels were significantly reduced in both YM1 and CSC-LC spheres after treatment with CNP. Also, the antioxidant levels and expressions were elevated significantly in both cell lines after CNP treatment. Conclusion These results suggest the potential anticancer effect of CNP by elevating antioxidant levels and expressions, and reducing oxidant levels.
Collapse
|
23
|
Andronic L, Mamedov D, Cazan C, Popa M, Chifiriuc MC, Allaniyazov A, Palencsar S, Karazhanov SZ. Cerium oxide thin films: synthesis, characterization, photocatalytic activity and influence on microbial growth. BIOFOULING 2022; 38:865-875. [PMID: 36345787 DOI: 10.1080/08927014.2022.2144264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The resistance of surfaces to biofouling remains a significant advantage for optical devices working in natural conditions, increasing their lifetime and reducing maintenance costs. This paper reports on the functionalities of transparent CeO2 thin films with thicknesses between 25 and 600 nm deposited by reactive magnetron sputtering on the glass substrate. The CeO2 photocatalytic performance exhibited an efficiency of 30% on imidacloprid degradation under 6 h of UV radiation and increased linearly with the irradiation time, suggesting a complete degradation within 48 h. The films did not alter the growth rate of the green algae Chlorella vulgaris after 72 h short-term exposure. The tested CeO2 films proved to efficiently inhibit with high efficiency the Staphylococcus aureus biofilms and planktonic growth (reducing the counts of bacterial cells by 2 to 8 logs), demonstrating the promising potential of these materials for obtaining antimicrobial and antibiofilm surfaces, with broad applications for the biomedical, ecological and industrial fields.
Collapse
Affiliation(s)
- Luminita Andronic
- Product Design, Mechatronics and Environment Department, Transilvania University of Brasov, Brasov, Romania
| | - Damir Mamedov
- Department for Solar Energy, Institute for Energy Technology, Kjeller, Norway
- Department of Materials Science, Moscow Engineering Physics Institute, Moscow, Russia
| | - Cristina Cazan
- Product Design, Mechatronics and Environment Department, Transilvania University of Brasov, Brasov, Romania
| | - Marcela Popa
- Microbiology Immunology Department, Faculty of Biology, The Research Institute of the University of Bucharest (ICUB), University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, The Research Institute of the University of Bucharest (ICUB), University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | | | - Simona Palencsar
- Department for Corrosion Technology, Institute for Energy Technology, Kjeller, Norway
| | | |
Collapse
|
24
|
Sharma S, Shree B, Sharma A, Irfan M, Kumar P. Nanoparticle-based toxicity in perishable vegetable crops: Molecular insights, impact on human health and mitigation strategies for sustainable cultivation. ENVIRONMENTAL RESEARCH 2022; 212:113168. [PMID: 35346658 DOI: 10.1016/j.envres.2022.113168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 05/27/2023]
Abstract
With the advancement of nanotechnology, the use of nanoparticles (NPs) and nanomaterials (NMs) in agriculture including perishable vegetable crops cultivation has been increased significantly. NPs/NMs positively affect plant growth and development, seed germination, plant stress management, and postharvest handling of fruits and vegetables. However, these NPs sometimes cause toxicity in plants by oxidative stress and excess reactive oxygen species production that affect cellular biomolecules resulting in imbalanced biological and metabolic processes in plants. Therefore, information about the mechanism underlying interactions of NPs with plants is important for the understanding of various physiological and biochemical responses of plants, evaluating phytotoxicity, and developing mitigation strategies for vegetable crops cultivation. To address this, recent morpho-physiological, biochemical and molecular insights of nanotoxicity in the vegetable crops have been discussed in this review. Further, factors affecting the nanotoxicity in vegetables and mitigation strategies for sustainable cultivation have been reviewed. Moreover, the bioaccumulation and biomagnification of NPs and associated phytotoxicity can cause serious effects on human health which has also been summarized. The review also highlights the use of advanced omics approaches and interdisciplinary tools for understanding the nanotoxicity and their possible use for mitigating phytotoxicity.
Collapse
Affiliation(s)
- Shweta Sharma
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, HP, India
| | - Bharti Shree
- Department of Agricultural Biotechnology, CSK HPKV, Palampur, 176062, HP, India
| | - Ajit Sharma
- Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, HP, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| | - Pankaj Kumar
- Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, HP, India.
| |
Collapse
|
25
|
Yaseen SA, Alameen AS, Saif FA, Undre SB, Undre PB. Assessment of physicochemical properties of nanoceria dispersed in aqueous surfactant at 298.15 K. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Nicoleta B, Lidia B, Daniela-Laura B, Vasile B, Jean-Pierre C. Nanostructuring Effect of Nano-CeO 2 Particles Reinforcing Cobalt Matrix during Electrocodeposition Process. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2923. [PMID: 36079961 PMCID: PMC9457645 DOI: 10.3390/nano12172923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The electrodeposition method was used to obtain nanostructured layers of Co/nano-CeO2 on 304L stainless steel, from a cobalt electrolyte in which different concentrations of CeO2 nanoparticles (0, 10, 20, and 30 g/L) were dispersed. The electrodeposition was performed at room temperature using three current densities (23, 48, and 72 mA cm-2), and the time was kept constant at 90 min. The influence of current densities and nanoparticle concentrations on the characteristics of the obtained nanostructured layers is also discussed. An X-ray diffractometer (XRD) was used to investigate the phase structure and cobalt crystallite size of the nanostructured layers, and a contact angle (sessile drop method) was used to assess the wettability of the electrodeposited layers. The roughness of the surfaces was also studied. The results show that the nanostructured layers became more hydrophilic with increasing nanoparticle concentration and increasing current density. In the case of pure cobalt deposits, an increase in the current density led to an increase in the size of the cobalt crystallites in the electrodeposited layer, while for the Co/nano-CeO2 nanostructured layers, the size of the crystallites decreased with increasing current density. This confirms the nanostructuring effect of nano-CeO2 electrocodeposited with cobalt.
Collapse
Affiliation(s)
- Bogatu Nicoleta
- Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domnească Street, 800008 Galati, RO, Romania
- Competences Center, Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, 800008 Galati, RO, Romania
| | - Benea Lidia
- Competences Center, Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, 800008 Galati, RO, Romania
| | - Buruiană Daniela-Laura
- Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domnească Street, 800008 Galati, RO, Romania
| | - Bașliu Vasile
- Cross-Border Faculty, Dunarea de Jos University of Galati, 47 Domnească Street, 800201 Galati, RO, Romania
| | - Celis Jean-Pierre
- Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B 2450-3001 Leuven, Belgium
| |
Collapse
|
27
|
Vinayagam V, Murugan S, Kumaresan R, Narayanan M, Sillanpää M, Vo DVN, Kushwaha OS. Protein nanofibrils as versatile and sustainable adsorbents for an effective removal of heavy metals from wastewater: A review. CHEMOSPHERE 2022; 301:134635. [PMID: 35447212 DOI: 10.1016/j.chemosphere.2022.134635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Water is a valuable natural resource, which plays a crucial role in ecological survival as well as economic progress. However, the water quality has deteriorated in recent years as a result of urbanization, industrialization and human activities due to the uncontrolled release of industrial wastes, which can be extremely carcinogenic and non-degradable, in air, water and soil bodies. Such wastes showed the presence of organic and inorganic pollutants in high dosages. Heavy metals are the most obstinate contaminants, and they can be harmful because of having a variety of detrimental consequences to the ecosystem. The existing water treatment methods in many situations may not be sustainable or effective because of their high energy requirements and ecological impacts. In this review, state-of-the-art water treatment methods for the elimination of heavy metals with the help of protein nanofibrils are covered featuring a discussion on the strategies and possibilities of developing protein nanofibrils for the active elimination of heavy metals using kitchen waste as well as residues from the cattle, agriculture, and dairy industries. Further, the emphasis has been given to their environmental sustainability and economical aspects are also discussed.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Shrima Murugan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Rishikeswaran Kumaresan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Meyyappan Narayanan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Sustainable Membrane Technology Research Group (SMTRG), Chemical Engineering Department, Persian Gulf University, P.O. Box 75169-13817, Bushehr, Iran; Zhejiang Rongsheng Environmental Protection Paper Co. Ltd, No. 588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
28
|
Derevianko S, Vasylchenko A, Kaplunenko V, Kharchuk M, Demchenko O, Spivak M. Antiviral Properties of Cerium Nanoparticles. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2022. [DOI: 10.11118/actaun.2022.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Sanati M, Afshari AR, Kesharwani P, Sukhorukov VN, Sahebkar A. Recent trends in the application of nanoparticles in cancer therapy: The involvement of oxidative stress. J Control Release 2022; 348:287-304. [PMID: 35644289 DOI: 10.1016/j.jconrel.2022.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/15/2022]
Abstract
In the biomedical area, the interdisciplinary field of nanotechnology has the potential to bring numerous unique applications, including better tactics for cancer detection, diagnosis, and therapy. Nanoparticles (NPs) have been the topic of many research and material applications throughout the last decade. Unlike small-molecule medications, NPs are defined by distinct physicochemical characteristics, such as a large surface-to-volume ratio, which allows them to permeate live cells with relative ease. The versatility of NPs as both therapeutics and diagnostics makes them ideal for a broad spectrum of illnesses, from infectious diseases to cancer. A significant amount of data has been participated in the current scientific publications, emphasizing the concept that NPs often produce reactive oxygen species (ROS) to a larger degree than micro-sized particles. It is important to note that oxidative stress governs a wide range of cell signaling cascades, many of which are responsible for cancer cell cytotoxicity. Here, we aimed to provide insight into the signaling pathways triggered by oxidative stress in cancer cells in response to several types of nanomaterials, such as metallic and polymeric NPs and quantum dots. We discuss recent advances in developing integrated anticancer medicines based on NPs targeted to destroy malignant cells by increasing their ROS setpoint.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Vasily N Sukhorukov
- Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Yang W, Zhang M, He J, Gong M, Sun J, Yang X. Central nervous system injury meets nanoceria: opportunities and challenges. Regen Biomater 2022; 9:rbac037. [PMID: 35784095 PMCID: PMC9245649 DOI: 10.1093/rb/rbac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) injury, induced by ischemic/hemorrhagic or traumatic damage, is one of the most common causes of death and long-term disability worldwide. Reactive oxygen and nitrogen species (RONS) resulting in oxidative/nitrosative stress play a critical role in the pathological cascade of molecular events after CNS injury. Therefore, by targeting RONS, antioxidant therapies have been intensively explored in previous studies. However, traditional antioxidants have achieved limited success thus far, and the development of new antioxidants to achieve highly effective RONS modulation in CNS injury still remains a great challenge. With the rapid development of nanotechnology, novel nanomaterials provided promising opportunities to address this challenge. Within these, nanoceria has gained much attention due to its regenerative and excellent RONS elimination capability. To promote its practical application, it is important to know what has been done and what has yet to be done. This review aims to present the opportunities and challenges of nanoceria in treating CNS injury. The physicochemical properties of nanoceria and its interaction with RONS are described. The applications of nanoceria for stroke and neurotrauma treatment are summarized. The possible directions for future application of nanoceria in CNS injury treatment are proposed.
Collapse
Affiliation(s)
- Wang Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
- Army Health Service Training Base, Army Medical University, Chongqing 400038, China
| | - Maoting Zhang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Jian He
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Mingfu Gong
- Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Jian Sun
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| |
Collapse
|
31
|
Yang W, Zhu J, Xie S, Yang D, Xu Y, Zhu J. The Effects of Exposure Methods on the Toxicity of Zinc Oxide Nanoparticles. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In recent years, with the widespread use of zinc oxide (ZnO) nanoparticles (NPs), more and more attentions are being given to its biological toxicity, the toxicity of ZnO NPs under different exposure methods is necessary to investigate. In this study, we prepared two ZnO dispersions
with different particle sizes, namely small-size ZnO (S-ZnO) and Bigsize ZnO (B-ZnO), using polycarboxylic acid as dispersant. Mice were poisoned by intravenous injection and inhalation, respectively. The respiration coefficient, superoxide dismutase (SOD), Zn content in the organs of the
mice were detected. It was discovered that ZnO NPs with smaller particle diameter can cause more serious toxicity in vivo after intravenous exposure and respiratory exposure. In addition, the mice showed symptoms of dyspnea after respiratory exposure and a massive number of fibroblasts
were found in the alveolar structure of the lungs. In the intravenous injection group, the content of Zn in the liver and spleen of mice increased significantly, resulting in organ edema, and the organ coefficient of mice increased. Finally, the increase of GSH/GSSG indicated that cells were
regulated under the antioxidant mechanism, which accelerated the removal of H2O2 from cells. In addition, the increase of GSH+GSSG content also indicated that ZnO NPs stimulated the creation of reactive oxygen species (ROS) in organs of experimental animals.
Collapse
Affiliation(s)
- Wanqing Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jingyao Zhu
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| | - Shichen Xie
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dicheng Yang
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| | - Yan Xu
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| | - Jun Zhu
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| |
Collapse
|
32
|
Yadav N. Cerium oxide nanostructures: properties, biomedical applications and surface coatings. 3 Biotech 2022; 12:121. [PMID: 35547014 PMCID: PMC9035199 DOI: 10.1007/s13205-022-03186-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Cerium oxide nanoparticles have significantly improved catalytic properties and are of increasing interest in the nanoparticle research field hence the current trends in cerium oxide nanoparticles are reviewed here. Unlike previous reviews which have focused primarily on the biosynthesis of cerium oxide nanoparticles, their properties, and applications, this review will focus on the unique physical, chemical, and biological properties of cerium oxide nanoparticles, the role of oxygen vacancies or defects in the lattice structure, the ratio of oxidation states in determining their catalytic properties and applications in biosensing, drug or gene delivery, etc. have been discussed. Furthermore, the limitations of the bare form of cerium oxide nanoparticles and the advances in the field of surface coating by different ligands to overcome the issues of bare nanoparticles have been discussed. The review concludes with a discussion on the environmental aspects and toxicity of cerium oxide nanoparticles and their potential future in practical applications.
Collapse
Affiliation(s)
- Nisha Yadav
- Nanomaterials and Toxicology Laboratory, Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009 India
| |
Collapse
|
33
|
Al-Zoubi MS, Al-Zoubi RM. Nanomedicine Tactics in Cancer Treatment: Challenge and Hope. Crit Rev Oncol Hematol 2022; 174:103677. [PMID: 35385774 DOI: 10.1016/j.critrevonc.2022.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022] Open
|
34
|
Cheng G, Ding H, Chen G, Shi H, Zhang X, Zhu M, Tan W. Effects of cadmium sulfide nanoparticles on sulfate bioreduction and oxidative stress in Desulfovibrio desulfuricans. BIORESOUR BIOPROCESS 2022; 9:35. [PMID: 38647594 PMCID: PMC10991916 DOI: 10.1186/s40643-022-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Sulfate-containing wastewater has a serious threat to the environment and human health. Microbial technology has great potential for the treatment of sulfate-containing wastewater. It was found that nano-photocatalysts could be used as extracellular electron donors to promote the growth and metabolic activity of non-photosynthetic microorganisms. However, nano-photocatalysts could also induce oxidative stress and damage cells. Therefore, the interaction mechanism between photosynthetic nanocatalysts and non-photosynthetic microorganisms is crucial to determine the regulatory strategies for microbial wastewater treatment technologies. In this paper, the mechanism and regulation strategy of cadmium sulfide nanoparticles (CdS NPs) on the growth of sulfate-reducing bacteria and the sulfate reduction process were investigated. The results showed that the sulfate reduction efficiency could be increased by 6.4% through CdS NPs under light conditions. However, the growth of Desulfovibrio desulfuricans C09 was seriously inhibited by 55% due to the oxidative stress induced by CdS NPs on cells. The biomass and sulfate reduction efficiency could be enhanced by 6.8% and 5.9%, respectively, through external addition of humic acid (HA). At the same time, the mechanism of the CdS NPs strengthening the sulfate reduction process by sulfate bacteria was also studied which can provide important theoretical guidance and technical support for the development of microbial technology combined with extracellular electron transfer (EET) for the treatment of sulfate-containing wastewater.
Collapse
Affiliation(s)
- Guoqing Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huili Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guanglin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
35
|
Feng N, Liu Y, Dai X, Wang Y, Guo Q, Li Q. Advanced applications of cerium oxide based nanozymes in cancer. RSC Adv 2022; 12:1486-1493. [PMID: 35425183 PMCID: PMC8979138 DOI: 10.1039/d1ra05407d] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cerium oxide nanozymes have emerged as a new type of bio-antioxidants in recent years. CeO2 nanozymes possess enzyme mimetic activities with outstanding free radical scavenging activity, facile synthesis conditions, and excellent biocompatibility. Based on these extraordinary properties, use of CeO2 nanozymes has been demonstrated to be a highly versatile therapeutic method for many diseases, such as for inflammation, rheumatoid arthritis, hepatic ischemia-reperfusion injury and Alzheimer's disease. In addition to that, CeO2 nanozymes have been widely used in the diagnosis and treatment of cancer. Many examples can be found in the literature, such as magnetic resonance detection, tumour marker detection, chemotherapy, radiotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT). This review systematically summarises the latest applications of CeO2-based nanozymes in cancer research and treatment. We believe that this paper will help develop value-added CeO2 nanozymes, offering great potential in the biotechnology industry and with great significance for the diagnosis and treatment of a wide range of malignancies.
Collapse
Affiliation(s)
- Na Feng
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Ying Liu
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Xianglin Dai
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Yingying Wang
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Qiong Guo
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
36
|
HiPSC-Derived Hepatocyte-like Cells Can Be Used as a Model for Transcriptomics-Based Study of Chemical Toxicity. TOXICS 2021; 10:toxics10010001. [PMID: 35051043 PMCID: PMC8780865 DOI: 10.3390/toxics10010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 01/13/2023]
Abstract
Traditional toxicity risk assessment approaches have until recently focussed mainly on histochemical readouts for cell death. Modern toxicology methods attempt to deduce a mechanistic understanding of pathways involved in the development of toxicity, by using transcriptomics and other big data-driven methods such as high-content screening. Here, we used a recently described optimised method to differentiate human induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs), to assess their potential to classify hepatotoxic and non-hepatotoxic chemicals and their use in mechanistic toxicity studies. The iPSC-HLCs could accurately classify chemicals causing acute hepatocellular injury, and the transcriptomics data on treated HLCs obtained by TempO-Seq technology linked the cytotoxicity to cellular stress pathways, including oxidative stress and unfolded protein response (UPR). Induction of these stress pathways in response to amiodarone, diclofenac, and ibuprofen, was demonstrated to be concentration and time dependent. The transcriptomics data on diclofenac-treated HLCs were found to be more sensitive in detecting differentially expressed genes in response to treatment, as compared to existing datasets of other diclofenac-treated in vitro hepatocyte models. Hence iPSC-HLCs generated by transcription factor overexpression and in metabolically optimised medium appear suitable for chemical toxicity detection as well as mechanistic toxicity studies.
Collapse
|
37
|
Attia N, Rostom DM, Mashal M. The use of cerium oxide nanoparticles in liver disorders: A double-sided coin? Basic Clin Pharmacol Toxicol 2021; 130:349-363. [PMID: 34902883 DOI: 10.1111/bcpt.13700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022]
Abstract
Being recognized as the first antioxidant nanoparticles (NPs) proposed for medicine, cerium oxide nanoparticles (CeO2 NPs) have recently gained tremendous attention for their vast biomedical applications. Nevertheless, inconsistent reports of either medical benefits or toxicity have created an atmosphere of uncertainty hindering their clinical utilization. Like other nanoparticles advocated as a promising protective/therapeutic option, CeO2 NPs are sometimes questioned as a health threat. As CeO2 NPs tend to accumulate in the liver after intravenous injection, liver is known to represent the key tissue to test for their therapeutic/toxicological effects. However, more research evidence is still needed before any conclusions can be elicited about the mechanisms by which CeO2 NPs could be harmful or protective/therapeutic to the liver tissue. A proper understanding of such discrepancies is warranted to plan for further modifications to mitigate any side effects. Therefore, in this MiniReview, we tried to demonstrate the two sides of the same coin, CeO2 NPs, within the liver context. As well, we highlighted a few promising strategies by which the negatives of CeO2 NPs could be diminished while enhancing all the positives.
Collapse
Affiliation(s)
- N Attia
- Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gastiez, Spain
| | - D M Rostom
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - M Mashal
- The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gastiez, Spain
| |
Collapse
|
38
|
Sozarukova MM, Proskurnina EV, Popov AL, Kalinkin AL, Ivanov VK. New facets of nanozyme activity of ceria: lipo- and phospholipoperoxidase-like behaviour of CeO 2 nanoparticles. RSC Adv 2021; 11:35351-35360. [PMID: 35493182 PMCID: PMC9043017 DOI: 10.1039/d1ra06730c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cerium dioxide nanoparticles have a special place among engineered nanomaterials due to the wide range of their enzyme-like activities. They possess SOD-, catalase- and peroxidase-like properties, as well as recently discovered phosphatase-, photolyase-, phospholipase- and nuclease-like properties. Advancing biomedical applications of CeO2-based nanozymes requires an understanding of the features and mechanisms of the redox activity of CeO2 nanoparticles when entering the vascular bed, especially when interacting with lipid-protein supramolecular complexes (biomembranes and lipoproteins). In this paper, CeO2 nanoparticles are shown to possess two further types of nanozyme activity, namely lipo- and phospholipoperoxidase-like activities. Compared to a strong blood prooxidant, hemoglobin, CeO2 nanoparticles act as a mild oxidising agent, since they exhibit a 106 times lower, and 20 times lower, prooxidant capacity towards linoleic acid and phosphatidylcholine hydroperoxides, respectively. Compared to the widespread pharmacological preparation of iron, Fe(iii) carboxymaltose (antianemic preparation Ferinject®), the prooxidant capacity of CeO2 nanoparticles towards lipid and phospholipid substrates has been shown to be 102 times lower, and 4 times higher, respectively. The data obtained on the mechanism of the interaction of nanodisperse CeO2 with the main components of biological membranes, lipids and phospholipids enable the substantial expansion of the scope of biomedical applications of CeO2 nanozymes. CeO2 nanoparticles were shown to possess two novel types of enzyme-like activity, namely lipoperoxidase and phospholipoperoxidase activity.![]()
Collapse
Affiliation(s)
- Madina M Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences Russian Federation
| | | | - Anton L Popov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences Russian Federation .,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences Russian Federation
| | - Alexander L Kalinkin
- Medical Research and Educational Center, Lomonosov Moscow State University Russian Federation
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences Russian Federation .,National Research University Higher School of Economics Russian Federation
| |
Collapse
|
39
|
Iqbal N, Anastasiou A, Aslam Z, Raif EM, Do T, Giannoudis PV, Jha A. Interrelationships between the structural, spectroscopic, and antibacterial properties of nanoscale (< 50 nm) cerium oxides. Sci Rep 2021; 11:20875. [PMID: 34686704 PMCID: PMC8536756 DOI: 10.1038/s41598-021-00222-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Bone healing is a complex process, and if not managed successfully, it can lead to non-union, metal-work failure, bacterial infections, physical and psychological patient impairment. Due to the growing urgency to minimise antibiotic dependency, alternative treatment strategies, including the use of nanoparticles, have attracted significant attention. In the present study, cerium oxide nanoparticles (Ce4+, Ce3+) have been selected due to their unique antibacterial redox capability. We found the processing routes affected the agglomeration tendency, particle size distribution, antibacterial potential, and ratio of Ce3+:Ce4+ valence states of the cerium oxide nanoparticles. The antibacterial efficacy of the nanoparticles in the concentration range of 50-200 µg/ml is demonstrated against Escherichia coli, Staphylococcus epidermis, and Pseudomonas aeruginosa by determining the half-maximal inhibitory concentration (IC50). Cerium oxide nanoparticles containing a more significant amount of Ce3+ ions, i.e., FRNP, exhibited 8.5 ± 1.2%, 10.5 ± 4.4%, and 13.8 ± 5.8% increased antibacterial efficacy compared with nanoparticles consisting mainly of Ce4+ ions, i.e., nanoparticles calcined at 815 °C.
Collapse
Affiliation(s)
- Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK.
| | - Antonios Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK
| | - Zabeada Aslam
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - El Mostafa Raif
- School of Dentistry, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Thuy Do
- School of Dentistry, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds, UK
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
40
|
Ma Q, Liu Y, Zhu H, Zhang L, Liao X. Nanozymes in Tumor Theranostics. Front Oncol 2021; 11:666017. [PMID: 34737942 PMCID: PMC8560966 DOI: 10.3389/fonc.2021.666017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/16/2021] [Indexed: 01/16/2023] Open
Abstract
Nanozymes, a new generation of enzyme mimics, have recently attracted great attention. Nanozymes could catalyze chemical reactions as biological enzymes under physiologically mild conditions with higher-efficiency catalytic activities. Moreover, nanozymes could overcome the shortcomings of natural enzymes, such as easy inactivation, high cost, and low yield. With the development of more and more smart and multi-functional nanosystems, nanozymes display great achievement in tumor biology. In this review, we outline the recent advances of nanozymes in tumor and tumor microenvironment diagnosis, therapy, and theranostics.
Collapse
Affiliation(s)
- Qiulian Ma
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yanfang Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lirong Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Liao
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
41
|
Abstract
Nanoscale cerium oxide has excellent catalytic performance due to its unique surface properties and has very important applications in various fields. In this paper, the synthesis methods, catalytic mechanism and activity regulation of nanoscale cerium oxide in recent years are reviewed. Secondly, the application of cerium oxide in the detection of organic and inorganic molecules is summarized, and its latest progress and applications in antibacterial, antioxidant and anticancer are discussed. Finally, the future development prospect of nanoscale cerium oxide is summarized and prospected.
Collapse
|
42
|
Ma Y, Li P, Zhao L, Liu J, Yu J, Huang Y, Zhu Y, Li Z, Zhao R, Hua S, Zhu Y, Zhang Z. Size-Dependent Cytotoxicity and Reactive Oxygen Species of Cerium Oxide Nanoparticles in Human Retinal Pigment Epithelia Cells. Int J Nanomedicine 2021; 16:5333-5341. [PMID: 34408413 PMCID: PMC8364434 DOI: 10.2147/ijn.s305676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The use of cerium oxide nanoparticles (CeO2 NPs), a lanthanide element oxide and bivalent compound, has been growing continuously in industry and biomedicine. Due to their wide application, the potential human health problems of CeO2 NPs have attracted attention, but studies on the toxicity of this compound to human eyes are lacking. This study investigated the cytotoxicity and reactive oxygen species (ROS) of CeO2 NPs in human retinal pigment epithelial cells (ARPE-19 cells). Methods Using the transmission electron microscope (TEM), the size distribution and shape of CeO2 NPs were characterized. To explore the effect of CeO2 NP size on ophthalmic toxicity in vitro, three sizes (15, 30 and 45 nm) of CeO2 NPs were investigated using ATP content measurement, LDH release measurement and cell proliferation assay in ARPE-19 cells. ROS values and mitochondrial membrane potential depolarization were evaluated by H2DCF-DA staining and JC-1 staining. Morphology changes were detected using a phase-contrast microscope. Results The cytotoxicity of 15 nm CeO2 NPs was found to be the highest and hence was further explored. Treatment with 15 nm CeO2 NPs caused the morphology of ARPE-19 cells to change in a dose- and time-dependent manner. Moreover, the treatment induced excessive ROS generation and mitochondrial membrane potential depolarization. In addition, cytotoxicity was attenuated by the application of a ROS scavenger N-acetyl-L- cysteine (NAC). Conclusion CeO2 NPs induced cytotoxicity in ARPE-19 cells and excessive production of ROS and decreasing mitochondrial membrane potential. The Overproduction of ROS partially contributes to CeO2 NP-induced cytotoxicity.
Collapse
Affiliation(s)
- Yuanyuan Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Peng Li
- Department of Nephrology Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264005, Shandong, People's Republic of China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yuting Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Shaofeng Hua
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yanping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| |
Collapse
|
43
|
Popov AL, Abakumov MA, Savintseva IV, Ermakov AM, Popova NR, Ivanova OS, Kolmanovich DD, Baranchikov AE, Ivanov VK. Biocompatible dextran-coated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents with high T 1 relaxivity and selective cytotoxicity to cancer cells. J Mater Chem B 2021; 9:6586-6599. [PMID: 34369536 DOI: 10.1039/d1tb01147b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gd-based complexes are widely used as magnetic resonance imaging (MRI) contrast agents. The safety of previously approved contrast agents is questionable and is being re-assessed. The main causes of concern are possible gadolinium deposition in the brain and the development of systemic nephrogenic fibrosis after repeated use of MRI contrasts. Thus, there is an urgent need to develop a new generation of MRI contrasts that are safe and that have high selectivity in tissue accumulation with improved local contrast. Here, we report on a new type of theranostic MRI contrast, namely dextran stabilised, gadolinium doped cerium dioxide nanoparticles. These ultra-small (4-6 nm) Ce0.9Gd0.1O1.95 nanoparticles have been shown to possess excellent colloidal stability and high r1-relaxivity (3.6 mM-1 s-1). They are effectively internalised by human normal and cancer cells and demonstrate dose-dependent selective cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- A L Popov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky av., 31, Moscow 119991, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wu Y, Ta HT. Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. J Mater Chem B 2021; 9:7291-7301. [PMID: 34355717 DOI: 10.1039/d1tb01091c] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The biological applications of cerium oxide nanoparticles (nanoceria) have received extensive attention in recent decades. The coexistence of trivalent cerium and tetravalent cerium on the surface of nanoceria allows the scavenging of reactive oxygen species (ROS). The regeneratable changes between Ce3+ and Ce4+ make nanoceria a suitable therapeutic agent for treating ROS-related diseases and inflammatory diseases. The size, morphology and Ce3+/Ce4+ state of cerium oxide nanoparticles are affected by the synthesis method. This review focuses on various synthesis methods of cerium oxide nanoparticles and discusses their corresponding physical characteristics, and anti-ROS and anti-inflammatory properties.
Collapse
Affiliation(s)
- Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hang T Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. and School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
45
|
Abuid NJ, Urdaneta ME, Gattas-Asfura KM, Zientek C, Silgo CI, Torres JA, Otto KJ, Stabler CL. Engineering the Multi-Enzymatic Activity of Cerium Oxide Nanoparticle Coatings for the Antioxidant Protection of Implants. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100016. [PMID: 34485991 PMCID: PMC8412420 DOI: 10.1002/anbr.202100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Imbalance of oxidants is a universal contributor to the failure of implanted devices and tissues. A sustained oxidative environment leads to cytotoxicity, prolonged inflammation, and ultimately host rejection of implanted devices/grafts. The incorporation of antioxidant materials can inhibit this redox/inflammatory cycle and enhance implant efficacy. Cerium oxide nanoparticles (CONP) is a highly promising agent that exhibits potent, ubiquitous, and self-renewable antioxidant properties. Integrating CONP as surface coatings provides ease in translating antioxidant properties to various implants/grafts. Herein, we describe the formation of CONP coatings, generated via the sequential deposition of CONP and alginate, and the impact of coating properties, pH, and polymer molecular weight, on their resulting redox profile. Investigation of CONP deposition, layer formation, and coating uniformity/thickness on their resulting oxidant scavenging activity identified key parameters for customizing global antioxidant properties. Results found lower molecular weight alginates and physiological pH shift CONP activity to a higher H2O2 to O2 --scavenging capability. The antioxidant properties measured for these various coatings translated to distinct antioxidant protection to the underlying encapsulated cells. Information gained from this work can be leveraged to tailor coatings towards specific oxidant-scavenging applications and prolong the function of medical devices and cellular implants.
Collapse
Affiliation(s)
- Nicholas J Abuid
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Morgan E Urdaneta
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Kerim M Gattas-Asfura
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Caterina Zientek
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Cristina Isusi Silgo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Jose A Torres
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| |
Collapse
|
46
|
Castro BMM, Santos-Rasera JR, Alves DS, Marucci RC, Carvalho GA, Carvalho HWP. Ingestion and effects of cerium oxide nanoparticles on Spodoptera frugiperda (Lepidoptera: Noctuidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116905. [PMID: 33751949 DOI: 10.1016/j.envpol.2021.116905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to evaluate the biological and nutritional characteristics of Spodoptera frugiperda (Lepidoptera: Noctuidae), an arthropod pest widely distributed in agricultural regions, after exposure to nano-CeO2 via an artificial diet and to investigate the presence of cerium in the body of this insect through X-ray fluorescence mapping. Nano-CeO2, micro-CeO2, and Ce(NO3)3 were incorporated into the diet (0.1, 1, 10, and 100 mg of Ce L-1). Cerium was detected in caterpillars fed with diets containing nano-CeO2 (1, 10 and 100 mg of Ce L-1), micro-CeO2 and Ce(NO3)3, and in feces of caterpillars from the first generation fed diets with nano-CeO2 at 100 mg of Ce L-1 as well. The results indicate that nano-CeO2 caused negative effects on S. frugiperda. After it was consumed by the caterpillars, the nano-CeO2 reduced up to 4.8% of the pupal weight and 60% of egg viability. Unlike what occurred with micro-CeO2 and Ce(NO3)3, nano-CeO2 negatively affected nutritional parameters of this insect, as consumption rate two times higher, increase of up to 80.8% of relative metabolic rate, reduction of up to 42.3% efficiency of conversion of ingested and 47.2% of digested food, and increase of up to 1.7% of metabolic cost and 8.7% of apparent digestibility. Cerium caused 6.8-16.9% pupal weight reduction in second generation specimens, even without the caterpillars having contact with the cerium via artificial diet. The results show the importance of new ecotoxicological studies with nano-CeO2 for S. frugiperda in semi-field and field conditions to confirm the toxicity.
Collapse
Affiliation(s)
- Bárbara M M Castro
- Departamento de Entomologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | - Joyce R Santos-Rasera
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário Nº 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Dejane S Alves
- Universidade Tecnológica Federal do Paraná, Campus Santa Helena, Prolongamento da Rua São Luis S/n, Santa Helena, Paraná, 85892-000, Brazil
| | - Rosangela C Marucci
- Departamento de Entomologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil.
| | - Geraldo A Carvalho
- Departamento de Entomologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | - Hudson W P Carvalho
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário Nº 303, Piracicaba, São Paulo, 13416-000, Brazil
| |
Collapse
|
47
|
Mazar J, Gordon C, Naga V, Westmoreland TJ. The Killing of Human Neuroblastoma Cells by the Small Molecule JQ1 Occurs in a p53-Dependent Manner. Anticancer Agents Med Chem 2021; 20:1613-1625. [PMID: 32329693 PMCID: PMC7527568 DOI: 10.2174/1871520620666200424123834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 11/30/2022]
Abstract
Background MYCN amplification is a prognostic biomarker associated with poor prognosis of neuroblastoma in children. The overall survival of children with MYCN-amplified neuroblastoma has only marginally improved within the last 20 years. The Bromodomain and Extra-Terminal motif (BET) inhibitor, JQ1, has been shown to downregulate MYCN in neuroblastoma cells. Objective To determine if JQ1 downregulation of MYCN in neuroblastomas can offer a target- specific therapy for this, difficult to treat, pediatric cancer. Methods Since MYCN-amplified neuroblastoma accounts for as much as 40 to 50 percent of all high-risk cases, we compared the effect of JQ1 on both MYCN-amplified and non-MYCN-amplified neuroblastoma cell lines and investigated its mechanism of action. Results In this study, we show that JQ1 can specifically target MYCN for downregulation, though this effect is not specific to only MYCN-amplified cells. And although we can confirm that the loss of MYCN alone can induce apoptosis, the exogenous rescue of MYCN expression can abrogate much of this cytotoxicity. More fascinating, however, was the discovery that the JQ1-induced knockdown of MYCN, which led to the loss of the human double minute 2 homolog (HDM2) protein, also led to the accumulation of tumor protein 53 (also known as TP53 or p53), which ultimately induced apoptosis. Likewise, the knockdown of p53 also blunted the cytotoxic effects of JQ1. Conclusion These data suggest a mechanism of action for JQ1 cytotoxicity in neuroblastomas and offer a possible prognostic target for determining its efficacy as a therapeutic.
Collapse
Affiliation(s)
- Joseph Mazar
- Nemours Children's Hospital, 13535 Nemours Parkway, Orlando, FL 32827, United States
| | - Caleb Gordon
- Nemours Children's Hospital, 13535 Nemours Parkway, Orlando, FL 32827, United States
| | - Varun Naga
- Nemours Children's Hospital, 13535 Nemours Parkway, Orlando, FL 32827, United States
| | | |
Collapse
|
48
|
He B, Wang J, Lin J, Chen J, Zhuang Z, Hong Y, Yan L, Lin L, Shi B, Qiu Y, Pan L, Zheng X, Liu F, Chen F. Association Between Rare Earth Element Cerium and the Risk of Oral Cancer: A Case-Control Study in Southeast China. Front Public Health 2021; 9:647120. [PMID: 34113597 PMCID: PMC8186664 DOI: 10.3389/fpubh.2021.647120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
Cerium (Ce), the most abundant of rare earth elements in the earth's crust, has received much health concerns due to its wide application in industry, agriculture, and medicine. The current study aims to evaluate whether there is an association between Ce exposures and the risk of developing oral cancer. Serum Ce level of 324 oral cancer patients and 650 matched healthy controls were measured by inductively coupled plasma mass spectrometry. Association between Ce level and the risk of oral cancer was estimated with an unconditional logistic regression model. Serum Ce concentrations in the oral cancer patients and controls were 0.57 (0.21-3.02) μg/L and 2.27 (0.72-4.26) μg/L, respectively. High level of Ce was associated with a decreased risk of oral cancer (OR: 0.60, 95% CI: 0.43-0.84). Stronger inverse associations between high level of Ce and oral cancer risk were observed among those with smoking (OR: 0.46, 95% CI: 0.27-0.79), drinking (OR: 0.50, 95% CI: 0.26-0.96), limited intake of leafy vegetables (OR: 0.40, 95% CI: 0.22-0.71) and fish (OR: 0.52, 95% CI: 0.33-0.83). There were significant multiplicative interactions between Ce level and alcohol drinking or intake of leafy vegetables and fish (all Pinteraction <0.05). This preliminary case-control study suggests an inverse association between high serum Ce level and the risk of oral cancer. Further prospective studies with a larger sample size are needed to confirm the findings.
Collapse
Affiliation(s)
- Baochang He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Laboratory Center, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jing Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jinfa Chen
- Laboratory Center, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhaocheng Zhuang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yihong Hong
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Lingjun Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Bin Shi
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lizhen Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fengqiong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Fa Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
49
|
Naz S, Banerjee T, Totsingan F, Woody K, Gross RA, Santra S. Therapeutic Efficacy of Lactonic Sophorolipids: Nanoceria-Assisted Combination Therapy of NSCLC using HDAC and Hsp90 Inhibitors. Nanotheranostics 2021; 5:391-404. [PMID: 33912379 PMCID: PMC8077971 DOI: 10.7150/ntno.57675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/20/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose: Non-Small-Cell Lung Cancer (NSCLC) has gained resistance to common chemo- and radiotherapy due to the oncogenic K-RAS mutations. In this work, lactonic sophorolipids (LSL), a constituent of natural sophorolipids known to inhibit histone deacetylase (HDAC) activity, is used to evaluate its potential anticancer property for the treatment of NSCLC. In addition, ganetespib (GT), a Hsp90 inhibitor, is used for its known antitumor activity in several K-RAS mutant NSCLC cells. We propose, a functional anti-oxidant nanomedicine composed of nanoceria (NC) encapsulated with two-drug cocktail LSL and GT for the assessment of therapeutic efficacy of LSL and targeted combination therapy of NSCLC. NC is an excellent redox platform specifically used to supplement the therapeutic potency of these drugs to target both HDAC inhibition and Hsp90 signaling pathways in NSCLC. Methods: Polyacrylic acid-coated nanoceria (PNC) was formulated and folic acid was conjugated on the surface of PNC using "click" chemistry to target NSCLC and to minimize adverse side effects. Solvent diffusion method was used for the encapsulation of individual drugs and co-encapsulation of drug-cocktail along with an optical dye DiI for diagnosis. We hypothesized that the therapeutic efficacy of LSL will be synergistically accelerated by the inhibition of Hsp90 mechanism of GT and redox activity of NC. Results: For the targeted therapy of NSCLC, A549 cells were used and Chinese hamster ovary (CHO) cells were used as healthy control cells. Results showed more than 40% cells were dead within 24 h when treated with LSL nanodrug. When combined with GT, enhanced ROS signals were detected and more than 80% reduction in cell viability was recorded within 24 h of incubation. Treatments with NC without any drug showed minimal toxicity. Migration assays indicate that the highly metastatic nature of NSCLC is successfully restricted by this combination approach. To validate the effectiveness of this combination therapy various cell-based assays including detection of apoptosis, necrosis and HDAC inhibition of LSL were performed. Conclusion: Functional nanoceria with drug-cocktail LSL and GT is successfully developed for the targeted treatment of undruggable NSCLC. The fluorescence modality helps monitoring the drugs delivery. Results demonstrate the potential therapeutic efficacy of LSL, which is synergistically accelerated by the Hsp90 inhibition mechanism of GT and redox activity of NC.
Collapse
Affiliation(s)
- Shuguftha Naz
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Filbert Totsingan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kalee Woody
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| |
Collapse
|
50
|
Adhikari A, Mondal S, Das M, Biswas P, Pal U, Darbar S, Bhattacharya SS, Pal D, Saha‐Dasgupta T, Das AK, Mallick AK, Pal SK. Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model. Adv Healthc Mater 2021; 10:e2001736. [PMID: 33326181 DOI: 10.1002/adhm.202001736] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Indexed: 12/11/2022]
Abstract
The potentiality of nano-enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese-based biocompatible nanoscale material (C-Mn3 O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2 O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C-Mn3 O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non-toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Susmita Mondal
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Monojit Das
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
- Department of Zoology Vidyasagar University Rangamati 721102 India
| | - Pritam Biswas
- Department of Microbiology St. Xavier's College 30, Mother Teresa Sarani Kolkata 700016 India
| | - Uttam Pal
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Soumendra Darbar
- Research & Development Division Dey's Medical Stores (Mfg.) Ltd 62, Bondel Road, Ballygunge Kolkata 700019 India
| | | | - Debasish Pal
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
| | - Tanusri Saha‐Dasgupta
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
- Department of Condensed Matter Physics and Material Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Anjan Kumar Das
- Department of Pathology Coochbehar Govt. Medical College and Hospital Silver Jubilee Road Cooch Behar 736101 India
| | - Asim Kumar Mallick
- Department of Pediatric Medicine Nil Ratan Sircar Medical College and Hospital 138, Acharya Jagadish Chandra Bose Road, Sealdah Kolkata 700014 India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| |
Collapse
|