1
|
Peres Emidio EC, Singulani JDL, Freitas GJC, Costa MC, Gouveia-Eufrasio L, Carmo PHF, Pedroso SHSP, Brito CB, Bastos RW, Ribeiro NQ, Oliveira LVN, Silva MF, Paixão TA, Souza DDG, Santos DA. Staphylococcus aureus triggers a protective inflammatory response against secondary Cryptococcus gattii infection in a murine model. Microbes Infect 2023; 25:105122. [PMID: 36842669 DOI: 10.1016/j.micinf.2023.105122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/05/2023] [Accepted: 02/17/2023] [Indexed: 02/28/2023]
Abstract
Prior infections can provide protection or enhance susceptibility to a subsequent infection through microorganism's interaction or host immunomodulation. Staphylococcus aureus (SA) and Cryptococcus gattii (CG) cause lungs infection, but it is unclear how they interact in vivo. This study aimed to study the effects of the primary SA lung infection on secondary cryptococcosis caused by CG in a murine model. The mice's survival, fungal burden, behavior, immune cells, cytokines, and chemokines were quantified to evaluate murine cryptococcosis under the influence of a previous SA infection. Further, fungal-bacterial in vitro interaction was studied in a culture medium and a phagocytosis assay. The primary infection with SA protects animals from the subsequent CG infection by reducing lethality, improving behavior, and impairing the fungal proliferation within the host. This phenotype was associated with the proinflammatory antifungal host response elicited by the bacteria in the early stage of cryptococcosis. There was no direct inhibition of CG by SA, although the phagocytic activity of macrophages was reduced. Identifying mechanisms involved in this protection may lead to new approaches for preventing and treating cryptococcosis.
Collapse
Affiliation(s)
- Elúzia Castro Peres Emidio
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Junya de Lacorte Singulani
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo José Cota Freitas
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ludmila Gouveia-Eufrasio
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Henrique Fonseca Carmo
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Camila Bernardo Brito
- Departamento de Microbiologia/Laboratório de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Wesley Bastos
- Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Noelly Queiroz Ribeiro
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena Vívien Neves Oliveira
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferreira Silva
- Departamento de Patologia/Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia/Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniele da Glória Souza
- Departamento de Microbiologia/Laboratório de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Cong L, Chen C, Mao S, Han Z, Zhu Z, Li Y. Intestinal bacteria-a powerful weapon for fungal infections treatment. Front Cell Infect Microbiol 2023; 13:1187831. [PMID: 37333850 PMCID: PMC10272564 DOI: 10.3389/fcimb.2023.1187831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The morbidity and mortality of invasive fungal infections are rising gradually. In recent years, fungi have quietly evolved stronger defense capabilities and increased resistance to antibiotics, posing huge challenges to maintaining physical health. Therefore, developing new drugs and strategies to combat these invasive fungi is crucial. There are a large number of microorganisms in the intestinal tract of mammals, collectively referred to as intestinal microbiota. At the same time, these native microorganisms co-evolve with their hosts in symbiotic relationship. Recent researches have shown that some probiotics and intestinal symbiotic bacteria can inhibit the invasion and colonization of fungi. In this paper, we review the mechanism of some intestinal bacteria affecting the growth and invasion of fungi by targeting the virulence factors, quorum sensing system, secreting active metabolites or regulating the host anti-fungal immune response, so as to provide new strategies for resisting invasive fungal infection.
Collapse
Affiliation(s)
- Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chaoqun Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zibing Han
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
4
|
Cross-Kingdom Infection of Macrophages Reveals Pathogen- and Immune-Specific Global Reprogramming and Adaptation. mBio 2022; 13:e0168722. [PMID: 35862772 PMCID: PMC9426421 DOI: 10.1128/mbio.01687-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between the human microbiota and infectious disease outcome is a rapidly expanding area of study. Understanding how the host responds to changes in its symbiotic relationship with microbes provides new insight into how disruption can promote disease.
Collapse
|
5
|
A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas ( Phascolarctos cinereus) in the Liverpool Plains, New South Wales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084603. [PMID: 35457470 PMCID: PMC9028200 DOI: 10.3390/ijerph19084603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023]
Abstract
Cryptococcosis caused by yeasts of the Cryptococcus gattii species complex is an increasingly important mycological disease in humans and other mammals. In Australia, cases of C. gattii-related cryptococcosis are more prevalent in the koala (Phascolarctos cinereus) compared to humans and other animals, likely due to the close association that both C. gattii and koalas have with Eucalyptus species. This provides a cogent opportunity to investigate the epidemiology of spontaneous C. gattii infections in a free-living mammalian host, thereby offering insights into similar infections in humans. This study aimed to establish a link between nasal colonisation by C. gattii in free-ranging koalas and the tree hollows of Eucalyptus species, the key environmental source of the pathogen. We (i) detected and genotyped C. gattii from nine out of 169 free-ranging koalas and representative tree hollows within their home range in the Liverpool Plains, New South Wales, and (ii) examined potential environmental predictors of nasal colonisation in koalas and the presence of C. gattii in tree hollows. Phylogenetic analyses based on multi-locus sequence typing (MLST) revealed that the koalas were most likely colonised by the most abundant C. gattii genotypes found in the Eucalyptus species, or closely related genotypes. Importantly, the likelihood of the presence of C. gattii in tree hollows was correlated with increasing hollow size.
Collapse
|
6
|
Interactions between invasive fungi and symbiotic bacteria. World J Microbiol Biotechnol 2020; 36:137. [PMID: 32794072 DOI: 10.1007/s11274-020-02913-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Infection rates and mortality associated with the invasive fungi Candida, Aspergillus, and Cryptococcus are increasing rapidly in prevalence. Meanwhile, screening pressure brought about by traditional antifungal drugs has induced an increase in drug resistance of invasive fungi, which creates a great challenge for the preservation of physical health. Development of new drugs and novel strategies are therefore important to meet these growing challenges. Recent studies have confirmed that the dynamic balance of microorganisms in the body is correlated with the occurrence of infectious diseases. This discovery of interactions between bacteria and fungi provides innovative insight for the treatment of invasive fungal infections. However, different invasive fungi and symbiotic bacteria interact with each other through various ways and targets, leading to different effects on their growth, morphology, and virulence. And the mechanism and implication of these interactions remains largely unknown. The present review aims to summarize the research progress into the interaction between invasive fungi and symbiotic bacteria with a focus on the anti-fungal mechanisms of symbiotic bacteria, providing a new strategy against drug-resistant fungal infections.
Collapse
|
7
|
Yadav SK, Das J, Kumar R, Jha G. Calcium regulates the mycophagous ability of Burkholderia gladioli strain NGJ1 in a type III secretion system-dependent manner. BMC Microbiol 2020; 20:216. [PMID: 32689944 PMCID: PMC7372643 DOI: 10.1186/s12866-020-01897-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/12/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND A rice associated bacterium Burkholderia gladioli strain NGJ1 demonstrates mycophagy, a phenomenon wherein bacteria feed on fungi. Previously, we have reported that NGJ1 utilizes type III secretion system (T3SS) to deliver a prophage tail-like protein (Bg_9562) into fungal cells to establish mycophagy. RESULTS In this study, we report that calcium ion concentration influences the mycophagous ability of NGJ1 on Rhizoctonia solani, an important fungal pathogen. The calcium limiting condition promotes mycophagy while high calcium environment prevents it. The expression of various T3SS apparatus encoding genes of NGJ1 was induced and secretion of several potential T3SS effector proteins (including Bg_9562) into extracellular milieu was triggered under calcium limiting condition. Using LC-MS/MS proteome analysis, we identified several calcium regulated T3SS effector proteins of NGJ1. The expression of genes encoding some of these effector proteins was upregulated during mycophagous interaction of NGJ1 with R. solani. Further, mutation of one of these genes (endo-β-1, 3- glucanase) rendered the mutant NGJ1 bacterium defective in mycophagy while complementation with full length copy of the gene restored its mycophagous activity. CONCLUSION Our study provides evidence that low calcium environment triggers secretion of various T3SS effectors proteins into the extracellular milieu and suggests the importance of cocktail of these proteins in promoting mycophagy.
Collapse
Affiliation(s)
- Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
8
|
The contest of microbial pigeon neighbors: Interspecies competition between Serratia marcescens and the human pathogen Cryptococcus neoformans. Fungal Biol 2020; 124:629-638. [PMID: 32540186 DOI: 10.1016/j.funbio.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022]
Abstract
In nature, microorganisms often exhibit competitive behavior for nutrients and limited space, allowing them to alter the virulence determinants of pathogens. The human pathogenic yeast Cryptococcus neoformans can be found organized in biofilms, a complex community composed of an extracellular matrix which confers protection against predation. The aim of this study was to evaluate and characterize antagonistic interactions between two cohabiting microorganisms: C. neoformans and the bacteria Serratia marcescens. The interaction of S. marcescens with C. neoformans expressed a negative effect on biofilm formation, polysaccharide capsule, production of urease, and melanization of the yeast. These findings evidence that competition in mixed communities can result in dominance by one species, with direct impact on the physiological modulation of virulence determinants. Such an approach is key for understating the response of communities to the presence of competitors and, ultimately, rationally designing communities to prevent and treat certain diseases.
Collapse
|
9
|
Kumari A, Singh R. Medically important interactions of staphylococci with pathogenic fungi. Future Microbiol 2020; 14:1159-1170. [PMID: 31512519 DOI: 10.2217/fmb-2019-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococci are common inhabitants at several human body sites and are also implicated in infections either as primary or opportunistic pathogens. These bacteria can thus both contribute to the host defense being a part of the commensalistic microbiota or synergize with the other microbes during the infection process. Among fungi, staphylococci interact synergistically with Candida spp. and Aspergillus fumigatus, and antagonistically with Cryptococcus neoformans and Trichosporon asahii. These interactions are highly dynamic and are orchestrated by a multitude of microbial and host factors. During such cross-talks, staphylococci can modulate the virulence, immune response or drug resistance of the coexisting microbe(s), thereby influencing the infection course, disease severity, treatment strategy and the clinical outcome.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
10
|
Azzam SZ, Cayme GJ, Martinez LR. Polymicrobial interactions involving fungi and their importance for the environment and in human disease. Microb Pathog 2019; 140:103942. [PMID: 31881258 DOI: 10.1016/j.micpath.2019.103942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Abstract
Understanding polymicrobial interactions involving fungi in the environment and the human mycobiome is necessary to address environmental and medically related problems such as drought or antimicrobial resistance. The diversity of these interactions highlights the complexity of fungi, considering how some interactions can be antagonistic, while others synergistic. Over the years, an increase in studies on the mycobiome have revealed similarities between the human and environmental hosts. More recently, studies have focused on microbial commensal relationships and identifying causative agents of human disease. The overlap of some of these interactions is impossible to ignore, indicating that there are areas for medical exploitation that need to be further investigated. This review provides the latest advances in polymicrobial interactions involving fungi and discusses the importance of the fungal lifestyle in the environment and in human disease.
Collapse
Affiliation(s)
- Seham Z Azzam
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Ginelle J Cayme
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Luis R Martinez
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, TX, USA; Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Kumari A, Tewari R, Singh R. Antagonistic Interaction of Staphylococcus aureus and Staphylococcus epidermidis with Rhizopus arrhizus Mediated by Phenol Soluble Modulins and Organic Acids. ACS Infect Dis 2019; 5:1887-1895. [PMID: 31535547 DOI: 10.1021/acsinfecdis.9b00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rhizopus arrhizus (R. arrhizus) is a common causative agent of mucormycosis that usually enters the human body through the respiratory tract and skin. Both these sites harbor staphylococci as a part of the normal microflora, indicating the possibility of interspecies interactions. We aimed to elucidate this interaction and identify the molecular mechanisms involved. Both Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) substantially hindered R. arrhizus radial growth, spore germination, and liquid culture biomass. Secreted components in the stationary-phase supernatant were responsible for this activity. The active components, based on molecular weight-based fractionation, mass spectrometry, and ion exclusion chromatography, were identified as a truncated version of phenol soluble modulin α2 (Δ1Δ2PSMα2) and PSMα3 in S. aureus, PSMδ in S. epidermidis, and organic acids in both the species. Exposure to the phenol soluble modulins (PSMs) extensively damaged the fungal spores and pre-existing hyphae, leading to bleb formation, shriveling, hyphal shrinkage, and cell distortion.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Rupinder Tewari
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
12
|
Negative interaction of Staphylococcus aureus on Fusarium falciforme growth ocular isolates in an in vitro mixed biofilm. Microb Pathog 2019; 135:103644. [DOI: 10.1016/j.micpath.2019.103644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/27/2023]
|
13
|
Almeida-Paes R, Brito-Santos F, Oliveira MME, Bailão AM, Borges CL, Araújo GRDS, Frases S, Soares CMDA, Zancopé-Oliveira RM. Interaction with Pantoea agglomerans Modulates Growth and Melanization of Sporothrix brasiliensis and Sporothrix schenckii. Mycopathologia 2019; 184:367-381. [PMID: 31214857 DOI: 10.1007/s11046-019-00350-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/06/2019] [Indexed: 01/22/2023]
Abstract
Sporothrix brasiliensis and Sporothrix schenckii stand as the most virulent agents of sporotrichosis, a worldwide-distributed subcutaneous mycosis. The origin of Sporothrix virulence seems to be associated with fungal interactions with organisms living in the same environment. To assess this hypothesis, the growth of these two species in association with Pantoea agglomerans, a bacterium with a habitat similar to Sporothrix spp., was evaluated. Growth, melanization, and gene expression of the fungus were compared in the presence or absence of the bacterium in the same culture medium. Both S. brasiliensis and S. schenckii grew in contact with P. agglomerans yielding heavily melanized conidia after 5 days of incubation at 30 °C in Sabouraud agar. This increased melanin production occurred around bacterial colonies, suggesting that fungal melanization is triggered by a diffusible bacterial product, which is also supported by a similar pattern of melanin production during Sporothrix spp. growth in contact with heat-killed P. agglomerans. Growth of P. agglomerans was similar in the presence or absence of the fungus. However, the growth of S. brasiliensis and S. schenckii was initially inhibited, but further enhanced when these species were co-cultured with P. agglomerans. Moreover, fungi were able to use killed bacteria as both carbon and nitrogen sources for growth. Representational difference analysis identified overexpressed genes related to membrane transport when S. brasiliensis was co-cultured with the bacteria. The down-regulation of metabolism-related genes appears to be related to nutrient availability during bacterial exploitation. These findings can lead to a better knowledge on Sporothrix ecology and virulence.
Collapse
Affiliation(s)
- Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Fábio Brito-Santos
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Manoel Marques Evangelista Oliveira
- Laboratório de Pesquisa Clínica em Dermatozoonoses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Glauber Ribeiro de Souza Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
The Spectrum of Interactions between Cryptococcus neoformans and Bacteria. J Fungi (Basel) 2019; 5:jof5020031. [PMID: 31013706 PMCID: PMC6617360 DOI: 10.3390/jof5020031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Cryptococcus neoformans is a major fungal pathogen that infects immunocompromised people and causes life-threatening meningoencephalitis. C. neoformans does not occur in isolation either in the environment or in the human host, but is surrounded by other microorganisms. Bacteria are ubiquitously distributed in nature, including soil, and make up the dominant part of the human microbiota. Pioneering studies in the 1950s demonstrated antifungal activity of environmental bacteria against C. neoformans. However, the mechanisms and implications of these interactions remain largely unknown. Recently, interest in polymicrobial interaction studies has been reignited by the development of improved sequencing methodologies, and by the realization that such interactions may have a huge impact on ecology and human health. In this review, we summarize our current understanding of the interaction of bacteria with C. neoformans.
Collapse
|
15
|
Probert M, Zhou X, Goodall M, Johnston SA, Bielska E, Ballou ER, May RC. A Glucuronoxylomannan Epitope Exhibits Serotype-Specific Accessibility and Redistributes towards the Capsule Surface during Titanization of the Fungal Pathogen Cryptococcus neoformans. Infect Immun 2019; 87:IAI.00731-18. [PMID: 30670549 PMCID: PMC6434129 DOI: 10.1128/iai.00731-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/23/2018] [Indexed: 11/20/2022] Open
Abstract
Disseminated infections with the fungal species Cryptococcus neoformans or, less frequently, Cryptococcus gattii are an important cause of mortality in immunocompromised individuals. Central to the virulence of both species is an elaborate polysaccharide capsule that consists predominantly of glucuronoxylomannan (GXM). Due to its abundance, GXM is an ideal target for host antibodies, and several monoclonal antibodies (mAbs) have previously been derived using purified GXM or whole capsular preparations as antigens. In addition to their application in the diagnosis of cryptococcosis, anti-GXM mAbs are invaluable tools for studying capsule structure. In this study, we report the production and characterization of a novel anti-GXM mAb, Crp127, that unexpectedly reveals a role for GXM remodeling during the process of fungal titanization. We show that Crp127 recognizes a GXM epitope in an O-acetylation-dependent, but xylosylation-independent, manner. The epitope is differentially expressed by the four main serotypes of Cryptococcus neoformans and C. gattii, is heterogeneously expressed within clonal populations of C. gattii serotype B strains, and is typically confined to the central region of the enlarged capsule. Uniquely, however, this epitope redistributes to the capsular surface in titan cells, a recently characterized morphotype where haploid 5-μm cells convert to highly polyploid cells of >10 μm with distinct but poorly understood capsular characteristics. Titan cells are produced in the host lung and critical for successful infection. Crp127 therefore advances our understanding of cryptococcal morphological change and may hold significant potential as a tool to differentially identify cryptococcal strains and subtypes.
Collapse
Affiliation(s)
- Mark Probert
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xin Zhou
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon A Johnston
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ewa Bielska
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robin C May
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
16
|
Camarillo-Márquez O, Córdova-Alcántara IM, Hernández-Rodríguez CH, García-Pérez BE, Martínez-Rivera MA, Rodríguez-Tovar AV. Antagonistic Interaction of Staphylococcus aureus Toward Candida glabrata During in vitro Biofilm Formation Is Caused by an Apoptotic Mechanism. Front Microbiol 2018; 9:2031. [PMID: 30214437 PMCID: PMC6125415 DOI: 10.3389/fmicb.2018.02031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Background: Infections caused by Candida species and Staphylococcus aureus are associated with biofilm formation. C. albicans–S. aureus interactions are synergistic due to the significant increase in mixed biofilms and improved resistance to vancomycin of S. aureus. C. glabrata and S. aureus both are nosocomial pathogens that cause opportunistic infections in similar host niches. However, there is scarce information concerning the interaction between these last microorganisms. Results: The relationship between C. glabrata and S. aureus was evaluated by estimating the viability of both microorganisms in co-culture of planktonic cells and in single and mixed biofilms. An antagonistic behavior of S. aureus and their cell-free bacterial supernatant (CFBS) toward C. glabrata, both in planktonic form and in biofilms, was demonstrated. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM) images showed yeast cells surrounded by bacteria, alterations in intracytoplasmic membranes, and non-viable blastoconidia with intact cell walls. Concomitantly, S. aureus cells remained viable and unaltered. The antagonistic activity of S. aureus toward C. glabrata was not due to cell-to-cell contact but the presence of CFBS, which causes a significant decrement in yeast viability and the formation of numerous lipid droplets (LDs), reactive oxygen species (ROS) accumulation, as well as nuclear alterations, and DNA fragmentation indicating the induction of an apoptotic mechanism. Conclusion: Our results demonstrate that the S. aureus CFBS causes cell death in C. glabrata by an apoptotic mechanism.
Collapse
Affiliation(s)
- Omar Camarillo-Márquez
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itzel M Córdova-Alcántara
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cesar H Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Blanca E García-Pérez
- Laboratorio de Microbiología General, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María A Martínez-Rivera
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Aida V Rodríguez-Tovar
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
17
|
Camacho E, Casadevall A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J Fungi (Basel) 2018; 4:jof4030088. [PMID: 30060601 PMCID: PMC6162697 DOI: 10.3390/jof4030088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023] Open
Abstract
Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Disarming Fungal Pathogens: Bacillus safensis Inhibits Virulence Factor Production and Biofilm Formation by Cryptococcus neoformans and Candida albicans. mBio 2017; 8:mBio.01537-17. [PMID: 28974618 PMCID: PMC5626971 DOI: 10.1128/mbio.01537-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. Pathogenic fungi are estimated to contribute to as many human deaths as tuberculosis or malaria. Two of the most common fungal pathogens, Cryptococcus neoformans and Candida albicans, account for up to 1.4 million infections per year with very high mortality rates. Few antifungal drugs are available for treatment, and development of novel therapies is complicated by the need for pathogen-specific targets. Therefore, there is an urgent need to identify novel drug targets and new drugs. Pathogens use virulence factors during infection, and it has recently been proposed that targeting these factors instead of the pathogen itself may represent a new approach to develop antimicrobials. Here, we identified a soil bacterium that specifically blocked virulence factor production and biofilm formation by C. neoformans and C. albicans. We demonstrate that the bacterial antipathogen mechanism is based in part on targeting the fungal cell wall, a structure not found in human cells.
Collapse
|
19
|
Ikeda R, Ogasawara Y, Takatori K, Ichikawa T, Nakajima M, Harigaya K, Watanabe M, Okudaira E, Yoshikawa H, Yanagisawa K. Growth Inhibition of an Opportunistic Yeast Pathogen Trichosporon asahii by Staphylococcus epidermidis. Biol Pharm Bull 2017; 40:693-697. [DOI: 10.1248/bpb.b16-01000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Reiko Ikeda
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University
| | - Kazuhiko Takatori
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University
| | - Tomoe Ichikawa
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Miki Nakajima
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Kazuko Harigaya
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Miho Watanabe
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Erika Okudaira
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Hanari Yoshikawa
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Kazuki Yanagisawa
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| |
Collapse
|
20
|
Dhamgaye S, Murray GL, Peleg AY. The influence of bacterial interaction on the virulence of Cryptococcus neoformans. Virulence 2016; 6:677-8. [PMID: 26364987 DOI: 10.1080/21505594.2015.1088632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Microbes exist in complex communities in the environment. The interaction between fungi, such as the opportunistic pathogen Cryptococcus neoformans, and antagonistic environmental bacteria, such as Acinetobacter spp., may influence fungal evolution through the production of fungal defence mechanisms that inadvertently enhance fungal pathogenicity. Such changes include alteration of biofilm formation and increased capsule production. The molecular mechanisms responsible for such changes, both from a bacterial and fungal point of view, are of great interest to understanding the evolution of pathogenicity. Additionally, further elucidation of the stability of the induced changes in C. neoformans, and the impacts of these change on the disease-causing potential of this fungus, is of great interest.
Collapse
Affiliation(s)
| | - Gerald L Murray
- a Department of Microbiology ; Monash University ; Melbourne , Australia
| | - Anton Y Peleg
- a Department of Microbiology ; Monash University ; Melbourne , Australia.,b Department of Infectious Diseases ; Central Clinical School; Alfred Hospital and Monash University ; Melbourne , Australia
| |
Collapse
|
21
|
Scorzoni L, de Paula e Silva ACA, Singulani JDL, Leite FS, de Oliveira HC, Moraes da Silva RA, Fusco-Almeida AM, Mendes-Giannini MJS. Comparison of virulence between Paracoccidioides brasiliensis and Paracoccidioides lutzii using Galleria mellonella as a host model. Virulence 2015; 6:766-76. [PMID: 26552324 PMCID: PMC4826127 DOI: 10.1080/21505594.2015.1085277] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 10/22/2022] Open
Abstract
Paracoccidioidomycosis is a systemic mycosis, endemic in Latin America. The etiologic agents of this mycosis are composed of 2 species: Paracoccidioides brasiliensis and P. lutzii. Murine animal models are the gold standard for in vivo studies; however, ethical, economical and logistical considerations limit their use. Galleria mellonella is a suitable model for in vivo studies of fungal infections. In this study, we compared the virulence of P. brasiliensis and P. lutzii in G. mellonella model. The deaths of larvae infected with P. brasiliensis or P. lutzii were similar, and both species were able to reduce the number of hemocytes, which were estimated by microscopy and flow cytometer. Additionally, the phagocytosis percentage was similar for both species, but when we analyze hemocyte-Paracoccidioides spp. interaction using flow cytometer, P. lutzii showed higher interactions with hemocytes. The gene expression of gp43 as well as this protein was higher for P. lutzii, and this expression may contribute to a greater adherence to hemocytes. These results helped us evaluate the behavior of Paracoccidioides spp in G. mellonella, which is a convenient model for investigating the host-Paracoccidioides spp. interaction.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Carolina Alves de Paula e Silva
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Fernanda Sangalli Leite
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Rosangela Aparecida Moraes da Silva
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| |
Collapse
|
22
|
Exploiting Unique Structural and Functional Properties of Malarial Glycolytic Enzymes for Antimalarial Drug Development. Malar Res Treat 2014; 2014:451065. [PMID: 25580350 PMCID: PMC4280493 DOI: 10.1155/2014/451065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/30/2014] [Indexed: 01/10/2023] Open
Abstract
Metabolic enzymes have been known to carry out a variety of functions besides their normal housekeeping roles known as “moonlighting functions.” These functionalities arise from structural changes induced by posttranslational modifications and/or binding of interacting proteins. Glycolysis is the sole source of energy generation for malaria parasite Plasmodium falciparum, hence a potential pathway for therapeutic intervention. Crystal structures of several P. falciparum glycolytic enzymes have been solved, revealing that they exhibit unique structural differences from the respective host enzymes, which could be exploited for their selective targeting. In addition, these enzymes carry out many parasite-specific functions, which could be of potential interest to control parasite development and transmission. This review focuses on the moonlighting functions of P. falciparum glycolytic enzymes and unique structural differences and functional features of the parasite enzymes, which could be exploited for therapeutic and transmission blocking interventions against malaria.
Collapse
|
23
|
Ikeda R. [Apoptosis-like cell death of Cryptococcus neoformans mediated by Staphylococcus aureus contact]. Med Mycol J 2013; 54:49-52. [PMID: 23470955 DOI: 10.3314/mmj.54.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Co-culture of the fungal pathogen Cryptococcus neoformans with Staphylococcus aureus results in the death of the fungus, caused by the adherence to the latter. The present study found that the molecules responsible for this adherence were capsular glucuronoxylomannan (GXM) (present on C. neoformans) and a glycolytic enzyme triosephosphate isomerase (TPI) (present on S. aureus). The mannan backbone of GXM and purified TPI interacted in vitro. GXM-bound TPI molecules were identified by immunoelectron microscopy. The death of C. neoformans was accompanied by decreased actin turnover, increased accumulation of reactive oxygen species, and DNA fragmentation. This process may also be influenced by the Rho/Rho-associated coiled-coil-forming kinase (ROCK) pathway and enhanced expression of voltage-dependent ion-selective channels. Taken together, these results suggest that Rho-ROCK signaling may play a role via the mitochondrial pathway in the induction of C. neoformans apoptosis-like cell death after its adherence to S. aureus adherence.
Collapse
Affiliation(s)
- Reiko Ikeda
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
24
|
Furuya H, Ikeda R. Interaction of triosephosphate isomerase from Staphylococcus aureus with plasminogen. Microbiol Immunol 2012; 55:855-62. [PMID: 22003920 DOI: 10.1111/j.1348-0421.2011.00392.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triosephosphate isomerase (TPI; EC 5. 3. 1. 1) displayed on the cell surface of Staphylococcus aureus acts as an adhesion molecule that binds to the capsule of Cryptococcus neoformans, a fungal pathogen. This study investigated the function of TPI on the cell surface of S. aureus and its interactions with biological substances such as fibronectin, fibrinogen, plasminogen, and thrombin were investigated. Binding of TPI to plasminogen was demonstrated by both surface plasmon resonance analysis and Far-Western blotting. It is suggested that lysine residues contribute to this binding because the interaction was inhibited by ɛ-aminocaproic acid. Activation of plasminogen to plasmin by staphylokinase or tissue plasminogen activator decreased in the presence of TPI, whereas TPI was degraded by plasmin. In other experiments, intact S. aureus cells had the ability to both increase and decrease plasminogen activation depending on the number of cells. Several molecules expressed on the surface of S. aureus were predicted to interact with plasminogen, resulting in its increased or decreased activation. These findings indicate that S. aureus sometimes localizes and sometimes disseminates in the host, depending on the molecules expressed under various conditions.
Collapse
Affiliation(s)
- Hiromi Furuya
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | | |
Collapse
|
25
|
Ikeda R. Possible participation of the Rho/Rho-associated coiled-coil-forming kinase pathway in the cell death of Cryptococcus neoformans caused by Staphylococcus aureus adherence. Microbiol Immunol 2011; 55:552-7. [DOI: 10.1111/j.1348-0421.2011.00356.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Henderson B, Martin A. Bacterial Moonlighting Proteins and Bacterial Virulence. Curr Top Microbiol Immunol 2011; 358:155-213. [DOI: 10.1007/82_2011_188] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Yamaguchi M, Ikeda R, Nishimura M, Kawamoto S. Localization by scanning immunoelectron microscopy of triosephosphate isomerase, the molecules responsible for contact-mediated killing of Cryptococcus, on the surface of Staphylococcus. Microbiol Immunol 2010; 54:368-70. [PMID: 20536736 DOI: 10.1111/j.1348-0421.2010.00225.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
T In our previous studies, TPI were found to be the molecules responsible for contact-killing of C. neoformans by S. aureus cells. Since TPI is a glycolytic protein that functions in the cytoplasm, evidence that TPI is present on the surface of S. aureus was required. In the present study, the presence of TPI on the cell surface of S. aureus was demonstrated by agglutination test and scanning immunoelectron microscopy. Furthermore, TPI was found to be present at a lower density than protein A/G molecules on the surface of S. aureus.
Collapse
Affiliation(s)
- Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan.
| | | | | | | |
Collapse
|
28
|
Furuya H, Ikeda R. Interaction of triosephosphate isomerase from the cell surface of Staphylococcus aureus and alpha-(1->3)-mannooligosaccharides derived from glucuronoxylomannan of Cryptococcus neoformans. MICROBIOLOGY-SGM 2009; 155:2707-2713. [PMID: 19423633 PMCID: PMC2885673 DOI: 10.1099/mic.0.028068-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The glycolytic enzyme triosephosphate isomerase (TPI; EC 5.3.1.1) of Staphylococcus aureus is a candidate adhesion molecule for the interaction between the bacterium and the fungal pathogen Cryptococcus neoformans. TPI may recognize the mannan backbone of glucuronoxylomannan (GXM) of C. neoformans. We purified TPI from extracts of S. aureus surface proteins to investigate its binding by surface plasmon resonance analysis. The immobilized TPI reacted with GXM in a dose-dependent manner. Furthermore, the interactions between staphylococcal TPI and α-(1→3)-mannooligosaccharides derived from GXM were examined. The oligosaccharides exhibited binding with TPI; however, monomeric mannose did not. Differences in the slopes of the sensorgrams were observed between oligosaccharides with an even number of residues versus those with an odd number. A heterogeneous ligand-parallel reaction model revealed the existence of at least two binding sites on TPI. The enzymic activities of TPI were inhibited in a dose-dependent manner by α-(1→3)-mannooligosaccharides larger than triose. The binding of TPI and α-(1→3)-mannotriose near the substrate-binding site was predicted in silico (AutoDock 3.05). An oligosaccharide of size equal to or greater than triose could bind to the site, affecting enzymic activities. Moreover, affinities were indicated, especially for biose and tetraose, to another binding pocket, which would not affect enzymic activity. These data suggest a novel role for TPI, in addition to glycolysis, on the surface of S. aureus.
Collapse
Affiliation(s)
- Hiromi Furuya
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Reiko Ikeda
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
29
|
Tarkka MT, Sarniguet A, Frey-Klett P. Inter-kingdom encounters: recent advances in molecular bacterium-fungus interactions. Curr Genet 2009; 55:233-43. [PMID: 19337734 DOI: 10.1007/s00294-009-0241-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/04/2009] [Accepted: 03/16/2009] [Indexed: 01/20/2023]
Abstract
Interactions between bacteria and fungi are well known, but it is often underestimated how intimate and decisive such associations can be with respect to behaviour and survival of each participating organism. In this article we review recent advances in molecular bacterium-fungus interactions, combining the data of different model systems. Emphasis is given to the positive or negative consequences these interactions have on the microbe accommodating plants and animals. Intricate mechanisms of antagonism and tolerance have emerged, being as important for the biological control of plants against fungal diseases as for the human body against fungal infections. Bacterial growth promoters of fungal mycelium have been characterized, and these may as well assist plant-fungus mutualism as disease development in animals. Some of the toxins that have been previously associated with fungi are actually produced by endobacteria, and the mechanisms that lie behind the maintenance of such exquisite endosymbioses are fascinating. Bacteria do cause diseases in fungi, and a synergistic action between bacterial toxins and extracellular enzymes is the hallmark of such diseases. The molecular study of bacterium-fungus associations has expanded our view on microbial communication, and this promising field shows now great potentials in medicinal, agricultural and biotechnological applications.
Collapse
Affiliation(s)
- Mika T Tarkka
- UFZ, Department of Soil Ecology, Helmholtz Centre for Environmental Research, Halle, Germany.
| | | | | |
Collapse
|
30
|
Ikeda R, Sawamura K. Bacterial and H2O2 stress-induced apoptosis-like events in Cryptococcus neoformans. Res Microbiol 2008; 159:628-34. [DOI: 10.1016/j.resmic.2008.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/22/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022]
|
31
|
Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. THE NEW PHYTOLOGIST 2008; 177:859-876. [PMID: 18086226 DOI: 10.1111/j.1469-8137.2007.02325.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive nutrition from fungi: necrotrophy, extracellular biotrophy and endocellular biotrophy. Each is characterized by a set of uniquely sequential and differently overlapping interactions with the fungal target. We offer a detailed analysis of the nature of these interactions, as well as a comprehensive overview of methodologies for assessing and quantifying their individual contributions to the mycophagy phenotype. Furthermore, we discuss future prospects for the study and exploitation of bacterial mycophagy, including the need for appropriate tools to detect bacterial mycophagy in situ in order to be able to understand, predict and possibly manipulate the way in which mycophagous bacteria affect fungal activity, turnover, and community structure in soils and other ecosystems.
Collapse
Affiliation(s)
- Johan H J Leveau
- Netherlands Institute of Ecology (NIOO-KNAW), Heteren, the Netherlands
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Ikeda R, Saito F, Matsuo M, Kurokawa K, Sekimizu K, Yamaguchi M, Kawamoto S. Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a glycolytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans. J Bacteriol 2007; 189:4815-26. [PMID: 17483230 PMCID: PMC1913461 DOI: 10.1128/jb.00412-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal pathogen Cryptococcus neoformans is killed by the bacterium Staphylococcus aureus, and the killing is inhibited by soluble capsular polysaccharides. To investigate the mechanism of killing, cells in coculture were examined by scanning and transmission electron microscopy. S. aureus attached to the capsule of C. neoformans, and the ultrastructure of the attached C. neoformans cells was characteristic of dead cells. To identify the molecules that contributed to the fungal-bacterial interaction, we treated each with NaIO(4) or protease. Treatment of C. neoformans with NaIO(4) promoted adherence. It was inferred that cleavage of xylose and glucuronic acid side chains of glucuronoxylomannan (GXM) allowed S. aureus to recognize mannose residues in the backbone, which resisted periodate oxidation. On the other hand, treatment of S. aureus with protease decreased adherence, suggesting that protein contributed to attachment in S. aureus. In confirmation, side chain-cleaved polysaccharide or defined alpha-(1-->3)-mannan inhibited the killing at lower concentrations than native GXM did. Also, these polysaccharides reduced the adherence of the two species and induced clumping of pure S. aureus cells. alpha-(1-->3)-Mannooligosaccharides with a degree of polymerization (DP) of >/=3 induced cluster formation of S. aureus in a dose-dependent manner. Surface plasmon resonance analyses showed interaction of GXM and surface protein from S. aureus; the interaction was inhibited by oligosaccharides with a DP of > or =3. Conformations of alpha-(1-->3) oligosaccharides were predicted. The three-dimensional structures of mannooligosaccharides larger than triose appeared curved and could be imagined to be recognized by a hypothetical staphylococcal lectin. Native polyacrylamide gel electrophoresis of staphylococcal protein followed by electroblotting, enzyme-linked immunolectin assay, protein staining, and N-terminal amino acid sequencing suggested that the candidate protein was triosephosphate isomerase (TPI). The enzymatic activities were confirmed by using whole cells of S. aureus. TPI point mutants of S. aureus decreased the ability to interact with C. neoformans. Thus, TPI on S. aureus adheres to the capsule of C. neoformans by recognizing the structure of mannotriose units in the backbone of GXM; we suggest that this contact is required for killing of C. neoformans.
Collapse
Affiliation(s)
- Reiko Ikeda
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Cryptococcus neoformans is a major cause of fungal meningoencephalitis in immunocompromised patients. Despite recent advances in the genetics and molecular biology of C. neoformans, and improved techniques for molecular epidemiology, aspects of the ecology, population structure, and mode of reproduction of this environmental pathogen remain to be established. Application of recent insights into the life cycle of C. neoformans and its different ways of engaging in sexual reproduction under laboratory conditions has just begun to affect research on the ecology and epidemiology of this human pathogenic fungus. The melding of these disparate disciplines should yield rich dividends in our understanding of the evolution of microbial pathogens, providing insights relevant to diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
34
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|