1
|
Sun T, Guo Y, Su Y, Shan S, Qian W, Zhang F, Li M, Zhang Z. Molecular mechanisms of diabetic nephropathy: A narrative review. Cell Biol Int 2024; 48:1240-1253. [PMID: 38946126 DOI: 10.1002/cbin.12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Diabetic nephropathy (DN) is the predominant secondary nephropathy resulting in global end-stage renal disease. It is attracting significant attention in both domestic and international research due to its widespread occurrence, fast advancement, and limited choices for prevention and treatment. The pathophysiology of this condition is intricate and involves multiple molecular and cellular pathways at various levels. This article provides a concise overview of the molecular processes involved in the development of DN. It discusses various factors, such as signaling pathways, cytokines, inflammatory responses, oxidative stress, cellular damage, autophagy, and epigenetics. The aim is to offer clinicians a valuable reference for DN's diagnosis, treatment, and intervention.
Collapse
Affiliation(s)
- Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yina Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Shigang Shan
- School of Public Health and Nursing, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feixue Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
2
|
Ebrahimzadeh A, Mohseni S, Safargar M, Mohtashamian A, Niknam S, Bakhoda M, Afshari S, Jafari A, Ebrahimzadeh A, Fooladshekan S, Mohtashami A, Ferns GA, Babajafari S, Sohrabi Z. Curcumin effects on glycaemic indices, lipid profile, blood pressure, inflammatory markers and anthropometric measurements of non-alcoholic fatty liver disease patients: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 2024; 80:103025. [PMID: 38232906 DOI: 10.1016/j.ctim.2024.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Curcumin has antioxidant properties and has been proposed as a potential treatment for NAFLD. The aim of current systematic review and meta-analysis was to evaluate previous findings for the effect of curcumin supplementation on glycaemic indices, lipid profile, blood pressure, inflammatory markers, and anthropometric measurements of NAFLD patients. METHODS Relevant studies published up to January 2024 were searched systematically using the following databases: PubMed, SCOPUS, WOS, Science Direct, Ovid and Cochrane. The systematic review and meta-analysis were conducted according to the 2020 PRISMA guidelines. The quality of the papers was assessed the using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist. Pooled effect sizes were calculated using a random-effects model and reported as the WMD and 95% CI. Also, subgroup analyses were done to find probable sources of heterogeneity among studies. RESULTS Out of 21010 records initially identified, 21 eligible RCTs were selected for inclusion in a meta-analysis. Overall, 1191 participants of both genders, 600 in the intervention and 591 in the control group with NAFLD were included. There are several limitations in the studies that were included, for instance, the results are weakened substantially by potential bias or failure to account for potential adulteration (with pharmaceuticals) or contamination (with other herbs) of the curcumin supplements that were tested. However, previous studies have reported curcumin to be a safe complementary therapy for several conditions. Our study indicated that curcumin supplementation in doses of 50-3000 mg/day was associated with significant change in FBG [WMD: -2.83; 95% CI: -4.61, -1.06), I2 = 51.3%], HOMA-IR [WMD: -0.52; 95% CI: -0.84, -0.20), I2= 82.8%], TG [WMD: -10.31; 95% CI: -20.00, -0.61), I2 = 84.5%], TC [WMD: -11.81; 95% CI: -19.65, -3.96), I2 = 94.6%], LDL [WMD: -8.01; 95% CI: -15.79, -0.24), I2 = 96.1%], weight [WMD: -0.81; 95% CI: -1.28, -0.35), I2= 0.0%] and BMI [WMD: -0.35; 95% CI: -0.57, -0.13), I2= 0.0%] in adults with NAFLD. There was no significant change in HbA1C, plasma insulin, QUICKI, HDL, SBP, DBP, CRP, TNF-α and WC after curcumin therapy. Subgroup analysis suggested a significant changes in serum FBG, TG, SBP, WC in RCTs for intervention durations of ≥ 8 weeks, and SBP, TG, LDL, HDL, BMI, WC in RCTs with sample size > 55 participants. CONCLUSION Curcumin supplementation in doses of 50-3000 mg/day over 8-12 weeks was associated with significant reductions in levels of FBG, HOMA-IR, TG, TC, LDL, weight and BMI in patients with NAFLD. Previous studies have reported curcumin as a safe complementary therapy for several diseases. We would suggest that should curcumin supplements be used clinically in specific conditions, it should be used with caution. Also, difference in grades of NAFLD may effect the evaluated outcomes, so it is suggested that future studies be conducted with an analyses on subgroups according to their NAFLD grade. Furthermore, because of the failure to conduct independent biochemical assessment of the turmeric/curcumin product used in most studies as well as potential sources of bias, results should be interpreted with caution.
Collapse
Affiliation(s)
- Armin Ebrahimzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shokouh Mohseni
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Safargar
- Department of Nutrition, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Mohtashamian
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Niknam
- Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Bakhoda
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Afshari
- Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | - Amirhossein Jafari
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kashan University of Medical Sciences, Kashan, Iran
| | - Anahita Ebrahimzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Fooladshekan
- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Mohtashami
- Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Park Square, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, United Kingdom
| | - Siavash Babajafari
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Sohrabi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Alsulaim AK, Almutaz TH, Albati AA, Rahmani AH. Therapeutic Potential of Curcumin, a Bioactive Compound of Turmeric, in Prevention of Streptozotocin-Induced Diabetes through the Modulation of Oxidative Stress and Inflammation. Molecules 2023; 29:128. [PMID: 38202711 PMCID: PMC10779985 DOI: 10.3390/molecules29010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
This study evaluates the anti-diabetic potential and underlying mechanisms of curcumin in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats. The rats were randomly divided into four groups: normal control, negative control (diabetic group), diabetic group receiving glibenclamide (positive control group), and curcumin plus STZ (treatment group). The anti-diabetic activities of curcumin were examined at a dose of 50 mg/kg body weight through physiological, biochemical, and histopathological analysis. Compared to the normal control group rats, elevated levels of glucose, creatinine, urea, triglycerides (TG), and total cholesterol (TC) and low levels of insulin were found in the negative control rats. Curcumin treatment showed a significant decrease in these parameters and an increase in insulin level as compared to negative control rats. In negative control rats, a reduced level of antioxidant enzymes and an increased level of lipid peroxidation and inflammatory marker levels were noticed. Oral administration of curcumin significantly ameliorated such changes. From histopathological findings, it was noted that diabetic rats showed changes in the kidney tissue architecture, including the infiltration of inflammatory cells, congestion, and fibrosis, while oral administration of curcumin significantly reduced these changes. Expression of IL-6 and TNF-α protein was high in diabetic rats as compared to the curcumin treatment groups. Hence, based on biochemical and histopathological findings, this study delivers a scientific suggestion that curcumin could be a suitable remedy in the management of diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.K.A.); (T.H.A.); (A.A.A.)
| |
Collapse
|
4
|
Wang S, Ma L, Ji J, Huo R, Dong S, Bai Y, Hua L, Lei J, Tian S, Wang M, Yu Y. Protective effect of soy isolate protein against streptozotocin induced gestational diabetes mellitus via TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother 2023; 168:115688. [PMID: 37890205 DOI: 10.1016/j.biopha.2023.115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a serious complication of pregnancy that is characterized by high blood sugar levels that occur due to insulin resistance and dysfunction in glucose metabolism during pregnancy. It usually develops in the second or third trimester of pregnancy and affects about 7 % of all pregnancies worldwide. In this experimental study, we scrutinized the GDM protective effect of soy isolate protein against streptozotocin (STZ) induced GDM in rats and explore the underlying mechanism. MATERIAL AND METHODS Sprague-Dawley (SD) rats were used in this experimental study. A 55 mg/kg intraperitoneal injection of streptozotocin (STZ) was administered to induce diabetes in female rats, followed by oral administration of soy isolate protein for 18 days. Body weight, glucose levels, and insulin were measured at different time intervals (0, 9, and 18 days). Lipid profiles, antioxidant levels, inflammatory cytokines, apoptosis parameters, and mRNA expression were also assessed. Pancreatic and liver tissues were collected for histopathological examination during the experimental study. RESULTS Soy isolate protein significantly (P < 0.001) reduced the glucose level and enhanced the insulin level and body weight. Soy isolate protein remarkably decreased the placental weight and increased the fetal weight. Soy isolate protein significantly (P < 0.001) decreased the HbA1c, hepatic glycogen, serum C-peptide and increased the level of free fatty acid. Soy isolate protein significantly (P < 0.001) altered the level of lipid, antioxidant and inflammatory cytokines. Soy isolate protein significantly (P < 0.001) improved the level of adiponectin, visfatin and suppressed the level of leptin and ICAM-1. Soy isolate protein significantly (P < 0.001) altered the mRNA expression and also restored the alteration of histopathology. CONCLUSION Based on the result, soy isolate protein exhibited the GDM protective effect against the STZ induced GDM in rats via alteration of TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shuijing Wang
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, PUMC Hospital, CAMS and PUMC, Beijing100730, China
| | - Jing Ji
- Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710061, China
| | - Ruichao Huo
- Pingyao Agriculture and Rural Bureau, Pingyao, Shanxi 031100, China
| | - Shan Dong
- Nutritional Department, Maternal and Child Health Care Hospital of HaiDian District, Beijing 100000, China
| | - Yunfeng Bai
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Linlin Hua
- Department of Advanced Medical Research, The Second Affiliated Hospital of Zhengzhou University, Jingba road, Jinshui district, Zhengzhou 450014, China
| | - Jiao Lei
- Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Sasa Tian
- Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Manning Wang
- Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
5
|
Busso D, González A, Santander N, Saavedra F, Quiroz A, Rivera K, González J, Olmos P, Marette A, Bazinet L, Illanes S, Enrione J. A Quinoa Protein Hydrolysate Fractionated by Electrodialysis with Ultrafiltration Membranes Improves Maternal and Fetal Outcomes in a Mouse Model of Gestational Diabetes Mellitus. Mol Nutr Food Res 2023; 67:e2300047. [PMID: 37667444 DOI: 10.1002/mnfr.202300047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/08/2023] [Indexed: 09/06/2023]
Abstract
SCOPE Quinoa intake exerts hypoglycemic and hypolipidemic effects in animals and humans. Although peptides from quinoa inhibit key enzymes involved in glucose homeostasis in vitro, their in vivo antidiabetic properties have not been investigated. METHODS AND RESULTS This study evaluated the effect of oral administration of a quinoa protein hydrolysate (QH) produced through enzymatic hydrolysis and fractionation by electrodialysis with ultrafiltration membrane (EDUF) (FQH) on the metabolic and pregnancy outcomes of Lepdb/+ pregnant mice, a preclinical model of gestational diabetes mellitus. The 4-week pregestational consumption of 2.5 mg mL-1 of QH in water prevented glucose intolerance and improves hepatic insulin signaling in dams, also reducing fetal weights. Sequencing and bioinformatic analyses of the defatted FQH (FQHD) identified 11 peptides 6-10 amino acids long that aligned with the quinoa proteome and exhibited putative anti-dipeptidyl peptidase-4 (DPP-IV) activity, confirmed in vitro in QH, FQH, and FDQH fractions. Peptides homologous to mouse and human proteins enriched for biological processes related to glucose metabolism are also identified. CONCLUSION Processing of quinoa protein may be used to develop a safe and effective nutritional intervention to control glucose intolerance during pregnancy. Further studies are required to confirm if this nutritional intervention is applicable to pregnant women.
Collapse
Affiliation(s)
- Dolores Busso
- Program of Reproductive Biology, Research and Innovation Center, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Santiago, 7550000, Chile
| | - Adrián González
- Biopolymer Research and Engineering Lab (BiopREL), Research and Innovation Center, School of Nutrition and Dietetics, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| | - Nicolás Santander
- Health Science Institute, Universidad de O´Higgins, Rancagua, 2841959, Chile
| | - Fujiko Saavedra
- Program of Reproductive Biology, Research and Innovation Center, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| | - Alonso Quiroz
- PhD Program in Medical Sciences, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - Katherine Rivera
- PhD Program in Medical Sciences, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - Javier González
- Immersion in Science Program, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| | - Pablo Olmos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department of Anatomy and Physiology, Faculty of Medicine, Laval Hospital Research Center, Université Laval, Québec, Québec G1V 4G5, Canada
| | - Laurent Bazinet
- Department of Anatomy and Physiology, Faculty of Medicine, Laval Hospital Research Center, Université Laval, Québec, Québec G1V 4G5, Canada
- Department of Food Science and Nutrition, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaire (LTAPEM, Laboratory of Food Processing and Electro-Membrane Processes) Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sebastián Illanes
- Program of Reproductive Biology, Research and Innovation Center, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Santiago, 7550000, Chile
| | - Javier Enrione
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Santiago, 7550000, Chile
- Biopolymer Research and Engineering Lab (BiopREL), Research and Innovation Center, School of Nutrition and Dietetics, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| |
Collapse
|
6
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Diniz MS, Magalhães CC, Tocantins C, Grilo LF, Teixeira J, Pereira SP. Nurturing through Nutrition: Exploring the Role of Antioxidants in Maternal Diet during Pregnancy to Mitigate Developmental Programming of Chronic Diseases. Nutrients 2023; 15:4623. [PMID: 37960276 PMCID: PMC10649237 DOI: 10.3390/nu15214623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic diseases represent one of the major causes of death worldwide. It has been suggested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environment, increasing the offspring's predisposition to chronic diseases later in life. Research has suggested that mitochondrial function and oxidative stress may play a role in the developmental programming of chronic diseases. Having this in mind, in this review, we include evidence that mitochondrial dysfunction and oxidative stress are mechanisms by which GDM, MO, and IUGR program the offspring to chronic diseases. In this specific context, we explore the promising advantages of maternal antioxidant supplementation using compounds such as resveratrol, curcumin, N-acetylcysteine (NAC), and Mitoquinone (MitoQ) in addressing the metabolic dysfunction and oxidative stress associated with GDM, MO, and IUGR in fetoplacental and offspring metabolic health. This approach holds potential to mitigate developmental programming-related risk of chronic diseases, serving as a probable intervention for disease prevention.
Collapse
Affiliation(s)
- Mariana S. Diniz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carina C. Magalhães
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís F. Grilo
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Susana P. Pereira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
8
|
Cheng J, Zhou Y, Qiao H, Jiang H, Fan Y. Curcumin protects from LPS-induced activation of astrocytes via AMPK pathway. Neuroreport 2023; 34:748-758. [PMID: 37642673 PMCID: PMC10501352 DOI: 10.1097/wnr.0000000000001950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Curcumin, a phenolic pigment, plays an inhibitory role in astrocytes activation which are involved in the pathogenesis of neurological diseases and inflammatory responses. The present study aimed to investigate the underlying regulatory mechanism behind the therapeutic effect of curcumin on the lipopolysaccharide (LPS)-activated astrocytes in vitro. Specifically, we investigated the inhibitory effect of curcumin on LPS-induced astrocyte's proliferation. Additionally, we investigated whether the adenosine-monophosphate-activated protein kinase signaling (AMPK) pathway was involved in this process. Our data demonstrated that curcumin significantly increased the level of phosphorylated AMPK protein in LPS-activated astrocytes. In addition, our data demonstrated that curcumin play an inhibitory role on the migration, autophagy, the pro-inflammatory mediators by the AMPK signaling pathway in LPS-activated astrocytes. These results could shed light on understanding of molecular mechanism for the inhibition of curcumin on migration, autophagy, and the pro-inflammatory mediators during the process of astrocyte activation, and might contribute to a promising therapeutic intervention in the neurological diseases-related astrocytes activation.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| | - Yu Zhou
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan
| | - Haowen Qiao
- Department of Physiology, School of Medicine, Wuhan University
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Zhao L, Chang Q, Cong Z, Zhang Y, Liu Z, Zhao Y. Effects of dietary polyphenols on maternal and fetal outcomes in maternal diabetes. Food Funct 2023; 14:8692-8710. [PMID: 37724008 DOI: 10.1039/d3fo02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The incidences of short-term or long-term adverse maternal and fetal outcomes caused by maternal diabetes are increasing. Due to toxicity or side effects, economic pressures, and other problems associated with injections or oral hypoglycemic drugs, many researchers have investigated natural treatment methods. Polyphenols can protect against chronic pathologies by regulating numerous physiological processes and provide many health benefits. Moreover, polyphenols have anti-diabetic properties and can be used to treat diabetic complications. Diets rich in polyphenols are beneficial to pregnant women with diabetes. Here, we review the epidemiological and experimental evidence on the impact of dietary polyphenols on maternal and fetal outcomes in pregnant women with diabetes, and the effects of polyphenols on biological changes and possible mechanisms. Previous data (mainly from in vitro and animal experiments) showed that polyphenols can alleviate gestational diabetes mellitus and diabetic embryopathy by reducing maternal hyperglycemia and insulin resistance, alleviating inflammation and oxidative stress, and regulating related signaling pathways. Although polyphenols have shown many health benefits, further research is needed to better understand the complex interactions between polyphenols and maternal diabetes.
Collapse
Affiliation(s)
- Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qing Chang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhangzhao Cong
- Department of Teaching Affairs, China Medical University, Shenyang, China
| | - Yalin Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhuxi Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yuhong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Lu F, Li E, Yang X. The association between circulatory, local pancreatic PCSK9 and type 2 diabetes mellitus: The effects of antidiabetic drugs on PCSK9. Heliyon 2023; 9:e19371. [PMID: 37809924 PMCID: PMC10558357 DOI: 10.1016/j.heliyon.2023.e19371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent modulator of cholesterol metabolism and plays a crucial role in the normal functioning of pancreatic islets and the progression of diabetes. Islet autocrine PCSK9 deficiency can lead to the enrichment of low-density lipoprotein (LDL) receptor (LDLR) and excessive LDL cholesterol (LDL-C) uptake, subsequently impairing the insulin secretion in β-cells. Circulatory PCSK9 levels are primarily attributed to hepatocyte secretion. Notably, anti-PCSK9 strategies proposed for individuals with hypercholesterolemia chiefly target liver-derived PCSK9; however, these anti-PCSK9 strategies have been associated with the risk of new-onset diabetes mellitus (NODM). In the current review, we highlight a new direction in PCSK9 inhibition therapy strategies: screening candidates for anti-PCSK9 from the drugs used in type 2 diabetes mellitus (T2DM) treatment. We explored the association between circulating, local pancreatic PCSK9 and T2DM, as well as the relationship between PCSK9 monoclonal antibodies and NODM. We discussed the emergence of artificial and natural drugs in recent years, exhibiting dual benefits of antidiabetic activity and PCSK9 reduction, confirming that the diverse effects of these drugs may potentially impact the progression of diabetes and associated disorders, thereby introducing novel avenues and methodologies to enhance disease prognosis.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
- School of Basic Medical Sciences, Zhengzhou University, 450001, China
| |
Collapse
|
11
|
Chauhan S, Singh AP, Rana AC, Kumar S, Kumar R, Singh J, Jangra A, Kumar D. Natural activators of AMPK signaling: potential role in the management of type-2 diabetes. J Diabetes Metab Disord 2023; 22:47-59. [PMID: 37255783 PMCID: PMC10225395 DOI: 10.1007/s40200-022-01155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/30/2022] [Indexed: 06/01/2023]
Abstract
Adenosine 5'-monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase involved in the homeostasis of cellular energy. AMPK has developed as an appealing clinical target for the diagnosis of multiple metabolic diseases such as diabetes mellitus, obesity, inflammation, and cancer. Genetic and pharmacological studies indicate that AMPK is needed in response to glucose deficiency, dietary restriction, and increased physical activity for preserving glucose homeostasis. After activation, AMPK influences metabolic mechanisms contributing to enhanced ATP production, thus growing processes that absorb ATP simultaneously. In this review, several natural products have been discussed which enhance the sensitivity of AMPK and alleviate sub complications or different pathways by which such AMPK triggers can be addressed. AMPK Natural products as potential AMPK activators can be developed as alternate pharmacological intervention to reverse metabolic disorders including type 2 diabetes.
Collapse
Affiliation(s)
- Sanyogita Chauhan
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Aakash Partap Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Avtar Chand Rana
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Sunil Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Haryana 122502 Rewari, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031 Haryana India
| | - Jitender Singh
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, P.O. Mianpur, Ropar, 140108 Punjab India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| | - Dinesh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| |
Collapse
|
12
|
Ciuca MD, Racovita RC. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions. Int J Mol Sci 2023; 24:ijms24108874. [PMID: 37240220 DOI: 10.3390/ijms24108874] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin is the principal curcuminoid found in the rhizomes of turmeric. Due to its therapeutic action against cancer, depression, diabetes, some bacteria, and oxidative stress, it has been used widely in medicine since ancient times. Due to its low solubility, the human organism cannot completely absorb it. Advanced extraction technologies, followed by encapsulation in microemulsion and nanoemulsion systems, are currently being used to improve bioavailability. This review discusses the different methods available for curcumin extraction from plant material, methods for the identification of curcumin in the resulting extracts, its beneficial effects on human health, and the encapsulation techniques into small colloidal systems that have been used over the past decade to deliver this compound.
Collapse
Affiliation(s)
- Maria D Ciuca
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
| | - Radu C Racovita
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
| |
Collapse
|
13
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
14
|
Ghanbarzadeh-Ghashti N, Ghanbari-Homaie S, Shaseb E, Abbasalizadeh S, Mirghafourvand M. The effect of Curcumin on metabolic parameters and androgen level in women with polycystic ovary syndrome: a randomized controlled trial. BMC Endocr Disord 2023; 23:40. [PMID: 36788534 PMCID: PMC9930238 DOI: 10.1186/s12902-023-01295-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Considering the high prevalence of polycystic ovary syndrome (PCOS) in women of reproductive age and the metabolic disorders associated with it, this study was conducted to determine the effects of curcumin on metabolic indices and androgen level (primary outcomes), and menstruation characteristics, and hirsutism (secondary outcomes) in women with PCOS. METHODS This triple-blind randomized controlled trial was conducted on women with PCOS who visited the health centers at Eslamshahr County (Tehran Province-Iran) from 2020 to 2022. The participants were allocated into two groups (curcumin and placebo) using block randomization method. The treatment group received two 500 mg edible curcumin tablets together at the same time per day for twelve weeks while the control group received placebo tablets similar to curcumin. Biochemical parameters such as Fasting Blood Insulin (FBI), Fasting Blood Sugar (FBS), triglyceride, total cholesterol, Low Density Lipoprotein- cholesterol (LDL-C), High Density Lipoprotein- cholesterol (HDL-C) were measured before intervention and then 3 months after the intervention. Sex Hormone Binding Globulin (SHBG) and testosterone serum levels were measured 3 months after the intervention. Questionnaires regarding the menstrual cycle characteristics and the Ferriman-Gallwey score were also filled for evaluating hirsutism before the intervention as well as 3 months after the intervention. The independent t-test, Mann-Whitney U test, and ANCOVA were used to analyze the data. RESULTS There was no statistically significant difference between the two groups in terms of socio-demographic and the baseline levels of measured outcomes. After 12 weeks of intervention, the mean serum FBS levels in the curcumin group were significantly lower than in the placebo group (mean difference: 6.24; 95%confidence interval: -11.73 to -0.76; P = 0.027) but there was no significant difference between the two groups in terms of triglyceride (P = 0.351), cholesterol (P = 0.528), LDL (P = 0.064), HDL (P = 0.306), FBI (p = 0.929), SHBG (p = 0.682), and testosterone (p = 0.133) serum levels. After the intervention, amenorrhea and oligomenorrhea frequency in the curcumin group was significantly lower than in the placebo group (13% vs. 22%, P = 0.038). There was no significant difference in terms of duration of menstruation (P = 0.286) and hirsutism (P = 0.630) between the two groups. CONCLUSION Curcumin decreased FBS levels and improved menstruation characteristics (amenorrhea, oligomenorrhea, and menstrual irregularities) in women with PCOS but did not affect other metabolic, hormonal, and hirsutism indices. More studies using a larger sample size are required for a definitive conclusion. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT): IRCT20120718010324N51 Date of registration: 30/11/2019. URL: https://en.irct.ir/user/trial/40597/view ; Date of first registration: 30/11/2020.
Collapse
Affiliation(s)
| | - Solmaz Ghanbari-Homaie
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Shaseb
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shamsi Abbasalizadeh
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojgan Mirghafourvand
- Social Determinants of Health Research Center, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Deckmann I, Santos-Terra J, Martel F, Vieira Carletti J. Common pregnancy complications and polyphenols intake: an overview. Crit Rev Food Sci Nutr 2023; 64:5924-5957. [PMID: 36597650 DOI: 10.1080/10408398.2022.2160960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During pregnancy, the body undergoes a great amount of changes in order to support a healthy developing fetus. In this context, maternal dietary supplementation is widely encouraged to provide adequate nutrition for the newborn. In the past few years, studies have emerged highlighting the benefits of polyphenols intake during pregnancy. Indeed, despite differences among reports, such as experimental model, polyphenol employed, dosage and regimen of administration, there is no doubt that the ingestion of these molecules has a protective effect in relation to three pregnancy-associated diseases or conditions: preeclampsia, gestational diabetes and fetal growth restriction. In this review, we describe the effects of different polyphenols and polyphenol-rich extracts or juices on the main outcomes of these common pregnancy-associated complications, obtained in human, animal and in vitro studies. Therefore, this work provides a critical analysis of the literature, and a summary of evidences, from which future research using polyphenols can be designed and evaluated.
Collapse
Affiliation(s)
- Iohanna Deckmann
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlio Santos-Terra
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Jaqueline Vieira Carletti
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
16
|
Ju Y, Feng Y, Yang Y, Hou X, Zhang X, Zhu X, Wang Y, Yang M. Combining curcumin and aspirin ameliorates preeclampsia-like symptoms by inhibiting the placental TLR4/NF-κB signaling pathway in rats. J Obstet Gynaecol Res 2023; 49:128-140. [PMID: 36288911 DOI: 10.1111/jog.15473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/19/2023]
Abstract
AIM Preeclampsia (PE) is a common medical complication of pregnancy characterized by high blood pressure and proteinuria after the 20th gestational week. This study aimed to investigate the potency of the combination of curcumin and aspirin in the treatment of PE and explore the underlying mechanisms. MATERIAL AND METHODS The PE model was constructed in female rats by administering 0.5 mg/mL N-nitro-L-arginine methyl ester from gestational days (GDs) 6 to 16. The pregnant female rats were divided into five groups according to the drug treatment. The curcumin or aspirin was given to the rats by tail vein injection (0.36 mg/kg) or gavage treatment (1.5 mg/kg BW/day) from GD4 to GD18. RESULTS Treatment with curcumin and aspirin combination significantly reduced the systolic blood pressure and proteinuria in the PE rats. Meanwhile, in comparison to the PE rats treated with single-dose curcumin or aspirin, the rats treated with combined curcumin and aspirin showed significantly decreased sFlt-1, increased placental growth factor, and alleviated oxidative stress in both blood and placental tissues, which are abnormal in no-treated PE rats. Furthermore, dramatically decreased inflammatory cytokines secretion and TLR4 and NF-κB p65 expression in placental tissues were also observed in the PE rats with combined treatment compared to those of no-treated, signal-dose curcumin or aspirin-treated PE rats. CONCLUSIONS Our results suggested that the combined treatment of curcumin and aspirin significantly ameliorates the symptoms of PE in rats, which is most likely due to the inhibition of the placental TLR4/NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Yaru Ju
- Perinatal Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanjing Yang
- Perinatal Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xiaolin Hou
- Prenatal Diagnostic, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xiaofeng Zhang
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xihui Zhu
- Perinatal Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yage Wang
- Department of Obstetrics, Gaocheng District Hospital of Traditional Chinese and Western Medicine, Shijiazhuang, China
| | - Meiliu Yang
- Department of Biology, Hengshui University, Hengshui, China
| |
Collapse
|
17
|
Bankole T, Winn H, Li Y. Dietary Impacts on Gestational Diabetes: Connection between Gut Microbiome and Epigenetic Mechanisms. Nutrients 2022; 14:nu14245269. [PMID: 36558427 PMCID: PMC9786016 DOI: 10.3390/nu14245269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common obstetric complications due to an increased level of glucose intolerance during pregnancy. The prevalence of GDM increases due to the obesity epidemic. GDM is also associated with an increased risk of gestational hypertension and preeclampsia resulting in elevated maternal and perinatal morbidity and mortality. Diet is one of the most important environmental factors associated with etiology of GDM. Studies have shown that the consumption of certain bioactive diets and nutrients before and during pregnancy might have preventive effects against GDM leading to a healthy pregnancy outcome as well as beneficial metabolic outcomes later in the offspring's life. Gut microbiome as a biological ecosystem bridges the gap between human health and diseases through diets. Maternal diets affect maternal and fetal gut microbiome and metabolomics profiles, which consequently regulate the host epigenome, thus contributing to later-life metabolic health in both mother and offspring. This review discusses the current knowledge regarding how epigenetic mechanisms mediate the interaction between maternal bioactive diets, the gut microbiome and the metabolome leading to improved metabolic health in both mother and offspring.
Collapse
Affiliation(s)
- Taiwo Bankole
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Hung Winn
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65212, USA
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
- Correspondence:
| |
Collapse
|
18
|
Nacka-Aleksić M, Pirković A, Vilotić A, Bojić-Trbojević Ž, Jovanović Krivokuća M, Giampieri F, Battino M, Dekanski D. The Role of Dietary Polyphenols in Pregnancy and Pregnancy-Related Disorders. Nutrients 2022; 14:nu14245246. [PMID: 36558404 PMCID: PMC9782043 DOI: 10.3390/nu14245246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are a group of phytochemicals with extensive biological functions and health-promoting potential. These compounds are present in most foods of plant origin and their increased widespread availability through the intake of nutritional supplements, fortified foods, and beverages, has also led to increased exposure throughout gestation. In this narrative review, we focus on the role of polyphenols in both healthy and pathological pregnancy. General information related to their classification and function is followed by an overview of their known effects in early-pregnancy events, including the current insights into molecular mechanisms involved. Further, we provide an overview of their involvement in some of the most common pregnancy-associated pathological conditions, such as preeclampsia and gestational diabetes mellitus. Additionally, we also discuss the estimated possible risk of polyphenol consumption on pregnancy outcomes. The consumption of dietary polyphenols during pregnancy needs particular attention considering the possible effects of polyphenols on the mechanisms involved in maternal adaptation and fetal development. Further studies are strongly needed to unravel the in vivo effects of polyphenol metabolites during pregnancy, as well as their role on advanced maternal age, prenatal nutrition, and metabolic risk of the offspring.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Aleksandra Vilotić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Dragana Dekanski
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
19
|
Li X, Geng-Ji JJ, Quan YY, Qi LM, Sun Q, Huang Q, Jiang HM, Sun ZJ, Liu HM, Xie X. Role of potential bioactive metabolites from traditional Chinese medicine for type 2 diabetes mellitus: An overview. Front Pharmacol 2022; 13:1023713. [PMID: 36479195 PMCID: PMC9719995 DOI: 10.3389/fphar.2022.1023713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR). The number of diabetic patients globally has been rising over the past decades. Although significant progress has been made in treating diabetes mellitus (DM), existing clinical drugs for diabetes can no longer fully meet patients when they face complex and huge clinical treatment needs. As a traditional and effective medical system, traditional Chinese medicine (TCM) has a unique understanding of diabetes treatment and has developed many classic and practical prescriptions targeting DM. With modern medicine and pharmacy advancements, researchers have discovered that various bioactive metabolites isolated from TCM show therapeutic on DM. Compared with existing clinical drugs, these bioactive metabolites demonstrate promising prospects for treating DM due to their excellent biocompatibility and fewer adverse reactions. Accordingly, these valuable metabolites have attracted the interest of researchers worldwide. Despite the abundance of research works and specialized-topic reviews published over the past years, there is a lack of updated and systematic reviews concerning this fast-growing field. Therefore, in this review, we summarized the bioactive metabolites derived from TCM with the potential treatment of T2DM by searching several authoritative databases such as PubMed, Web of Science, Wiley Online Library, and Springer Link. For the convenience of readers, the content is divided into four parts according to the structural characteristics of these valuable compounds (flavonoids, terpenoids, alkaloids, and others). Meanwhile, the detailed mechanism and future directions of these promising compounds curing DM are also summarized in the related sections. We hope this review inspires increasingly valuable and significant research focusing on potential bioactive metabolites from TCM to treat DM in the future.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Jia Geng-Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun-Yun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Lu-Ming Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Mei Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zi-Jian Sun
- Sichuan Ant Recommendation Biotechnology Co., Ltd., Chengdu, Sichuan, China
| | - Hong-Mei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Lu W, Khatibi Shahidi F, Khorsandi K, Hosseinzadeh R, Gul A, Balick V. An update on molecular mechanisms of curcumin effect on diabetes. J Food Biochem 2022; 46:e14358. [PMID: 35945662 DOI: 10.1111/jfbc.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Owing to its prevalent nature, diabetes mellitus has become one of the most serious endocrine illnesses affecting a patient's quality of life due to the manifestation of side effects such as cardiovascular diseases, retinopathy, neuropathy, and nephropathy. Curcumin ((1E, 6E) 21, 7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a major compound of turmeric, has been used in conventional medicine because of its safe nature and cost-effectiveness to meliorate diabetes and its comorbidities. These effects have also been observed in rodent models of diabetes resulting in a reduction of glycemia and blood lipids. Both the preventive and therapeutic activities of this compound are due to its antioxidant and anti-inflammatory characteristics. Furthermore, preclinical outcomes and clinical investigation demonstrate that the use of curcumin neutralizes insulin resistance, obesity, and hyperglycemia. Despite the many benefits of curcumin, its two limiting factors, solubility and bioavailability, remain a challenge for researchers; therefore, several methods such as drug formulation, nano-drug delivery, and the use of curcumin analogs have been developed to deliver curcumin and increase its bioavailability. PRACTICAL APPLICATIONS: The rise of people with type 2 diabetes has become a major concern at the global healthcare level. The best diabetes treatments today are anti-diabetic drug administration, lifestyle-related interventions (such as healthy eating and daily physical activity), arterial pressure detection, and fat control. The polyphenol curcumin, found in turmeric, can promote health by acting on a variety of cellular signaling pathways. This review article discusses curcumin and its role in the treatment of diabetes.
Collapse
Affiliation(s)
- Wensong Lu
- People's Hospital of Longhua, Shenzhen, China
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Reza Hosseinzadeh
- Department of Chromatography Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Urmia, Iran
| | - Asma Gul
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Veronica Balick
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
21
|
Oliveira S, Monteiro-Alfredo T, Henriques R, Ribeiro CF, Seiça R, Cruz T, Cabral C, Fernandes R, Piedade F, Robalo MP, Matafome P, Silva S. Improvement of Glycaemia and Endothelial Function by a New Low-Dose Curcuminoid in an Animal Model of Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105652. [PMID: 35628465 PMCID: PMC9144453 DOI: 10.3390/ijms23105652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin has been suggested as a promising treatment for metabolic diseases, but the high doses required limit its therapeutic use. In this study, a new curcuminoid is synthesised to increase curcumin anti-inflammatory and antioxidant potential and to achieve hypoglycaemic and protective vascular effects in type 2 diabetic rats in a lower dose. In vitro, the anti-inflammatory effect was determined through the Griess reaction, and the antioxidant activity through ABTS and TBARS assays. In vivo, Goto-Kakizaki rats were treated for 2 weeks with the equimolar dose of curcumin (40 mg/kg/day) or curcuminoid (52.4 mg/kg/day). Fasting glycaemia, insulin tolerance, plasma insulin, insulin signalling, serum FFA, endothelial function and several markers of oxidative stress were evaluated. Both compounds presented a significant anti-inflammatory effect. Moreover, the curcuminoid had a marked hypoglycaemic effect, accompanied by higher GLUT4 levels in adipose tissue. Both compounds increased NO-dependent vasorelaxation, but only the curcuminoid exacerbated the response to ascorbic acid, consistent with a higher decrease in vascular oxidative and nitrosative stress. SOD1 and GLO1 levels were increased in EAT and heart, respectively. Altogether, these data suggest that the curcuminoid developed here has more pronounced effects than curcumin in low doses, improving the oxidative stress, endothelial function and glycaemic profile in type 2 diabetes.
Collapse
Affiliation(s)
- Sara Oliveira
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Tamaeh Monteiro-Alfredo
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados 79825-070, MS, Brazil
| | - Rita Henriques
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.H.); (T.C.)
| | - Carlos Fontes Ribeiro
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.H.); (T.C.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Rosa Fernandes
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Fátima Piedade
- CQE, Complexo I, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (F.P.); (M.P.R.)
- Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria Paula Robalo
- CQE, Complexo I, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (F.P.); (M.P.R.)
- Instituto Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa, 1959-007 Lisbon, Portugal
| | - Paulo Matafome
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Clinical-Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), 3046-854 Coimbra, Portugal
- Correspondence:
| | - Sónia Silva
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (S.O.); (T.M.-A.); (C.C.); (R.F.); (S.S.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.H.); (T.C.)
| |
Collapse
|
22
|
Jiang Y, Qu K, Liu J, Wen Y, Duan B. Metabolomics study on liver of db/db mice treated with curcumin using UPLC-Q-TOF-MS. J Pharm Biomed Anal 2022; 215:114771. [DOI: 10.1016/j.jpba.2022.114771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/02/2023]
|
23
|
Zhang X, Zheng S, Li H. Protective Effect of Diosmin Against Streptozotocin-Induced Gestational Diabetes Mellitus via AGEs-RAGE Signalling Pathway. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.363.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Saifi B, Haftcheshmeh SM, Feligioni M, Izadpanah E, Rahimi K, Hassanzadeh K, Mohammadi A, Sahebkar A. An overview of the therapeutic effects of curcumin in reproductive disorders with a focus on the antiinflammatory and immunomodulatory activities. Phytother Res 2022; 36:808-823. [PMID: 35041229 DOI: 10.1002/ptr.7360] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022]
Abstract
Curcumin, the polyphenolic compound obtained from turmeric, has several pharmacological properties. These properties include antioxidant, antimicrobial, anti-angiogenic, anticarcinogenic, antiinflammatory, and immunomodulatory activities. Therefore, the clinical efficacy of this substance has been largely investigated for curing numerous disorders. Based on a growing body of literature, this review aimed to investigate curcumin's molecular and clinical effects on reproduction and related disorders. Curcumin in the female reproductive system attenuates folliculogenesis, promotes apoptosis of oocytes and blastocyst, and decreases embryo implantation and survival. Curcumin at <100 mg concentration shows protective effects against testicular injury. The concentration of >250 mg of curcumin exhibits immobilizing action on sperms, and at 500 mg concentration completely blocks pregnancy. Curcumin inhibits vaginal infections, attenuates the severity of the premenstrual syndrome, ameliorates inflammatory conditions in polycystic ovary syndrome, improves preeclampsia, and prevents ectopic endometrial lesions. Taken together, curcumin, because of the numerous biological activities, low level of toxicity, and lower adverse effects compared to the synthetic drugs, could be considered as a protective agent for preserving the semen quality parameters, a contraceptive, and chemotherapeutic or chemopreventive agent, as well as an appropriate agent for the treatment of female reproductive disorders.
Collapse
Affiliation(s)
- Bita Saifi
- Department of Anatomy, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | | | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kaveh Rahimi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Wu Q, Gai S, Zhang H. Asperulosidic Acid, a Bioactive Iridoid, Alleviates Placental Oxidative Stress and Inflammatory Responses in Gestational Diabetes Mellitus by Suppressing NF-κB and MAPK Signaling Pathways. Pharmacology 2022; 107:197-205. [PMID: 35008094 DOI: 10.1159/000521080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Asperulosidic acid (ASP) is a bioactive iridoid exerting broad pharmacological and medicinal properties. However, it is still unknown if ASP has therapeutical effects on gestational diabetes mellitus (GDM). This study aims to evaluate the effects of ASP on GDM as well as its underlying mechanism. METHODS A mouse model of GDM was established and orally administrated ASP (10, 20, and 40 mg/kg) on gestation day (GD) 0. The mice were sacrificed on GD 18. RESULTS Blood glucose and serum insulin were then determined. The inflammatory cytokines including IL-6 and TNF-α and oxidative stress biomarkers including MDA, SOD, GSH, and GPx were determined by using specific ELISAs. In addition, the expressions of NF-κB and MAPK signaling pathway-related proteins were determined by using Western blotting. Treatment with ASP decreased blood glucose in the mouse model of GDM. Besides, ASP also increased serum insulin and attenuated β-cell function. Treatment with ASP suppressed IL-6 and TNF-α and regulated oxidative stress-related biomarkers. Western blotting analysis showed that treatment with ASP suppressed phosphorylation of NF-κB p65, ERK1/2, and p38 in placental tissues. CONCLUSION ASP alleviates placental oxidative stress and inflammatory responses in GDM by the inhibition of the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qian Wu
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shukun Gai
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Huijie Zhang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
26
|
LIN H, LI S, ZHANG J, LIN S, TAN BK, HU J. Functional food ingredients for control of gestational diabetes mellitus: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.03621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Huiting LIN
- Fujian Agriculture and Forestry University, China
| | - Shiyang LI
- Fujian Agriculture and Forestry University, China
| | - Jiawen ZHANG
- Fujian Agriculture and Forestry University, China
| | - Shaoling LIN
- Fujian Agriculture and Forestry University, China
| | - Bee K. TAN
- University of Leicester, United Kingdom; University Hospitals Leicester NHS Trust, United Kingdom
| | - Jiamiao HU
- Fujian Agriculture and Forestry University, China; University of Leicester, United Kingdom
| |
Collapse
|
27
|
Li Y, Xie H, Zhang H. Protective effect of sinomenine against inflammation and oxidative stress in gestational diabetes mellitus in female rats via TLR4/MyD88/NF-κB signaling pathway. J Food Biochem 2021; 45:e13952. [PMID: 34636046 DOI: 10.1111/jfbc.13952] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 01/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is a dangerous complication of pregnancy which is induced via dysfunction in glucose metabolism during pregnancy. Sinomenine (SM) has already proved an antidiabetic effect against streptozotocin (STZ)-induced diabetes mellitus (DM) in rats. In this protocol, we examined the protective effect of SM against STZ-induced GDM in rats. Wistar rats were divided into three groups and STZ (40 mg/kg) was used to induce GDM. At the end of the experimental protocol, bodyweight, pub weight, and survival rate were estimated. Blood glucose level (BGL), fasting insulin (FINS), free fatty acid (FFA), Hemoglobin A1C (HbA1c), and C-peptide were measured. Lipid, antioxidant, inflammatory cytokines, and inflammatory mediators were also determined. RT-PCR was used for estimation of the role of TLR4/MyD88/NF-κB signaling pathway. SM treatment significantly (p < .001) reduced BGL, hepatic glycogen, and improved the levels of FINS, C-peptide, FFA, and HbA1c. SM significantly (p < .001) suppressed the levels of total cholesterol (TC), low-density lipoprotein (LDL), triglycerides (TG), coronary artery index (CAI), very low-density lipoprotein (VLDL), atherogenic index (AI), and boosted high-density lipoprotein (HDL) levels. SM significantly (p < .001) decreased the lipid peroxidation (LPO) level and enhanced glutathione peroxidase (GPx), total antioxidant capacity (TAC), glutathione S-transferase (GST), superoxide dismutase (SOD), respectively. It reduced the levels of inflammatory cytokines including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and inflammatory mediators viz., nuclear kappa B factors (NF-κB). SM significantly (p < .001) reduced the mRNA expression of Myd88, NLRP3, TLR4, and NF-κB, which were boosted in the GDM group rats. These findings suggest that SM could be a probable drug to be used for treating GDM via inhibition of the TLR4 signaling pathway. PRACTICAL APPLICATIONS: It is well known that gestational diabetes mellitus (GDM) is a dangerous health problem during the pregnancy. SM reduced the glucose level; boosted the level of fasting insulin (FINS) and bodyweight. SM significantly improved the number of pubs and their survival rates. SM suppressed oxidative stress and inflammation via activation of TLR4/MyD88/NF-κB signaling pathway. According to our research, SM can be used as a preventive drug in the treatment of GDM during pregnancy.
Collapse
Affiliation(s)
- Yanbing Li
- Department of obstetrics, The Third Hospital of Jinan, Jinan, China
| | - Hongqin Xie
- Department of obstetrics, The Third Hospital of Jinan, Jinan, China
| | - Huiya Zhang
- Department of Obstetrics and Gynecology, Xian XD Group Hospital, Xi'an, China
| |
Collapse
|
28
|
Zheng Y, Zhu N, Wang J, Zhao N, Yuan C. Crocetin suppresses gestational diabetes in streptozotocin-induced diabetes mellitus rats via suppression of inflammatory reaction. J Food Biochem 2021; 45:e13857. [PMID: 34309046 DOI: 10.1111/jfbc.13857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022]
Abstract
Gestational diabetes mellitus (GDM) is the serious complication of pregnancy induced via dysfunction in glucose metabolism during the pregnancy. Crocetin already proved antidiabetic effect in streptozotocin (STZ)-induced diabetes mellitus in rats. In this protocol, we have investigated the potential effect of crocetin against STZ-induced GDM in rats. Wistar rats were used for the current protocol; STZ was used for the induction for DM and finally caused the GDM. Body weight and serum advanced glycation end products level were estimated at regular time intervals. We also estimated the fetus weight and placental weight. Biochemical, antioxidant, pro-inflammatory cytokines, inflammatory mediators, and apoptosis parameters were estimated. mRNA expression of NOX2, RAGE, MCP-1, VCAM-1, EGFR, and p65 were also estimated. Crocetin treatment significantly (p < .001) reduced the fetus weight and increased the placental weight and index. Crocetin significantly (p < .001) reduced the blood glucose level and increased the body weight. Crocetin significantly (p < .001) boosted the level of antioxidant enzymes and includes superoxide dismutase, glutathione peroxidase, glutathione, and catalase. Crocetin significantly (p < .001) altered the level of lipid parameters and pro-inflammatory cytokines. Crocetin significantly (p < .001) reduced the level of intercellular adhesion molecule 1, cyclooxygenase-2, and nuclear factor kappa B and increased the level of visfatin against GDM rats. Crocetin significantly (p < .001) altered the level of mRNA expression. Based on the result, we can say that crocetin is a protective drug against the GDM in pregnant rats via antioxidant, inflammatory, and apoptosis parameters. PRACTICAL APPLICATIONS: As we all know, gestational diabetes mellitus (GDM) cases rise all over the world. The current investigation showed the protective effect of crocetin on GDM in experimental rats. The current finding exhibited the protective effect of crocetin against STZ-induced GDM via suppression of inflammatory, oxidative, and apoptosis parameters. The result suggests the antioxidant and anti-inflammatory effect of crocetin. Crocetin can be used as a preventive medication in the treatment of gestational diabetes mellitus, according to the latest findings.
Collapse
Affiliation(s)
- Yadi Zheng
- Department of General Medicine, Yantaishan Hospital, Yantai City, China
| | - Na Zhu
- Department of Outpatient, Tengzhou Maternal and Child Health Hospital, Tengzhou, China
| | - Jing Wang
- Department of Gynaecology, Harbin Medical University Tumor Hospital, Haerbin, China
| | - Na Zhao
- Department of Endocrinology, The First Hospital of Handan City, Handan, China
| | - Chun Yuan
- Department of Obstetrics, Disinfection Supply Center, The First Hospital of WuHan, Wuhan, China
| |
Collapse
|
29
|
Curcumin Improved Glucose Intolerance, Renal Injury, and Nonalcoholic Fatty Liver Disease and Decreased Chromium Loss through Urine in Obese Mice. Processes (Basel) 2021. [DOI: 10.3390/pr9071132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity-associated hyperglycemia underlies insulin resistance, glucose intolerance, and related metabolic disorders including type 2 diabetes, renal damage, and nonalcoholic fatty liver disease. Turmeric root is commonly used in Asia, and curcumin, one of its pharmacological components, can play a role in preventing and treating certain chronic physiological disorders. Accordingly, this study examined how high-fat diet (HFD)-induced hyperglycemia and hyperlipidemia are reduced by curcumin through changes in fatty liver scores, chromium distribution, and renal injury in mice. Relative to the control group, also fed an HFD, the curcumin group weighed less and had smaller adipocytes; it also had lower daily food efficiency, blood urea nitrogen and creatinine levels, serum alanine aminotransferase and aspartate aminotransferase levels, serum and hepatic triglyceride levels, and hepatic lipid regulation marker expression. The curcumin-treated obese group exhibited significantly lower fasting blood glucose, was less glucose intolerant, had higher Akt phosphorylation and glucose transporter 4 (GLUT4) expression, and had greater serum insulin levels. Moreover, the group showed renal damage with lower TNF-α expression along with more numerous renal antioxidative enzymes that included superoxide dismutase, glutathione peroxidase, and catalase. The liver histology of the curcumin-treated obese mice showed superior lipid infiltration and fewer FASN and PNPLA3 proteins in comparison with the control mice. Curcumin contributed to creating a positive chromium balance by decreasing the amount of chromium lost through urine, leading to the chromium mobilization needed to mitigate hyperglycemia. Thus, the results suggest that curcumin prevents HFD-induced glucose intolerance, kidney injury, and nonalcoholic fatty liver disease.
Collapse
|
30
|
Tossetta G, Fantone S, Giannubilo SR, Marzioni D. The Multifaced Actions of Curcumin in Pregnancy Outcome. Antioxidants (Basel) 2021; 10:antiox10010126. [PMID: 33477354 PMCID: PMC7830020 DOI: 10.3390/antiox10010126] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin, also known as diferuloylmethane, is the main polyphenolic substance present in the rhizomes of Curcuma longa L. This plant showed many beneficial effects and has been used since ancient times for both food and pharmaceutical purposes. Due to its pleiotropic functions, curcumin consumption in the human diet has become very common thanks also to the fact that this natural compound is considered quite safe as it does not have serious side effects. Its functions as an anti-inflammatory, anti-oxidant, neuroprotective, immunomodulatory, anti-toxicant, anti-apoptotic, and anti-diabetic compound are already known and widely demonstrated. There are numerous studies concerning its effects on various human pathologies including cancer, diabetes and arthritis while the studies on curcumin during pregnancy have been performed only in animal models. Data concerning the role of curcumin as anti-inflammatory compound suggest a possible use of curcumin in managing pregnancy complications such as Preeclampsia (PE), Gestational Diabetes Mellitus (GDM), Fetal Growth Restriction (FGR), PreTerm Birth (PTB), and exposure to toxic agents and pathogens. The aim of this review is to present data to support the possible use of curcumin in clinical trials on human gestation complications.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy;
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
| | - Stefano Raffaele Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy;
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
- Correspondence: ; Tel.:+39-071.2206268
| |
Collapse
|
31
|
Ohishi T, Fukutomi R, Shoji Y, Goto S, Isemura M. The Beneficial Effects of Principal Polyphenols from Green Tea, Coffee, Wine, and Curry on Obesity. Molecules 2021; 26:molecules26020453. [PMID: 33467101 PMCID: PMC7830344 DOI: 10.3390/molecules26020453] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Several epidemiological studies and clinical trials have reported the beneficial effects of green tea, coffee, wine, and curry on human health, with its anti-obesity, anti-cancer, anti-diabetic, and neuroprotective properties. These effects, which have been supported using cell-based and animal studies, are mainly attributed to epigallocatechin gallate found in green tea, chlorogenic acid in coffee, resveratrol in wine, and curcumin in curry. Polyphenols are proposed to function via various mechanisms, the most important of which is related to reactive oxygen species (ROS). These polyphenols exert conflicting dual actions as anti- and pro-oxidants. Their anti-oxidative actions help scavenge ROS and downregulate nuclear factor-κB to produce favorable anti-inflammatory effects. Meanwhile, pro-oxidant actions appear to promote ROS generation leading to the activation of 5′-AMP-activated protein kinase, which modulates different enzymes and factors with health beneficial roles. Currently, it remains unclear how these polyphenols exert either pro- or anti-oxidant effects. Similarly, several human studies showed no beneficial effects of these foods, and, by extension polyphenols, on obesity. These inconsistencies may be attributed to different confounding study factors. Thus, this review provides a state-of-the-art update on these foods and their principal polyphenol components, with an assumption that it prevents obesity.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Correspondence: ; Tel.: +81-55-924-0601
| | - Ryuuta Fukutomi
- Quality Management Div. Higuchi Inc., Minato-ku, Tokyo 108-0075, Japan;
| | - Yutaka Shoji
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| | - Shingo Goto
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shimizu, Shizuoka 424-0292, Japan;
| | - Mamoru Isemura
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| |
Collapse
|
32
|
Qi X, Xing Y, Wang X. Blockade of CCL2/CCR2 Signaling Pathway Exerts Anti-Inflammatory Effects and Attenuates Gestational Diabetes Mellitus in a Genetic Mice Model. Horm Metab Res 2021; 53:56-62. [PMID: 33022739 DOI: 10.1055/a-1250-8221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The chemokine (C-C motif) ligand 2 (CCL2) and its receptor CCR2 are involved in gestational diabetes mellitus (GDM). The present study aims to explore the effects of CCL2 blocking on GDM. Serum CCL2, interleukin (IL)-6, and tumor necrosis factor (TNF)-α were determined in GDM patients and healthy volunteers. C57BL/KsJdb/+mouse was used as the GDM model and CCL2 antibody (αCCL2) was applied. Flow cytometry was applied to determine the frequency of macrophages. Quantitative reverse transcription PCR (RT-qPCR) and western blot were determined to detect the mRNA and protein expressions, respectively. Enzyme-linked immunosorbent assay (ELISA) was applied to determine the levels of inflammatory cytokines and serum insulin. Serum CCL2 was correlated with inflammatory cytokines (IL-6 and TNF-α) in the GDM patients. Besides, the results showed high expressions of CCL2 in the visceral adipose tissue (VAT) and placenta tissue in the GDM mice. Flow cytometry and immunohistochemistry (IHC) staining showed the accumulations of macrophages in these tissues. Treatment of αCCL2 attenuated the GDM symptoms and ameliorated the inflammation. Furthermore, the treatment of αCCL2 improved reproductive outcomes in the GDM mice. Blockade of CCL2 attenuated GDM symptoms and reduced inflammatory cytokines in a genetic mice model.
Collapse
Affiliation(s)
- Xinying Qi
- The Second Department of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanping Xing
- The Second Department of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xuezhen Wang
- The Second Department of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
33
|
Zhang Z, Zhao H, Wang A. Oleuropein alleviates gestational diabetes mellitus by activating AMPK signaling. Endocr Connect 2021; 10:45-53. [PMID: 33289688 PMCID: PMC7923051 DOI: 10.1530/ec-20-0466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) has a high incidence rate among pregnant women. The objective of the study was to assess the effect of plant-derived oleuropein in attenuating inflammatory and oxidative stress of GDM. METHODS Oleuropein was administered to GDM mice at the doses of 5 or 10 mg/kg/day. Body weight, blood glucose, insulin and hepatic glycogen levels were recorded. To evaluate the effect of oleuropein in reducing oxidative stress, ELISA was used to measure the hepatic oxidative stress markers. The inflammation levels of GDM mice were evaluated by measuring serum levels of IL-6 and TNF-α by ELISA and mRNA levels of IL-1β, TNF-α and IL-6 by real-time PCR (RT-PCR). The AMP-activated protein kinase (AMPK) signaling pathway was assessed by Western blot. Gestational outcome was analyzed through comparing litter size and birth weight. RESULTS Oleuropein attenuated the elevated body weight of GDM mice and efficiently reduced blood glucose, insulin and hepatic glycogen levels. Oxidative stress and inflammation were alleviated by oleuropein treatment. The AMPK signaling was activated by oleuropein in GDM mice. Gestational outcome was markedly improved by oleuropein treatment. CONCLUSIONS Our study suggests that oleuropein is effective in alleviating symptoms of GDM and improving gestational outcome in the mouse model. This effect is achieved by attenuating oxidative stress and inflammation, which is mediated by the activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Obstetrics and Gynecology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Hui Zhao
- Department of Obstetrics and Gynecology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Aixia Wang
- Department of Obstetrics and Gynecology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Correspondence should be addressed to A Wang:
| |
Collapse
|
34
|
Chen K, Wu R, Mo B, Yan X, Shen D, Chen M. Comparison between liraglutide alone and liraglutide in combination with insulin on osteoporotic rats and their effect on bone mineral density. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:142-148. [PMID: 33657765 PMCID: PMC8020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To compare the therapeutic efficacy of liraglutide (LRG) single drug combined with insulin (Ins) on osteoporosis in rats and its effect on bone mineral density (BMD). A rat model of diabetes combined with osteoporosis was established. METHODS 40 Sprague-Dawley rats were divided into four groups (blank, control, LRG and LRG+Ins). Serum levels of CrossLaps, procollagen type I N propeptide (PINP), alkaline phosphatase (AKP) and osteocalcin (BGP) were detected by ELISA. Blood glucose was measured by its reaction with glucose oxidase. Serum insulin was analyzed by radioimmunology. Bone calcium and phosphorus contents were also recorded. ELISA was used to detect inflammatory factors. Bone mineral density (BMD) measurement was also performed. RESULTS BMD of the control group was significantly lower than that of the other three groups (p<0.05) and BMD of the LRG + Ins group was significantly higher than that of the LRG group (p<0.05). The inflammatory factors of the control group were significantly higher than those in the other three groups (p<0.05). The inflammatory factors were negatively correlated with BMD (p<0.05). CONCLUSIONS liraglutide in combination with insulin for the treatment of diabetes complicated with osteoporosis can reduce blood glucose in vivo, promote production of islet, effectively improve osteoporosis symptoms, increase BMD and reduce the levels of inflammatory factors in vivo.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, Fenghua People’s Hospital, P.R. China
| | - Ruofei Wu
- Department of Orthopedics, Fenghua People’s Hospital, P.R. China
| | - Bin Mo
- Department of Orthopedics, Fenghua People’s Hospital, P.R. China
| | - Xuegang Yan
- Department of Orthopedics, Fenghua People’s Hospital, P.R. China
| | - Dongjun Shen
- Department of Orthopedics, Fenghua People’s Hospital, P.R. China
| | - Maoxi Chen
- Department of Orthopedics, Fenghua People’s Hospital, P.R. China,Corresponding author: Dr. Maoxi Chen, Department of Orthopedics, Fenghua People’s Hospital, No.36 Gongyuan Road, Ningbo 315500, P.R. China E-mail:
| |
Collapse
|
35
|
Thioredoxin-Interacting Protein (TXNIP) with Focus on Brain and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249357. [PMID: 33302545 PMCID: PMC7764580 DOI: 10.3390/ijms21249357] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new therapeutic approaches to diseases relies on the identification of key molecular targets involved in amplifying disease processes. One such molecule is thioredoxin-interacting protein (TXNIP), also designated thioredoxin-binding protein-2 (TBP-2), a member of the α-arrestin family of proteins and a central regulator of glucose and lipid metabolism, involved in diabetes-associated vascular endothelial dysfunction and inflammation. TXNIP sequesters reduced thioredoxin (TRX), inhibiting its function, resulting in increased oxidative stress. Many different cellular stress factors regulate TXNIP expression, including high glucose, endoplasmic reticulum stress, free radicals, hypoxia, nitric oxide, insulin, and adenosine-containing molecules. TXNIP is also directly involved in inflammatory activation through its interaction with the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome complex. Neurodegenerative diseases such as Alzheimer’s disease have significant pathologies associated with increased oxidative stress, inflammation, and vascular dysfunctions. In addition, as dysfunctions in glucose and cellular metabolism have been associated with such brain diseases, a role for TXNIP in neurodegeneration has actively been investigated. In this review, we will focus on the current state of the understanding of possible normal and pathological functions of TXNIP in the central nervous system from studies of in vitro neural cells and the brains of humans and experimental animals with reference to other studies. As TXNIP can be expressed by neurons, microglia, astrocytes, and endothelial cells, a complex pattern of regulation and function in the brain is suggested. We will examine data suggesting TXNIP as a therapeutic target for neurodegenerative diseases where further research is needed.
Collapse
|
36
|
Huang SJ, Wang HW, Wu HF, Wei QY, Luo S, Xu L, Guan HQ. Osteoprotegerin, interleukin and hepatocyte growth factor for prediction of diabetes and hypertension in the third trimester of pregnancy. World J Clin Cases 2020; 8:5529-5534. [PMID: 33344543 PMCID: PMC7716305 DOI: 10.12998/wjcc.v8.i22.5529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) raises the risk of high blood pressure and may cause a series of life-threatening complications in pregnant women. Screening and management of GDM and gestational hypertension (GH) in pregnancy helps to control and reduce these risks and prevent adverse effects on mothers and their fetuses. Currently, the majority criteria used for screening of diabetes mellitus is oral glucose tolerance tests, and blood pressure test is usually used for the screening and diagnosis of hypertension. However, these criteria might not anticipate or detect all GDM or GH cases. Therefore, new specific predictive and diagnostic tools should be evaluated for this population. This study selected three biomarkers of osteoprotegerin (OPG), interleukin (IL) and hepatocyte growth factor (HGF) for GDM and GH predication and diagnosis.
AIM To explore the feasibility of changes in placental and serum OPG, IL and HGF as tools for prediction and diagnosis of diabetes and hypertension in pregnant women.
METHODS From January 2018 to January 2019, 44 pregnant women with GDM and GH were selected as an observation group, and 44 healthy pregnant women were selected as a control group in the same period. Serum OPG, IL and HGF were compared between the two groups.
RESULTS The levels of OPG and HGF in the observation group were lower than in the control group, and the level of IL-1β was higher in the observation group than in the control group (all P < 0.05). Furthermore, OPG and HGF were negatively associated with gestational diabetes and gestational hypertension, while IL-1β was positively associated with GDM complicated with GH (all P < 0.05).
CONCLUSION The evaluation of serum OPG, HGF and IL-1β levels in patients with coexistent gestational diabetes complicated with hypertension can predict the degree of disease and play an important role in the follow-up treatment and prognosis prediction.
Collapse
Affiliation(s)
- Su-Jing Huang
- Department of Obstetrics, The Second Affiliated Hospital of Hainan Medical College, Haikou 570311, Hainan Province, China
| | - Hong-Wei Wang
- Department of Obstetrics, The Second Affiliated Hospital of Hainan Medical College, Haikou 570311, Hainan Province, China
| | - Hai-Fang Wu
- Department of Obstetrics, The Second Affiliated Hospital of Hainan Medical College, Haikou 570311, Hainan Province, China
| | - Qiu-Yuan Wei
- Department of Obstetrics, The Second Affiliated Hospital of Hainan Medical College, Haikou 570311, Hainan Province, China
| | - Shu Luo
- Department of Obstetrics, The Second Affiliated Hospital of Hainan Medical College, Haikou 570311, Hainan Province, China
| | - Lin Xu
- Department of Obstetrics, The Second Affiliated Hospital of Hainan Medical College, Haikou 570311, Hainan Province, China
| | - Hong-Qiong Guan
- Department of Obstetrics, The Second Affiliated Hospital of Hainan Medical College, Haikou 570311, Hainan Province, China
| |
Collapse
|
37
|
Feng Y, Jia B, Feng Q, Zhang Y, Chen Y, Meng J. Dendrobine attenuates gestational diabetes mellitus in mice by inhibiting Th17 cells. Basic Clin Pharmacol Toxicol 2020; 128:379-385. [PMID: 33119198 DOI: 10.1111/bcpt.13524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/14/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Feng
- Department of Clinical Nutrition Yuhuangding Hospital Affiliated to Qingdao University Yantai China
| | - Bei Jia
- Department of Obstetrics and Gynecology Yuhuangding Hospital Affiliated to Qingdao University Yantai China
| | - Qi Feng
- Department of General Surgery CPLA No. 71897 Xi'an China
| | - Yinghong Zhang
- Department of Obstetrics and Gynecology Yuhuangding Hospital Affiliated to Qingdao University Yantai China
| | - Yangyang Chen
- Department of Obstetrics and Gynecology Yuhuangding Hospital Affiliated to Qingdao University Yantai China
| | - Jun Meng
- Department of Obstetrics and Gynecology Yuhuangding Hospital Affiliated to Qingdao University Yantai China
| |
Collapse
|
38
|
Novel fluorinated derivative of curcumin negatively regulates thioredoxin-interacting protein expression in retinal pigment epithelial and macrophage cells. Biochem Biophys Res Commun 2020; 532:668-674. [DOI: 10.1016/j.bbrc.2020.08.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
|
39
|
Ghaneifar Z, Yousefi Z, Tajik F, Nikfar B, Ghalibafan F, Abdollahi E, Momtazi-Borojeni AA. The potential therapeutic effects of curcumin on pregnancy complications: Novel insights into reproductive medicine. IUBMB Life 2020; 72:2572-2583. [PMID: 33107698 DOI: 10.1002/iub.2399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 01/13/2023]
Abstract
Pregnancy complications including preeclampsia, preterm birth, intrauterine growth restriction, and gestational diabetes are the main adverse reproductive outcomes. Excessive inflammation and oxidative stress play crucial roles in the pathogenesis of pregnancy disorders. Curcumin, the main polyphenolic compound derived from Curcuma longa, is mainly known by its anti-inflammatory and antioxidant properties. There are in vitro and in vivo reports revealing the preventive and ameliorating effects of curcumin against pregnancy complications. Here, we aimed to seek mechanisms underlying the modulatory effects of curcumin on dysregulated inflammatory and oxidative responses in various pregnancy complications.
Collapse
Affiliation(s)
- Zahra Ghaneifar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Tajik
- Faculty of medicine, Azad University of Tehran, Tehran, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghalibafan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Pheiffer C, Dias S, Adam S. Intimate Partner Violence: A Risk Factor for Gestational Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217843. [PMID: 33114711 PMCID: PMC7663316 DOI: 10.3390/ijerph17217843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
The early detection and management of gestational diabetes mellitus (GDM) is an important public health goal. GDM, which is defined as a glucose intolerance that develops during pregnancy, affects about 14% of pregnancies globally, and without effective treatment, it is associated with adverse short- and long-term maternal and neonatal outcomes. Risk-factor screening is an acceptable and affordable strategy to enable risk stratification and intervention. However, common biological risk factors such as overweight or obesity, excessive gestational weight gain, and family history of diabetes often have poor predictive ability, failing to identify a large proportion of women at risk of developing GDM. Accumulating evidence implicate psychosocial factors in contributing to GDM risk. As such, intimate partner violence (IPV), through its contributing effects on maternal stress and depression, presents a plausible risk factor for GDM. Experiencing IPV during pregnancy may dysregulate the hypothalamus-pituitary-adrenal (HPA) axis, leading to increased cortisol secretion and insulin resistance. These effects may exacerbate the insulin-resistant environment characteristic of pregnancy, thus increasing GDM risk. This review explores the relationship between IPV and GDM. We highlight studies that have linked IPV with GDM and propose a biological mechanism that connects IPV and GDM. Recommendations for IPV screening strategies to prevent GDM are discussed.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, Cape Town 7505, South Africa;
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg, Cape Town 7505, South Africa
- Correspondence: ; Tel.: +27-21-938-0292
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, Cape Town 7505, South Africa;
| | - Sumaiya Adam
- Department of Obstetrics and Gynecology, University of Pretoria, Private Bag X169, Pretoria 0001, South Africa;
| |
Collapse
|
41
|
Curcumin: Could This Compound Be Useful in Pregnancy and Pregnancy-Related Complications? Nutrients 2020; 12:nu12103179. [PMID: 33080891 PMCID: PMC7603145 DOI: 10.3390/nu12103179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Curcumin, the main polyphenol contained in turmeric root (Curcuma longa), has played a significant role in medicine for centuries. The growing interest in plant-derived substances has led to increased consumption of them also in pregnancy. The pleiotropic and multi-targeting actions of curcumin have made it very attractive as a health-promoting compound. In spite of the beneficial effects observed in various chronic diseases in humans, limited and fragmentary information is currently available about curcumin’s effects on pregnancy and pregnancy-related complications. It is known that immune-metabolic alterations occurring during pregnancy have consequences on both maternal and fetal tissues, leading to short- and long-term complications. The reported anti-inflammatory, antioxidant, antitoxicant, neuroprotective, immunomodulatory, antiapoptotic, antiangiogenic, anti-hypertensive, and antidiabetic properties of curcumin appear to be encouraging, not only for the management of pregnancy-related disorders, including gestational diabetes mellitus (GDM), preeclampsia (PE), depression, preterm birth, and fetal growth disorders but also to contrast damage induced by natural and chemical toxic agents. The current review summarizes the latest data, mostly obtained from animal models and in vitro studies, on the impact of curcumin on the molecular mechanisms involved in pregnancy pathophysiology, with the aim to shed light on the possible beneficial and/or adverse effects of curcumin on pregnancy outcomes.
Collapse
|
42
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
43
|
Nguyen-Ngo C, Willcox JC, Lappas M. Anti-inflammatory effects of phenolic acids punicalagin and curcumin in human placenta and adipose tissue. Placenta 2020; 100:1-12. [PMID: 32814232 DOI: 10.1016/j.placenta.2020.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The world is witnessing a steady rise in the prevalence of gestational diabetes mellitus (GDM), correlated with the current obesity epidemic. Both GDM and obesity negatively impact both the health of women but also that of the next generation. GDM and maternal obesity are associated with increased maternal and fetal inflammation and oxidative stress. A safe and effective intervention that can prevent these pathological features, and reduce the intergenerational burden, is required. Phenolic acids, such as punicalagin and curcumin, possess anti-inflammatory and antioxidant properties. Thus, the aim of this study was to examine the effects of punicalagin and curcumin on pro-inflammatory cytokines and chemokines, and antioxidant expression in an in vitro model of inflammation. METHODS Human placenta, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) explants were obtained at term elective Caesarean section and stimulated with TNF alpha (TNF). RESULTS We found that punicalagin and curcumin significantly supressed TNF-induced pro-inflammatory cytokine (IL1A, IL1B, and IL6) and chemokine (CCL2-4, CXCL1, CXCL5 and CXCL8) expression in human placenta, VAT and SAT. Anti-inflammatory cytokine IL4 and IL13 mRNA expression was also upregulated by punicalagin and curcumin treatment in placenta, VAT and SAT. Punicalagin and curcumin also altered antioxidant (SOD2 and catalase) mRNA expression in placenta, VAT and SAT, with minimal effect on hydrogen peroxide concentrations in tissue lysates. CONCLUSION These findings suggest that the phenolic acids punicalagin and curcumin possess potent anti-inflammatory capabilities in in vitro human models of inflammation. Further studies are warranted to determine their suitability as therapeutic interventions for pro-inflammatory gestational complications, including GDM and maternal obesity.
Collapse
Affiliation(s)
- Caitlyn Nguyen-Ngo
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Jane C Willcox
- Dietetics and Human Nutrition, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
44
|
Giacomeli R, Guerra Teixeira FE, Carvalho FB, Pacheco CO, Martins Parisotto AJ, Funguetto Ribeiro AC, Gomes de Gomes M, Haas SE. Curcumin-loaded poly(ϵ-caprolactone) lipid-core nanocapsules: Evaluation of fetal and maternal toxicity. Food Chem Toxicol 2020; 144:111625. [PMID: 32738367 DOI: 10.1016/j.fct.2020.111625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
This study was designed to examine fetal and maternal toxicity of curcumin (CURC) loaded lipid-core nanocapsules (LNC) prepared with poly(ϵ-caprolactone) as a polymer, administered during the organogenesis period. Free CURC and CURC loaded-LNC (C-LNC) (2 mg/kg), blank LNC (B-LNC) and saline (CONTROL) were administered per oral route from the 7° to 13° gestational day (GD). Dams were evaluated daily for body weight gain, clinical signs, water and food intake. On 20° GD, dams were euthanized, organs were weighed and blood was collected for biochemical determinations. Fetal biometrics and external morphological anomalies were assessed. Also, were performed histopathological analysis of placenta and measurement of cytokines levels in placental and fetal liver tissues. All groups did not cause changes in dams during the pregnancy. Furthermore, treatments did not cause external morphological changes and delayed fetal development. Still, for histopathological analysis of placental tissue, treatments did not cause alterations in evaluated parameters. For cytokines levels, CURC and C-LNC caused a decrease in placental levels of TNF-α. Therefore, we have demonstrated that C-LNC did not cause toxicological effects (mother and fetus), in the same manner as pattern bioactive compound, proving to be a promising nutraceutical delivery system for maternal supplementation with CURC.
Collapse
Affiliation(s)
- Renata Giacomeli
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS, 97500-970, Brazil
| | | | - Felipe Barbosa Carvalho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS, 97500-970, Brazil
| | - Camila Oliveira Pacheco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS, 97500-970, Brazil
| | - Alcides José Martins Parisotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS, 97500-970, Brazil
| | - Ana Claudia Funguetto Ribeiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS, 97500-970, Brazil
| | - Marcelo Gomes de Gomes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS, 97500-970, Brazil
| | - Sandra Elisa Haas
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS, 97500-970, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS, 97500-970, Brazil.
| |
Collapse
|
45
|
Wang Q, DU J, Liu F. Changes of Serum Adiponectin and Glycated Albumin Levels in Gestational Diabetes Mellitus Patients and Their Relationship with Insulin Resistance. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1252-1261. [PMID: 33083291 PMCID: PMC7548504 DOI: 10.18502/ijph.v49i7.3578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: We aimed to investigate the changes of serum adiponectin and glycated albumin (GA) levels in gestational diabetes mellitus patients and their relationship with insulin resistance. Methods: Overall, 137 pregnant women were enrolled from Jinan City People's Hospital, Laiwu District, China from Jan 2015 to Jun 2018. Among them, 71 pregnant women with gestational diabetes mellitus were examined as diabetes group, and 66 normal pregnant women as normal pregnant women group. In addition, 58 normal non-pregnant women of childbearing age who were examined in our hospital during the same period were selected as a control group. The serum adiponectin and GA levels of the three groups were compared, and the relationship between serum adiponectin, GA levels and insulin resistance was analyzed. Results: The serum adiponectin level of pregnant women in gestational diabetes mellitus (GDM) group was significantly lower than that of normal pregnant women and control group (P=0.031, P=0.027). The serum GA level of pregnant women in GDM group was significantly higher than that of normal pregnant women and control group (P<0.001). Pearson correlation analysis showed that GA was positively correlated with Fasting plasma glucose (FPG), Fasting insulin (FINS) and Insulin resistance index(HOMA-IR) levels (P<0.001), while adiponectin was negatively correlated with FPG FINS and HOMA-IR levels (P<0.001). Conclusion: Abnormal levels of serum GA and adiponectin are closely related to insulin resistance in patients with gestational diabetes mellitus. Detection of serum GA and adiponectin levels can diagnose gestational diabetes mellitus quickly and effectively.
Collapse
Affiliation(s)
- Qingju Wang
- Department of General Medicine, Jinan City People's Hospital, Jinan, China
| | - Juan DU
- Department of General Medicine, Jinan City People's Hospital, Jinan, China
| | - Fenglian Liu
- Department of General Medicine, Jinan City People's Hospital, Jinan, China
| |
Collapse
|
46
|
Sferruzzi-Perri AN, Lopez-Tello J, Napso T, Yong HEJ. Exploring the causes and consequences of maternal metabolic maladaptations during pregnancy: Lessons from animal models. Placenta 2020; 98:43-51. [PMID: 33039031 DOI: 10.1016/j.placenta.2020.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Pregnancy is a remarkable physiological state, during which the metabolic system of the mother adapts to ensure that nutrients are made available for transfer to the fetus for growth and development. Adaptations of maternal metabolism during pregnancy are influenced by the metabolic and nutritional status of the mother and the production of endocrine factors by the placenta that exert metabolic effects. Insufficient or inappropriate adaptations in maternal metabolism during pregnancy may lead to pregnancy complications with important short- and long-term effects for both the health of the child and mother. This is very evident in gestational diabetes, which is marked by greater glucose intolerance and insulin resistance above that expected of a normal pregnancy. Gestational diabetes is associated with increased fetal weight and/or increased adiposity, higher instrumented delivery rates and greater risks for both mother and child of developing type 2 diabetes in the long-term. However, despite the negative health impacts of such metabolic imbalances during pregnancy, the precise mechanisms responsible for orchestrating these changes remain largely unknown. The present review describes the dynamic pregnancy-specific changes that occur in the metabolic system of the mother during pregnancy. It also discusses findings using surgical, pharmacological, genetic and dietary methods in experimental animals that highlight the role of pathways in maternal tissues that lead to metabolic dysfunction, with a particular focus on gestational diabetes. Finally, it summarises the work largely employing gene targeting and hormone administration in rodents that have illuminated the involvement of placental endocrine function in driving maternal metabolic adaptations. While current animal models may not fully replicate what is observed in humans, these have been instrumental in showing that there is a dynamic interplay between changes in maternal metabolic physiology and the placental production of endocrine factors that govern the availability of nutrients to the growing fetus. However, more work is required to specifically identify the placenta-driven changes in maternal metabolic physiology that ensure the appropriate level of insulin production and action during pregnancy. In doing so, these studies may pave the way to understanding the development of pregnancy complications like gestational diabetes, as well as further our understanding of type-2 diabetes and the control of metabolic physiology more broadly.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Hannah E J Yong
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
47
|
Zheng J, Xu J, Zhang Y, Zhou N. Effects of insulin combined with metformin on serum cystatin C, homocysteine and maternal and neonatal outcomes in pregnant women with gestational diabetes mellitus. Exp Ther Med 2019; 19:467-472. [PMID: 31853319 PMCID: PMC6909788 DOI: 10.3892/etm.2019.8224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/02/2019] [Indexed: 12/30/2022] Open
Abstract
Effects of insulin combined with metformin on serum cystatin C (Cys C), homocysteine (Hcy) and maternal and neonatal outcomes in pregnant women with gestational diabetes mellitus (GDM) were investigated. In total, 80 cases of pregnant women diagnosed with GDM in the Department of Obstetrics and Gynecology of Liaocheng Third People's Hospital from July 2015 to July 2017 were selected and divided into a study group (42 cases) and a control group (38 cases). The study group was treated with insulin combined with metformin, and the control group was treated with insulin. Fasting blood glucose (FBG) and postprandial blood glucose after 2 h (2hPG) of the two groups were compared before and after treatment. Levels of serum Cys C, Hcy, urinary protein (UmAlb), postpartum maternal outcomes and adverse reactions during pregnancy were compared in the two groups before and after treatment. After treatment, the level of FBG and 2hPG in the control group was higher than that in the treatment group (P<0.05). After treatment, the level of serum Cys C and Hcy in both groups were lower than that before the treatment, and the level in the study group was lower than that in the control group (P<0.05). The total incidence of neonatal adverse outcomes and the number of adverse pregnancies in GDM patients in the study group were significantly lower than those in the control group (P<0.05). There were no significant differences in adverse reactions during pregnancy between the two groups (P>0.05). In conclusion, insulin combined with metformin is more effective than insulin alone in reducing serum Cys C and Hcy levels, with significant effect on the improvement of maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Jizeng Zheng
- Department of Obstetrics and Gynecology, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Juan Xu
- Department of Obstetrics, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Yin Zhang
- Department of Obstetrics and Gynecology, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Nan Zhou
- Department of Health Care, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
48
|
Pivari F, Mingione A, Brasacchio C, Soldati L. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients 2019; 11:E1837. [PMID: 31398884 PMCID: PMC6723242 DOI: 10.3390/nu11081837] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an ensemble of metabolic diseases that has reached pandemic dimensions all over the world. The multifactorial nature of the pathology makes patient management, which includes lifelong drug therapy and lifestyle modification, extremely challenging. It is well known that T2DM is a preventable disease, therefore lowering the incidence of new T2DM cases could be a key strategy to reduce the global impact of diabetes. Currently, there is growing evidence on the efficacy of the use of medicinal plants supplements for T2DM prevention and management. Among these medicinal plants, curcumin is gaining a growing interest in the scientific community. Curcumin is a bioactive molecule present in the rhizome of the Curcuma longa plant, also known as turmeric. Curcumin has different pharmacological and biological effects that have been described by both in vitro and in vivo studies, and include antioxidant, cardio-protective, anti-inflammatory, anti-microbial, nephro-protective, anti-neoplastic, hepato-protective, immunomodulatory, hypoglycaemic and anti-rheumatic effects. In animal models, curcumin extract delays diabetes development, improves β-cell functions, prevents β-cell death, and decreases insulin resistance. The present review focuses on pre-clinical and clinical trials on curcumin supplementation in T2DM and discusses the peculiar mechanisms by which curcumin might ameliorate diabetes management.
Collapse
Affiliation(s)
- Francesca Pivari
- Department of Health Sciences, University of Milan, Via A. Di Rudinì, 8, 20142 Milan, Italy.
| | - Alessandra Mingione
- Department of Health Sciences, University of Milan, Via A. Di Rudinì, 8, 20142 Milan, Italy
| | - Caterina Brasacchio
- Department of Health Sciences, University of Milan, Via A. Di Rudinì, 8, 20142 Milan, Italy
| | - Laura Soldati
- Department of Health Sciences, University of Milan, Via A. Di Rudinì, 8, 20142 Milan, Italy
| |
Collapse
|