1
|
Trautmann G, Block K, Gutsmann M, Besnard S, Furlan S, Denise P, Volpe P, Blottner D, Salanova M. Increased Homer Activity and NMJ Localization in the Vestibular Lesion het-/- Mouse soleus Muscle. Int J Mol Sci 2024; 25:8577. [PMID: 39201265 PMCID: PMC11354602 DOI: 10.3390/ijms25168577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
We investigated the shuttling of Homer protein isoforms identified in soluble (cytosolic) vs. insoluble (membrane-cytoskeletal) fraction and Homer protein-protein interaction/activation in the deep postural calf soleus (SOL) and non-postural gastrocnemius (GAS) muscles of het-/- mice, i.e., mice with an autosomal recessive variant responsible for a vestibular disorder, in order to further elucidate a) the underlying mechanisms of disrupted vestibular system-derived modulation on skeletal muscle, and b) molecular signaling at respective neuromuscular synapses. Heterozygote mice muscles served as the control (CTR). An increase in Homer cross-linking capacity was present in the SOL muscle of het-/- mice as a compensatory mechanism for the altered vestibule system function. Indeed, in both fractions, different Homer immunoreactive bands were detectable, as were Homer monomers (~43-48 kDa), Homer dimers (~100 kDa), and several other Homer multimer bands (>150 kDA). The het-/- GAS particulate fraction showed no Homer dimers vs. SOL. The het-/- SOL soluble fraction showed a twofold increase (+117%, p ≤ 0.0004) in Homer dimers and multimers. Homer monomers were completely absent from the SOL independent of the animals studied, suggesting muscle-specific changes in Homer monomer vs. dimer expression in the postural SOL vs. the non-postural GAS muscles. A morphological assessment showed an increase (+14%, p ≤ 0.0001) in slow/type-I myofiber cross-sectional area in the SOL of het-/- vs. CTR mice. Homer subcellular immuno-localization at the neuromuscular junction (NMJ) showed an altered expression in the SOL of het-/-mice, whereas only not-significant changes were found for all Homer isoforms, as judged by RT-qPCR analysis. Thus, muscle-specific changes, myofiber properties, and neuromuscular signaling mechanisms share causal relationships, as highlighted by the variable subcellular Homer isoform expression at the instable NMJs of vestibular lesioned het-/- mice.
Collapse
Affiliation(s)
- Gabor Trautmann
- Institute of Integrative Neuroanatomy, Neuromuscular Signaling and System, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (D.B.)
- Center of Space Medicine Berlin, 10115 Berlin, Germany
| | - Katharina Block
- Institute of Integrative Neuroanatomy, Neuromuscular Signaling and System, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (D.B.)
- Center of Space Medicine Berlin, 10115 Berlin, Germany
| | - Martina Gutsmann
- Institute of Integrative Neuroanatomy, Neuromuscular Signaling and System, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (D.B.)
| | - Stéphane Besnard
- UR VERTEX 7480, CHU de Caen, Université de Caen Normandie, 10115 Caen, France;
| | - Sandra Furlan
- C.N.R. Institute of Neuroscience, 14000 Padova, Italy;
| | - Pierre Denise
- COMETE U1075, INSERM, CYCERON, CHU de Caen, Normandie Université, Université de Caen Normandie, 10115 Caen, France;
| | - Pompeo Volpe
- Department of Biomedical Sciences, University of Padova, 14000 Padova, Italy;
| | - Dieter Blottner
- Institute of Integrative Neuroanatomy, Neuromuscular Signaling and System, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (D.B.)
- Center of Space Medicine Berlin, 10115 Berlin, Germany
| | - Michele Salanova
- Institute of Integrative Neuroanatomy, Neuromuscular Signaling and System, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (D.B.)
- Center of Space Medicine Berlin, 10115 Berlin, Germany
| |
Collapse
|
2
|
Theotokis P, Manthou ME, Deftereou TE, Miliaras D, Meditskou S. Addressing Spaceflight Biology through the Lens of a Histologist-Embryologist. Life (Basel) 2023; 13:life13020588. [PMID: 36836946 PMCID: PMC9965490 DOI: 10.3390/life13020588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Embryogenesis and fetal development are highly delicate and error-prone processes in their core physiology, let alone if stress-associated factors and conditions are involved. Space radiation and altered gravity are factors that could radically affect fertility and pregnancy and compromise a physiological organogenesis. Unfortunately, there is a dearth of information examining the effects of cosmic exposures on reproductive and proliferating outcomes with regard to mammalian embryonic development. However, explicit attention has been given to investigations exploring discrete structures and neural networks such as the vestibular system, an entity that is viewed as the sixth sense and organically controls gravity beginning with the prenatal period. The role of the gut microbiome, a newly acknowledged field of research in the space community, is also being challenged to be added in forthcoming experimental protocols. This review discusses the data that have surfaced from simulations or actual space expeditions and addresses developmental adaptations at the histological level induced by an extraterrestrial milieu.
Collapse
Affiliation(s)
- Paschalis Theotokis
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Dimosthenis Miliaras
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
3
|
Gordy C, Straka H. Vestibular Influence on Vertebrate Skeletal Symmetry and Body Shape. Front Syst Neurosci 2021; 15:753207. [PMID: 34690711 PMCID: PMC8526847 DOI: 10.3389/fnsys.2021.753207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Vestibular endorgans in the vertebrate inner ear form the principal sensors for head orientation and motion in space. Following the evolutionary appearance of these organs in pre-vertebrate ancestors, specific sensory epithelial patches, such as the utricle, which is sensitive to linear acceleration and orientation of the head with respect to earth’s gravity, have become particularly important for constant postural stabilization. This influence operates through descending neuronal populations with evolutionarily conserved hindbrain origins that directly and indirectly control spinal motoneurons of axial and limb muscles. During embryogenesis and early post-embryonic periods, bilateral otolith signals contribute to the formation of symmetric skeletal elements through a balanced activation of axial muscles. This role has been validated by removal of otolith signals on one side during a specific developmental period in Xenopus laevis tadpoles. This intervention causes severe scoliotic deformations that remain permanent and extend into adulthood. Accordingly, the functional influence of weight-bearing otoconia, likely on utricular hair cells and resultant afferent discharge, represents a mechanism to ensure a symmetric muscle tonus essential for establishing a normal body shape. Such an impact is presumably occurring within a critical period that is curtailed by the functional completion of central vestibulo-motor circuits and by the modifiability of skeletal elements before ossification of the bones. Thus, bilateral otolith organs and their associated sensitivity to head orientation and linear accelerations are not only indispensable for real time postural stabilization during motion in space but also serve as a guidance for the ontogenetic establishment of a symmetric body.
Collapse
Affiliation(s)
- Clayton Gordy
- Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
4
|
Kharlamova A, Proshchina A, Gulimova V, Krivova Y, Soldatov P, Saveliev S. Cerebellar morphology and behavioural correlations of the vestibular function alterations in weightlessness. Neurosci Biobehav Rev 2021; 126:314-328. [PMID: 33766673 DOI: 10.1016/j.neubiorev.2021.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022]
Abstract
In humans and other vertebrates, the range of disturbances and behavioural changes induced by spaceflight conditions are well known. Sensory organs and the central nervous system (CNS) are forced to adapt to new environmental conditions of weightlessness. In comparison with peripheral vestibular organs and behavioural disturbances in weightlessness conditions, the CNS vestibular centres of vertebrates, including the cerebellum, have been poorly examined in orbital experiments, as well as in experimental micro- and hypergravity. However, the cerebellum serves as a critical control centre for learning and sensory system integration during space-flight. Thus, it is referred to as a principal brain structure for adaptation to gravity and the entire sensorimotor adaptation and learning during weightlessness. This paper is focused on the prolonged spaceflight effects on the vestibular cerebellum evidenced from animal models used in the Bion-M1 project. The changes in the peripheral vestibular apparatus and brainstem primary vestibular centres with appropriate behavioural disorders after altered gravity exposure are briefly reviewed. The cerebellum studies in space missions and altered gravity are discussed.
Collapse
Affiliation(s)
- Anastasia Kharlamova
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia.
| | | | - Victoria Gulimova
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia
| | - Yulia Krivova
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia
| | - Pavel Soldatov
- State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, Khoroshevskoyoe Shosse, 76A, Moscow, Russia
| | - Sergey Saveliev
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia
| |
Collapse
|
5
|
Zarei K, Elliott KL, Zarei S, Fritzsch B, Buchholz JHJ. A method for detailed movement pattern analysis of tadpole startle response. J Exp Anal Behav 2017; 108:113-124. [PMID: 28653338 PMCID: PMC5705052 DOI: 10.1002/jeab.263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/08/2017] [Indexed: 12/31/2022]
Abstract
Prolonged space flight, specifically microgravity, presents a problem for space exploration. Animal models with altered connections of the vestibular ear, and thus altered gravity sensation, would allow the examination of the effects of microgravity and how various countermeasures can establish normal function. We describe an experimental apparatus to monitor the effects of ear manipulations to generate asymmetric gravity input on the tadpole escape response. To perform the movement pattern analysis, an imaging apparatus was developed that uses a high-speed camera to obtain time-resolved, high-resolution images of tadpole movements. Movements were recorded in a temperature-controlled test chamber following mechanical stimulation with a solenoid actuator, to elicit a C-start response. Temperature within the test cell was controlled with a recirculating water bath. Xenopus laevis embryos were obtained using a standard fertilization technique. Tadpole response to a controlled perturbation was recorded in unprecedented detail and the approach was validated by describing the distinct differences in response between normal and one-eared tadpoles. The experimental apparatus and methods form an important element of a rigorous investigation into the response of the tadpole vestibular system to mechanical and biochemical manipulations, and can ultimately contribute to improved understanding of the effects of altered gravity perception on humans.
Collapse
Affiliation(s)
- Kasra Zarei
- Department of biomedical engineering, university of iowa
| | | | - Sanam Zarei
- Department of biomedical engineering, university of iowa
- Department of biology, university of iowa
| | | | - James H. J. Buchholz
- Department of mechanical engineering, university of iowa
- IIHR – hydroscience and engineering, university of iowa
| |
Collapse
|
6
|
Najrana T, Sanchez-Esteban J. Mechanotransduction as an Adaptation to Gravity. Front Pediatr 2016; 4:140. [PMID: 28083527 PMCID: PMC5183626 DOI: 10.3389/fped.2016.00140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island , Providence, RI , USA
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island , Providence, RI , USA
| |
Collapse
|
7
|
Casey T, Patel OV, Plaut K. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change. Physiol Genomics 2015; 47:113-28. [PMID: 25649141 DOI: 10.1152/physiolgenomics.00117.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022] Open
Abstract
Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, Indiana; and
| | - Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, Indiana; and
| |
Collapse
|
8
|
Branoner F, Straka H. Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis. Dev Neurobiol 2014; 75:1051-67. [PMID: 25266079 DOI: 10.1002/dneu.22234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 02/03/2023]
Abstract
Gaze stabilization during head/body movements is achieved to a large extent by vestibular-evoked compensatory eye movements. These reflexes derive from semicircular canal and otolith organs and depend on the transformation of the respective sensory signals into extraocular motor commands. To elicit directionally and dynamically appropriate compensatory eye movements, extraocular motoneurons require spatiotemporally specific inputs from semicircular canals and regions of the utricular epithelium with matching directional sensitivity. The ontogenetic establishment and maturation of the directional tuning of otolith inputs in extraocular motoneurons was studied in Xenopus laevis tadpoles. In young larvae at stage 46-48, superior oblique (SO) extraocular motoneurons receive omnidirectional utricular signals during horizontal translational motion, indicating an absence of spatial tuning. In contrast, in older larvae beyond stage 49 these motoneurons were activated by directionally more restricted otolith inputs with an increasingly enhanced spatial tuning until stage 53. This developmental process limited the origin of otolith signals to a utricular epithelial sector with a hair cell sensitivity that is coaligned with the pulling direction of the SO eye muscle. The maturation of the otolith response vector was abolished by enzymatic prevention of semicircular canal formation in postembryonic tadpoles at stage 44, suggesting that functionally intact semicircular canals are causally responsible for the observed directional tuning of utricular responses. A likely mechanism by which semicircular canals might influence the tuning of the otolith responses includes stabilization of coactivated and centrally converging sensory signals from semicircular canal and spatially aligned epithelial utricular regions during natural head/body motion.
Collapse
Affiliation(s)
- Francisco Branoner
- Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| |
Collapse
|
9
|
Jamon M. The development of vestibular system and related functions in mammals: impact of gravity. Front Integr Neurosci 2014; 8:11. [PMID: 24570658 PMCID: PMC3916785 DOI: 10.3389/fnint.2014.00011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/20/2014] [Indexed: 12/12/2022] Open
Abstract
This chapter reviews the knowledge about the adaptation to Earth gravity during the development of mammals. The impact of early exposure to altered gravity is evaluated at the level of the functions related to the vestibular system, including postural control, homeostatic regulation, and spatial memory. The hypothesis of critical periods in the adaptation to gravity is discussed. Demonstrating a critical period requires removing the gravity stimulus during delimited time windows, what is impossible to do on Earth surface. The surgical destruction of the vestibular apparatus, and the use of mice strains with defective graviceptors have provided useful information on the consequences of missing gravity perception, and the possible compensatory mechanisms, but transitory suppression of the stimulus can only be operated during spatial flight. The rare studies on rat pups housed on board of space shuttle significantly contributed to this problem, but the use of hypergravity environment, produced by means of chronic centrifugation, is the only available tool when repeated experiments must be carried out on Earth. Even though hypergravity is sometimes considered as a mirror situation to microgravity, the two situations cannot be confused because a gravitational force is still present. The theoretical considerations that validate the paradigm of hypergravity to evaluate critical periods are discussed. The question of adaption of graviceptor is questioned from an evolutionary point of view. It is possible that graviception is hardwired, because life on Earth has evolved under the constant pressure of gravity. The rapid acquisition of motor programming by precocial mammals in minutes after birth is consistent with this hypothesis, but the slow development of motor skills in altricial species and the plasticity of vestibular perception in adults suggest that gravity experience is required for the tuning of graviceptors. The possible reasons for this dichotomy are discussed.
Collapse
Affiliation(s)
- Marc Jamon
- Faculté de Médecine de la Timone, Institut National de la Santé et de la Recherche Médicale U 1106, Aix-Marseille University Marseille, France
| |
Collapse
|
10
|
Straka H. Ontogenetic rules and constraints of vestibulo-ocular reflex development. Curr Opin Neurobiol 2010; 20:689-95. [PMID: 20637600 DOI: 10.1016/j.conb.2010.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/14/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
Vestibulo-ocular reflexes (VOR) assist retinal image stabilization during vertebrate locomotion thereby ensuring accurate visual perception. The importance of this motor behavior for animal survival requires that the underlying circuitry and all individual components are fully developed and functional as soon as post-embryonic animals initiate self-motion. Recent progress on the genetic, molecular, and activity-dependent regulation of placode development, vestibular sensory organ formation, circuit assembly, and acquisition of neuronal properties revealed rules and restrictions that give insight into how hindbrain VOR neuronal networks are assembled and become functional during ontogeny. Major crucial steps that correlate with early/delayed functional VOR onsets concern the maturation of cellular properties (precocial/altricial species) and the acquisition of minimal semicircular canal dimensions (small-sized vertebrates).
Collapse
Affiliation(s)
- Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, 82152 Planegg, Germany.
| |
Collapse
|
11
|
Abstract
Adaptation is a central precept of biology; it provides a framework for identifying functional significance. We equate mammalian development with adaptation, by viewing the developmental sequence as a series of adaptations to a stereotyped sequence of habitats. In this way development is adaptation. The Norway rat is used as a mammalian model, and the sequence of habitats that is used to define its adaptive-developmental sequence is (a) the uterus, (b) the mother's body, (c) the huddle, and (d) the coterie of pups as they gain independence. Then, within this framework and in relation to each of the habitats, we consider problems of organismal responses to altered gravitational forces (micro-g to hyper-g), especially those encountered during space flight and centrifugation. This approach enables a clearer identification of simple "effects" and active "responses" with respect to gravity. It focuses our attention on functional systems and brings to the fore the manner in which experience shapes somatic adaptation. We argue that this basic developmental approach is not only central to basic issues in gravitational biology, but that it provides a natural tool for understanding the underlying processes that are vital to astronaut health and well-being during long duration flights that will involve adaptation to space flight conditions and eventual re-adaptation to Earth's gravity.
Collapse
|
12
|
Bouët V, Wubbels RJ, de Jong HAA, Gramsbergen A. Behavioural consequences of hypergravity in developing rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:69-78. [PMID: 15464219 DOI: 10.1016/j.devbrainres.2004.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2004] [Indexed: 11/21/2022]
Abstract
Gravity represents a stable reference for the nervous system. When the individual is increasing in size and weight, gravity may influence several aspects of the sensory and motor developments. To clarify this role, we studied age-dependent modifications of several exteroceptive and proprioceptive reflexes in five groups of rats conceived, born and reared in hypergravity (2 g). Rats were transferred to normal gravity (1 g) at P5 (post-natal day 5), P10, P15, P21, and P27. Aspects of neural development and adaptation to 1 g were assessed until P40. Hypergravity induced a delay in growth and a retardation in the development of contact-righting, air-righting, and negative geotaxis. However, we found an advance in eye opening by about 2-3 days in HG-P5 and HG-P10 rats and an increase in grip-time. No differences were found in tail and grasp reflexes. Our results show that hypergravity leads to a retarded development of motor aspects which are mainly dependent upon the vestibular system.
Collapse
Affiliation(s)
- V Bouët
- Department of Medical Physiology, University of Groningen, Antonius Deusinglaan, 1, Groningen 9713 AV, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Maklad A, Fritzsch B. Development of vestibular afferent projections into the hindbrain and their central targets. Brain Res Bull 2003; 60:497-510. [PMID: 12787869 PMCID: PMC3901526 DOI: 10.1016/s0361-9230(03)00054-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In contrast to most other sensory systems, hardly anything is known about the neuroanatomical development of central projections of primary vestibular neurons and how their second order target neurons develop. Recent data suggest that afferent projections may develop not unlike other sensory systems, forming first the overall projection by molecular means followed by an as yet unspecified phase of activity mediated refinement. The latter aspect has not been tested critically and most molecules that guide the initial projection are unknown. The molecular and topological origin of the vestibular and cochlear nucleus neurons is also only partially understood. Auditory and vestibular nuclei form from several rhombomeres and a given rhombomere can contribute to two or more auditory or vestibular nuclei. Rhombomere compartments develop as functional subdivisions from a single column that extends from the hindbrain to the spinal cord. Suggestions are provided for the molecular origin of these columns but data on specific mutants testing these proposals are not yet available. Overall, the functional significance of both overlapping and segregated projections are not yet fully experimentally explored in mammals. Such lack of details of the adult organization compromises future developmental analysis.
Collapse
Affiliation(s)
| | - Bernd Fritzsch
- Corresponding author. Tel.: +1-402-280-2915; fax: +1-402-280-5556. (B. Fritzsch)
| |
Collapse
|
14
|
Gaboyard S, Sans A, Lehouelleur J. Differential impact of hypergravity on maturating innervation in vestibular epithelia during rat development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:15-23. [PMID: 12763577 DOI: 10.1016/s0165-3806(03)00069-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Over the past decades, the new opportunity of space flights has revealed the importance of gravity as a mechanical constraint for terrestrial organisms as well as its influence on the somatosensory system. The lack of gravitational reference in orbital flight induces changes in equilibrium, with major modifications involving neuromorphological and physiological adaptations. However, few data have illustrated the putative effect of gravity on sensory vestibular epithelial development. We asked if gravity, the primary stimulus of utricles could act as an epigenetic factor. As sensorial deprivation linked to weightlessness is technically difficult, we used a ground-based centrifuge to increase the gravitational vector, in order to hyperstimulate the vestibule. In this study, 3 days after mating, pregnant females were submitted to hypergravity, 2 g (HG). Their embryos were raised, born and postnatally developed under HG. The establishment of connections between primary vestibular afferent neurons and hair cells in the utricle of these young rats was followed from birth to postnatal day 6 (PN6) and compared to embryos developed in normogravity (NG): Immunocytochemistry for neurofilaments and microvesicles revealed the differential effects of gravity on the late neuritogenic and synaptogenic processes in utricles. Taking type I hair cell innervation as a criterion of maturation, we found that primary afferent fibres reached the vestibular epithelium and enveloped hair cells in the same way, both under NG and HG. Thus, this phenomenon of leading growth cones to their epithelial target appears to be dependent on intrinsic genetic properties and not on an external stimulus. In contrast, the maturation of connection processes between type 1 hair cells and the afferent calyx, concerning specifically the microvesicles at their apex, was delayed under HG. Therefore, gravity appears to be an epigenetic factor influencing the late maturation of utricles. These differential effects of altered gravity on the development of the vestibular epithelium are discussed.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calbindin 2
- Centrifugation/methods
- Embryo, Mammalian
- Embryonic and Fetal Development
- Epithelium/anatomy & histology
- Epithelium/embryology
- Epithelium/growth & development
- Epithelium/metabolism
- Female
- Gravitation
- Hair Cells, Vestibular/embryology
- Hair Cells, Vestibular/growth & development
- Hair Cells, Vestibular/metabolism
- Hypergravity
- Immunohistochemistry/methods
- Male
- Microscopy, Confocal/instrumentation
- Neurofilament Proteins/metabolism
- Pregnancy
- Rats
- Rats, Wistar
- S100 Calcium Binding Protein G/metabolism
- Saccule and Utricle/embryology
- Saccule and Utricle/growth & development
- Saccule and Utricle/metabolism
- Synaptophysin/metabolism
- Time Factors
- Vestibule, Labyrinth/embryology
- Vestibule, Labyrinth/growth & development
- Vestibule, Labyrinth/innervation
- Vestibule, Labyrinth/metabolism
Collapse
Affiliation(s)
- Sophie Gaboyard
- INSERM U432, Université Montpellier II, place E. Bataillon, 34095 Montpellier, Cedex 05, France.
| | | | | |
Collapse
|
15
|
Fritzsch B, Maklad A, Bruce LL, Crapon de Caprona MD. Development of the ear and of connections between the ear and the brain: is there a role for gravity? ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 28:595-600. [PMID: 11803959 DOI: 10.1016/s0273-1177(01)00387-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper outlines the development of the gravistatic sensory system of the ear. First, evidence is presented that a genetic program, for which major transcription factors have already been identified using gene expression studies and targeted mutagenesis, governs the initial development of this system. Second, the formation of sensory neurons and their connections to the brain is described as revealed by tracing studies and genetic manipulations. It is concluded that the initial development of the connections of sensory neurons with mechanosensory transducers of the ear (the hair cells) and the targets in the brainstem (vestibular nuclei) is also dependent on fairly rigid genetic programs. During late embryonic and early postnatal development, however, sensory input appears to be used to fine-tune connections of these sensory neurons with the hair cells in the ear as well as with second order vestibular neurons in the brainstem. This phase is proposed to be critical for a proper calibration of the gravistatic information processing in the brain.
Collapse
Affiliation(s)
- B Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|