1
|
Srihanam P, Prapasri A, Janthar M, Leangtanom P, Thongsomboon W. Efficient dye removal using manganese oxide-modified nanocellulosic films from sugarcane bagasse. Int J Biol Macromol 2024; 280:135910. [PMID: 39322158 DOI: 10.1016/j.ijbiomac.2024.135910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Removing toxic dyes from industrial wastewater is crucial for environmental protection. This research introduced novel composite films of manganese oxide (MnO2)-modified nanocellulose (MCel) and unmodified nanocellulose (Cel) derived from sugarcane bagasse for dye removal. Nanocellulose was extracted from sugarcane bagasse and subsequently transformed into MCel through in-situ MnO2 synthesis. The MCel/Cel composites, with various MCel to Cel ratios, were fabricated into films and evaluated for their efficiency in removing methylene blue (MB). The films were characterized using Fourier transform infrared spectroscopy for functional group analysis, X-ray diffraction for crystallinity, X-ray photoelectron spectroscopy for chemical state analysis, field emission scanning electron microscopy-energy dispersive spectroscopy for morphology and elemental composition, and Thermogravimetric Analysis for thermal behaviors. Adsorption results showed that all MCel/Cel composite films achieved over 97 % removal of MB (initial concentration 100 mg L-1) within 24 h, with convenient adsorbent retrieval after adsorption. The adsorption process followed a pseudo-second order kinetic model and Langmuir adsorption isotherm. The optimal 95:5 MCel/Cel film exhibited a rate constant of 6.16 × 10-4 g mg-1 min-1 and the calculated adsorption capacity of 181.85 mg g-1. These results demonstrate significant potential for wastewater treatment and sustainable waste valorization by converting sugarcane bagasse cellulose into environmentally friendly adsorbents for contaminant removal.
Collapse
Affiliation(s)
- Prasong Srihanam
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand; Biodegradable Polymers Research Unit, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Amamita Prapasri
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Marisa Janthar
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Pimpan Leangtanom
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wiriya Thongsomboon
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand; Biodegradable Polymers Research Unit, Mahasarakham University, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
2
|
El-Wahab RMA, Fadel SM, Abdel-Karim AM, Eloui SM, Hassan ML. Novel green flexible rice straw nanofibers/zinc oxide nanoparticles films with electrical properties. Sci Rep 2023; 13:1927. [PMID: 36732552 PMCID: PMC9894901 DOI: 10.1038/s41598-023-28999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
In the current work, rice straw nanofibers (RSNF) with the width of elementary fibrils (~ 4-5 nm) were isolated from rice straw. The isolated nanofibers were used with zinc oxide nanoparticles (ZnONPs) to prepare flexible nanopaper films. Tensile strength and electrical properties of the prepared RSNF/ZnONPs nanopaper were investigated. The addition of ZnONPs to RSNF nanopaper did not deteriorate its mechanical properties and showed a slight improvement in tensile strength and Young's modulus of about 14% and 10%, respectively, upon the addition of 5% of ZnONPs. Microscopy investigation using scanning electron microscopy (SEM) showed the inclusion of the ZnONPs within the RSNF. Electrical conductivity and dielectric properties as a function of frequency at different temperatures were studied. The ac-electrical conductivity increased with frequency and fitted with the power law equation. The dc- electrical conductivity of the samples verified the Arrhenius equation and the activation energies varied in the range from 0.9 to 0.42 eV. The dielectric constant decreased with increasing frequency and increased with increasing temperature, probably due to the free movement of dipole molecular chains within the RSNF nanopaper. The high values of the dielectric constant and conductivity of the prepared nanopaper films support their use in electronic components.
Collapse
Affiliation(s)
- Rasha M Abd El-Wahab
- Physical Chemistry Department, National Research Centre, 33 El Bohouth Street, Dokki, Giza, 12622, Egypt
| | - Shaimaa M Fadel
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth Street, Dokki, Giza, 12622, Egypt
| | - Amal M Abdel-Karim
- Physical Chemistry Department, National Research Centre, 33 El Bohouth Street, Dokki, Giza, 12622, Egypt
| | - Sherif M Eloui
- Inorganic Chemistry Department, National Research Centre, 33 El Bohouth Street, Dokki, Giza, 12622, Egypt
| | - Mohammad L Hassan
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth Street, Dokki, Giza, 12622, Egypt.
- Advanced Materials and Nanotechnology Group, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth Street, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
3
|
Choque-Quispe D, Choque-Quispe Y, Ligarda-Samanez CA, Peralta-Guevara DE, Solano-Reynoso AM, Ramos-Pacheco BS, Taipe-Pardo F, Martínez-Huamán EL, Aguirre Landa JP, Agreda Cerna HW, Loayza-Céspedes JC, Zamalloa-Puma MM, Álvarez-López GJ, Zamalloa-Puma A, Moscoso-Moscoso E, Quispe-Quispe Y. Effect of the Addition of Corn Husk Cellulose Nanocrystals in the Development of a Novel Edible Film. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3421. [PMID: 36234547 PMCID: PMC9565820 DOI: 10.3390/nano12193421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The cellulose from agroindustrial waste can be treated and converted into nanocrystals or nanofibers. It could be used to produce biodegradable and edible films, contributing to the circular economy and being environmentally friendly. This research aimed to develop an edible film elaborated with activated cellulose nanocrystals, native potato starch, and glycerin. The activated cellulose nanocrystals were obtained by basic/acid digestion and esterification with citric acid from corn husks. The starch was extracted from the native potato cultivated at 3500 m of altitude. Four film formulations were elaborated with potato starch (2.6 to 4.4%), cellulose nanocrystals (0.0 to 0.12%), and glycerin (3.0 to 4.2%), by thermoforming at 60 °C. It was observed that the cellulose nanocrystals reported an average size of 676.0 nm. The films mainly present hydroxyl, carbonyl, and carboxyl groups that stabilize the polymeric matrix. It was observed that the addition of cellulose nanocrystals in the films significantly increased (p-value < 0.05) water activity (0.409 to 0.447), whiteness index (96.92 to 97.27), and organic carbon content. In opposition to gelatinization temperature (156.7 to 150.1 °C), transparency (6.69 to 6.17), resistance to traction (22.29 to 14.33 N/mm), and solubility in acidic, basic, ethanol, and water media decreased. However, no significant differences were observed in the thermal decomposition of the films evaluated through TGA analysis. The addition of cellulose nanocrystals in the films gives it good mechanical and thermal resistance qualities, with low solubility, making it a potential food-coating material.
Collapse
Affiliation(s)
- David Choque-Quispe
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yudith Choque-Quispe
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Carlos A. Ligarda-Samanez
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Diego E. Peralta-Guevara
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Aydeé M. Solano-Reynoso
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Tecnológica de los Andes, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Fredy Taipe-Pardo
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Edgar L. Martínez-Huamán
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - John Peter Aguirre Landa
- Department of Business Administration, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Henrry W. Agreda Cerna
- Department of Business Administration, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Julio C. Loayza-Céspedes
- Departamento de Ingeniería Agropecuaria, Universidad Nacional de San Antonio Abad del Cusco, Andahuaylas 03701, Peru
| | | | | | - Alan Zamalloa-Puma
- Department of Physics, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08000, Peru
| | - Elibet Moscoso-Moscoso
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yadyra Quispe-Quispe
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| |
Collapse
|
4
|
Abstract
Abaca fibers were subjected to a TEMPO mediated oxidation to extract nanocellulose on a 500 L capacity locally fabricated reactor. A yield of 46.7% white gel material with 2.23% solid content was obtained from an overnight reaction. Transmission electron microscopy scan of the white gel material confirms the production of relatively short highly individualized cellulose nanofibril (CNF) as the diameter of abaca fiber was reduced from 16.28 μm to 3.12 nm with fiber length in the range of 100 nm to 200 nm. Nanocellulose film was prepared using air drying (CNF-VC) and vacuum oven drying (CNF-OD). The effect of CNF concentration on the physical, morphological, thermal and mechanical properties were evaluated. FTIR spectra showed cellulose I spectra between abaca fiber with both the CNF-VC film and CNF-OD film with two distinct peaks at 1620 cm−1 and 1720 cm−1 attributed to the carboxyl group resulting from the TEMPO oxidation. In addition, the carboxyl group decreases in thermal stability of cellulose. Moreover, the XRD scan showed a decrease in crystallinity index of CNF films compared to abaca fibers. CNF-VC film showed the highest tensile strength at 0.4% concentration with 88.30 MPa, while a 89.72 MPa was observed for CNF-OD film at 0.8% concentration.
Collapse
|
5
|
Fernandes M, Padrão J, Ribeiro AI, Fernandes RDV, Melro L, Nicolau T, Mehravani B, Alves C, Rodrigues R, Zille A. Polysaccharides and Metal Nanoparticles for Functional Textiles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1006. [PMID: 35335819 PMCID: PMC8950406 DOI: 10.3390/nano12061006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
Nanotechnology is a powerful tool for engineering functional materials that has the potential to transform textiles into high-performance, value-added products. In recent years, there has been considerable interest in the development of functional textiles using metal nanoparticles (MNPs). The incorporation of MNPs in textiles allows for the obtention of multifunctional properties, such as ultraviolet (UV) protection, self-cleaning, and electrical conductivity, as well as antimicrobial, antistatic, antiwrinkle, and flame retardant properties, without compromising the inherent characteristics of the textile. Environmental sustainability is also one of the main motivations in development and innovation in the textile industry. Thus, the synthesis of MNPs using ecofriendly sources, such as polysaccharides, is of high importance. The main functions of polysaccharides in these processes are the reduction and stabilization of MNPs, as well as the adhesion of MNPs onto fabrics. This review covers the major research attempts to obtain textiles with different functional properties using polysaccharides and MNPs. The main polysaccharides reported include chitosan, alginate, starch, cyclodextrins, and cellulose, with silver, zinc, copper, and titanium being the most explored MNPs. The potential applications of these functionalized textiles are also reported, and they include healthcare (wound dressing, drug release), protection (antimicrobial activity, UV protection, flame retardant), and environmental remediation (catalysts).
Collapse
|
6
|
Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr Polym 2021; 273:118507. [PMID: 34560938 DOI: 10.1016/j.carbpol.2021.118507] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Cellulose nanofibril (CNF) paper has various applications due to its unique advantages. Herein, we present the intrinsic mechanical properties of CNF papers, along with the preparation and properties of nanoparticle-reinforced CNF composite papers. The literature on CNF papers reveals a strong correlation between the intrafibrillar network structure and the resulting mechanical properties. This correlation is found to hold for all primary factors affecting mechanical properties, indicating that the performance of CNF materials depends directly on and can be tailored by controlling the intrafibrillar network of the system. The parameters that influence the mechanical properties of CNF papers were critically reviewed. Moreover, the effect on the mechanical properties by adding nanofillers to CNF papers to produce multifunctional composite products was discussed. We concluded this article with future perspectives and possible developments in CNFs and their bionanocomposite papers.
Collapse
|
7
|
Water-resistant nanopaper with tunable water barrier and mechanical properties from assembled complexes of oppositely charged cellulosic nanomaterials. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Pakharenko V, Mukherjee S, Dias OAT, Wu C, Manion J, Singh CV, Seferos D, Tjong J, Oksman K, Sain M. Thermoconformational Behavior of Cellulose Nanofiber Films as a Device Substrate and Their Superior Flexibility and Durability to Glass. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40853-40862. [PMID: 34403248 DOI: 10.1021/acsami.1c10589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design and high-throughput manufacturing of thin renewable energy devices with high structural and atomic configurational stability are crucial for the fabrication of green electronics. Yet, this concept is still in its infancy. In this work, we report the extraordinary durability of thin molecular interlayered organic flexible energy devices based on chemically tuned cellulose nanofiber transparent films that outperform glass by decreasing the substrate weight by 50%. The nanofabricated flexible thin film has an exceptionally low thermal coefficient of expansion of 1.8 ppm/K and a stable atomic configuration under a harsh fabrication condition (over 190 °C for an extended period of 5 h). A flexible optoelectronic device using the same renewable cellulose nanofiber film substrate was found to be functionally operational over a life span of 5 years under an intermittent operating condition. The success of this device's stability opens up an entirely new frontier of applications of flexible electronics.
Collapse
Affiliation(s)
- Viktoriya Pakharenko
- Center for Biocomposites and Biomaterials Processing, Graduate Department of Forestry, John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, 33 Willcocks Street, Toronto M5S3E8, Canada
| | - Sankha Mukherjee
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto M5S3E4, Canada
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Otavio Augusto Titton Dias
- Center for Biocomposites and Biomaterials Processing, Graduate Department of Forestry, John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, 33 Willcocks Street, Toronto M5S3E8, Canada
| | - Crystal Wu
- Center for Biocomposites and Biomaterials Processing, Graduate Department of Forestry, John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, 33 Willcocks Street, Toronto M5S3E8, Canada
| | - Joseph Manion
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S3H6, Canada
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto M5S3E4, Canada
| | - Dwight Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S3H6, Canada
| | - Jimi Tjong
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S3G8, Canada
| | - Kristiina Oksman
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S3G8, Canada
- Division of Materials Science, Luleå University of Technology, Luleå 97187, Sweden
| | - Mohini Sain
- Center for Biocomposites and Biomaterials Processing, Graduate Department of Forestry, John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, 33 Willcocks Street, Toronto M5S3E8, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S3G8, Canada
| |
Collapse
|
9
|
Jaiswal AK, Hokkanen A, Kumar V, Mäkelä T, Harlin A, Orelma H. Thermoresponsive Nanocellulose Films as an Optical Modulation Device: Proof-of-Concept. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25346-25356. [PMID: 34006108 PMCID: PMC8289189 DOI: 10.1021/acsami.1c03541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/05/2021] [Indexed: 06/02/2023]
Abstract
Flexible optoelectronic technologies are becoming increasingly important with the advent of concepts such as smart-built environments and wearable systems, where they have found applications in displays, sensing, healthcare, and energy harvesting. Parallelly, there is also a need to make these innovations environmentally sustainable by design. In the present work, we employ nanocellulose and its excellent film-forming properties as a basis to develop a green flexible photonic device for sensing applications. Cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) were used as matrix materials along with a black thermochromic pigment to prepare thermoresponsive hybrid films. Optical properties of nanocellulose films such as transparency and haze were tuned by varying pigment loading. Nearly 90% transparent CNF and CNC films could be tuned to reduce the transmission to as low as 4 and 17%, respectively. However, the films regained transparency to up to 60% when heated above the thermochromic transition temperature (31 °C). The thermoresponsive behavior of the prepared films was exploited to demonstrate an all-optical modulation device. Continuous infrared light (1300 nm) was modulated by using a 660 nm visible diode laser. The laser intensity was sufficient to cause a localized thermochromic transition in the films. The laser was pulsed at 0.3 Hz and a uniform cyclic modulation depth of 0.3 dB was achieved. The demonstrated application of functional nanocellulose hybrid films as a light switch (modulator) could be harnessed in various thermally stimulated sensing systems such as temperature monitoring, energy-saving, and anti-counterfeiting.
Collapse
Affiliation(s)
- Aayush Kumar Jaiswal
- Biomass
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Ari Hokkanen
- Microelectronics, VTT Technical Research Centre of Finland Ltd., Tietotie 3, 02044 Espoo, Finland
| | - Vinay Kumar
- Biomass
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Tapio Mäkelä
- Sensing
and Integration, VTT Technical Research
Centre of Finland Ltd., Tietotie 3, 02044 Espoo, Finland
| | - Ali Harlin
- Biomass
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Hannes Orelma
- Biomass
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| |
Collapse
|
10
|
Koyama N, Hanasaki I. Spatio-temporally controlled suppression of the coffee-ring phenomenon by cellulose nanofibers. SOFT MATTER 2021; 17:4826-4833. [PMID: 33876787 DOI: 10.1039/d1sm00315a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sessile droplets of colloidal dispersions tend to exhibit the coffee-ring phenomenon in the drying process. The suspended particles are transported especially at the final stage of the drying process, which is called the rush hour. Conventional inkjet printers require the ink liquid to have a sufficiently low viscosity for inkjet discharge, but such liquids tend to be subject to the coffee-ring effect. The coffee-ring effect is an issue for conventional printing applications and drawing wires in printed electronics. We show by microscopy movie data analysis based on single particle tracking that the addition of a small amount of cellulose nanofibers (CNFs) to the colloidal dispersion works in such a way that the initial low concentration satisfies the low viscosity requirement, and the three-dimensional structural order of the CNFs formed during the final stage of droplet drying owing to the high concentration hinders the transport of particles to the periphery, suppressing the coffee-ring effect. This is a spatio-temporally controlled process that makes use of the inherent process of ordinary ink printing situations by the simple protocol. This is also an approach to seamlessly link the ink and substrate since CNFs are regarded as a promising substrate material for flexible devices in printed electronics because of their fine texture that keeps conductive nanoparticles on the surface.
Collapse
Affiliation(s)
- Naoto Koyama
- Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Itsuo Hanasaki
- Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
11
|
Mamat Razali NA, Ismail MF, Abdul Aziz F. Characterization of nanocellulose from
Indica
rice straw as reinforcing agent in epoxy‐based nanocomposites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nur Amira Mamat Razali
- Department of Physics, Centre For Defence Foundation Studies National Defence University of Malaysia Kuala Lumpur Malaysia
| | - Muhamad Fareez Ismail
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry MAHSA University Selangor Malaysia
| | - Fauziah Abdul Aziz
- Department of Physics, Centre For Defence Foundation Studies National Defence University of Malaysia Kuala Lumpur Malaysia
| |
Collapse
|
12
|
Svensson FG, Manivel VA, Seisenbaeva GA, Kessler VG, Nilsson B, Ekdahl KN, Fromell K. Hemocompatibility of Nanotitania-Nanocellulose Hybrid Materials. NANOMATERIALS 2021; 11:nano11051100. [PMID: 33923181 PMCID: PMC8146062 DOI: 10.3390/nano11051100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/01/2023]
Abstract
In order to develop a new type of improved wound dressing, we combined the wound healing properties of nanotitania with the advantageous dressing properties of nanocellulose to create three different hybrid materials. The hemocompatibility of the synthesized hybrid materials was evaluated in an in vitro human whole blood model. To our knowledge, this is the first study of the molecular interaction between hybrid nanotitania and blood proteins. Two of the hybrid materials prepared with 3 nm colloidal titania and 10 nm hydrothermally synthesized titania induced strong coagulation and platelet activation but negligible complement activation. Hence, they have great potential as a new dressing for promoting wound healing. Unlike the other two, the third hybrid material using molecular ammonium oxo-lactato titanate as a titania source inhibited platelet consumption, TAT generation, and complement activation, apparently via lowered pH at the surface interface. It is therefore suitable for applications where a passivating surface is desired, such as drug delivery systems and extracorporeal circuits. This opens the possibility for a tailored blood response through the surface functionalization of titania.
Collapse
Affiliation(s)
- Fredric G. Svensson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden; (F.G.S.); (G.A.S.); (V.G.K.)
| | - Vivek Anand Manivel
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (V.A.M.); (B.N.); (K.N.E.)
| | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden; (F.G.S.); (G.A.S.); (V.G.K.)
| | - Vadim G. Kessler
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden; (F.G.S.); (G.A.S.); (V.G.K.)
| | - Bo Nilsson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (V.A.M.); (B.N.); (K.N.E.)
| | - Kristina N. Ekdahl
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (V.A.M.); (B.N.); (K.N.E.)
- Linnæus Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Karin Fromell
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (V.A.M.); (B.N.); (K.N.E.)
- Correspondence:
| |
Collapse
|
13
|
Electric Transport in Gold-Covered Sodium-Alginate Free-Standing Foils. NANOMATERIALS 2021; 11:nano11030565. [PMID: 33668347 PMCID: PMC7996263 DOI: 10.3390/nano11030565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
The electric transport properties of flexible and transparent conducting bilayers, realized by sputtering ultrathin gold nanometric layers on sodium-alginate free-standing films, were studied. The reported results cover a range of temperatures from 3 to 300 K. In the case of gold layer thicknesses larger than 5 nm, a typical metallic behavior was observed. Conversely, for a gold thickness of 4.5 nm, an unusual resistance temperature dependence was found. The dominant transport mechanism below 70 K was identified as a fluctuation-induced tunneling process. This indicates that the conductive region is not continuous but is formed by gold clusters embedded in the polymeric matrix. Above 70 K, instead, the data can be interpreted using a phenomenological model, which assumes an anomalous expansion of the conductive region upon decreasing the temperature, in the range from 300 to 200 K. The approach herein adopted, complemented with other characterizations, can provide useful information for the development of innovative and green optoelectronics.
Collapse
|
14
|
Jasmani L, Rusli R, Khadiran T, Jalil R, Adnan S. Application of Nanotechnology in Wood-Based Products Industry: A Review. NANOSCALE RESEARCH LETTERS 2020; 15:207. [PMID: 33146807 PMCID: PMC7642047 DOI: 10.1186/s11671-020-03438-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/21/2020] [Indexed: 05/05/2023]
Abstract
Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest. This review highlights recent developments in nanotechnology application in the wood-based products industry.
Collapse
Affiliation(s)
- Latifah Jasmani
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Rafeadah Rusli
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Rafidah Jalil
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Sharmiza Adnan
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| |
Collapse
|
15
|
Zaaba NF, Jaafar M, Ismail H. Tensile and morphological properties of nanocrystalline cellulose and nanofibrillated cellulose reinforced
PLA
bionanocomposites: A review. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nor Fasihah Zaaba
- School of Materials and Mineral Resources Engineering, Engineering Campus Universiti Sains Malaysia Nibong Tebal Malaysia
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Engineering Campus Universiti Sains Malaysia Nibong Tebal Malaysia
| | - Hanafi Ismail
- School of Materials and Mineral Resources Engineering, Engineering Campus Universiti Sains Malaysia Nibong Tebal Malaysia
| |
Collapse
|
16
|
Park SY, Yook S, Goo S, Im W, Youn HJ. Preparation of Transparent and Thick CNF/Epoxy Composites by Controlling the Properties of Cellulose Nanofibrils. NANOMATERIALS 2020; 10:nano10040625. [PMID: 32231002 PMCID: PMC7221880 DOI: 10.3390/nano10040625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Cellulose nanofibrils (CNFs) have been used as reinforcing elements in optically transparent composites by combination with polymer matrices. In this study, strong, optically transparent, and thick CNF/epoxy composites were prepared by immersing two or four layers of CNF sheets in epoxy resin. The morphology of the CNF, the preparation conditions of the CNF sheet, and the grammage and layer numbers of the CNF sheets were controlled. The solvent-exchanged CNF sheets resulted in the production of a composite with high transparency and low haze. The CNF with smaller width and less aggregated fibrils, which are achieved by carboxymethylation, and a high number of grinding passes are beneficial in the production of optically transparent CNF/epoxy composites. Both the grammage and number of stacked layers of sheets in a composite affected the optical and mechanical properties of the composite. A composite with a thickness of 450-800 μm was prepared by stacking two or four layers of CNF sheets in epoxy resin. As the number of stacked sheets increased, light transmittance was reduced and the haze increased. The CNF/epoxy composites with two layers of low grammage (20 g/m2) sheets exhibited high light transmittance (>90%) and low haze (<5%). In addition, the composites with the low grammage sheet had higher tensile strength and elastic modulus compared with neat epoxy and those with high grammage sheets.
Collapse
Affiliation(s)
- Shin Young Park
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.P.); (S.Y.); (S.G.)
| | - Simyub Yook
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.P.); (S.Y.); (S.G.)
| | - Sooim Goo
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.P.); (S.Y.); (S.G.)
| | - Wanhee Im
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Hye Jung Youn
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.P.); (S.Y.); (S.G.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Correspondence: ; Tel.: +82-2-880-4787
| |
Collapse
|
17
|
Xiong J, Lee PS. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:837-857. [PMID: 31497178 PMCID: PMC6720508 DOI: 10.1080/14686996.2019.1650396] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 05/23/2023]
Abstract
Textile has been known for thousands of years for its ease of use, comfort, and wear resistance, which resulted in a wide range of applications in garments and industry. More recently, textile emerges as a promising substrate for self-powered wearable power sources that are desired in wearable electronics. Important progress has been attained in the exploitation of wearable triboelectric nanogenerators (TENGs) in shapes of fiber, yarn, and textile. Along with the effective integration of other devices such as supercapacitor, lithium battery, and solar cell, their feasibility for realizing self-charging wearable systems has been proven. In this review, according to the manufacturing process of traditional textiles starting from fibers, twisting into yarns, and weaving into textiles, we summarize the progress on wearable TENGs in shapes of fiber, yarn, and textile. We explicitly discuss the design strategies, configurations, working mechanism, performances, and compare the merits of each type of TENGs. Finally, we present the perspectives, existing challenges and possible routes for future design and development of triboelectric textiles.
Collapse
Affiliation(s)
- Jiaqing Xiong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
18
|
Sethi J, Farooq M, Österberg M, Illikainen M, Sirviö JA. Stereoselectively water resistant hybrid nanopapers prepared by cellulose nanofibers and water-based polyurethane. Carbohydr Polym 2018; 199:286-293. [PMID: 30143131 DOI: 10.1016/j.carbpol.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/15/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Cellulose nanopapers, known for excellent mechanical properties, loses 90% of their stiffness in the wet conditions. In this study, we attempt to improve the wet mechanical properties of cellulose nanopaper by incorporating polyurethane by a novel and ecofriendly method. Water based PU was dispersed along with CNFs in water and hybrid nanopapers were prepared by draining water under vacuum followed by forced drying. These hybrid nanopapers have a gradient interpenetrating structure with PU concentrated towards one side and CNFs towards the other, which was confirmed by scanning electron microscopy, x-ray photoelectron spectroscopy and contact angle measurements. Because of this, the nanopapers are water resistant on one surface (PU rich side) and hydrophilic on the other (cellulose rich side), making them stereoselectively water resistant. When wetted with water on the PU side, the hybrid nanopaper with 10% PU is able to retain 65% modulus; on the other hand, the reference retains only 10% of the modulus. Similar results are seen in the tensile and the yield strength. Additionally, the hybrid nanopapers have higher elongation and improved thermal stability. The reported material is relevant to the applications such as flexible electronics and transparent displays.
Collapse
Affiliation(s)
- Jatin Sethi
- Fibre and Particle Engineering, University of Oulu, Oulu, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, Aalto University, Helsinki, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, Aalto University, Helsinki, Finland
| | - Mirja Illikainen
- Fibre and Particle Engineering, University of Oulu, Oulu, Finland
| | | |
Collapse
|
19
|
Ren’ai L, Zhang K, Chen G, Su B, Tian J, He M, Lu F. Green polymerizable deep eutectic solvent (PDES) type conductive paper for origami 3D circuits. Chem Commun (Camb) 2018; 54:2304-2307. [DOI: 10.1039/c7cc09209a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a green fabrication of conductive paper based on polymerizable deep eutectic solvents and its flexibility to origami electronics.
Collapse
Affiliation(s)
- Li Ren’ai
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Kaili Zhang
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Guangxue Chen
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Bin Su
- Department of Chemical Engineering
- Monash University
- Clayton
- Australia
| | - Junfei Tian
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Minghui He
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- Guangdong Engineering Research Center for Green Fine Chemical Products
| | - Fachuang Lu
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- Guangdong Engineering Research Center for Green Fine Chemical Products
| |
Collapse
|