1
|
Hosseini MS, Sanaat Z, Akbarzadeh MA, Vaez-Gharamaleki Y, Akbarzadeh M. Histone deacetylase inhibitors for leukemia treatment: current status and future directions. Eur J Med Res 2024; 29:514. [PMID: 39456044 PMCID: PMC11515273 DOI: 10.1186/s40001-024-02108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Leukemia remains a major therapeutic challenge in clinical oncology. Despite significant advancements in treatment modalities, leukemia remains a significant cause of morbidity and mortality worldwide, as the current conventional therapies are accompanied by life-limiting adverse effects and a high risk of disease relapse. Histone deacetylase inhibitors have emerged as a promising group of antineoplastic agents due to their ability to modulate gene expression epigenetically. In this review, we explore these agents, their mechanisms of action, pharmacokinetics, safety and clinical efficacy, monotherapy and combination therapy strategies, and clinical challenges associated with histone deacetylase inhibitors in leukemia treatment, along with the latest evidence and ongoing studies in the field. In addition, we discuss future directions to optimize the therapeutic potential of these agents.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. Monocytic Differentiation in Acute Myeloid Leukemia Cells: Diagnostic Criteria, Biological Heterogeneity, Mitochondrial Metabolism, Resistance to and Induction by Targeted Therapies. Int J Mol Sci 2024; 25:6356. [PMID: 38928061 PMCID: PMC11203697 DOI: 10.3390/ijms25126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
We review the importance of monocytic differentiation and differentiation induction in non-APL (acute promyelocytic leukemia) variants of acute myeloid leukemia (AML), a malignancy characterized by proliferation of immature myeloid cells. Even though the cellular differentiation block is a fundamental characteristic, the AML cells can show limited signs of differentiation. According to the French-American-British (FAB-M4/M5 subset) and the World Health Organization (WHO) 2016 classifications, monocytic differentiation is characterized by morphological signs and the expression of specific molecular markers involved in cellular communication and adhesion. Furthermore, monocytic FAB-M4/M5 patients are heterogeneous with regards to cytogenetic and molecular genetic abnormalities, and monocytic differentiation does not have any major prognostic impact for these patients when receiving conventional intensive cytotoxic therapy. In contrast, FAB-M4/M5 patients have decreased susceptibility to the Bcl-2 inhibitor venetoclax, and this seems to be due to common molecular characteristics involving mitochondrial regulation of the cellular metabolism and survival, including decreased dependency on Bcl-2 compared to other AML patients. Thus, the susceptibility to Bcl-2 inhibition does not only depend on general resistance/susceptibility mechanisms known from conventional AML therapy but also specific mechanisms involving the molecular target itself or the molecular context of the target. AML cell differentiation status is also associated with susceptibility to other targeted therapies (e.g., CDK2/4/6 and bromodomain inhibition), and differentiation induction seems to be a part of the antileukemic effect for several targeted anti-AML therapies. Differentiation-associated molecular mechanisms may thus become important in the future implementation of targeted therapies in human AML.
Collapse
MESH Headings
- Humans
- Cell Differentiation
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mitochondria/metabolism
- Monocytes/metabolism
- Monocytes/pathology
- Drug Resistance, Neoplasm/genetics
- Molecular Targeted Therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
3
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Wang Y, Iha H. The Novel Link between Gene Expression Profiles of Adult T-Cell Leukemia/Lymphoma Patients' Peripheral Blood Lymphocytes and Ferroptosis Susceptibility. Genes (Basel) 2023; 14:2005. [PMID: 38002949 PMCID: PMC10671613 DOI: 10.3390/genes14112005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Ferroptosis, a regulated cell death dependent on iron, has garnered attention as a potential broad-spectrum anticancer approach in leukemia research. However, there has been limited ferroptosis research on ATL, an aggressive T-cell malignancy caused by HTLV-1 infection. Our study employs bioinformatic analysis, utilizing dataset GSE33615, to identify 46 ferroptosis-related DEGs and 26 autophagy-related DEGs in ATL cells. These DEGs are associated with various cellular responses, chemical stress, and iron-related pathways. Autophagy-related DEGs are linked to autophagy, apoptosis, NOD-like receptor signaling, TNF signaling, and the insulin resistance pathway. PPI network analysis revealed 10 hub genes and related biomolecules. Moreover, we predicted crucial miRNAs, transcription factors, and potential pharmacological compounds. We also screened the top 20 medications based on upregulated DEGs. In summary, our study establishes an innovative link between ATL treatment and ferroptosis, offering promising avenues for novel therapeutic strategies in ATL.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan
| |
Collapse
|
5
|
Shafer D, Kagan AB, Rudek MA, Kmieciak M, Tombes MB, Shrader E, Bandyopadhyay D, Hudson D, Sankala H, Weir C, Lancet JE, Grant S. Phase 1 study of belinostat and adavosertib in patients with relapsed or refractory myeloid malignancies. Cancer Chemother Pharmacol 2023; 91:281-290. [PMID: 36864346 PMCID: PMC10807611 DOI: 10.1007/s00280-023-04511-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE Belinostat is an intravenous histone deacetylase inhibitor with approval for T-cell lymphomas. Adavosertib is a first in class oral Wee1 inhibitor. Preclinical studies of the combination demonstrated synergy in various human acute myeloid leukemia (AML) lines as well as AML xenograft mouse models. EXPERIMENTAL DESIGN This was a phase 1 dose-escalation study of belinostat and adavosertib in patients with relapsed/refractory AML and myelodysplastic syndrome (MDS). Patients received both drugs on days 1-5 and 8-12 of a 21-day cycle. Safety and toxicity were monitored throughout the study. Plasma levels of both drugs were measured for pharmacokinetic analysis. Response was determined by standard criteria including bone marrow biopsy. RESULTS Twenty patients were enrolled and treated at 4 dose levels. A grade 4 cytokine release syndrome at dose level 4 (adavosertib 225 mg/day; belinostat 1000 mg/m2) qualified as a dose-limiting toxicity event. The most common non-hematologic treatment-related adverse events were nausea, vomiting, diarrhea, dysgeusia, and fatigue. No responses were seen. The study was terminated prior to maximum tolerated dose/recommended phase 2 dose determination. CONCLUSIONS The combination of belinostat and adavosertib at the tested dose levels was feasible but without efficacy signals in the relapsed/refractory MDS/AML population.
Collapse
Affiliation(s)
- Danielle Shafer
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Inova Schar Cancer Center, Fairfax, VA, USA
| | - Amanda B Kagan
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Michelle A Rudek
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mary Beth Tombes
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ellen Shrader
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Dipankar Bandyopadhyay
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Statistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel Hudson
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Heidi Sankala
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Caryn Weir
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- The Institute for Molecular Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
6
|
Bashir SM, Ahmed Rather G, Patrício A, Haq Z, Sheikh AA, Shah MZUH, Singh H, Khan AA, Imtiyaz S, Ahmad SB, Nabi S, Rakhshan R, Hassan S, Fonte P. Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196521. [PMID: 36233864 PMCID: PMC9570720 DOI: 10.3390/ma15196521] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 05/10/2023]
Abstract
Chitosan is a biodegradable and biocompatible natural polymer that has been extensively explored in recent decades. The Food and Drug Administration has approved chitosan for wound treatment and nutritional use. Furthermore, chitosan has paved the way for advancements in different biomedical applications including as a nanocarrier and tissue-engineering scaffold. Its antibacterial, antioxidant, and haemostatic properties make it an excellent option for wound dressings. Because of its hydrophilic nature, chitosan is an ideal starting material for biocompatible and biodegradable hydrogels. To suit specific application demands, chitosan can be combined with fillers, such as hydroxyapatite, to modify the mechanical characteristics of pH-sensitive hydrogels. Furthermore, the cationic characteristics of chitosan have made it a popular choice for gene delivery and cancer therapy. Thus, the use of chitosan nanoparticles in developing novel drug delivery systems has received special attention. This review aims to provide an overview of chitosan-based nanoparticles, focusing on their versatile properties and different applications in biomedical sciences and engineering.
Collapse
Affiliation(s)
- Showkeen Muzamil Bashir
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| | - Gulzar Ahmed Rather
- Department of Biomedical Engineering, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai 600119, India
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| | - Ana Patrício
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Zulfiqar Haq
- ICAR-Poultry Seed Project, Division of LPM, Skuast-K 132001, India
| | - Amir Amin Sheikh
- International Institute of Veterinary Education and Research (IIVER), Bahu Akbarpur, Rohtak 124001, India
| | - Mohd Zahoor ul Haq Shah
- Laboratory of Endocrinology, Department of Bioscience, Barkatullah University, Bhopal 462026, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Azmat Alam Khan
- ICAR-Poultry Seed Project, Division of LPM, Skuast-K 132001, India
| | - Sofi Imtiyaz
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Sheikh Bilal Ahmad
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Showket Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Rabia Rakhshan
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Center for Marine Sciences (CCMAR), Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| |
Collapse
|
7
|
Yang J, Song C, Zhan X. The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne) 2022; 13:972312. [PMID: 36171897 PMCID: PMC9510633 DOI: 10.3389/fendo.2022.972312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Protein acetylation is a reversible post-translational modification, and is involved in many biological processes in cells, such as transcriptional regulation, DNA damage repair, and energy metabolism, which is an important molecular event and is associated with a wide range of diseases such as cancers. Protein acetylation is dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in homeostasis. The abnormal acetylation level might lead to the occurrence and deterioration of a cancer, and is closely related to various pathophysiological characteristics of a cancer, such as malignant phenotypes, and promotes cancer cells to adapt to tumor microenvironment. Therapeutic modalities targeting protein acetylation are a potential therapeutic strategy. This article discussed the roles of protein acetylation in tumor pathology and therapeutic drugs targeting protein acetylation, which offers the contributions of protein acetylation in clarification of carcinogenesis, and discovery of therapeutic drugs for cancers, and lays the foundation for precision medicine in oncology.
Collapse
Affiliation(s)
- Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
Mehrpouri M, Pourbagheri-Sigaroodi A, Bashash D. The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol 2021; 100:108114. [PMID: 34492531 DOI: 10.1016/j.intimp.2021.108114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Although the definitive role of epigenetic modulations in a wide range of hematologic malignancies, spanning from leukemia to lymphoma and multiple myeloma, has been evidenced, few articles reviewed the task. Given the high accessibility of histone deacetylase (HDACs) to necessary transcription factors involved in hematopoiesis, this review aims to outline physiologic impacts of these enzymes in normal hematopoiesis, and also to outline the original data obtained from international research laboratories on their regulatory role in the differentiation and maturation of different hematopoietic lineages. Questions on how aberrant expression of HDACs contributes to the formation of hematologic malignancies are also responded, because these classes of enzymes have a respectable share in the development, progression, and recurrence of leukemia, lymphoma, and multiple myeloma. The last section provides a special focus on the therapeutic perspectiveof HDACs inhibitors, either as single agents or in a combined-modal strategy, in these neoplasms. In conclusion, optimizing the dose and the design of more patient-tailored inhibitors, while maintaining low toxicity against normal cells, will help improve clinical outcomes of HDAC inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Mahdieh Mehrpouri
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Bruserud Ø, Tsykunova G, Hernandez-Valladares M, Reikvam H, Tvedt THA. Therapeutic Use of Valproic Acid and All-Trans Retinoic Acid in Acute Myeloid Leukemia-Literature Review and Discussion of Possible Use in Relapse after Allogeneic Stem Cell Transplantation. Pharmaceuticals (Basel) 2021; 14:ph14050423. [PMID: 34063204 PMCID: PMC8147490 DOI: 10.3390/ph14050423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Even though allogeneic stem cell transplantation is the most intensive treatment for acute myeloid leukemia (AML), chemo-resistant leukemia relapse is still one of the most common causes of death for these patients, as is transplant-related mortality, i.e., graft versus host disease, infections, and organ damage. These relapse patients are not always candidates for additional intensive therapy or re-transplantation, and many of them have decreased quality of life and shortened expected survival. The efficiency of azacitidine for treatment of posttransplant AML relapse has been documented in several clinical trials. Valproic acid is an antiepileptic fatty acid that exerts antileukemic activity through histone deacetylase inhibition. The combination of valproic acid and all-trans retinoic acid (ATRA) is well tolerated even by unfit or elderly AML patients, and low-toxicity chemotherapy (e.g., azacitidine) can be added to this combination. The triple combination of azacitidine, valproic acid, and ATRA may therefore represent a low-intensity and low-toxicity alternative for these patients. In the present review, we review and discuss the general experience with valproic acid/ATRA in AML therapy and we discuss its possible use in low-intensity/toxicity treatment of post-allotransplant AML relapse. Our discussion is further illustrated by four case reports where combined treatments with sequential azacitidine/hydroxyurea, valproic acid, and ATRA were used.
Collapse
Affiliation(s)
- Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
- Correspondence:
| | - Galina Tsykunova
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway;
| | - Hakon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | | |
Collapse
|
10
|
de Lima M, Roboz GJ, Platzbecker U, Craddock C, Ossenkoppele G. AML and the art of remission maintenance. Blood Rev 2021; 49:100829. [PMID: 33832807 DOI: 10.1016/j.blre.2021.100829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
Relapse in acute myeloid leukemia (AML) is common, especially in older patients, and there is currently no standard of care maintenance therapy for those who achieve complete remission. Finding effective, tolerable maintenance therapy to prolong remission has been a goal for decades, but early clinical trials testing a variety of agents demonstrated disappointing results with no overall survival benefit. CC-486, an oral hypomethylating agent, was recently approved in the United States for maintenance treatment in patients with AML in first remission following chemotherapy. A number of ongoing studies are assessing various therapeutics in the maintenance setting, including other hypomethylating agents, targeted small-molecule inhibitors, monoclonal antibodies, and immunomodulators. New strategies are needed to identify patients most likely to benefit from maintenance therapy, including those for whom a preemptive approach reliant on monitoring of measurable residual disease would be advantageous.
Collapse
Affiliation(s)
- Marcos de Lima
- The Ohio State University, Columbus, OH, United States of America.
| | - Gail J Roboz
- Weill Cornell Medicine, New York, NY, United States of America; New York Presbyterian Hospital, New York, NY, United States of America
| | | | - Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | | |
Collapse
|
11
|
Elmore LW, Greer SF, Daniels EC, Saxe CC, Melner MH, Krawiec GM, Cance WG, Phelps WC. Blueprint for cancer research: Critical gaps and opportunities. CA Cancer J Clin 2021; 71:107-139. [PMID: 33326126 DOI: 10.3322/caac.21652] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
We are experiencing a revolution in cancer. Advances in screening, targeted and immune therapies, big data, computational methodologies, and significant new knowledge of cancer biology are transforming the ways in which we prevent, detect, diagnose, treat, and survive cancer. These advances are enabling durable progress in the goal to achieve personalized cancer care. Despite these gains, more work is needed to develop better tools and strategies to limit cancer as a major health concern. One persistent gap is the inconsistent coordination among researchers and caregivers to implement evidence-based programs that rely on a fuller understanding of the molecular, cellular, and systems biology mechanisms underpinning different types of cancer. Here, the authors integrate conversations with over 90 leading cancer experts to highlight current challenges, encourage a robust and diverse national research portfolio, and capture timely opportunities to advance evidence-based approaches for all patients with cancer and for all communities.
Collapse
Affiliation(s)
- Lynne W Elmore
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Susanna F Greer
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Elvan C Daniels
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Charles C Saxe
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Michael H Melner
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Ginger M Krawiec
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William G Cance
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William C Phelps
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
12
|
Hu X, Wang Y, Gao X, Xu S, Zang L, Xiao Y, Li Z, Hua H, Xu J, Li D. Recent Progress of Oridonin and Its Derivatives for the Treatment of Acute Myelogenous Leukemia. Mini Rev Med Chem 2020; 20:483-497. [PMID: 31660811 DOI: 10.2174/1389557519666191029121809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/13/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Abstract
First stage human clinical trial (CTR20150246) for HAO472, the L-alanine-(14-oridonin) ester trifluoroacetate, was conducted by a Chinese company, Hengrui Medicine Co. Ltd, to develop a new treatment for acute myelogenous leukemia. Two patents, WO2015180549A1 and CN201410047904.X, covered the development of the I-type crystal, stability experiment, conversion rate research, bioavailability experiment, safety assessment, and solubility study. HAO472 hewed out new avenues to explore the therapeutic properties of oridonin derivatives and develop promising treatment of cancer originated from naturally derived drug candidates. Herein, we sought to overview recent progress of the synthetic, physiological, and pharmacological investigations of oridonin and its derivatives, aiming to disclose the therapeutic potentials and broaden the platform for the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Wang
- Valiant Co. Ltd., 11 Wuzhishan Road, YEDA Yantai, Shandong 264006, China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Linghe Zang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Xiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
13
|
Yan B, Claxton D, Huang S, Qiu Y. AML chemoresistance: The role of mutant TP53 subclonal expansion and therapy strategy. Exp Hematol 2020; 87:13-19. [PMID: 32569759 DOI: 10.1016/j.exphem.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal disease characterized by the proliferation and accumulation of myeloid blast cells in the bone marrow, which eventually lead to hematopoietic failure. Chemoresistance presents as a major burden for therapy of AML patients. p53 is the most important tumor suppressor protein that regulates cellular response to various stress. It is also important for hematopoietic stem cell development and hematopoiesis. Mutation or deletion of TP53 has been found to be linked to cancer progression, therapy-related resistance, and poor prognosis. TP53 mutation occurs in less than 10% of AML patients; however, it represents a subset of AML with therapy resistance and poor outcome. In addition, there is a subgroup of patients with low-frequency TP53 mutations. The percentage ranges from 1% to 3% of all AML patients. These patients have outcomes comparable to those of the high-frequency TP53 mutation patients. TP53-mutated clones isolated from the parental cells exhibit a survival advantage under drug treatment compared with cells with wild-type TP53, and have a higher population of leukemia stem cell (LSC) marker-positive cells, a characteristic of chemo-resistant cells. Therefore, low-frequency TP53 mutation, which is currently underappreciated, is an important prognosis factor for AML patients. Epigenetic drugs, such as hypomethylating agent and histone deacetylase inhibitors, have been found effective in targeting TP53-mutated AML. Histone deacetylase inhibitors can preferentially target the TP53-mutated subpopulation by reactivating p53-targeted genes and by eradicating LSC marker-positive cells. Therefore, combined treatment with epigenetic drugs may represent a new therapeutic strategy for treatments of TP53-mutated AML.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA
| | - David Claxton
- Department of Medicine, Pennsylvania State University College of Medicine Hershey, PA; Penn State Cancer Institute, Pennsylvania State University College of Medicine Hershey, PA
| | - Suming Huang
- Penn State Cancer Institute, Pennsylvania State University College of Medicine Hershey, PA; Department of Pediatrics, Pennsylvania State University College of Medicine Hershey, PA
| | - Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA; Penn State Cancer Institute, Pennsylvania State University College of Medicine Hershey, PA.
| |
Collapse
|
14
|
Waterhouse MP, Ugur R, Khaled WT. Therapeutic and Mechanistic Perspectives of Protein Complexes in Breast Cancer. Front Cell Dev Biol 2019; 7:335. [PMID: 31921847 PMCID: PMC6932950 DOI: 10.3389/fcell.2019.00335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer affects one in eight women making it the most common cancer in the United Kingdom, accounting for 15% of all new cancer cases. One of the main challenges in treating breast cancer is the heterogeneous nature of the disease. At present, targeted therapies are available for hormone receptor- and HER2-positive tumors. However, no targeted therapies are currently available for patients with triple negative breast cancer (TNBC). This likely contributes to the poor prognostic outcome for TNBC patients. Consequently, there is a clear clinical need for the development of novel drugs that efficiently target TNBC. Extensive genomic and transcriptomic characterization of TNBC has in recent years identified a plethora of putative oncogenes. However, these driver oncogenes are often critical in other cell types and/or transcription factors making them very difficult to target directly. Therefore, other approaches may be required for developing novel therapeutics that fully exploit the specific functions of TNBC oncogenes in tumor cells. Here, we will argue that more research is needed to identify the protein-protein interactions of TNBC oncogenes as a means for (a) mechanistically understanding the biological function of these oncogenes in TNBC and (b) providing novel therapeutic targets that can be exploited for selectively inhibiting the oncogenic roles of TNBC oncogenes in cancer cells, whilst sparing normal healthy cells.
Collapse
Affiliation(s)
| | | | - Walid T. Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Transcriptomic and Epigenomic Profiling of Histone Deacetylase Inhibitor Treatment Reveals Distinct Gene Regulation Profiles Leading to Impaired Neutrophil Development. Hemasphere 2019; 3:e270. [PMID: 31723844 PMCID: PMC6745919 DOI: 10.1097/hs9.0000000000000270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023] Open
Abstract
Supplemental Digital Content is available in the text The clinical use of histone deacetylase inhibitors (HDACi) for the treatment of bone marrow failure and hematopoietic malignancies has increased dramatically over the last decades. Nonetheless, their effects on normal myelopoiesis remain poorly evaluated. Here, we treated cord blood derived CD34+ progenitor cells with two chemically distinct HDACi inhibitors MS-275 or SAHA and analyzed their effects on the transcriptome (RNA-seq), epigenome (H3K27ac ChIP-seq) and functional and morphological characteristics during neutrophil development. MS-275 (entinostat) selectively inhibits class I HDACs, with a preference for HDAC1, while SAHA (vorinostat) is a non-selective class I/II HDACi. Treatment with individual HDACi resulted in both overlapping and distinct effects on both transcriptome and epigenome, whereas functional effects were relatively similar. Both HDACi resulted in reduced expansion and increased apoptosis in neutrophil progenitor cells. Morphologically, HDACi disrupted normal neutrophil differentiation what was illustrated by decreased percentages of mature neutrophils. In addition, while SAHA treatment clearly showed a block at the promyelocytic stage, MS-275 treatment was characterized by dysplastic features and skewing towards the monocytic lineage. These effects could be mimicked using shRNA-mediated knockdown of HDAC1. Taken together, our data provide novel insights into the effects of HDAC inhibition on normal hematopoietic cells during neutrophil differentiation. These findings should be taken into account when considering the clinical use of MS-275 and SAHA, and can be potentially utilized to tailor more specific, hematopoietic-directed HDACi in the future.
Collapse
|
16
|
Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and Indirect Targeting of HOXA9 Transcription Factor in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060837. [PMID: 31213012 PMCID: PMC6627208 DOI: 10.3390/cancers11060837] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
HOXA9 (Homeobox A9) is a homeotic transcription factor known for more than two decades to be associated with leukemia. The expression of HOXA9 homeoprotein is associated with anterior-posterior patterning during embryonic development, and its expression is then abolished in most adult cells, with the exception of hematopoietic progenitor cells. The oncogenic function of HOXA9 was first assessed in human acute myeloid leukemia (AML), particularly in the mixed-phenotype associated lineage leukemia (MPAL) subtype. HOXA9 expression in AML is associated with aggressiveness and a poor prognosis. Since then, HOXA9 has been involved in other hematopoietic malignancies and an increasing number of solid tumors. Despite this, HOXA9 was for a long time not targeted to treat cancer, mainly since, as a transcription factor, it belongs to a class of protein long considered to be an "undruggable" target; however, things have now evolved. The aim of the present review is to focus on the different aspects of HOXA9 targeting that could be achieved through multiple ways: (1) indirectly, through the inhibition of its expression, a strategy acting principally at the epigenetic level; or (2) directly, through the inhibition of its transcription factor function by acting at either the protein/protein interaction or the protein/DNA interaction interfaces.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Meryem Alioui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Samy Jambon
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Sabine Depauw
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Isabelle Van Seuningen
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
| | - Marie-Hélène David-Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| |
Collapse
|
17
|
Zhang Q, Wang S, Chen J, Yu Z. Histone Deacetylases (HDACs) Guided Novel Therapies for T-cell lymphomas. Int J Med Sci 2019; 16:424-442. [PMID: 30911277 PMCID: PMC6428980 DOI: 10.7150/ijms.30154] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
T-cell lymphomas are a heterogeneous group of cancers with different pathogenesis and poor prognosis. Histone deacetylases (HDACs) are epigenetic modifiers that modulate many key biological processes. In recent years, HDACs have been fully investigated for their roles and potential as drug targets in T-cell lymphomas. In this review, we have deciphered the modes of action of HDACs, HDAC inhibitors as single agents, and HDACs guided combination therapies in T-cell lymphomas. The overview of HDACs on the stage of T-cell lymphomas, and HDACs guided therapies both as single agents and combination regimens endow great opportunities for the cure of T-cell lymphomas.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Shaobin Wang
- Health Management Center of Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Junhui Chen
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Zhendong Yu
- China Central Laboratory of Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| |
Collapse
|
18
|
Mueller BU, Seipel K, Pabst T. Myelodysplastic syndromes and acute myeloid leukemias in the elderly. Eur J Intern Med 2018; 58:28-32. [PMID: 30527920 DOI: 10.1016/j.ejim.2018.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023]
Abstract
Most patients above 60 years with acute myeloid leukemia (AML) will die from their disease. Nevertheless, the treatment concepts in elderly patients with myelodysplastic syndromes (MDS) and AML are rapidly evolving. A number of recent reports have identified better survival rates with intensive induction chemotherapy for patients up to 80 years, with the exception of patients with unfavorable genomic risk abnormalities or with major co-morbidities. Gemtuzumab ozogamicin is increasingly added to induction therapy for AML patients up to 70 years with favorable or intermediate risk profile, and Midostaurin for patients with a FLT3 mutation. The recommended dose of daunorubicin is 60 mg/m2 for 3 + 7 induction therapy. Elderly patients with acute promyelocytic leukemia should receive all-trans retinoic acid and arsenic trioxide, and cytotoxic treatment is limited upfront to patients with initial leukocytosis. Allogeneic transplantation can be recommended to selected patients up to 70-75 years. For patients unfit for intensive treatment, therapeutic options comprise a hypomethylating agent (HMA), low-dose cytarabin and supportive care. HMA treatment is also increasingly applied for relapsed/refractory AML after intensive chemotherapy. A considerable number of candidate compounds are currently being studied in older AML patients, with their potential role in the treatment of elderly AML patients remaining to be clarified.
Collapse
Affiliation(s)
- Beatrice U Mueller
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Katja Seipel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Ungerstedt JS. Epigenetic Modifiers in Myeloid Malignancies: The Role of Histone Deacetylase Inhibitors. Int J Mol Sci 2018; 19:ijms19103091. [PMID: 30304859 PMCID: PMC6212943 DOI: 10.3390/ijms19103091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/18/2023] Open
Abstract
Myeloid hematological malignancies are clonal bone marrow neoplasms, comprising of acute myeloid leukemia (AML), the myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML), the myeloproliferative neoplasms (MPN) and systemic mastocytosis (SM). The field of epigenetic regulation of normal and malignant hematopoiesis is rapidly growing. In recent years, heterozygous somatic mutations in genes encoding epigenetic regulators have been found in all subtypes of myeloid malignancies, supporting the rationale for treatment with epigenetic modifiers. Histone deacetylase inhibitors (HDACi) are epigenetic modifiers that, in vitro, have been shown to induce growth arrest, apoptotic or autophagic cell death, and terminal differentiation of myeloid tumor cells. These effects were observed both at the bulk tumor level and in the most immature CD34+38− cell compartments containing the leukemic stem cells. Thus, there is a strong rationale supporting HDACi therapy in myeloid malignancies. However, despite initial promising results in phase I trials, HDACi in monotherapy as well as in combination with other drugs, have failed to improve responses or survival. This review provides an overview of the rationale for HDACi in myeloid malignancies, clinical results and speculations on why clinical trials have thus far not met the expectations, and how this may be improved in the future.
Collapse
Affiliation(s)
- Johanna S Ungerstedt
- Department of Medicine, Huddinge, Karolinska Institutet, and Hematology Center, and Karolinska University Hospital, S-141 86 Stockholm, Sweden.
| |
Collapse
|
20
|
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018; 23:molecules23061479. [PMID: 29921764 PMCID: PMC6100431 DOI: 10.3390/molecules23061479] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcription factors are involved in a large number of human diseases such as cancers for which they account for about 20% of all oncogenes identified so far. For long time, with the exception of ligand-inducible nuclear receptors, transcription factors were considered as “undruggable” targets. Advances knowledge of these transcription factors, in terms of structure, function (expression, degradation, interaction with co-factors and other proteins) and the dynamics of their mode of binding to DNA has changed this postulate and paved the way for new therapies targeted against transcription factors. Here, we discuss various ways to target transcription factors in cancer models: by modulating their expression or degradation, by blocking protein/protein interactions, by targeting the transcription factor itself to prevent its DNA binding either through a binding pocket or at the DNA-interacting site, some of these inhibitors being currently used or evaluated for cancer treatment. Such different targeting of transcription factors by small molecules is facilitated by modern chemistry developing a wide variety of original molecules designed to specifically abort transcription factor and by an increased knowledge of their pathological implication through the use of new technologies in order to make it possible to improve therapeutic control of transcription factor oncogenic functions.
Collapse
Affiliation(s)
- Mélanie Lambert
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Samy Jambon
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Sabine Depauw
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Marie-Hélène David-Cordonnier
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
21
|
Michaelis LC, Klepin HD, Walter RB. Advancements in the management of medically less-fit and older adults with newly diagnosed acute myeloid leukemia. Expert Opin Pharmacother 2018; 19:865-882. [PMID: 29697000 DOI: 10.1080/14656566.2018.1465562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Treating acute myeloid leukemia (AML) in older adults remains daunting. The unique biology often renders conventional chemotherapies less effective. Accurately predicting the toxicities of treatment is another unresolved challenge. Treatment planning thus requires a good knowledge of the current trial data and familiarity with clinical tools, including formal fitness and geriatric assessments. Both obstacles - disease biology and patient fitness - might be easier overcome with specific, AML cell-targeted agents rather than traditional cytotoxic chemotherapy. This may be the future of AML therapy, but it is not our current state. AREAS COVERED Herein, the authors appraise the data supporting a standard induction approach, including an outline of how to predict treatment-related mortality and a review of the most up-to-date methods of geriatric assessment. They also discuss treatment expectations with less-intense therapies and highlight novel agents in development. Finally, they provide a basic approach to choosing treatment intensity. EXPERT OPINION In an older and/or medically less-fit patient, treatment choice should begin with a thorough disease assessment, a formal evaluation of patient fitness and frailty. There should also be a clear communication with the patient and patient's family about the risks and anticipated benefits of either an intense or nonintense treatment approach.
Collapse
Affiliation(s)
- Laura C Michaelis
- a Associate Professor of Medicine, Department of Hematology and Oncology , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Heidi D Klepin
- b Associate Professor of Internal Medicine, Section on Hematology and Oncology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Roland B Walter
- c Associate Member, Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,d Associate Professor of Medicine, Department of Medicine, Division of Hematology , University of Washington , Seattle , WA , USA.,e Adjunct Associate Professor, Department of Epidemiology , University of Washington , Seattle , WA , USA
| |
Collapse
|
22
|
Zhang Q, Dai Y, Cai Z, Mou L. HDAC Inhibitors: Novel Immunosuppressants for Allo- and Xeno- Transplantation. ChemistrySelect 2018. [DOI: 10.1002/slct.201702295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qing Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Yifan Dai
- Department Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing, Jiangsu 210029 China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| |
Collapse
|
23
|
Schlenk RF, Krauter J, Raffoux E, Kreuzer KA, Schaich M, Noens L, Pabst T, Vusirikala M, Bouscary D, Spencer A, Candoni A, Gil JS, Berkowitz N, Weber HJ, Ottmann O. Panobinostat monotherapy and combination therapy in patients with acute myeloid leukemia: results from two clinical trials. Haematologica 2017; 103:e25-e28. [PMID: 29051280 DOI: 10.3324/haematol.2017.172411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Richard F Schlenk
- NCT Trial Center, National Center for Tumor Diseases Heidelberg, Germany .,University Hospital Ulm, Department of Internal Medicine III, Germany
| | - Jürgen Krauter
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Germany
| | - Emmanuel Raffoux
- Hôpital Saint-Louis - Service d'Hematologie Adulte, Paris, France
| | | | - Markus Schaich
- University of Dresden, Department of Internal Medicine I, Germany
| | | | | | | | | | | | - Anna Candoni
- Azienda Ospedaliero-Universitaria "Santa Maria della Misericordia" di Udine, Italy
| | - Jorge Sierra Gil
- Hospital de la Santa Creu i Sant Pau, IIB Sant Pau and Jose Carreras Research Institutes, Barcelona, Spain
| | - Noah Berkowitz
- Novartis Pharmaceutical Corporation, East Hanover, NJ, USA
| | | | - Oliver Ottmann
- University of Frankfurt, Department of Internal Medicine II, Germany
| |
Collapse
|
24
|
Krug U, Gale RP, Berdel WE, Müller-Tidow C, Stelljes M, Metzeler K, Sauerland MC, Hiddemann W, Büchner T. Therapy of older persons with acute myeloid leukaemia. Leuk Res 2017; 60:1-10. [PMID: 28618329 DOI: 10.1016/j.leukres.2017.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 12/20/2022]
Abstract
Most persons age≥60 y with acute myeloid leukaemia (AML) die from their disease. When interpreting clinical trials data from these persons one must be aware of substantial selection biases. Randomized trials of post-remission treatments can be performed upfront or after achieving defined landmarks. Both strategies have important limitations. Selection of the appropriate treatment is critical. Age, performance score, co-morbidities and frailty provide useful data to treatment selection. If an intensive remission induction therapy is appropriate, therapy with cytarabine and an anthracycline is the most common regimen. Non-intensive therapies consist of the hypo-methylating drugs azacitidine and decitabine, low-dose cytarabine and supportive care. Feasibility of doing an allotransplant in older persons with AML is increasing. However, only very few qualify. Results of cytogenetic testing are risk factor in young and old persons with AML. Adverse abnormalities are more frequent in older persons. Although data about the frequency of mutations in older persons with AML is increasing their prognostic impact is less clear than in younger subjects. Neither differences in the distribution of cytogenetic risk, mutations, nor differences in clinical risk factors between younger and older persons with AML completely explain the age-dependent outcome. Many drugs are in clinical development in older persons with AML. Their potential role in the treatment of older persons with AML remains to be defined.
Collapse
Affiliation(s)
- Utz Krug
- Klinikum Leverkusen, Department of Medicine 3, Am Gesundheitspark 11, 51375 Leverkusen, Germany.
| | - Robert Peter Gale
- Haematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK.
| | - Wolfgang E Berdel
- University Hospital Münster, Department of Medicine A, Albert-Schweitzer-Campus 1, Geb. A1, 48129 Münster, Germany.
| | - Carsten Müller-Tidow
- University Hospital Heidelberg, Department of Medicine V, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Matthias Stelljes
- University Hospital Münster, Department of Medicine A, Albert-Schweitzer-Campus 1, Geb. A1, 48129 Münster, Germany.
| | - Klaus Metzeler
- University Hospital Großhadern, IIIrd Medical Department, Marchioninistraße 15, 81377 München, Germany.
| | - M Cristina Sauerland
- University of Münster, Institute of Biostatistics and Clinical Research, Schmeddingstr 56, 48149 Münster, Germany.
| | - Wolfgang Hiddemann
- University Hospital Großhadern, IIIrd Medical Department, Marchioninistraße 15, 81377 München, Germany.
| | - Thomas Büchner
- University Hospital Münster, Department of Medicine A, Albert-Schweitzer-Campus 1, Geb. A1, 48129 Münster, Germany
| |
Collapse
|