1
|
Vadon C, Magiera MM, Cimarelli A. TRIM Proteins and Antiviral Microtubule Reorganization: A Novel Component in Innate Immune Responses? Viruses 2024; 16:1328. [PMID: 39205302 DOI: 10.3390/v16081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
TRIM proteins are a family of innate immune factors that play diverse roles in innate immunity and protect the cell against viral and bacterial aggression. As part of this special issue on TRIM proteins, we will take advantage of our findings on TRIM69, which acts by reorganizing the microtubules (MTs) in a manner that is fundamentally antiviral, to more generally discuss how host-pathogen interactions that take place for the control of the MT network represent a crucial facet of the struggle that opposes viruses to their cell environment. In this context, we will present several other TRIM proteins that are known to interact with microtubules in situations other than viral infection, and we will discuss evidence that may suggest a possible contribution to viral control. Overall, the present review will highlight the importance that the control of the microtubule network bears in host-pathogen interactions.
Collapse
Affiliation(s)
- Charlotte Vadon
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| | - Maria Magda Magiera
- Institut Curie, CNRS, UMR3348, Centre Universitaire, Bat 110, F-91405 Orsay, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| |
Collapse
|
2
|
Bastos V, Pacheco V, Rodrigues ÉDL, Moraes CNS, Nóbile AL, Fonseca DLM, Souza KBS, do Vale FYN, Filgueiras IS, Schimke LF, Giil LM, Moll G, Cabral-Miranda G, Ochs HD, Vasconcelos PFDC, de Melo GD, Bourhy H, Casseb LMN, Cabral-Marques O. Neuroimmunology of rabies: New insights into an ancient disease. J Med Virol 2023; 95:e29042. [PMID: 37885152 DOI: 10.1002/jmv.29042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.
Collapse
Affiliation(s)
- Victor Bastos
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Vinicius Pacheco
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Érika D L Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Cássia N S Moraes
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Adriel L Nóbile
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | - Kamilla B S Souza
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Fernando Y N do Vale
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Igor S Filgueiras
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | | | - Hans D Ochs
- School of Medicine and Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Pedro F da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
- Department of Pathology, University of the State of Pará, Belem, Brazil
| | - Guilherme D de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Otavio Cabral-Marques
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Maximova OA, Weller ML, Krogmann T, Sturdevant DE, Ricklefs S, Virtaneva K, Martens C, Wollenberg K, Minai M, Moore IN, Sauter CS, Barker JN, Lipkin WI, Seilhean D, Nath A, Cohen JI. Pathogenesis and outcome of VA1 astrovirus infection in the human brain are defined by disruption of neural functions and imbalanced host immune responses. PLoS Pathog 2023; 19:e1011544. [PMID: 37595007 PMCID: PMC10438012 DOI: 10.1371/journal.ppat.1011544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 08/20/2023] Open
Abstract
Astroviruses (AstVs) can cause of severe infection of the central nervous system (CNS) in immunocompromised individuals. Here, we identified a human AstV of the VA1 genotype, HAstV-NIH, as the cause of fatal encephalitis in an immunocompromised adult. We investigated the cells targeted by AstV, neurophysiological changes, and host responses by analyzing gene expression, protein expression, and cellular morphology in brain tissue from three cases of AstV neurologic disease (AstV-ND). We demonstrate that neurons are the principal cells targeted by AstV in the brain and that the cerebellum and brainstem have the highest burden of infection. Detection of VA1 AstV in interconnected brain structures such as thalamus, deep cerebellar nuclei, Purkinje cells, and pontine nuclei indicates that AstV may spread between connected neurons transsynaptically. We found transcriptional dysregulation of neural functions and disruption of both excitatory and inhibitory synaptic innervation of infected neurons. Importantly, transcriptional dysregulation of neural functions occurred in fatal cases, but not in a patient that survived AstV-ND. We show that the innate, but not adaptive immune response was transcriptionally driving host defense in the brain of immunocompromised patients with AstV-ND. Both transcriptome and molecular pathology studies showed that most of the cellular changes were associated with CNS-intrinsic cells involved in phagocytosis and injury repair (microglia, perivascular/parenchymal border macrophages, and astrocytes), but not CNS-extrinsic cells (T and B cells), suggesting an imbalance of innate and adaptive immune responses to AstV infection in the brain as a result of the underlying immunodeficiencies. These results show that VA1 AstV infection of the brain in immunocompromised humans is associated with imbalanced host defense responses, disruption of neuronal somatodendritic compartments and synapses and increased phagocytic cellular activity. Improved understanding of the response to viral infections of the human CNS may provide clues for how to manipulate these processes to improve outcomes.
Collapse
Affiliation(s)
- Olga A. Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melodie L. Weller
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tammy Krogmann
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel E. Sturdevant
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Stacy Ricklefs
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Craig Martens
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kurt Wollenberg
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Craig S. Sauter
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Juliet N. Barker
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | | | - Avindra Nath
- Infections of the Nervous System Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey I. Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Comprehensive analysis of protein acetylation and glucose metabolism inmouse brains infected with rabies virus. J Virol 2021; 96:e0194221. [PMID: 34878915 DOI: 10.1128/jvi.01942-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed that high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infection and suggest that OAA treatment could be a potential strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy-dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to the energy requirements after RABV infection. Our study also indicates the potential role OAA could play in neuronal protection by suppressing excessive neuroinflammation.
Collapse
|
5
|
Feige L, Zaeck LM, Sehl-Ewert J, Finke S, Bourhy H. Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses 2021; 13:2364. [PMID: 34960633 PMCID: PMC8708193 DOI: 10.3390/v13122364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| |
Collapse
|
6
|
Chailangkarn T, Tanwattana N, Jaemthaworn T, Sriswasdi S, Wanasen N, Tangphatsornruang S, Leetanasaksakul K, Jantraphakorn Y, Nawae W, Chankeeree P, Lekcharoensuk P, Lumlertdacha B, Kaewborisuth C. Establishment of Human-Induced Pluripotent Stem Cell-Derived Neurons-A Promising In Vitro Model for a Molecular Study of Rabies Virus and Host Interaction. Int J Mol Sci 2021; 22:ijms222111986. [PMID: 34769416 PMCID: PMC8584829 DOI: 10.3390/ijms222111986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
Rabies is a deadly viral disease caused by the rabies virus (RABV), transmitted through a bite of an infected host, resulting in irreversible neurological symptoms and a 100% fatality rate in humans. Despite many aspects describing rabies neuropathogenesis, numerous hypotheses remain unanswered and concealed. Observations obtained from infected primary neurons or mouse brain samples are more relevant to human clinical rabies than permissive cell lines; however, limitations regarding the ethical issue and sample accessibility become a hurdle for discovering new insights into virus-host interplays. To better understand RABV pathogenesis in humans, we generated human-induced pluripotent stem cell (hiPSC)-derived neurons to offer the opportunity for an inimitable study of RABV infection at a molecular level in a pathologically relevant cell type. This study describes the characteristics and detailed proteomic changes of hiPSC-derived neurons in response to RABV infection using LC-MS/MS quantitative analysis. Gene ontology (GO) enrichment of differentially expressed proteins (DEPs) reveals temporal changes of proteins related to metabolic process, immune response, neurotransmitter transport/synaptic vesicle cycle, cytoskeleton organization, and cell stress response, demonstrating fundamental underlying mechanisms of neuropathogenesis in a time-course dependence. Lastly, we highlighted plausible functions of heat shock cognate protein 70 (HSC70 or HSPA8) that might play a pivotal role in regulating RABV replication and pathogenesis. Our findings acquired from this hiPSC-derived neuron platform help to define novel cellular mechanisms during RABV infection, which could be applicable to further studies to widen views of RABV-host interaction.
Collapse
Affiliation(s)
- Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
- Correspondence: (T.C.); (C.K.)
| | - Nathiphat Tanwattana
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Thanakorn Jaemthaworn
- Computational Molecular Biology Group, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; (T.J.); (S.S.)
| | - Sira Sriswasdi
- Computational Molecular Biology Group, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; (T.J.); (S.S.)
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (W.N.)
| | - Kantinan Leetanasaksakul
- Functional Proteomics Technology, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Yuparat Jantraphakorn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
| | - Wanapinun Nawae
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (W.N.)
| | - Penpicha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.C.); (P.L.)
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.C.); (P.L.)
- Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Boonlert Lumlertdacha
- Queen Saovabha Memorial Institute, Thai Red Cross Society, WHO Collaborating Center for Research and Training Prophylaxis on Rabies, 1871 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand;
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
- Correspondence: (T.C.); (C.K.)
| |
Collapse
|
7
|
Dubey AR, Jagtap YA, Kumar P, Patwa SM, Kinger S, Kumar A, Singh S, Prasad A, Jana NR, Mishra A. Biochemical strategies of E3 ubiquitin ligases target viruses in critical diseases. J Cell Biochem 2021; 123:161-182. [PMID: 34520596 DOI: 10.1002/jcb.30143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Viruses are known to cause various diseases in human and also infect other species such as animal plants, fungi, and bacteria. Replication of viruses depends upon their interaction with hosts. Human cells are prone to such unwanted viral infections. Disintegration and reconstitution require host machinery and various macromolecules like DNA, RNA, and proteins are invaded by viral particles. E3 ubiquitin ligases are known for their specific function, that is, recognition of their respective substrates for intracellular degradation. Still, we do not understand how ubiquitin proteasome system-based enzymes E3 ubiquitin ligases do their functional interaction with different viruses. Whether E3 ubiquitin ligases help in the elimination of viral components or viruses utilize their molecular capabilities in their intracellular propagation is not clear. The first time our current article comprehends fundamental concepts and new insights on the different viruses and their interaction with various E3 Ubiquitin Ligases. In this review, we highlight the molecular pathomechanism of viruses linked with E3 Ubiquitin Ligases dependent mechanisms. An enhanced understanding of E3 Ubiquitin Ligase-mediated removal of viral proteins may open new therapeutic strategies against viral infections.
Collapse
Affiliation(s)
- Ankur R Dubey
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj A Jagtap
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Som M Patwa
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sarika Singh
- Department of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Nihar R Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Mishra
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
8
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
9
|
Peng C, Zhao C, Wang P, Yan L, Fan S, Qiu L. TRIM9 is involved in facilitating Vibrio parahaemolyticus infection by inhibition of relish pathway in Penaeus monodon. Mol Immunol 2021; 133:77-85. [PMID: 33636432 DOI: 10.1016/j.molimm.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/23/2022]
Abstract
Tripartite motif-containing 9 (TRIM9) has been demonstrated to exert important roles in regulation of innate immune signaling. In this study, a novel TRIM9 homolog was identified from Penaeus monodon (named PmTRIM9). The open reading frame (ORF) of PmTRIM9 was 2064 bp, which encoding a 687-amino-acid polypeptide. Following Vibrio parahaemolyticus challenge, the expression levels of PmTRIM9 mRNA were significantly down-regulated in tested tissues. RNA interference and recombinant protein injection experiments were performed to explore the function of PmTRIM9, and the results showed it could facilitate V. parahaemolyticus replication and lead P. monodon more vulnerable to V. parahaemolyticus challenge. The dual-luciferase reporter assay showed that PmTRIM9 possessed the ability to inhibit the promoter activity in HEK293 T cells. Silencing of PmTRIM9 could increase the expression of the major NF-κB transcription factor, PmRelish. Further studies showed that knockdown of PmRelish promoted the V. parahaemolyticus infection and decreased the expression of specific antimicrobial peptides (AMPs), including PmCRU5, PmCRU7, PmALF6, PmALF3, PmLYZ and PmPEN5. However, knockdown of PmTRIM9 increased expression levels of the same AMPs, but except for PmCRU5, indicating that PmTRIM9 may negatively regulate the PmRelish-mediated expression of AMPs. All these results suggest that PmTRIM9 was involved in facilitating V. parahaemolyticus infection by inhibition of Relish pathway in P. monodon.
Collapse
Affiliation(s)
- Chao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, China.
| |
Collapse
|
10
|
Ghassemi S, Asgari T, Mirzapour-Delavar H, Aliakbari S, Pourbadie HG, Prehaud C, Lafon M, Gholami A, Azadmanesh K, Naderi N, Sayyah M. Lentiviral Expression of Rabies Virus Glycoprotein in the Rat Hippocampus Strengthens Synaptic Plasticity. Cell Mol Neurobiol 2021; 42:1429-1440. [PMID: 33462779 DOI: 10.1007/s10571-020-01032-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
Rabies virus (RABV) is a neurotropic virus exclusively infecting neurons in the central nervous system. RABV encodes five proteins. Among them, the viral glycoprotein (RVG) plays a key role in viral entry into neurons and rabies pathogenesis. It was shown that the nature of the C-terminus of the RABV G protein, which possesses a PDZ-binding motif (PBM), modulates the virulence of the RABV strain. The neuronal protein partners recruited by this PBM may alter host cell function. This study was conducted to investigate the effect of RVG on synaptic function in the hippocampal dentate gyrus (DG) of rat. Two μl (108 T.U./ml) of the lentiviral vector containing RVG gene was injected into the DG of rat hippocampus. After 2 weeks, the rat's brain was cross-sectioned and RVG-expressing cells were detected by fluorescent microscopy. Hippocampal synaptic activity of the infected rats was then examined by recording the local field potentials from DG after stimulation of the perforant pathway. Short-term synaptic plasticity was also assessed by double pulse stimulation. Expression of RVG in DG increased long-term potentiation population spikes (LTP-PS), whereas no facilitation of LTP-PS was found in neurons expressing δRVG (deleted PBM). Furthermore, RVG and δRVG strengthened paired-pulse facilitation. Heterosynaptic long-term depression (LTD) in the DG was significantly blocked in RVG-expressing group compared to the control group. This blockade was dependent to PBM motif as rats expressing δRVG in the DG-expressed LTD comparable to the RVG group. Our data demonstrate that RVG expression facilitates both short- and long-term synaptic plasticity in the DG indicating that it may involve both pre- and postsynaptic mechanisms to alter synaptic function. Further studies are needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Soheil Ghassemi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Tara Asgari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Shayan Aliakbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Christophe Prehaud
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris, France
| | - Monique Lafon
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris, France
| | - Alireza Gholami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Wang G, Na S, Qin L. Screening of Bombyx mori brain proteins interacting with protein tyrosine phosphatase of BmNPV. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21732. [PMID: 32783274 DOI: 10.1002/arch.21732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
In this study, glutathione-S-transferase pull-down combined with mass spectrometry techniques were used to identify the candidate proteins interacting with protein tyrosine phosphatase of the Bombyx Mori nucleopolyhedrovirus in the B. mori (BmNPV-PTP) brain. A total of 36 proteins were identified from BmNPV-PTP coprecipitate samples by searching the NCBI_Bombyx Mori database with the original mass spectrum data. Among those proteins, the interaction between BmNPV-PTP and B. mori cyclophilin A may accelerate the apoptosis of certain nerve cells involved in regulating behavior, and thus may be an inducer of enhanced locomotor activity (ELA). After the BmNPV invasion, BmNPV-PTP binding to peripheral-type benzodiazepine receptors may initiate a series of abnormal cascades of the nervous system, which results in abnormal hyperactive behavior in B. mori. Besides this, vacuolar ATP synthase catalytic subunit A, annexin, and several enzymes for energy conversion were identified, which may play a role in enhancing viral entry and infectivity and provide energy for enhancing the locomotor activity of B. mori. In general, the results of this study will facilitate the understanding of the molecular mechanisms underlying the ELA of B. mori larva induced by BmNPV.
Collapse
Affiliation(s)
- Guobao Wang
- College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Shuang Na
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Li Qin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLoS Pathog 2020; 16:e1008343. [PMID: 32069324 PMCID: PMC7048299 DOI: 10.1371/journal.ppat.1008343] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/28/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Neurotropic viral infections continue to pose a serious threat to human and animal wellbeing. Host responses combatting the invading virus in these infections often cause irreversible damage to the nervous system, resulting in poor prognosis. Rabies is the most lethal neurotropic virus, which specifically infects neurons and spreads through the host nervous system by retrograde axonal transport. The key pathogenic mechanisms associated with rabies infection and axonal transmission in neurons remains unclear. Here we studied the pathogenesis of different field isolates of lyssavirus including rabies using ex-vivo model systems generated with mouse primary neurons derived from the peripheral and central nervous systems. In this study, we show that neurons activate selective and compartmentalized degeneration of their axons and dendrites in response to infection with different field strains of lyssavirus. We further show that this axonal degeneration is mediated by the loss of NAD and calpain-mediated digestion of key structural proteins such as MAP2 and neurofilament. We then analysed the role of SARM1 gene in rabies infection, which has been shown to mediate axonal self-destruction during injury. We show that SARM1 is required for the accelerated execution of rabies induced axonal degeneration and the deletion of SARM1 gene significantly delayed axonal degeneration in rabies infected neurons. Using a microfluidic-based ex-vivo neuronal model, we show that SARM1-mediated axonal degeneration impedes the spread of rabies virus among interconnected neurons. However, this neuronal defense mechanism also results in the pathological loss of axons and dendrites. This study therefore identifies a potential host-directed mechanism behind neurological dysfunction in rabies infection. This study also implicates a novel role of SARM1 mediated axonal degeneration in neurotropic viral infection. Lyssaviruses including rabies, still causes devastating loss of human life every year and many victims are children under the age of 15. Rabies infection causes severe neurological dysfunction in the host resulting in paralysis, cognitive deficits and behavioural abnormalities. The mechanism of how rabies infection induces neurological dysfunction in the host remains unclear. This is because unlike other microbial infections, rabies infection rarely causes neuronal cell death and loss of neurons in the host nervous system. In this study, we show that neurons activate specific axonal self-destruction mechanism during rabies infection to prevent the spread of virus. However, this neuronal self-defense mechanism results in the loss of axons and dendrites, the structural components essential for the functioning of neurons. We further show that axonal degeneration in rabies infection is mediated by SARM1 gene, which has been previously shown to mediate defensive self-destruction of axons and dendrites in the event of neuronal injury. In summary, this study identifies a novel molecular mechanism behind neuronal dysfunction in rabies infection. This study also describes a novel intrinsic anti-viral defence mechanism in neurons, which could influence the pathogenesis of neurotropic viral infections.
Collapse
|
13
|
Nenasheva VV, Tarantul VZ. Many Faces of TRIM Proteins on the Road from Pluripotency to Neurogenesis. Stem Cells Dev 2019; 29:1-14. [PMID: 31686585 DOI: 10.1089/scd.2019.0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins participate in numerous biological processes. They are the key players in immune system and are involved in the oncogenesis. Moreover, TRIMs are the highly conserved regulators of developmental pathways in both vertebrates and invertebrates. In particular, numerous data point to the participation of TRIMs in the determination of stem cell fate, as well as in the neurogenesis. TRIMs apply various mechanisms to perform their functions. Their common feature is the ability to ubiquitinate proteins mediated by the Really Interesting New Gene (RING) domain. Different C-terminal domains of TRIMs are involved in DNA and RNA binding, protein/protein interactions, and chromatin-mediated transcriptional regulation. Mutations and alterations of TRIM expression cause significant disturbances in the stem cells' self-renewal and neurogenesis, which result in the various pathologies of the nervous system (neurodegeneration, neuroinflammation, and malignant transformation). This review discusses the diverse molecular mechanisms of participation of TRIMs in stem cell maintenance and self-renewal as well as in neural differentiation processes and neuropathology.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vyacheslav Z Tarantul
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Kinome-Wide RNA Interference Screening Identifies Mitogen-Activated Protein Kinases and Phosphatidylinositol Metabolism as Key Factors for Rabies Virus Infection. mSphere 2019; 4:4/3/e00047-19. [PMID: 31118297 PMCID: PMC6531879 DOI: 10.1128/msphere.00047-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rabies virus relies on cellular machinery for its replication while simultaneously evading the host immune response. Despite their importance, little is known about the key host factors required for rabies virus infection. Here, we focused on the human kinome, at the core of many cellular pathways, to unveil a new understanding of the rabies virus infectious cycle and to discover new potential therapeutic targets in a small interfering RNA screening. The mitogen-activated protein kinase pathway and phosphatidylinositol metabolism were identified as prominent factors involved in rabies virus infection, and those findings were further confirmed in human neurons. While bringing a new insight into rabies virus biology, we also provide a new list of host factors involved in rabies virus infection. Throughout the rabies virus (RABV) infectious cycle, host-virus interactions define its capacity to replicate, escape the immune response, and spread. As phosphorylation is a key regulatory mechanism involved in most cellular processes, kinases represent a target of choice to identify host factors required for viral replication. A kinase and phosphatase small interfering RNA (siRNA) high-content screening was performed on a fluorescent protein-recombinant field isolate (Tha RABV). We identified 57 high-confidence key host factors important for RABV replication with a readout set at 18 h postinfection and 73 with a readout set at 36 h postinfection, including 24 common factors at all stages of the infection. Amongst them, gene clusters of the most prominent pathways were determined. Up to 15 mitogen-activated protein kinases (MAPKs) and effectors, including MKK7 (associated with Jun N-terminal protein kinase [JNK] signalization) and DUSP5, as well as 17 phosphatidylinositol (PI)-related proteins, including PIP5K1C and MTM1, were found to be involved in the later stage of RABV infection. The importance of these pathways was further validated, as small molecules Ro 31-8820 and PD 198306 inhibited RABV replication in human neurons. IMPORTANCE Rabies virus relies on cellular machinery for its replication while simultaneously evading the host immune response. Despite their importance, little is known about the key host factors required for rabies virus infection. Here, we focused on the human kinome, at the core of many cellular pathways, to unveil a new understanding of the rabies virus infectious cycle and to discover new potential therapeutic targets in a small interfering RNA screening. The mitogen-activated protein kinase pathway and phosphatidylinositol metabolism were identified as prominent factors involved in rabies virus infection, and those findings were further confirmed in human neurons. While bringing a new insight into rabies virus biology, we also provide a new list of host factors involved in rabies virus infection.
Collapse
|
15
|
Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr Opin Virol 2019; 35:1-13. [PMID: 30753961 DOI: 10.1016/j.coviro.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Rabies virus (RABV) constitutes a major social and economic burden associated with 60 000 deaths annually worldwide. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Aggravating the problem, the current RABV vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the immunoglobulin component of rabies prophylaxis generate an unmet need for the development of RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address the problem and inhibitor candidates identified, and examine how the rapidly expanding structural insight into RABV protein organization has illuminated novel druggable target candidates and paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum RABV inhibitors.
Collapse
|
16
|
Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy GB, Panda S, Dhama K. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q 2017. [PMID: 28643547 DOI: 10.1080/01652176.2017.1343516] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a zoonotic, fatal and progressive neurological infection caused by rabies virus of the genus Lyssavirus and family Rhabdoviridae. It affects all warm-blooded animals and the disease is prevalent throughout the world and endemic in many countries except in Islands like Australia and Antarctica. Over 60,000 peoples die every year due to rabies, while approximately 15 million people receive rabies post-exposure prophylaxis (PEP) annually. Bite of rabid animals and saliva of infected host are mainly responsible for transmission and wildlife like raccoons, skunks, bats and foxes are main reservoirs for rabies. The incubation period is highly variable from 2 weeks to 6 years (avg. 2-3 months). Though severe neurologic signs and fatal outcome, neuropathological lesions are relatively mild. Rabies virus exploits various mechanisms to evade the host immune responses. Being a major zoonosis, precise and rapid diagnosis is important for early treatment and effective prevention and control measures. Traditional rapid Seller's staining and histopathological methods are still in use for diagnosis of rabies. Direct immunofluoroscent test (dFAT) is gold standard test and most commonly recommended for diagnosis of rabies in fresh brain tissues of dogs by both OIE and WHO. Mouse inoculation test (MIT) and polymerase chain reaction (PCR) are superior and used for routine diagnosis. Vaccination with live attenuated or inactivated viruses, DNA and recombinant vaccines can be done in endemic areas. This review describes in detail about epidemiology, transmission, pathogenesis, advances in diagnosis, vaccination and therapeutic approaches along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Rajendra Singh
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Karam Pal Singh
- b Centre for Animal Disease Research and Diagnosis (CADRAD) , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Susan Cherian
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Mani Saminathan
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Sanjay Kapoor
- c Department of Veterinary Microbiology , LLR University of Veterinary and Animal Sciences , Hisar , Haryana , India
| | - G B Manjunatha Reddy
- d ICAR-National Institute of Veterinary Epidemiology and Disease Informatics , Bengaluru , Karnataka , India
| | - Shibani Panda
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Kuldeep Dhama
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| |
Collapse
|
17
|
Shi Q, Li C, Li K, Liu Q. Pallidin protein in neurodevelopment and its relation to the pathogenesis of schizophrenia. Mol Med Rep 2016; 15:665-672. [PMID: 28035416 PMCID: PMC5364864 DOI: 10.3892/mmr.2016.6064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/18/2016] [Indexed: 11/05/2022] Open
Abstract
Pallidin is a protein found throughout the nervous system and it has been linked to the development of schizophrenia. At the same time, it has been suggested that schizophrenia is a neurodevelopmental disease. The p38 protein participates in neuronal differentiation and apoptosis. We hypothesized pallidin and p38 play a role in neural system development and the pathogenesis of schizophrenia, and designed several experiments to test this possibility. During pull-down experiments GST-pallidin was able to bind His-Ndn (an HDAC3 binding protein) in vitro. In cells co-transfected with HDAC3 and p38, the transcriptional activity of p38 was significantly inhibited by HDAC3. When pallidin was overexpressed, the transcriptional activity of the endogenous HDAC3 improved significantly. Overexpression of pallidin-EGFP in HCT116 p38 wild-type cells increased the endogenous p21 protein and the mRNA levels. The decrease in the expression of endogenous p38 affected the differentiation of N2a cells. The lengths of the neurites generated in the experimental group were significantly shorter than those in the control group. We conclude that pallidin indirectly regulates the transcriptional activity of p38 during neurodevelopment by binding HDAC3 and changing its cellular localization, which leaves p38 uninhibited. Moreover, since pallidin can also affect neuronal differentiation and its variants seem to be related to an increased risk of schizophrenia, it is possible that both pallidin and p38 play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Qing Shi
- Mental Health Center, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Congmei Li
- Mental Health Center, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Kuichen Li
- Department of Pharmacy, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Qin Liu
- Mental Health Center, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| |
Collapse
|
18
|
Mehta S, Sreenivasamurthy S, Banerjee S, Mukherjee S, Prasad K, Chowdhary A. Pathway Analysis of Proteomics Profiles in Rabies Infection: Towards Future Biomarkers? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:97-109. [PMID: 26871867 DOI: 10.1089/omi.2015.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rabies is a zoonotic viral disease that invariably leads to fatal encephalitis, which can be prevented provided post-exposure prophylaxis is initiated timely. Ante-mortem diagnostic tests are inconclusive, and rabies is nontreatable once the clinical signs appear. A large number of host factors are responsible for the altered neuronal functions observed in rabies; however their precise role remains uninvestigated. We therefore used two-dimensional electrophoresis and mass spectrometry analysis to identify differentially expressed host proteins in an experimental murine model of rabies. We identified 143 proteins corresponding to 45 differentially expressed spots (p < 0.05) in neuronal tissues of Swiss albino mice in response to infection with neurovirulent rabies strains. Time series analyses revealed that a majority of the alterations occur at 4 to 6 days post infection, in particular affecting the host's cytoskeletal architecture. Extensive pathway analysis and protein interaction studies using the bioinformatic tools such as Ingenuity Pathway Analysis and STRING revealed novel pathways and molecules (e.g., protein ubiquitination) unexplored hitherto. Further activation/inhibition studies of these pathway molecular leads would be relevant to identify novel biomarkers and mechanism-based therapeutics for rabies, a disease that continues to severely impact global health.
Collapse
Affiliation(s)
- Shraddha Mehta
- 1 Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Mumbai, India
| | - Sreelakshmi Sreenivasamurthy
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,3 Manipal University , Madhav Nagar, Manipal, India
| | - Shefali Banerjee
- 1 Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Mumbai, India
| | - Sandeepan Mukherjee
- 1 Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Mumbai, India
| | - Keshava Prasad
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore, India
| | - Abhay Chowdhary
- 1 Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Mumbai, India
| |
Collapse
|
19
|
Azimzadeh Jamalkandi S, Mozhgani SH, Gholami Pourbadie H, Mirzaie M, Noorbakhsh F, Vaziri B, Gholami A, Ansari-Pour N, Jafari M. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways. Front Microbiol 2016; 7:1688. [PMID: 27872612 PMCID: PMC5098112 DOI: 10.3389/fmicb.2016.01688] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.
Collapse
Affiliation(s)
| | - Sayed-Hamidreza Mozhgani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| | | | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences Tehran, Iran
| | - Behrouz Vaziri
- Protein Chemistry and Proteomics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran Tehran, Iran
| | - Alireza Gholami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Tehran, Iran
| | - Naser Ansari-Pour
- Faculty of New Sciences and Technology, University of TehranTehran, Iran; Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College LondonLondon, UK
| | - Mohieddin Jafari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran Tehran, Iran
| |
Collapse
|
20
|
Liu Y, Li J, Wang F, Mao F, Zhang Y, Zhang Y, Yu Z. The first molluscan TRIM9 is involved in the negative regulation of NF-κB activity in the Hong Kong oyster, Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2016; 56:106-110. [PMID: 27393236 DOI: 10.1016/j.fsi.2016.06.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
TRIM proteins are a group of highly conserved proteins participating in a variety of biological processes such as regulation of development, apoptosis, and innate immunity. However, the functions of these proteins in the mollusk are still poorly understood. In the present study, a TRIM9 homolog (named ChTRIM9) was first identified from a transcript-ome library in the Hong Kong oyster Crassostrea hongkongensis. The full-length cDNA of ChTRIM9 is 2928 bp and has a predicted Open Reading Frame ORF) encoding 721 amino acids, encoding a putative 80.2 kDa protein. SMART analysis indicated that ChTRIM9 contains the three typical TRIM domains, a RING finger, two B-boxes, and a coiled-coil domain in the N-terminal region, whereas the C-terminal region contains a SPRY domain. qRT-PCR analysis revealed a ubiquitous presence of ChTRIM9, with the highest expression in the gills. Upon bacterial challenge in vivo, the ChTRIM9 transcripts in hemocytes were significantly down-regulated, indicating its involvement in signal transduction in immune response of oysters. Furthermore, ChTRIM9 was found to be localized mainly in the cytoplasm, and its over-expression inhibited the transcriptional activity of the NF-κB gene in HEK293T cells, demonstrating its negative role in regulating NF-κB signaling.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| | - Fuxuan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| | - Fan Mao
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China.
| |
Collapse
|
21
|
Zhang D, He F, Bi S, Guo H, Zhang B, Wu F, Liang J, Yang Y, Tian Q, Ju C, Fan H, Chen J, Guo X, Luo Y. Genome-Wide Transcriptional Profiling Reveals Two Distinct Outcomes in Central Nervous System Infections of Rabies Virus. Front Microbiol 2016; 7:751. [PMID: 27242764 PMCID: PMC4871871 DOI: 10.3389/fmicb.2016.00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022] Open
Abstract
Rabies remains a major public health concern in many developing countries. The precise neuropathogenesis of rabies is unknown, though it is hypothesized to be due to neuronal death or dysfunction. Mice that received intranasal inoculation of an attenuated rabies virus (RABV) strain HEP-Flury exhibited subtle clinical signs, and eventually recovered, which is different from the fatal encephalitis caused by the virulent RABV strain CVS-11. To understand the neuropathogenesis of rabies and the mechanisms of viral clearance, we applied RNA sequencing (RNA-Seq) to compare the brain transcriptomes of normal mice vs. HEP-Flury or CVS-11 intranasally inoculated mice. Our results revealed that both RABV strains altered positively and negatively the expression levels of many host genes, including genes associated with innate and adaptive immunity, inflammation and cell death. It is found that HEP-Flury infection can activate the innate immunity earlier through the RIG-I/MDA-5 signaling, and the innate immunity pre-activated by HEP-Flury or Newcastle disease virus (NDV) infection can effectively prevent the CVS-11 to invade central nervous system (CNS), but fails to clear the CVS-11 after its entry into the CNS. In addition, following CVS-11 infection, genes implicated in cell adhesion, blood vessel morphogenesis and coagulation were mainly up-regulated, while the genes involved in synaptic transmission and ion transport were significantly down-regulated. On the other hand, several genes involved in the MHC class II-mediated antigen presentation pathway were activated to a greater extent after the HEP-Flury infection as compared with the CVS-11 infection suggesting that the collaboration of CD4+ T cells and MHC class II-mediated antigen presentation is critical for the clearance of attenuated RABV from the CNS. The differentially regulated genes reported here are likely to include potential therapeutic targets for expanding the post-exposure treatment window for RABV infection.
Collapse
Affiliation(s)
- Daiting Zhang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Feilong He
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Shuilian Bi
- School of Food Science, Guangdong Pharmaceutical University Zhongshan, China
| | - Huixia Guo
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Baoshi Zhang
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Fan Wu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Jiaqi Liang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Youtian Yang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Qin Tian
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Chunmei Ju
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
22
|
Sun X, Shi N, Li Y, Dong C, Zhang M, Guan Z, Duan M. Quantitative Proteome Profiling of Street Rabies Virus-Infected Mouse Hippocampal Synaptosomes. Curr Microbiol 2016; 73:301-311. [PMID: 27155843 DOI: 10.1007/s00284-016-1061-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
It is well established now that neuronal dysfunction rather than structural damage may be responsible for the development of rabies. In order to explore the underlying mechanisms in rabies virus (RABV) and synaptic dysfunctions, a quantitative proteome profiling was carried out on synaptosome samples from mice hippocampus. Synaptosome samples from mice hippocampus were isolated and confirmed by Western blot and transmission electron microscopy. Synaptosome protein content changes were quantitatively detected by Nano-LC-MS/MS. Protein functions were classified by the Gene Ontology (GO) and KEGG pathway. PSICQUIC was used to create a network. MCODE algorithm was applied to obtain subnetworks. Of these protein changes, 45 were upregulated and 14 were downregulated following RABV infection relative to non-infected (mock) synaptosomes. 28 proteins were unique to mock treatment and 12 were unique to RABV treatment. Proteins related to metabolism and synaptic vesicle showed the most changes in expression levels. Furthermore, protein-protein interaction (PPI) networks revealed that several key biological processes related to synaptic functions potentially were modulated by RABV, including energy metabolism, cytoskeleton organization, and synaptic transmission. These data will be useful for better understanding of neuronal dysfunction of rabies and provide the foundation for future research.
Collapse
Affiliation(s)
- Xiaoning Sun
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Ning Shi
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences CAAS, Changchun, 132109, China
| | - Ying Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Chunyan Dong
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Maolin Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Zhenhong Guan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Ming Duan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
23
|
Synaptic Plasticity and Neurological Disorders in Neurotropic Viral Infections. Neural Plast 2015; 2015:138979. [PMID: 26649202 PMCID: PMC4663354 DOI: 10.1155/2015/138979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022] Open
Abstract
Based on the type of cells or tissues they tend to harbor or attack, many of the viruses are characterized. But, in case of neurotropic viruses, it is not possible to classify them based on their tropism because many of them are not primarily neurotropic. While rabies and poliovirus are considered as strictly neurotropic, other neurotropic viruses involve nervous tissue only secondarily. Since the AIDS pandemic, the interest in neurotropic viral infections has become essential for all clinical neurologists. Although these neurotropic viruses are able to be harbored in or infect the nervous system, not all the neurotropic viruses have been reported to cause disrupted synaptic plasticity and impaired cognitive functions. In this review, we have discussed the neurotropic viruses, which play a major role in altered synaptic plasticity and neurological disorders.
Collapse
|
24
|
Application of “Omics” Technologies for Diagnosis and Pathogenesis of Neurological Infections. Curr Neurol Neurosci Rep 2015. [DOI: 10.1007/s11910-015-0580-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Yang Y, Liu W, Yan G, Luo Y, Zhao J, Yang X, Mei M, Wu X, Guo X. iTRAQ protein profile analysis of neuroblastoma (NA) cells infected with the rabies viruses rHep-Flury and Hep-dG. Front Microbiol 2015; 6:691. [PMID: 26217322 PMCID: PMC4493837 DOI: 10.3389/fmicb.2015.00691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/22/2015] [Indexed: 12/25/2022] Open
Abstract
The rabies virus (RABV) glycoprotein (G) is the principal contributor to the pathogenicity and protective immunity of RABV. In a previous work, we reported that recombinant rabies virus Hep-dG, which was generated by reverse genetics to carry two copies of the G-gene, showed lower virulence than the parental virus rHep-Flury in suckling mice with a better immune protection effect. To better understand the mechanisms underlying rabies virus attenuation and the role of glycoprotein G, isobaric tags for relative and absolute quantitation (iTRAQ) was performed to identify and quantify distinct proteins. 10 and 111 differentially expressed proteins were obtained in rHep-Flury and Hep-dG infection groups, respectively. Selected data were validated by western blot and qRT-PCR. Bioinformatics analysis of the distinct protein suggested that glycoprotein over-expression in the attenuated RABV strain can induce activation of the interferon signaling. Furthermore, it may promote the antiviral response, MHC-I mediated antigen-specific T cell immune response, apoptosis and autophagy in an IFN-dependent manner. These findings might not only improve the understanding of the dynamics of RABV and host interaction, but also help understand the mechanisms underlying innate and adaptive immunity during RABV infection.
Collapse
Affiliation(s)
- Youtian Yang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Wenjun Liu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Guangrong Yan
- Institute of Life and Health Engineering and National Engineering and Research Center for Genetic Medicine, Jinan UniversityGuangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Jing Zhao
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Xianfeng Yang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Mingzhu Mei
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Xiaowei Wu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
26
|
Wallis D, Loesch K, Galaviz S, Sun Q, DeJesus M, Ioerger T, Sacchettini JC. High-Throughput Differentiation and Screening of a Library of Mutant Stem Cell Clones Defines New Host-Based Genes Involved in Rabies Virus Infection. Stem Cells 2015; 33:2509-22. [PMID: 25752821 DOI: 10.1002/stem.1983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/02/2015] [Indexed: 12/25/2022]
Abstract
We used a genomic library of mutant murine embryonic stem cells (ESCs) and report the methodology required to simultaneously culture, differentiate, and screen more than 3,200 heterozygous mutant clones to identify host-based genes involved in both sensitivity and resistance to rabies virus infection. Established neuronal differentiation protocols were miniaturized such that many clones could be handled simultaneously, and molecular markers were used to show that the resultant cultures were pan-neuronal. Next, we used a green fluorescent protein (GFP) labeled rabies virus to develop, validate, and implement one of the first host-based, high-content, high-throughput screens for rabies virus. Undifferentiated cell and neuron cultures were infected with GFP-rabies and live imaging was used to evaluate GFP intensity at time points corresponding to initial infection/uptake and early and late replication. Furthermore, supernatants were used to evaluate viral shedding potential. After repeated testing, 63 genes involved in either sensitivity or resistance to rabies infection were identified. To further explore hits, we used a completely independent system (siRNA) to show that reduction in target gene expression leads to the observed phenotype. We validated the immune modulatory gene Unc13d and the dynein adapter gene Bbs4 by treating wild-type ESCs and primary neurons with siRNA; treated cultures were resistant to rabies infection/replication. Overall, the potential of such in vitro functional genomics screens in stem cells adds additional value to other libraries of stem cells. This technique is applicable to any bacterial or virus interactome and any cell or tissue types that can be differentiated from ESCs.
Collapse
Affiliation(s)
- Deeann Wallis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Kimberly Loesch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Stacy Galaviz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Qingan Sun
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Michael DeJesus
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Thomas Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
27
|
Mehta SM, Banerjee SM, Chowdhary AS. Postgenomics biomarkers for rabies—the next decade of proteomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:67-79. [PMID: 25611201 DOI: 10.1089/omi.2014.0127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies is one of the oldest diseases known to mankind. The pathogenic mechanisms by which rabies virus infection leads to development of neurological disease and death are still poorly understood. Analysis of rabies-infected proteomes may help identify novel biomarkers for antemortem diagnosis of the disease and target molecules for therapeutic intervention. This article offers a literature synthesis and critique of the differentially expressed proteins that have been previously reported from various in vitro/in vivo model systems and naturally infected clinical specimens. The emerging data collectively indicate that, in addition to the obvious alterations in proteins involved in synapse and neurotransmission, a majority of cytoskeletal proteins are relevant as well, providing evidence of neuronal degeneration. An interesting observation is that certain molecules, such as KPNA4, could be potential diagnostic markers for rabies. Importantly, proteomic studies with body fluids such as cerebrospinal fluid provide newer insights into antemortem diagnosis. In order to develop a complete integrative biology picture, it is essential to analyze the entire CNS (region-wise) and in particular, the brain. We suggest the use of laboratory animal models over cell culture systems using a combinatorial proteomics approach, as the former is a closer match to the actual host response. While most studies have focused on the terminal stages of the disease in mice, a time-series analysis could provide deeper insights for therapy. Postgenomics technologies such as proteomics warrant more extensive applications in rabies and similar diseases impacting public health around the world.
Collapse
Affiliation(s)
- Shraddha M Mehta
- Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Parel, Mumbai, India
| | | | | |
Collapse
|
28
|
Schutsky K, Portocarrero C, Hooper DC, Dietzschold B, Faber M. Limited brain metabolism changes differentiate between the progression and clearance of rabies virus. PLoS One 2014; 9:e87180. [PMID: 24763072 PMCID: PMC3998930 DOI: 10.1371/journal.pone.0087180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/19/2013] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) metabolic profiles were examined from rabies virus (RABV)-infected mice that were either mock-treated or received post-exposure treatment (PET) with a single dose of the live recombinant RABV vaccine TriGAS. CNS tissue harvested from mock-treated mice at middle and late stage infection revealed numerous changes in energy metabolites, neurotransmitters and stress hormones that correlated with replication levels of viral RNA. Although the large majority of these metabolic changes were completely absent in the brains of TriGAS-treated mice most likely due to the strong reduction in virus spread, TriGAS treatment resulted in the up-regulation of the expression of carnitine and several acylcarnitines, suggesting that these compounds are neuroprotective. The most striking change seen in mock-treated RABV-infected mice was a dramatic increase in brain and serum corticosterone levels, with the later becoming elevated before clinical signs or loss of body weight occurred. We speculate that the rise in corticosterone is part of a strategy of RABV to block the induction of immune responses that would otherwise interfere with its spread. In support of this concept, we show that pharmacological intervention to inhibit corticosterone biosynthesis, in the absence of vaccine treatment, significantly reduces the pathogenicity of RABV. Our results suggest that widespread metabolic changes, including hypothalamic-pituitary-adrenal axis activation, contribute to the pathogenesis of RABV and that preventing these alterations early in infection with PET or pharmacological blockade helps protect brain homeostasis, thereby reducing disease mortality.
Collapse
Affiliation(s)
- Keith Schutsky
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Carla Portocarrero
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - D. Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Bernhard Dietzschold
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Serum MicroRNA Expression Profiling in Mice Infected with Rabies Virus. Osong Public Health Res Perspect 2013; 2:186-91. [PMID: 24159471 PMCID: PMC3767082 DOI: 10.1016/j.phrp.2011.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/25/2011] [Accepted: 10/27/2011] [Indexed: 11/20/2022] Open
Abstract
Objectives Serum or plasma microRNAs (miRNAs) are potential biomarkers for the diagnosis for cancer and prenatal diseases. This study was conducted to investigate whether rabies virus causes a change in serum miRNA expression. Methods ICR mice were intramuscularly inoculated with rabies virus and were sacrificed weekly to collect serum and brain tissue for 4 weeks postinoculation. Mice were assigned to four groups based on the results of indirect immunofluorescent assays, enzyme-linked immunosorbent assay, and nested reverse transcription-polymerase chain reaction and the expression profiles of serum miRNAs were compared using a commercial mouse miRNA expression profiling assay. Results The expression levels of miRNAs changed significantly with the different stages of the disease. The expression level of 94 serum miRNAs in infected mice changed at least twofold. Seven microRNAs of them were significantly upregulated or downregulated in all infected mice regardless of disease status. The number of miRNAs with an expression level change decreased with the progression of the disease. In a hierarchical cluster analysis, infected mice clustered into a group separate from uninfected control mice. Conclusions Based on the relationship of miRNAs to gene expression regulation, miRNAs may be candidates for the study of viral pathogenesis and could have potential as biomarkers.
Collapse
|
30
|
Farahtaj F, Zandi F, Khalaj V, Biglari P, Fayaz A, Vaziri B. Proteomics analysis of human brain tissue infected by street rabies virus. Mol Biol Rep 2013; 40:6443-50. [PMID: 24057270 DOI: 10.1007/s11033-013-2759-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 09/14/2013] [Indexed: 12/30/2022]
Abstract
In order to extend the knowledge of rabies pathogenesis, a two-dimensional electrophoresis/mass spectrometry based postmortem comparative proteomics analysis was carried out on human brain samples. Alteration in expression profile of several proteins was detected. Proteins related to cytoskeleton, metabolism, proteasome and immune regulatory systems showed the most changes in expression levels. Among these groups, the cytoskeleton related proteins (dynein light chain, β-centractin, tubulin alpha-1C chain and destrin) and metabolism associated proteins (fatty acid-binding protein, macrophage migration inhibitory factor, glutamine synthetase and alpha enolase) were the main altered proteins. These alterations may be considered as an evidence of disturbances in neuronal key processes including axonal transport, synaptic activity, signaling and metabolic pathways in rabies virus infected human brain.
Collapse
Affiliation(s)
- Firouzeh Farahtaj
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
31
|
Kluge S, Rourou S, Vester D, Majoul S, Benndorf D, Genzel Y, Rapp E, Kallel H, Reichl U. Proteome analysis of virus-host cell interaction: rabies virus replication in Vero cells in two different media. Appl Microbiol Biotechnol 2013; 97:5493-506. [PMID: 23674149 DOI: 10.1007/s00253-013-4939-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/08/2023]
Abstract
The use of Vero cells for rabies vaccine production was recommended from the WHO in 2005. A controlled production process is necessary to reduce the risk of contaminants in the product. One step towards this is to turn away from animal-derived components (e.g. serum, trypsin, bovine serum albumin) and face a production process in animal component-free medium. In this study, a proteomic approach was applied, using 2-D differential gel electrophoresis and mass spectrometry to compare rabies virus propagation in Vero cells under different cultivation conditions in microcarrier culture. Protein alterations were investigated for uninfected and infected Vero cells over a time span from 1 to 8 days post-infection in two different types of media (serum-free versus serum-containing media). For mock-infected cells, proteins involved in stress response, redox status, protease activity or glycolysis, and protein components in the endoplasmic reticulum were found to be differentially expressed comparing both cultivation media at all sampling points. For virus-infected cells, additionally changes in protein expression involved in general cell regulation and in calcium homeostasis were identified under both cultivation conditions. The fact that neither of these additional proteins was identified for cells during mock infection, but similar protein expression changes were found for both systems during virus propagation, indicates for a specific response of the Vero cell proteome on rabies virus infection.
Collapse
Affiliation(s)
- Sabine Kluge
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Silva SR, Katz ISS, Mori E, Carnieli P, Vieira LFP, Batista HBCR, Chaves LB, Scheffer KC. Biotechnology advances: a perspective on the diagnosis and research of Rabies Virus. Biologicals 2013; 41:217-23. [PMID: 23683880 DOI: 10.1016/j.biologicals.2013.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 11/15/2022] Open
Abstract
Rabies is a widespread zoonotic disease responsible for approximately 55,000 human deaths/year. The direct fluorescent antibody test (DFAT) and the mouse inoculation test (MIT) used for rabies diagnosis, have high sensitivity and specificity, but are expensive and time-consuming. These disadvantages and the identification of new strains of the virus encourage the use of new techniques that are rapid, sensitive, specific and economical for the detection and research of the Rabies Virus (RABV). Real-time RT-PCR, phylogeographic analysis, proteomic assays and DNA recombinant technology have been used in research laboratories. Together, these techniques are effective on samples with low virus titers in the study of molecular epidemiology or in the identification of new disease markers, thus improving the performance of biological assays. In this context, modern advances in molecular technology are now beginning to complement more traditional approaches and promise to revolutionize the diagnosis of rabies. This brief review presents some of the recent molecular tools used for RABV analysis, with emphasis on rabies diagnosis and research.
Collapse
Affiliation(s)
- S R Silva
- Pasteur Institute, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cellular chaperonin CCTγ contributes to rabies virus replication during infection. J Virol 2013; 87:7608-21. [PMID: 23637400 DOI: 10.1128/jvi.03186-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rabies, as the oldest known infectious disease, remains a serious threat to public health worldwide. The eukaryotic cytosolic chaperonin TRiC/CCT complex facilitates the folding of proteins through ATP hydrolysis. Here, we investigated the expression, cellular localization, and function of neuronal CCTγ during neurotropic rabies virus (RABV) infection using mouse N2a cells as a model. Following RABV infection, 24 altered proteins were identified by using two-dimensional electrophoresis and mass spectrometry, including 20 upregulated proteins and 4 downregulated proteins. In mouse N2a cells infected with RABV or cotransfected with RABV genes encoding nucleoprotein (N) and phosphoprotein (P), confocal microscopy demonstrated that upregulated cellular CCTγ was colocalized with viral proteins N and P, which formed a hollow cricoid inclusion within the region around the nucleus. These inclusions, which correspond to Negri bodies (NBs), did not form in mouse N2a cells only expressing the viral protein N or P. Knockdown of CCTγ by lentivirus-mediated RNA interference led to significant inhibition of RABV replication. These results demonstrate that the complex consisting of viral proteins N and P recruits CCTγ to NBs and identify the chaperonin CCTγ as a host factor that facilitates intracellular RABV replication. This work illustrates how viruses can utilize cellular chaperonins and compartmentalization for their own benefit.
Collapse
|
34
|
Hemachudha T, Ugolini G, Wacharapluesadee S, Sungkarat W, Shuangshoti S, Laothamatas J. Human rabies: neuropathogenesis, diagnosis, and management. Lancet Neurol 2013; 12:498-513. [DOI: 10.1016/s1474-4422(13)70038-3] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Venugopal AK, Ghantasala SSK, Selvan LDN, Mahadevan A, Renuse S, Kumar P, Pawar H, Sahasrabhuddhe NA, Suja MS, Ramachandra YL, Prasad TSK, Madhusudhana SN, HC H, Chaerkady R, Satishchandra P, Pandey A, Shankar SK. Quantitative proteomics for identifying biomarkers for Rabies. Clin Proteomics 2013; 10:3. [PMID: 23521751 PMCID: PMC3660221 DOI: 10.1186/1559-0275-10-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 03/14/2013] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Rabies is a fatal acute viral disease of the central nervous system, which is a serious public health problem in Asian and African countries. Based on the clinical presentation, rabies can be classified into encephalitic (furious) or paralytic (numb) rabies. Early diagnosis of this disease is particularly important as rabies is invariably fatal if adequate post exposure prophylaxis is not administered immediately following the bite. METHODS In this study, we carried out a quantitative proteomic analysis of the human brain tissue from cases of encephalitic and paralytic rabies along with normal human brain tissues using an 8-plex isobaric tags for relative and absolute quantification (iTRAQ) strategy. RESULTS AND CONCLUSION We identified 402 proteins, of which a number of proteins were differentially expressed between encephalitic and paralytic rabies, including several novel proteins. The differentially expressed molecules included karyopherin alpha 4 (KPNA4), which was overexpressed only in paralytic rabies, calcium calmodulin dependent kinase 2 alpha (CAMK2A), which was upregulated in paralytic rabies group and glutamate ammonia ligase (GLUL), which was overexpressed in paralytic as well as encephalitic rabies. We validated two of the upregulated molecules, GLUL and CAMK2A, by dot blot assays and further validated CAMK2A by immunohistochemistry. These molecules need to be further investigated in body fluids such as cerebrospinal fluid in a larger cohort of rabies cases to determine their potential use as antemortem diagnostic biomarkers in rabies. This is the first study to systematically profile clinical subtypes of human rabies using an iTRAQ quantitative proteomics approach.
Collapse
Affiliation(s)
- Abhilash K Venugopal
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Biotechnology, Kuvempu University, Shimoga, 577451, India
| | - S Sameer Kumar Ghantasala
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Biotechnology, Kuvempu University, Shimoga, 577451, India
| | - Lakshmi Dhevi N Selvan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Praveen Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Harsh Pawar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India
| | - Nandini A Sahasrabhuddhe
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal University, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Mooriyath S Suja
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | | | - Thottethodi S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
- Manipal University, Madhav Nagar, Manipal, Karnataka, 576104, India
- Bioinformatics Centre, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Shampur N Madhusudhana
- Department of Neurovirology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Harsha HC
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Raghothama Chaerkady
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | | | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, 733 N. Broadway, BRB 527, Baltimore, MD, 21205, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susarla K Shankar
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| |
Collapse
|
36
|
Zandi F, Eslami N, Torkashvand F, Fayaz A, Khalaj V, Vaziri B. Expression changes of cytoskeletal associated proteins in proteomic profiling of neuroblastoma cells infected with different strains of rabies virus. J Med Virol 2012; 85:336-47. [PMID: 23168799 DOI: 10.1002/jmv.23458] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
Rabies virus invades the nervous system, induces neuronal dysfunction and causes death of the host. The disruption of the cytoskeletal integrity and synaptic structures of the neurons by rabies virus has been postulated as a possible basis for neuronal dysfunction. In the present study, a two-dimensional electrophoresis/mass spectrometry proteomics analysis of neuroblastoma cells revealed a significant effect of a virulent strain of rabies virus on the host cytoskeleton related proteins which was quite different from that of an attenuated strain. Vimentin, actin cytoplasmic 1 isoform, profilin I, and Rho-GDP dissociation inhibitor were host cell cytoskeletal related proteins changed by the virulent strain. The proteomics data indicated that the virulent strain of rabies virus induces significant expression changes in the vimentin and actin cytoskeleton networks of neurons which could be a strong clue for the relation of cytoskeletal integrity distraction and rabies virus pathogenesis. In addition, the expression alteration of other host proteins, particularly some structural and regulatory proteins may have potential roles in rabies virus pathogenesis.
Collapse
Affiliation(s)
- Fatemeh Zandi
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
37
|
Song Y, Hou J, Qiao B, Li Y, Xu Y, Duan M, Guan Z, Zhang M, Sun L. Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus. J Gen Virol 2012; 94:276-283. [PMID: 23114630 PMCID: PMC3709620 DOI: 10.1099/vir.0.047480-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rabies is an acute viral infection of the central nervous system and is typically fatal in humans and animals; however, its pathogenesis remains poorly understood. In this study, the morphological changes of dendrites and dendritic spines in the CA1 region of the hippocampus were investigated in mice that were infected intracerebrally with an MRV strain of the street rabies virus. Haematoxylin and eosin and fluorescence staining analysis of brain sections from the infected mice showed very few morphological changes in the neuronal bodies and neuronal processes. However, we found a significant decrease in the number of dendritic spines. Primary neuronal cultures derived from the hippocampus of mice (embryonic day 16.5) that were infected with the virus also showed an obvious decrease in the number of dendritic spines. Furthermore, the decrease in the number of dendritic spines was related to the depolymerization of actin filaments (F-actin). We propose that the observed structural changes can partially explain the severe clinical disease that was found in experimental models of street rabies virus infections.
Collapse
Affiliation(s)
- Yan Song
- Nursing College, Beihua University, 3999 Huashan Road, Jilin 132013, PR China.,Key Laboratory of Zoonoses, Ministry of Education, Institute of Zoonoses, Jilin University, 5333 Xian Road, Changchun 130062, PR China.,Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Xinming Road, Changchun 130021, PR China
| | - Jinli Hou
- Key Laboratory of Zoonoses, Ministry of Education, Institute of Zoonoses, Jilin University, 5333 Xian Road, Changchun 130062, PR China.,Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Xinming Road, Changchun 130021, PR China
| | - Bin Qiao
- Key Laboratory of Zoonoses, Ministry of Education, Institute of Zoonoses, Jilin University, 5333 Xian Road, Changchun 130062, PR China.,Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Xinming Road, Changchun 130021, PR China
| | - Yanchao Li
- Department of Histology and Embryology, Norman Bethune College of Medicine, Jilin University, Xinming Road, Changchun, 130021, PR China
| | - Ye Xu
- Medical Research Laboratory, Jilin Medical College, Jilin Road, Jilin 132013, PR China
| | - Ming Duan
- Key Laboratory of Zoonoses, Ministry of Education, Institute of Zoonoses, Jilin University, 5333 Xian Road, Changchun 130062, PR China.,Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Xinming Road, Changchun 130021, PR China
| | - Zhenhong Guan
- Key Laboratory of Zoonoses, Ministry of Education, Institute of Zoonoses, Jilin University, 5333 Xian Road, Changchun 130062, PR China.,Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Xinming Road, Changchun 130021, PR China
| | - Maolin Zhang
- Key Laboratory of Zoonoses, Ministry of Education, Institute of Zoonoses, Jilin University, 5333 Xian Road, Changchun 130062, PR China.,Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Xinming Road, Changchun 130021, PR China
| | - Liankun Sun
- Key Laboratory of Zoonoses, Ministry of Education, Institute of Zoonoses, Jilin University, 5333 Xian Road, Changchun 130062, PR China.,Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Xinming Road, Changchun 130021, PR China
| |
Collapse
|
38
|
Gomme EA, Wirblich C, Addya S, Rall GF, Schnell MJ. Immune clearance of attenuated rabies virus results in neuronal survival with altered gene expression. PLoS Pathog 2012; 8:e1002971. [PMID: 23071441 PMCID: PMC3469654 DOI: 10.1371/journal.ppat.1002971] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/30/2012] [Indexed: 01/23/2023] Open
Abstract
Rabies virus (RABV) is a highly neurotropic pathogen that typically leads to mortality of infected animals and humans. The precise etiology of rabies neuropathogenesis is unknown, though it is hypothesized to be due either to neuronal death or dysfunction. Analysis of human brains post-mortem reveals surprisingly little tissue damage and neuropathology considering the dramatic clinical symptomology, supporting the neuronal dysfunction model. However, whether or not neurons survive infection and clearance and, provided they do, whether they are functionally restored to their pre-infection phenotype has not been determined in vivo for RABV, or any neurotropic virus. This is due, in part, to the absence of a permanent “mark” on once-infected cells that allow their identification long after viral clearance. Our approach to study the survival and integrity of RABV-infected neurons was to infect Cre reporter mice with recombinant RABV expressing Cre-recombinase (RABV-Cre) to switch neurons constitutively expressing tdTomato (red) to expression of a Cre-inducible EGFP (green), permanently marking neurons that had been infected in vivo. We used fluorescence microscopy and quantitative real-time PCR to measure the survival of neurons after viral clearance; we found that the vast majority of RABV-infected neurons survive both infection and immunological clearance. We were able to isolate these previously infected neurons by flow cytometry and assay their gene expression profiles compared to uninfected cells. We observed transcriptional changes in these “cured” neurons, predictive of decreased neurite growth and dysregulated microtubule dynamics. This suggests that viral clearance, though allowing for survival of neurons, may not restore them to their pre-infection functionality. Our data provide a proof-of-principle foundation to re-evaluate the etiology of human central nervous system diseases of unknown etiology: viruses may trigger permanent neuronal damage that can persist or progress in the absence of sustained viral antigen. Rabies is an ancient and fatal neurological disease of animals and humans, caused by infection of the central nervous system (CNS) with Rabies virus (RABV). It is estimated that nearly 55,000 human RABV fatalities occur each year, though this number is likely much higher due to unreported exposures or failure of diagnosis. No treatment has been identified to cure disease after onset of symptoms. Neurovirologists still do not know the cause of rabies' dramatic symptoms and fatality, though it is thought to be due to neuronal loss or dysfunction. Here, we use a novel approach to permanently and genetically tag infected cells so that they can be identified after the infection has been cleared. This allowed us to define neuronal survival time following infection, and to assess neuronal function through gene expression analysis. We found that RABV infection does not lead to loss of neurons, but rather induces a permanent change in gene expression that may be related to the ability of RABV to cause permanent CNS disease. Our study provides evidence that viral infection of the brain can initiate long-term changes that may have consequences for nervous system health, even after the virus has been cleared from the CNS.
Collapse
Affiliation(s)
- Emily A. Gomme
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sankar Addya
- Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Glenn F. Rall
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
The microtubule-associated C-I subfamily of TRIM proteins and the regulation of polarized cell responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:105-18. [PMID: 23631003 DOI: 10.1007/978-1-4614-5398-7_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRIM proteins are multidomain proteins that typically assemble into large molecular complexes, the composition of which likely explains the diverse functions that have been attributed to this group of proteins. Accumulating data on the roles of many TRIM proteins supports the notion that those that share identical C-terminal domain architectures participate in the regulation of similar cellular processes. At least nine different C-terminal domain compositions have been identified. This chapter will focus on one subgroup that possess a COS motif, FNIII and SPRY/B30.2 domain as their C-terminal domain arrangement. This C-terminal domain architecture plays a key role in the interaction of all six members of this subgroup with the microtubule cytoskeleton. Accumulating evidence on the functions of some of these proteins will be discussed to highlight the emerging similarities in the cellular events in which they participate.
Collapse
|
40
|
Thanomsridetchai N, Singhto N, Tepsumethanon V, Shuangshoti S, Wacharapluesadee S, Sinchaikul S, Chen ST, Hemachudha T, Thongboonkerd V. Comprehensive proteome analysis of hippocampus, brainstem, and spinal cord from paralytic and furious dogs naturally infected with rabies. J Proteome Res 2011; 10:4911-24. [PMID: 21942679 DOI: 10.1021/pr200276u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Paralytic and furious forms are unique clinical entities of rabies in humans and dogs. However, molecular mechanisms underlying these disorders remained unclear. We investigated changes in proteomes of the hippocampus, brainstem and spinal cord of paralytic and furious dogs naturally infected with rabies compared to noninfected controls. Proteins were extracted from these tissues and analyzed by two-dimensional gel electrophoresis (2-DE) (n = 6 gels/region in each group, a total of 54 gels were analyzed). From >1000 protein spots visualized in each gel, spot matching, quantitative intensity analysis, and ANOVA with Tukey's posthoc multiple comparisons revealed 32, 49, and 67 protein spots that were differentially expressed among the three clinical groups in the hippocampus, brainstem and spinal cord, respectively. These proteins were then identified by quadrupole time-of-flight mass spectrometry and tandem mass spectrometry (Q-TOF MS and MS/MS), including antioxidants, apoptosis-related proteins, cytoskeletal proteins, heat shock proteins/chaperones, immune regulatory proteins, metabolic enzymes, neuron-specific proteins, transcription/translation regulators, ubiquitination/proteasome-related proteins, vesicular transport proteins, and hypothetical proteins. Among these, 13, 17, and 41 proteins in the hippocampus, brainstem and spinal cord, respectively, significantly differed between paralytic and furious forms and thus may potentially be biomarkers to differentiate these two distinct forms of rabies. In summary, we report herein for the first time a large data set of changes in proteomes of the hippocampus, brainstem and spinal cord in dogs naturally infected with rabies. These data will be useful for better understanding of molecular mechanisms of rabies and for differentiation of its paralytic and furious forms.
Collapse
|
41
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
42
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
43
|
Abstract
Human rabies is almost invariably fatal, and globally it remains an important public health problem. Our knowledge of rabies pathogenesis has been learned mainly from studies performed in experimental animal models, and a number of unresolved issues remain. In contrast with the neural pathway of spread, there is still no credible evidence that hematogenous spread of rabies virus to the central nervous system plays a significant role in rabies pathogenesis. Although neuronal dysfunction has been thought to explain the neurological disease in rabies, recent evidence indicates that structural changes involving neuronal processes may explain the severe clinical disease and fatal outcome. Endemic dog rabies results in an ongoing risk to humans in many resource-limited and resource-poor countries, whereas rabies in wildlife is important in North America and Europe. In human cases in North America, transmission from bats is most common, but there is usually no history of a bat bite and there may be no history of contact with bats. Physicians may not recognize typical features of rabies in North America and Europe. Laboratory diagnostic evaluation for rabies includes rabies serology plus skin biopsy, cerebrospinal fluid, and saliva specimens for rabies virus antigen and/or RNA detection. Methods of postexposure rabies prophylaxis, including wound cleansing and administration of rabies vaccine and human rabies immune globulin, are highly effective after recognized exposure. Although there have been rare survivors of human rabies, no effective therapy is presently available. Therapeutic coma (midazolam and phenobarbital), ketamine, and antiviral therapies (known as the "Milwaukee protocol") were given to a rabies survivor, but this therapy was likely not directly responsible for the favorable outcome. New therapeutic approaches for human rabies need to be developed. A better understanding of basic mechanisms involved in rabies pathogenesis may be helpful in the development of potential new therapies for the future.
Collapse
Affiliation(s)
- Alan C Jackson
- Departments of Internal Medicine (Neurology) and Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada,
| |
Collapse
|
44
|
Tanji K, Kamitani T, Mori F, Kakita A, Takahashi H, Wakabayashi K. TRIM9, a novel brain-specific E3 ubiquitin ligase, is repressed in the brain of Parkinson's disease and dementia with Lewy bodies. Neurobiol Dis 2010; 38:210-8. [PMID: 20085810 DOI: 10.1016/j.nbd.2010.01.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/18/2009] [Accepted: 01/11/2010] [Indexed: 12/24/2022] Open
Abstract
TRIM family proteins are involved in a broad range of biological processes, and their alteration results in many diverse pathological conditions found in genetic diseases, viral infections, and cancers. However, the spatial and temporal expression and function of TRIM9, one of TRIM family proteins, remain obscure. Our results here showed that TRIM9 protein is mainly expressed in the cerebral cortex, and functions as an E3 ubiquitin ligase collaborating with an E2 ubiquitin conjugating enzyme UbcH5b. Immunohistochemical examination revealed that TRIM9 is localized to the neurons in the normal mouse and human brain and that TRIM9 immunoreactivity is severely decreased in the affected brain areas in Parkinson's disease and dementia with Lewy bodies. This repressed level of TRIM9 protein was supported by immunoblotting analysis. Intriguingly, cortical and brainstem-type Lewy bodies were immunopositive for TRIM9. These results suggest that TRIM9 plays an important role in the regulation of neuronal functions and participates in pathological process of Lewy body disease through its ligase activity.
Collapse
Affiliation(s)
- Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Rabies virus, the prototypical neurotropic virus, causes one of the most lethal zoonotic diseases. According to official estimates, over 55,000 people die of the disease annually, but this is probably a severe underestimation. A combination of virulence factors enables the virus to enter neurons at peripheral sites and travel through the spinal cord to the brain of the infected host, where it often induces aggression that facilitates the transfer of the virus to a new host. This Review summarizes the current knowledge of the replication cycle of rabies virus and virus- host cell interactions, both of which are fundamental elements in our quest to understand the life cycle of rabies virus and the pathogenesis of rabies.
Collapse
|
46
|
Ye Y, Mar EC, Tong S, Sammons S, Fang S, Anderson LJ, Wang D. Application of proteomics methods for pathogen discovery. J Virol Methods 2009; 163:87-95. [PMID: 19751767 PMCID: PMC7119679 DOI: 10.1016/j.jviromet.2009.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 08/26/2009] [Accepted: 09/07/2009] [Indexed: 01/11/2023]
Abstract
Proteomics have been used widely to study proteins in complex materials such as cells, body fluids, tissues, and organisms. Application of advance proteomic techniques for the characterization of disease-specific proteins may provide information for the detection of potential infectious agents. In this report, two proteomics techniques, a two-dimensional differential gel electrophoresis (2D-DIGE) and a one-dimensional gel electrophoresis and one-dimensional liquid chromatography coupled with mass spectrometry (GeLC-MS/MS), were applied for investigating viral proteins from cultured cells inoculated with a clinical sample. The 2D-DIGE method identified five viral proteins of vaccinia virus that are only present in infected cells, these results are in agreement with findings determined by genome based methods. The GeLC-MS/MS method identified eight vaccinia virus proteins out of 428 proteins detected in the sample. These results demonstrate that proteomic techniques can be used effectively for the detection of infectious agents. Given that the methods are capable of applying to proteins without a prior knowledge of the pathogen present, proteomics has a potential of being developed as a molecular tool for pathogen discovery, and disease diagnosis of emerging infectious diseases and for bioterrorism defense.
Collapse
Affiliation(s)
- Yiming Ye
- Biotechnology Core Facility Branch, Division of Scientific Resources, NCPDCID, Atlanta, GA, United States
| | - Eng-Chun Mar
- Division of Viral Diseases, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Suxiang Tong
- Division of Viral Diseases, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
- Corresponding authors. Tel.: +1 770 488 0446; fax: +1 404 639 1331.
| | - Scott Sammons
- Biotechnology Core Facility Branch, Division of Scientific Resources, NCPDCID, Atlanta, GA, United States
| | - Sunan Fang
- Biotechnology Core Facility Branch, Division of Scientific Resources, NCPDCID, Atlanta, GA, United States
| | - Larry J. Anderson
- Division of Viral Diseases, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Dongxia Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, NCPDCID, Atlanta, GA, United States
- Corresponding authors. Tel.: +1 770 488 0446; fax: +1 404 639 1331.
| |
Collapse
|
47
|
Zandi F, Eslami N, Soheili M, Fayaz A, Gholami A, Vaziri B. Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Proteomics 2009; 9:2399-407. [PMID: 19322775 DOI: 10.1002/pmic.200701007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies is a neurotropic virus that causes a life threatening acute viral encephalitis. The complex relationship of rabies virus (RV) with the host leads to its replication and spreading toward the neural network, where viral pathogenic effects appeared as neuronal dysfunction. In order to better understand the molecular basis of this relationship, a proteomics study on baby hamster kidney cells infected with challenge virus standard strain of RV was performed. This cell line is an in vitro model for rabies infection and is commonly used for viral seed preparation. The direct effect of the virus on cellular protein machinery was investigated by 2-DE proteome mapping of infected versus control cells followed by LC-MS/MS identification. This analysis revealed significant changes in expression of 14 proteins, seven of these proteins were viral and the remaining were host proteins with different known functions: cytoskeletal (capping protein, vimentin), anti-oxidative stress (superoxide dismutase), regulatory (Stathmin), and protein synthesis (P0). Despite of limited changes appeared upon rabies infection, they present a set of interesting biochemical pathways for further investigation on viral-host interaction.
Collapse
Affiliation(s)
- Fatemeh Zandi
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Sun J, Jiang Y, Shi Z, Yan Y, Guo H, He F, Tu C. Proteomic alteration of PK-15 cells after infection by classical swine fever virus. J Proteome Res 2009; 7:5263-9. [PMID: 19367723 DOI: 10.1021/pr800546m] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral infections usually result in alterations in the host cell proteome which determine the fate of the infected cells and the progress of pathogenesis. To uncover cellular protein responses in classical swine fever virus-infected PK-15 cells, a proteomic analysis was conducted using 2D PAGE followed by MALDI-TOF-MS/MS identification. Altered expression of 35 protein spots in infected cells at 48 h p.i. were identified in 2D gels, with 21 of these being characterized by MALDI-TOF-MS/MS, including 16 upregulated proteins and 5 down-regulated proteins. Western-blot analysis confirmed the up-regulation of annexin 2 and down-regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The altered proteins could be sorted into 7 groups according to cellular function: cytoskeleton, energy metabolism, replication/transcription and translation processes, protein processing, antioxidative stress proteins, heat shock proteins and signal transduction. The altered expression of these proteins provides a response profile of PK-15 host cells to CSFV infection. Further study of these altered proteins may facilitate understanding the mechanisms of CSFV infection and pathogenesis.
Collapse
Affiliation(s)
- Jinfu Sun
- Institute of Veterinary Sciences, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, China
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
|