1
|
Philip M, Kal AKK, Subhahar MB, Karatt TK, Graiban FM, Ajeebsanu MM, Joseph M, Jose SV. Equine metabolic investigation of the phosphodiesterase-4 inhibitor ibudilast as a potential performance enhancer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9916. [PMID: 39307998 DOI: 10.1002/rcm.9916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
RATIONALE Phosphodiesterase 4 (PDE4) inhibitors are a newer class of drugs that induce bronchodilation and have anti-inflammatory effects, making them susceptible to misuse as performance enhancers in competitive sports. METHODS This study explores the metabolic conversion of PDE4 inhibitor ibudilast in thoroughbred horses after oral administration and in vitro using equine liver microsomes and Cunninghamella elegans. A liquid chromatography-high resolution mass spectrometry method was used to postulate the plausible structures of the detected metabolites. RESULTS A total of 20 in vivo metabolites were identified under experimental conditions, including 12 Phase I and 8 Phase II conjugated metabolites. Phase I metabolites were predominantly formed through hydroxylation (mono-, di-, and tri-hydroxylation). Demethylated metabolites were also identified during this investigation. Additionally, the research detected Phase II metabolites conjugated with glucuronic and sulfonic acids. CONCLUSIONS The data presented here can assist in detecting the PDE4 inhibitor ibudilast and uncover its illicit use in competitive sports.
Collapse
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Fatma Mohammed Graiban
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | - Marina Joseph
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Shantymol V Jose
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| |
Collapse
|
2
|
Cai J, Zhou Q, Qi X, Zhang F, Yang J, Chen C, Zhang K, Chen Z, Luo HB, Liu Y, Huang YY, Zhou X. Discovery of Oxidized p-Terphenyls as Phosphodiesterase 4 Inhibitors from Marine-Derived Fungi. JOURNAL OF NATURAL PRODUCTS 2024; 87:1808-1816. [PMID: 38943602 DOI: 10.1021/acs.jnatprod.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Four new p-terphenyl derivatives, talaroterphenyls A-D (1-4), together with three biosynthetically related known ones (5-7), were obtained from the mangrove sediment-derived Talaromyces sp. SCSIO 41412. Compounds 1-3 are rare p-terphenyls, which are completely substituted on the central benzene ring by oxygen atoms; this is the first report of their isolation from natural sources. Their structures were elucidated through NMR spectroscopy, HRESIMS, and X-ray diffraction. Genome sequence analysis revealed that 1-7 were biosynthesized from tyrosine and phenylalanine, involving four key biosynthetic genes (ttpB-ttpE). These p-terphenyls (1-7) and 36 marine-derived terphenyl analogues (8-43) were screened for phosphodiesterase 4 (PDE4) inhibitory activities, and 1-5, 14, 17, 23, and 26 showed notable activities with IC50 values of 0.40-16 μM. The binding pattern of p-terphenyl inhibitors 1-3 with PDE4 were explored by molecular docking analysis. Talaroterphenyl A (1), with a low cytotoxicity, showed obvious anti-inflammatory activity in LPS-stimulated RAW264.7 cells. Furthermore, in the TGF-β1-induced medical research council cell strain-5 (MRC-5) pulmonary fibrosis model, 1 could down-regulate the expression levels of FN1, COL1, and α-SMA significantly at concentrations of 5-20 μM. This study suggests that the oxidized p-terphenyl 1, as a marine-derived PDE4 inhibitor, could be used as a promising antifibrotic agent.
Collapse
Affiliation(s)
- Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Xin Qi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Furong Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Zhexin Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Jiang F, Zhang F, Su Y, Zhang C, Chang T. Knowledge mapping of disease-modifying therapy (DMT) in multiple sclerosis (MS): A bibliometrics analysis. Heliyon 2024; 10:e31744. [PMID: 38868066 PMCID: PMC11168326 DOI: 10.1016/j.heliyon.2024.e31744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
Background Multiple sclerosis (MS) is a heterogeneous autoimmune disease, with a rapidly evolving body of literature on disease-modifying therapy (DMT) that urgently needs to be synthesized and regularized. Methods The original material used for the analysis was obtained from the Web of Science Core Collection (WoSCC) in the Science Citation Index Expanded Edition (SCI-E). The data material was accessed through VOSviewer, Citespace, R package "Bibliometrix", and Scimago Graphica for data analysis and visualization. Among them, the clustering algorithm based on the Largest Likelihood Ratio (LLR) and the burst citation algorithm is the key. Results As of November 6th, 2022, 4142 publications related to emerging disease-modifying therapies (e-DMT) for MS, 6521 publications related to traditional disease-modifying therapies (t-DMT) for MS, and 1793 publications in cross-cutting disease-modifying therapies (I-DMT) for MS were included in the analysis, respectively. Publications related to DMT in MS were analyzed descriptively (for three subjects: country, institution, and author) and predictively (for two subjects: keywords and references) separately according to three sections: e-DMT, t-DMT, and I-DMT. Topics that still have relevant reference output as of 2022 include the safety of Coronavirus disease 2019 (COVID-19) mRNA vaccination, therapeutic inertia (TI), cladribine tablets, autologous hematopoietic stem cell transplantation (aHSCT), progressive multiple sclerosis, and pediatric multiple sclerosis. Conclusion The future research focus for MS DMT is the combination trial or cross-trial of various treatment methods to improve the development of individualized treatment plans for MS patients. The exact contents of the research frontiers are included but not limited to ocrelizumab, fingolimod and other monoclonal antibodies, fumaric acid ester, cladribine tablet, aHSCT, and other interventions of randomized controlled trials (RCTs); the impact of mRNA COVID-19 vaccination on MS patients; TI, patient adherence, and other medical management issues; and continued exploration of biomarkers for more accurate disease classification based on the existing clinical indication classification.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
- Section of Health, No. 94804 Unit of the Chinese People's Liberation Army, Shanghai, 200434, China
- Resident Standardization Training Cadet Corps, Air Force Hospital of Eastern Theater, Nanjing, 210002, China
| | - Fenghe Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
5
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Sriwastava S, Elkhooly M, Amatya S, Shrestha K, Kagzi Y, Bhatia D, Gupta R, Jaiswal S, Lisak RP. Recent advances in the treatment of primary and secondary progressive Multiple Sclerosis. J Neuroimmunol 2024; 390:578315. [PMID: 38554666 DOI: 10.1016/j.jneuroim.2024.578315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The article highlights upcoming potential treatments, which target different phases of inflammation and offer remyelinating strategies as well as direct and indirect neuroprotective and oligodendrocyte protective effects, providing a hopeful outlook for patients with primary and secondary progressive multiple sclerosis (PPMS and SPMS). OBJECTIVES The review aims to identify potential treatments and ongoing clinical trials for PPMS and SPMS, and compare their mechanisms of action, efficacy, and side effects with current treatments. METHODS We reviewed ongoing clinical trials for PPMS and SPMS on the NIH website, as well as articles from PubMed, Embase, and clinicaltrails.gov since 2010. RESULTS BTKIs like, tolebrutinib, and fenebrutinib are being explored as potential PMS treatments. Vidofludimus calcium, an orally available treatment, has shown a reduction of active and new MRI lesions. Other treatments like simvastatin, N-acetylcysteine (NAC), and alpha-lipoic acid are being explored for their antioxidant properties. AHSCT and mesenchymal stem cell therapy are experimental options for younger patients with high inflammatory activity. CONCLUSIONS SPMS and PPMS are being studied for new treatments and future trials should consider combination therapies targeting inflammation, demyelination, and neuronal death, as the pathogenesis of PMS involves complex factors.
Collapse
Affiliation(s)
- Shitiz Sriwastava
- Division of Multiple Sclerosis and Neuroimmunology Department of Neurology, McGovern Medical School (UT Health), University of Texas Health Science Center at Houston, Houston, TX,USA.
| | - Mahmoud Elkhooly
- Department of Neurology, Southern Illinois university, Springfield, IL, USA; Department of Neuropsychiatry, Minia University, Egypt
| | - Suban Amatya
- Department of Medicine, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Kriti Shrestha
- Department of Medicine, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Yusuf Kagzi
- Mahatma Gandhi Memorial Medical College, Indore, India
| | - Dipika Bhatia
- Division of Multiple Sclerosis and Neuroimmunology Department of Neurology, McGovern Medical School (UT Health), University of Texas Health Science Center at Houston, Houston, TX,USA
| | - Rajesh Gupta
- Division of Multiple Sclerosis and Neuroimmunology Department of Neurology, McGovern Medical School (UT Health), University of Texas Health Science Center at Houston, Houston, TX,USA
| | - Shruti Jaiswal
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert P Lisak
- Department of Neurology, Wayne state University, Detroit, MI, USA
| |
Collapse
|
7
|
Li Q, Liao Q, Qi S, Huang H, He S, Lyu W, Liang J, Qin H, Cheng Z, Yu F, Dong X, Wang Z, Han L, Han Y. Opportunities and perspectives of small molecular phosphodiesterase inhibitors in neurodegenerative diseases. Eur J Med Chem 2024; 271:116386. [PMID: 38614063 DOI: 10.1016/j.ejmech.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aβ oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, PR China
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Province Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, Guizhou, PR China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Huan Qin
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Ziming Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 256699, Shandong, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yantao Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
8
|
Sharifian A, Varshosaz J, Aliomrani M, Kazemi M. Nose to brain delivery of ibudilast micelles for treatment of multiple sclerosis in an experimental autoimmune encephalomyelitis animal model. Int J Pharm 2023; 638:122936. [PMID: 37030640 DOI: 10.1016/j.ijpharm.2023.122936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system ultimate to neurodegeneration and demyelination. Ibudilast is a phosphodiesterase inhibitor, effective on the function of glial cells and lymphocytes, and inhibits the release of TNF-α by inflammatory cells. Dysregulation of glia is one of the most important pathological causes of MS. Therefore, ibudilast as a glial attenuator can be a useful treatment. The objective of the present study was to investigate the effect of nasal spray of polydopamine coated micelles of surfactin, a biosurfactant, loaded with ibudilast on its brain targeted delivery and effectiveness in remylination and neuroprotection in animal model of MS. In animal studies the micelles were administrated intranasally in different doses of 10, 25 and 50 mg/kg/day in C57/BL6 mice immunized by experimental autoimmune encephalomyelitis (EAE) model. The results of Luxol fast blue staining indicated increment in myelin fiber percent more significantly (p<0.05) in the groups treated with the polydopamine coated micelles (PDAM) compared to nasal spray of free drug or oral administration. These formulations also increased expression of Mbp, Olig2 and Mog genes in the corpus callosum. These results suggest a positive outcome of polydopamine coated micelles loaded with ibudilast in active MS as an anti-inflammatory and neuroprotective agent.
Collapse
Affiliation(s)
- Akram Sharifian
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Aliomrani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Kazemi
- Department of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Oubaid EN, Abu-Raghif A, Al-Sudani IM. Ibudilast ameliorates experimentally induced colitis in rats via down-regulation of proinflammatory cytokines and myeloperoxidase enzyme activity. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e98715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Objectives: This study was carried out to explore the possible anti-inflammatory effect of ibudilast on acetic acid-induced colitis in rats.
Methods: Fifty adult Wistar rats were separated into 5 groups, including the control group, acetic acid group, acetic acid + vehicle, acetic acid + sulfasalazine (100 mg/kg/day)group, and acetic acid + ibudilast (30 mg/kg/day) group. Colitis was induced in rats by the inter-rectal installation of 2 ml of 4% (v/v) acetic acid. Sulfasalazine and ibudilast were administered orally for ten days after 2 hours of induction.
Results: The treatment with ibudilast significantly reduced disease activity index (DAI), macroscopic colonic scores (MAC), and histopathological changes induced by acetic acid. Also, ibudilast markedly decreased the expression of proinflammatory markers (TNF-α and IL-1β) in colonic tissue. Moreover, ibudilast inhibited myeloperoxidase (MPO) enzyme activity that was increased by acetic acid.
Conclusion: Therefore, ibudilast may have a therapeutic effect in the management of ulcerative colitis.
Collapse
|
10
|
Philippov I, Gatilov Y, Sonina A, Vorob’ev A. Oxidative [3+2]Cycloaddition of Alkynylphosphonates with Heterocyclic N-Imines: Synthesis of Pyrazolo[1,5- a]Pyridine-3-phosphonates. Molecules 2022; 27:molecules27227913. [PMID: 36432015 PMCID: PMC9694626 DOI: 10.3390/molecules27227913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
A series of pyrazolo[1,5-a]pyridine-3-ylphosphonates were prepared with moderate to good yields by the oxidative [3+2]cycloaddition of 2-subtituted ethynylphosphonates with in situ generated pyridinium-N-imines and their annulated analogs. 2-Aliphatic and 2-Ph acetylenes demonstrate low activity, and the corresponding pyrazolopyridines were achieved with a moderate yield in the presence of 10 mol% Fe(NO3)3·9H2O. At the same time, tetraethyl ethynylbisphosphonate, diethyl 2-TMS- and 2-OPh-ethynylphosphonates possess much greater reactivity and the corresponding pyrazolo[1,5-a]pyridines, and their annulated derivatives were obtained with good to excellent yields without any catalyst. 2-Halogenated ethynylphosphonates also readily reacted with pyridinium-N-imines, forming complex mixtures containing poor amounts of 2-halogenated pyrazolopyridines.
Collapse
Affiliation(s)
- Igor Philippov
- Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Yuriy Gatilov
- Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Alina Sonina
- Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Aleksey Vorob’ev
- Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia
- Department of Natural Science, Faculty of Organic Chemistry, Novosibirsk State University, 1 Pirogova Street, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-952-9488714
| |
Collapse
|
11
|
Hongjin Zhai, Zhang S, Ampomah-Wireko M, Wang H, Cao Y, Yang P, Yang Y, Frejat FOA, Wang L, Zhao B, Ren C, Wu C. Pyrazole: An Important Core in Many Marketed and Clinical Drugs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wolfram Syndrome 1: From Genetics to Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063225. [PMID: 35328914 PMCID: PMC8949990 DOI: 10.3390/ijerph19063225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
Wolfram syndrome 1 (WS1) is a rare neurodegenerative disease transmitted in an autosomal recessive mode. It is characterized by diabetes insipidus (DI), diabetes mellitus (DM), optic atrophy (OA), and sensorineural hearing loss (D) (DIDMOAD). The clinical picture may be complicated by other symptoms, such as urinary tract, endocrinological, psychiatric, and neurological abnormalities. WS1 is caused by mutations in the WFS1 gene located on chromosome 4p16 that encodes a transmembrane protein named wolframin. Many studies have shown that wolframin regulates some mechanisms of ER calcium homeostasis and therefore plays a role in cellular apoptosis. More than 200 mutations are responsible for WS1. However, abnormal phenotypes of WS with or without DM, inherited in an autosomal dominant mode and associated with one or more WFS1 mutations, have been found. Furthermore, recessive Wolfram-like disease without DM has been described. The prognosis of WS1 is poor, and the death occurs prematurely. Although there are no therapies that can slow or stop WS1, a careful clinical monitoring can help patients during the rapid progression of the disease, thus improving their quality of life. In this review, we describe natural history and etiology of WS1 and suggest criteria for a most pertinent approach to the diagnosis and clinical follow up. We also describe the hallmarks of new therapies for WS1.
Collapse
|
13
|
Treatment of Experimental Autoimmune Encephalomyelitis with an Inhibitor of Phosphodiesterase-8 (PDE8). Cells 2022; 11:cells11040660. [PMID: 35203312 PMCID: PMC8870644 DOI: 10.3390/cells11040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
After decades of development, inhibitors targeting cyclic nucleotide phosphodiesterases (PDEs) expressed in leukocytes have entered clinical practice for the treatment of inflammatory disorders, with three PDE4 inhibitors being in clinical use as therapeutics for psoriasis, psoriatic arthritis, chronic obstructive pulmonary disease and atopic dermatitis. In contrast, the PDE8 family that is upregulated in pro-inflammatory T cells is a largely unexplored therapeutic target. We have previously demonstrated a role for the PDE8A-Raf-1 kinase complex in the regulation of myelin oligodendrocyte glycoprotein peptide 35–55 (MOG35–55) activated CD4+ effector T cell adhesion and locomotion by a mechanism that differs from PDE4 activity. In this study, we explored the in vivo treatment of experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS) induced in mice immunized with MOG using the PDE8-selective inhibitor PF-04957325. For treatment in vivo, mice with EAE were either subcutaneously (s.c.) injected three times daily (10 mg/kg/dose), or were implanted subcutaneously with Alzet mini-osmotic pumps to deliver the PDE8 inhibitor (15.5 mg/kg/day). The mice were scored daily for clinical signs of paresis and paralysis which were characteristic of EAE. We observed the suppression of the clinical signs of EAE and a reduction of inflammatory lesion formation in the CNS by histopathological analysis through the determination of the numbers of mononuclear cells isolated from the spinal cord of mice with EAE. The PDE8 inhibitor treatment reduces the accumulation of both encephalitogenic Th1 and Th17 T cells in the CNS. Our study demonstrates the efficacy of targeting PDE8 as a treatment of autoimmune inflammation in vivo by reducing the inflammatory lesion load.
Collapse
|
14
|
Synthesis of 3-Fluoropyrazolo[1,5-A]Pyridines by Fluorination of Methyl Pyrazolo[1,5-A]Pyridine-3-Carboxylates. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02757-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Blokland A, Heckman P, Vanmierlo T, Schreiber R, Paes D, Prickaerts J. Phosphodiesterase Type 4 Inhibition in CNS Diseases. Trends Pharmacol Sci 2019; 40:971-985. [DOI: 10.1016/j.tips.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
16
|
Litvinenko IV, Krasakov IV, Bisaga GN, Skulyabin DI, Poltavsky ID. [Modern conception of the pathogenesis of neurodegenerative diseases and therapeutic strategy]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 117:3-10. [PMID: 28980606 DOI: 10.17116/jnevro2017117623-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Here we discuss the pathogenesis of the inflammatory and degenerative nervous system disorders on the example of Parkinson's disease, Alzheimer's disease, multiple sclerosis. Common mechanisms of neurodegeneration in these diseases are reviewed. The role of neurodegeneration as the main process leading to the resistant disability of patients with multiple sclerosis is discussed. The authors consider a contribution of inflammatory process and chronic infection to the manifestation and progressing of a neurodegenerative disease and discuss the use of treatment not usually indicated including interferon, anti-inflammatory drugs, statin, vitamin D, monoclonal antibodies, correction of the intestinal microbiota in Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
| | - I V Krasakov
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - G N Bisaga
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - D I Skulyabin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - I D Poltavsky
- Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
17
|
Muñoz-Esquivel J, Göttle P, Aguirre-Cruz L, Flores-Rivera J, Corona T, Reyes-Terán G, Küry P, Torres KJ. Sildenafil Inhibits Myelin Expression and Myelination of Oligodendroglial Precursor Cells. ASN Neuro 2019; 11:1759091419832444. [PMID: 30849920 PMCID: PMC6410393 DOI: 10.1177/1759091419832444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Phosphodiesterases (PDEs) have previously been implicated in oligodendrocyte maturation and myelination of central nervous system axons. Sildenafil citrate is a phosphodiesterase inhibitor known to block PDE5, which also reduces inflammation in the experimental autoimmune encephalomyelitis demyelinating model. To find out whether this inhibitor might exert beneficial effects on central nervous system myelin repair activities, we investigated to what degree sildenafil modulates differentiation and maturation of cultured primary rat oligodendroglial precursor cells (OPCs). To this end, gene and protein expression of 2',3'-cyclic-nucleotide 3'-phosphodiesterase, myelin basic protein, and myelin oligodendrocyte glycoprotein, as well as of negative regulators of myelin expression (Hes1, Hes5, Id2, Id4, Rock2, and p57Kip2) were measured in OPCs treated with sildenafil. Moreover, the subcellular distribution of the p57kip2 protein was determined after sildenafil treatment, as this revealed to be an early predictor of the oligodendroglial differentiation capacity. In vitro myelination assays were done to measure the myelination capacity of oligodendrocytes treated with sildenafil. We found that sildenafil significantly diminished myelin gene expression and protein expression. Moreover, sildenafil also increased the expression of Id2 and Id4 negative transcriptional regulators, and the degree of OPCs with cytoplasmic p57kip2 protein localization was reduced, providing evidence that the PDE blocker impaired the differentiation capacity. Finally, sildenafil also interfered with the establishment of internodes as revealed by in vitro myelination assays. We therefore conclude that blocking PDE5 activities exerts a negative impact on intrinsic oligodendroglial differentiation processes.
Collapse
Affiliation(s)
- Jonathan Muñoz-Esquivel
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Mexico
- *These authors contributed equally to this work
| | - Peter Göttle
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
- *These authors contributed equally to this work
| | - Lucinda Aguirre-Cruz
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Mexico
| | - José Flores-Rivera
- Clinical Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Mexico
| | - Teresa Corona
- Clinical Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Mexico
| | - Gustavo Reyes-Terán
- Infectious Diseases Research Department, National Institute of Respiratory Diseases Ismael Cossio Villegas, Mexico
| | - Patrick Küry
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
- These authors are joint senior authors
| | - Klintsy J. Torres
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Mexico
- Infectious Diseases Research Department, National Institute of Respiratory Diseases Ismael Cossio Villegas, Mexico
- These authors are joint senior authors
| |
Collapse
|
18
|
LoPresti P. Silent Free Fall at Disease Onset: A Perspective on Therapeutics for Progressive Multiple Sclerosis. Front Neurol 2018; 9:973. [PMID: 30542317 PMCID: PMC6277889 DOI: 10.3389/fneur.2018.00973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Central nervous system (CNS) degeneration occurs during multiple sclerosis (MS) following several years of reversible autoimmune demyelination. Progressive CNS degeneration appears later during the course of relapsing-remitting MS (RRMS), although it starts insidiously at disease onset. We propose that there is an early subclinical phase also for primary-progressive (PP) MS. Consensus exists that many different cell types are involved during disease onset. Furthermore, the response to the initial damage, which is specific for each individual, would result in distinct pathological pathways that add complexity to the disease and the mechanisms underlying progressive CNS degeneration. Progressive MS is classified as either active or not active, as well as with or without progression. Different forms of progressive MS might reflect distinct or overlapping pathogenetic pathways. Disease mechanisms should be determined for each patient at diagnosis and the time of treatment. Until individualized and time-sensitive treatments that specifically target the molecular mechanisms of the progressive aspect of the disease are identified, combined therapies directed at anti-inflammation, regeneration, and neuroprotection are the most effective for preventing MS progression. This review presents selected therapeutics in support of the overall idea of a multidimensional therapy applied early in the disease. This approach could limit damage and increase CNS repair. By targeting several cellular populations (i.e., microglia, astrocytes, neurons, oligodendrocytes, and lymphocytes) and multiple pathological processes (e.g., inflammation, demyelination, synaptopathy, and excitatory/inhibitory imbalance) progressive MS could be attenuated. Early timing for such multidimensional therapy is proposed as the prerequisite for effectively halting progressive MS.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
19
|
Primary progressive multiple sclerosis in Iran: A consensus recommendation for diagnosis and management. Mult Scler Relat Disord 2018; 26:112-120. [DOI: 10.1016/j.msard.2018.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/12/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
|