1
|
Liang SJ, Wang K, Mao DB, Xie LW, Zhu DJ. Inhibition of the Wnt/β‑catenin signaling pathway and SOX9 by XAV939 did not alleviate inflammation in a dextran sulfate sodium‑induced ulcerative colitis model. Exp Ther Med 2025; 29:24. [PMID: 39650775 PMCID: PMC11619566 DOI: 10.3892/etm.2024.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/12/2024] [Indexed: 12/11/2024] Open
Abstract
The Wnt/β-catenin signaling pathway has been reported to be hyperactivated during the pathogenesis of ulcerative colitis (UC). The present study aimed to explore the therapeutic efficacy of the Wnt/β-catenin signaling inhibitor XAV939 in mitigating UC symptoms. Utilizing a dextran sulfate sodium (DSS)-induced UC mouse model, the present study aimed to evaluate the impact of XAV939 on intestinal morphology through hematoxylin and eosin staining and to measure the expression levels of critical proteins in the Wnt/β-catenin signaling cascade. XAV939 did not exert a significant influence on the morphological features and inflammatory status of the intestinal epithelium. However, XAV939 was found to effectively suppress the Wnt/β-catenin signaling pathway and its downstream target SOX9. This suppression implied a reduction in the differentiation of intestinal stem cells into secretory cell progenitor cells. Additionally, XAV939 was ineffective at reversing the DSS-induced decrease in expression levels of Villin and peroxisome proliferator-activated receptor γ, which suggested that it did not facilitate the differentiation of intestinal absorptive cells. The present findings indicated that the Wnt/β-catenin signaling pathway may not be the predominant mechanism in the pathogenesis of DSS-induced UC.
Collapse
Affiliation(s)
- Shao-Jie Liang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Kun Wang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| | - Da-Bin Mao
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| | - Li-Wei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510075, P.R. China
| | - Da-Jian Zhu
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| |
Collapse
|
2
|
Xiao Q, Huang J, Zhu X, Shi M, Chen L, Chen L, Liu X, Liu R, Zhong Y. Formononetin ameliorates dextran sulfate sodium-induced colitis via enhancing antioxidant capacity, promoting tight junction protein expression and reshaping M1/M2 macrophage polarization balance. Int Immunopharmacol 2024; 142:113174. [PMID: 39288627 DOI: 10.1016/j.intimp.2024.113174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Ulcerative colitis (UC) is a complex, refractory inflammatory bowel disease characterized impared intestinal mucosal barrier and imbalanced M1/M2 macrophage polarization mediating its progression. Formononetin (FN), a bioactive isoflavone with established anti-inflammatory and immunomodulatory properties, shows promise in mitigating UC, yet its therapeutic and underlying mechanisms remain unclear. In this study, colitis was induced in mice by administering 2.5% (w/v) dextran sulfate sodium (DSS) solution for 7 days. Oral (25, 50, and 100 mg/kg) FN for 10 days significantly ameliorated colitis symptoms in a dose-dependent manner, by mitigating body weight loss, reducing disease activity index (DAI), colonic weight, and colonic weight index, while enhancing survival rates and colonic length. Histological analysis revealed FN remarkably suppressed inflammatory damage in colonic tissues. Furthermore, FN modulated the expression of pro- and anti-inflammatory cytokines and enhanced antioxidant capacity. Notably, FN treatment significantly enhanced the expression of tight junction (TJ) proteins (claudin-1, ZO-1, occludin) at both protein and mRNA levels in the colon tissues, suggesting improved intestinal barrier function. Crucially, FN inhibited macrophage infiltration in colonic tissues and rebalanced M1/M2 macrophage polarization. While, macrophage depletion largely abrogated FN's protective effects against colitis, indicating a crucial role for macrophages in mediating FN's therapeutic response. Overall, FN effectively alleviated colitis primarily via modulating inflammatory cytokine expression, enhancing antioxidant capacity, upregulating TJs proteins expression, and remodeling M1/M2 macrophage polarization equilibrium. These findings suggest that FN could be the next candidate to unlocking UC's treatment challenge.
Collapse
Affiliation(s)
- Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiyan Zhu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Min Shi
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Liling Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Lai Chen
- Institute of Cancer Research, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xuan Liu
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
3
|
Lee KR, Gulnaz A, Chae YJ. Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management. Pharmaceutics 2024; 16:1431. [PMID: 39598554 PMCID: PMC11597736 DOI: 10.3390/pharmaceutics16111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a complex and chronic condition that requires the use of various pharmacological agents for its management. Despite advancements in IBD research, the multifaceted mechanisms involved continue to pose significant challenges for strategic prevention. Therefore, it is crucial to prioritize safe and effective treatment strategies using the currently available pharmacological agents. Given that patients with IBD often require multiple medications due to combination therapy or other underlying conditions, a comprehensive understanding of drug interactions is essential for optimizing treatment regimens. In this review, we examined the pharmacological treatment options recommended in the current IBD management guidelines and provided a comprehensive analysis of the known pharmacokinetic interactions associated with these medications. In particular, this review includes recent research results for the impact of anti-drug antibodies (ADAs) on the concentrations of biological agents used in IBD treatment. By leveraging detailed interaction data and employing personalized dosing strategies, healthcare providers can improve therapeutic outcomes and minimize adverse effects, ultimately improving the quality of care for patients with IBD.
Collapse
Affiliation(s)
- Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Aneela Gulnaz
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| |
Collapse
|
4
|
Estevinho MM, Sousa-Pinto B, Moreira PL, Solitano V, Mesquita P, Costa C, Peyrin-Biroulet L, Danese S, Jairath V, Magro F. Network Meta-Analysis: Histologic and Histo-Endoscopic Improvement and Remission With Advanced Therapy in Ulcerative Colitis. Aliment Pharmacol Ther 2024; 60:1276-1292. [PMID: 39367678 DOI: 10.1111/apt.18315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/15/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Histology has prognostic value in ulcerative colitis (UC). However, direct comparisons of histological endpoints are lacking. AIM To perform a network meta-analysis (NMA) to compare histological endpoints with biologics and small molecules. METHODS We searched four databases up until July 2024 for randomised controlled trials (RCTs) on advanced therapies for moderate-to-severe UC reporting histological endpoints. Outcomes included histological improvement or remission, and histo-endoscopic improvement after induction or during maintenance. We used a random-effects frequentist model and have reported outcomes as relative risk and 95% confidence interval. We estimated relative drug efficacy with the P-score. We conducted subgroup analysis by trial phase and evaluated risk of bias and evidence certainty. RESULTS We included 24 RCTs (15 therapies, 8874 patients). Nineteen provided data on induction and 10 on maintenance; outcome definitions were similar. Etrasimod 2 mg/day ranked highest in achieving histologic improvement (P-score 0.98) and remission (P-score 0.90) following induction. Globally, guselkumab 200-400 mg ranked first for histo-endoscopic improvement, while etrasimod 2 mg/day and upadacitinib 45 mg/day were superior in the subgroup analysis. During maintenance, upadacitinib 30 mg/day was superior in achieving histologic improvement and remission (P-score 0.88 for both) and histo-endoscopic improvement (P-score 0.94). Etrasimod 2 mg/day ranked second for histologic remission (P-score 0.70) and histo-endoscopic improvement (P-score 0.73), while mirikizumab 200 mg/month ranked second for histologic improvement. CONCLUSION These results support the ability of small molecules to achieve stringent endpoints in moderate-to-severe UC. Histological outcome data for biologics was sparser, particularly during maintenance. Head-to-head RCTs are imperative to better inform clinical practice.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Unidade Local de Saúde Gaia Espinho, Vila Nova de Gaia, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Bernardo Sousa-Pinto
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula Leão Moreira
- Department of Clinical Pharmacology, Unidade Local de Saúde de São, João, Portugal
| | - Virginia Solitano
- Division of Gastroenterology, Western University, London, Ontario, Canada
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Pedro Mesquita
- Department of Gastroenterology, Unidade Local de Saúde Gaia Espinho, Vila Nova de Gaia, Portugal
| | - Catarina Costa
- Department of Gastroenterology, Unidade Local de Saúde Gaia Espinho, Vila Nova de Gaia, Portugal
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, INFINY Institute, FHU-CURE, INSERM NGERE, Nancy University Hospital, Vandœuvre-lès-Nancy, France
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Vipul Jairath
- Division of Gastroenterology, Western University, London, Ontario, Canada
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Gastroenterology, Unidade Local de Saúde de São João, Porto, Portugal
| |
Collapse
|
5
|
Rivera Antonio A, Padilla Martínez I, Márquez-Flores Y, Juárez Solano A, Torres Ramos M, Rosales Hernández M. Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS. Biosci Rep 2024; 44:BSR20240797. [PMID: 39268608 PMCID: PMC11461179 DOI: 10.1042/bsr20240797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Ulcerative colitis (UC) is a multifactorial disease that causes long-lasting inflammation and ulcers in the digestive tract. UC is the most common form of inflammatory bowel disease (IBD). The current treatment for mild-to-moderate UC involves the use of 5-aminosalicylates (5-ASA), but much of this compound is unabsorbed and metabolized by N-acetylation. Several efforts have since been made to evaluate new molecules from synthetic or natural sources. Recently, it was reported that (E)-(5-chloro-2-hydroxy)-α-aminocinnamic acid (2c) and (E)-(2,4-dihydroxy)-α-aminocinnamic acid (2f) are as good or better myeloperoxidase (MPO) inhibitors and antioxidants than 5-ASA. Then, the present study aimed to evaluate the protective effects of 2c and 2f on a rat model of UC induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed that TNBS caused the induction of colonic ulcers, as well as a significant increase in MPO activity and malondialdehyde (MDA) and a decrease in glutathione (GSH) content. The administration of 2f, 2c and 5-ASA, decreased the ulcers presence, inhibited MPO peroxidation activity and MPO presence (as determined by immunofluorescence), and increased GSH and reduced MDA content. However, 2f was better than 2c and 5-ASA, then, the principal mechanism by which 2f presented a protective effect in a UC model induced by TNBS in rats is by inhibiting MPO activity and due to its antioxidant activity.
Collapse
Affiliation(s)
- Astrid Mayleth Rivera Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, México
| | - Itzia Irene Padilla Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio la Laguna Ticomán, Ciudad de México 07340, México
| | - Yazmín Karina Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738, Ciudad de México, México
| | - Alan Hipólito Juárez Solano
- Dirección de investigación del Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Av. Insurgentes sur #3877, col. La Fama. Tlalpan, Ciudad de México. C.P. 14269. México
| | - Mónica A. Torres Ramos
- Dirección de investigación del Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Av. Insurgentes sur #3877, col. La Fama. Tlalpan, Ciudad de México. C.P. 14269. México
| | - Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, México
| |
Collapse
|
6
|
Liang Y, Li Y, Lee C, Yu Z, Chen C, Liang C. Ulcerative colitis: molecular insights and intervention therapy. MOLECULAR BIOMEDICINE 2024; 5:42. [PMID: 39384730 PMCID: PMC11464740 DOI: 10.1186/s43556-024-00207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by abdominal pain, diarrhea, rectal bleeding, and weight loss. The pathogenesis and treatment of UC remain key areas of research interest. Various factors, including genetic predisposition, immune dysregulation, and alterations in the gut microbiota, are believed to contribute to the pathogenesis of UC. Current treatments for UC include 5-aminosalicylic acids, corticosteroids, immunosuppressants, and biologics. However, study reported that the one-year clinical remission rate is only around 40%. It is necessary to prompt the exploration of new treatment modalities. Biologic therapies, such as anti-TNF-α monoclonal antibody and JAK inhibitor, primarily consist of small molecules targeting specific pathways, effectively inducing and maintaining remission. Given the significant role of the gut microbiota, research into intestinal microecologics, such as probiotics and prebiotics, and fecal microbiota transplantation (FMT) shows promising potential in UC treatment. Additionally, medicinal herbs, such as chili pepper and turmeric, used in complementary therapy have shown promising results in UC management. This article reviews recent findings on the mechanisms of UC, including genetic susceptibility, immune cell dynamics and cytokine regulation, and gut microbiota alterations. It also discusses current applications of biologic therapy, herbal therapy, microecologics, and FMT, along with their prospects and challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yang Li
- Department of Respiratory, Sichuan Integrative Medicine Hospital, Chengdu, 610042, China
| | - Chehao Lee
- Department of Traditional Chinese Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chongli Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chao Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
7
|
Tang E, Lin H, Yang Y, Xu J, Lin B, Yang Y, Huang Z, Wu X. Dietary astragalin confers protection against lipopolysaccharide-induced intestinal mucosal barrier damage through mitigating inflammation and modulating intestinal microbiota. Front Nutr 2024; 11:1481203. [PMID: 39421621 PMCID: PMC11483603 DOI: 10.3389/fnut.2024.1481203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction The intestinal mucosal barrier (IMB) damage is intricately linked with the onset of numerous intestinal diseases. Astragalin (AS), a flavonoid present in numerous edible plants, exhibits notable antioxidant and anti-inflammatory properties, demonstrating a promising impact on certain intestinal ailments. In this study, our objective was to investigate the protective effects of AS and elucidate the underlying mechanisms by which it mitigates lipopolysaccharide (LPS)-induced damage to the IMB in mice. Methods During the experimental period, mice were subjected to a 7-day regimen of AS treatment, followed by LPS injection to induce IMB damage. Subsequently, a comprehensive evaluation of relevant biological indicators was conducted, including intestinal pathological analysis, serum inflammatory factors, intestinal tight junction proteins, and intestinal microbiota composition. Results Our results suggested that AS treatment significantly bolstered IMB function. This was evidenced by the enhanced morphology of the small intestine and the elevated expression of tight junction proteins, including ZO-1 and Claudin-1, in addition to increased levels of MUC2 mucin. Moreover, the administration of AS demonstrated a mitigating effect on intestinal inflammation, as indicated by the reduced plasma concentrations of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α. Furthermore, AS treatment exerted a positive influence on the composition of the gut microbiota, primarily by augmenting the relative abundance of beneficial bacteria (including Lachnospiracea and Lactobacillus murinus), while simultaneously reducing the prevalence of the harmful bacterium Mucispirillum schaedleri. Conclusion AS mitigates LPS-induced IMB damage via mitigating inflammation and modulating intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinlan Wu
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Abbas A, Di Fonzo DMP, Wetwittayakhlang P, Al-Jabri R, Lakatos PL, Bessissow T. Management of ulcerative colitis: where are we at and where are we heading? Expert Rev Gastroenterol Hepatol 2024; 18:567-574. [PMID: 39470444 DOI: 10.1080/17474124.2024.2422370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Remission rates for ulcerative colitis (UC) remain low despite significant progress in disease understanding and the introduction of novel therapeutic agents. Several challenges contribute to this, including the heterogeneity of the disease, suboptimal efficacy of current diagnostic and therapeutic tools, drug safety concerns, and limited access to newer treatment options. AREAS COVERED This review evaluates current treatment targets in UC, assessing the effectiveness of various therapies and management strategies in achieving remission. We explore the potential role of personalized medicine, which tailors treatment based on clinical predictors, genetic factors, and immunologic profiles. Personalized approaches show promise in improving remission rates by addressing the unique characteristics of each patient. We also discussed the feasibility of adapting such management models and suggested solutions to some of the challenges in their implementation. EXPERT OPINION Future efforts should prioritize the continued development of biologics, small molecules, and digital health solutions, alongside noninvasive monitoring techniques. These innovations could not only enhance patient outcomes by improving remission rates but also reduce healthcare costs by minimizing hospitalization and surgical interventions. Ultimately, a personalized, stratified approach to UC management is key to optimizing patient care and addressing the unmet needs in this field.
Collapse
Affiliation(s)
- Adnan Abbas
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University, Health Centre, Montreal, Canada
| | - David M P Di Fonzo
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Panu Wetwittayakhlang
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University, Health Centre, Montreal, Canada
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Reem Al-Jabri
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University, Health Centre, Montreal, Canada
| | - Peter L Lakatos
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University, Health Centre, Montreal, Canada
- Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Talat Bessissow
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University, Health Centre, Montreal, Canada
| |
Collapse
|
9
|
Krugliak Cleveland N, Candela N, Carter JA, Kuharic M, Qian J, Tang Z, Turpin R, Rubin DT. Real-World Treatment Outcomes Associated With Early Versus Delayed Vedolizumab Initiation in Patients With Ulcerative Colitis. CROHN'S & COLITIS 360 2024; 6:otae061. [PMID: 39502268 PMCID: PMC11535256 DOI: 10.1093/crocol/otae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 11/08/2024] Open
Abstract
Background Patients with ulcerative colitis (UC) typically receive a targeted inflammatory bowel disease therapy after treatment with conventional therapies and after the development of significant morbidity. Evidence suggests that early biologic treatment after diagnosis could improve treatment response and prevent disease complications compared with delayed biologic treatment after conventional therapy. Methods RALEE was a retrospective study using claims data from IBM® MarketScan® Research Databases between January 1, 2016 and December 31, 2019. Adults with UC and at least one claim for vedolizumab were categorized into Early or Delayed Vedolizumab groups according to whether they had received vedolizumab within 30 days of diagnosis or after conventional therapy (5-aminosalicylates, corticosteroids, and immunomodulators), respectively. Treatment response was assessed at 2, 6, and 12 months after vedolizumab treatment initiation and was analyzed with logistic regression (bivariate). Results At 2 months, Delayed Vedolizumab was associated with significantly higher odds of nonresponse than Early Vedolizumab (odds ratio [OR], 2.509; 95% confidence interval [CI], 1.28-4.90). Delayed Vedolizumab was not significantly associated with odds of nonresponse at 6 months (OR, 1.173; 95% CI, 0.72-1.90) or at 12 months (OR, 0.872; 95% CI, 0.55-1.37). Mean total healthcare costs were similar in the Early Vedolizumab ($6492) and Delayed Vedolizumab ($5897) groups, although there were small differences in costs from different types of claims. Conclusions Patients who received vedolizumab early after UC diagnosis were less likely to experience nonresponse at 2 months and incurred similar healthcare costs at 12 months compared with patients who received delayed vedolizumab.
Collapse
Affiliation(s)
| | - Ninfa Candela
- Takeda Pharmaceuticals USA, Inc., Lexington, MA, USA
| | | | - Maja Kuharic
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois Chicago, Chicago, IL, USA
| | | | | | - Robin Turpin
- Takeda Pharmaceuticals USA, Inc., Lexington, MA, USA
| | - David T Rubin
- University of Chicago Medicine, Inflammatory Bowel Disease Center, Chicago, IL, USA
| |
Collapse
|
10
|
Su S, Liu T, Zheng JY, Wu HC, Keng VW, Zhang SJ, Li XX. Huang Lian Jie Du decoction attenuated colitis via suppressing the macrophage Csf1r/Src pathway and modulating gut microbiota. Front Immunol 2024; 15:1375781. [PMID: 39391314 PMCID: PMC11464287 DOI: 10.3389/fimmu.2024.1375781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Ulcerative colitis, a subtype of chronic inflammatory bowel disease (IBD), is characterized by relapsing colonic inflammation and ulcers. The traditional Chinese herbal formulation Huang Lian Jie Du (HLJD) decoction is used clinically to treat diarrhea and colitis. However, the mechanisms associated with the effects of treatment remain unclear. This study aims to elucidate the molecular mechanistic effects of HLJD formulation on colitis. Methods Chronic colitis in mice was induced by adding 1% dextran sulfate sodium (DSS) to their drinking water continuously for 8 weeks, and HLJD decoction at the doses of 2 and 4 g/kg was administered orally to mice daily from the second week until experimental endpoint. Stool consistency scores, blood stool scores, and body weights were recorded weekly. Disease activity index (DAI) was determined before necropsy, where colon tissues were collected for biochemical analyses. In addition, the fecal microbiome of treated mice was characterized using 16S rRNA amplicon sequencing. Results HLJD decoction at doses of 2 and 4 g/kg relieved DSS-induced chronic colitis in mice by suppressing inflammation through compromised macrophage activity in colonic tissues associated with the colony-stimulating factor 1 receptor (Csf1r)/Src pathway. Furthermore, the HLJD formula could modify the gut microbiota profile by decreasing the abundance of Bacteroides, Odoribacter, Clostridium_sensu_stricto_1, and Parasutterella. In addition, close correlations between DAI, colon length, spleen weight, and gut microbiota were identified. Discussion Our findings revealed that the HLJD formula attenuated DSS-induced chronic colitis by reducing inflammation via Csf1r/Src-mediated macrophage infiltration, as well as modulating the gut microbiota profile.
Collapse
Affiliation(s)
- Shan Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ting Liu
- Department of Pharmacy, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hai-Cui Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Vincent W. Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiao-Xiao Li
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
11
|
Zadora W, Innocenti T, Verstockt B, Meijers B. Chronic Kidney Disease in Inflammatory Bowel Disease: a Systematic Review and Meta-analysis. J Crohns Colitis 2024; 18:1464-1475. [PMID: 38584452 DOI: 10.1093/ecco-jcc/jjae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Inflammatory bowel disease [IBD] is associated with various immune-mediated disorders including spondylarthritis, pyoderma gangrenosum, primary sclerosing cholangitis, and uveitis. Chronic kidney disease [CKD] is defined by a reduction in kidney function (estimated glomerular filtration rate [eGFR] less than 60 ml/min/1.73m2] and/or damage markers that are present for at least 3 months, regardless of the aetiology. Case reports and cohort studies suggest that IBD is associated with CKD. The extent and magnitude of a potential association is unknown. A comprehensive search was conducted in EMBASE, MEDLINE, Web of Science, the Cochrane database, and SCOPUS. Two separate reviewers were involved in the process of article selection and evaluation. Odds ratios were calculated in those papers with a comparison between an IBD population and a non-IBD control population, the Mantel Haenszel test was employed, using a random effect model. The systematic review was registered in PROSPERO [RD42023381927]. A total of 54 articles was included in the systematic review. Of these, eight articles included data on prevalence of CKD in IBD patients [n = 102 230] vs healthy populations [n = 762 430]. Of these, diagnosis of CKD was based on International Classification of Diseases [ICD] codes in five studies vs on eGFR in three studies. The overall odds ratio of developing CKD in the IBD population is 1.59, [95% CI 1.31-1.93], without any difference between studies using diagnostic coding (odds ratio [OR] 1.70, 95% CI 1.33-2.19] vs diagnosis based on eGFR [OR 1.36, 95% CI 1.33-1.64]. IBD is associated with a clinically meaningful increased CKD prevalence. We provide recommendations on diagnostic evaluation, as well as suggestions for future research.
Collapse
Affiliation(s)
- Ward Zadora
- Nephrology and Renal Transplantation Research Group, KULeuven, Leuven, Belgium
- Translational Research in GastroIntestinal Disorders, KULeuven, Leuven, Belgium
| | - Tommaso Innocenti
- Translational Research in GastroIntestinal Disorders, KULeuven, Leuven, Belgium
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Bram Verstockt
- Translational Research in GastroIntestinal Disorders, KULeuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KULeuven, Leuven, Belgium
| | - Bjorn Meijers
- Nephrology and Renal Transplantation Research Group, KULeuven, Leuven, Belgium
| |
Collapse
|
12
|
Kou RW, Li ZQ, Wang JL, Jiang SQ, Zhang RJ, He YQ, Xia B, Gao JM. Ganoderic Acid A Mitigates Inflammatory Bowel Disease through Modulation of AhR Activity by Microbial Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17912-17923. [PMID: 39078661 DOI: 10.1021/acs.jafc.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex gastrointestinal condition influenced by genetic, microbial, and environmental factors, among which the gut microbiota plays a crucial role and has emerged as a potential therapeutic target. Ganoderic acid A (GAA), which is a lanostane triterpenoid compound derived from edible mushroom Ganoderma lucidum, has demonstrated the ability to modulate gut dysbiosis. Thus, we investigated the impact of GAA on IBD using a dextran sodium sulfate (DSS)-induced colitis mouse model. GAA effectively prevented colitis, preserved epithelial and mucus layer integrity, and modulated the gut microbiota. In addition, GAA promoted tryptophan metabolism, especially 3-IAld generation, activated the aryl hydrocarbon receptor (AhR), and induced IL-22 production. Fecal microbiota transplantation validated the mediating role of the gut microbiota in the IBD protection conferred by GAA. Our study suggests that GAA holds potential as a nutritional intervention for ameliorating IBD by influencing the gut microbiota, thereby regulating tryptophan metabolism, enhancing AhR activity, and ultimately improving gut barrier function.
Collapse
Affiliation(s)
- Rong-Wei Kou
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Zhi-Qing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jia-Lin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Shi-Qi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Rui-Jing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yang-Qing He
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
Li P, Luo J, Jiang Y, Pan X, Dong M, Chen B, Wang J, Zhou H, Jiang H, Duan Y, Lin N. Downregulation of OATP2B1 by proinflammatory cytokines leads to 5-ASA hyposensitivity in Ulcerative colitis. Chem Biol Interact 2024; 398:111074. [PMID: 38844255 DOI: 10.1016/j.cbi.2024.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
5-Aminosalicylic acid (5-ASA) is a first-line agent in both remission and maintenance therapy for ulcerative colitis (UC). However, the mucosal concentration of 5-ASA was significantly lower in patients with severe histological inflammation, which further led to a poor response to 5-ASA treatment. Our study aimed to clarify the mechanism of 5-ASA uptake into colonic epithelial cells and to further explore the reason for the decreased colonic mucosal 5-ASA concentration in UC patients. Our results demonstrated that the colonic 5-ASA concentration was notably reduced in DSS-induced colitis mice and inversely correlated with colonic inflammation. 5-ASA was not a substrate of carnitine/organic cation transporter 1/2 (OCTN1/2) or multidrug resistance protein 1 (MDR1), whereas organic anion transporting polypeptide 2B1 (OATP2B1) and sodium-coupled monocarboxylate transporter 1 (SMCT1) mediated the uptake of 5-ASA, with a greater contribution from OATP2B1 than SMCT1. Inhibitors and siRNAs targeting OATP2B1 significantly reduced 5-ASA absorption in colonic cell lines. Moreover, OATP2B1 expression was dramatically downregulated in colon tissues from UC patients and dextran sodium sulfate (DSS)-induced colitis mice, and was also negatively correlated with colonic inflammation. Mechanistically, mixed proinflammatory cytokines downregulated the expression of OATP2B1 in a time- and concentration-dependent manner through the hepatocyte nuclear factor 4 α (HNF4α) pathway. In conclusion, OATP2B1 was the pivotal transporter involved in colonic 5-ASA uptake, which indicated that inducing OATP2B1 expression may be a strategy to promote 5-ASA uptake and further improve the concentration and anti-inflammatory efficacy of 5-ASA in UC.
Collapse
Affiliation(s)
- Ping Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China; Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Luo
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyi Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minlei Dong
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Binxin Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jinhai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yangri Duan
- Department of Gastroenterology, The Third People's Hospital of Yuhang District, Hangzhou, China.
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China; Department of Gastroenterology, The Third People's Hospital of Yuhang District, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
14
|
Liaqat H, Badshah SF, Minhas MU, Barkat K, Khan SA, Hussain MD, Kazi M. pH-Sensitive Hydrogels Fabricated with Hyaluronic Acid as a Polymer for Site-Specific Delivery of Mesalamine. ACS OMEGA 2024; 9:28827-28840. [PMID: 38973903 PMCID: PMC11223520 DOI: 10.1021/acsomega.4c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Hydrogels with the main objective of releasing mesalamine (5-aminosalicylic acid) in the colon in a modified manner were formulated in the present work using a free-radical polymerization approach. Different ratios of hyaluronic acid were cross-linked with methacrylic and acrylic acids using methylenebis(acrylamide). The development of a new polymeric network and the successful loading of drug were revealed by Fourier transform infrared spectroscopy. Thermogravimetric analysis demonstrated that the hydrogel was more thermally stable than the pure polymer and drug. Scanning electron microscopy (SEM) revealed a rough and hard surface which was relatively suitable for efficient loading of drug and significant penetration of dissolution medium inside the polymeric system. Studies on swelling and drug release were conducted at 37 °C in acidic and basic conditions (pH 1.2, 4.5, 6.8, and 7.4, respectively). Significant swelling and drug release occurred at pH 7.4. Swelling, drug loading, drug release, and gel fraction of the hydrogels increased with increasing hyaluronic acid, methacrylic acid, and acrylic acid concentrations, while the sol fraction decreased. Results obtained from the toxicity study proved the formulated system to be safe for biological systems. The pH-sensitive hydrogels have the potential to be beneficial for colon targeting due to their pH sensitivity and biodegradability. Inflammatory bowel disease may respond better to hydrogel treatment as compared to conventional dosage forms. Specific amount of drug is released from hydrogels at specific intervals to maintain its therapeutic concentration at the required level.
Collapse
Affiliation(s)
- Huma Liaqat
- Faculty
of Pharmacy, University of Lahore, Lahore 54590, Pakistan
| | - Syed Faisal Badshah
- Department
of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawalakot, Azad Jammu and Kashmir 12350, Pakistan
| | | | - Kashif Barkat
- Faculty
of Pharmacy, University of Lahore, Lahore 54590, Pakistan
- Faculty
of Health Sciences, Equator University of
Science and Technology, Masaka 961105, Uganda
| | - Saeed Ahmad Khan
- Department
of Pharmacy, Kohat University of Science
and Technology, Kohat 26000, Pakistan
| | - Muhammad Delwar Hussain
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Mohsin Kazi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Ou H, Ye X, Huang H, Cheng H. Constructing a screening model to obtain the functional herbs for the treatment of active ulcerative colitis based on herb-compound-target network and immuno-infiltration analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4693-4711. [PMID: 38117365 PMCID: PMC11166790 DOI: 10.1007/s00210-023-02900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
The therapeutic effect of most traditional Chinese medicines (TCM) on ulcerative colitis is unclear, The objective of this study was to develop a core herbal screening model aimed at facilitating the transition from active ulcerative colitis (UC) to inactive. We obtained the gene expression dataset GSE75214 for UC from the GEO database and analysed the differentially expressed genes (DEGs) between active and inactive groups. Gene modules associated with the active group were screened using WGCNA, and immune-related genes (IRGs) were obtained from the ImmPort database. The TCMSP database was utilized to acquire the herb-molecule-target network and identify the herb-related targets (HRT). We performed intersection operations on HRTs, DEGs, IRGs, and module genes to identify candidate genes and conducted enrichment analyses. Subsequently, three machine learning algorithms (SVM-REF analysis, Random Forest analysis, and LASSO regression analysis) were employed to refine the hubgene from the candidate genes. Based on the hub genes identified in this study, we conducted compound and herb matching and further screened herbs related to abdominal pain and blood in stool using the Symmap database.Besides, the stability between molecules and targets were assessed using molecular docking and molecular dynamic simulation methods. An intersection operation was performed on HRT, DEGs, IRGs, and module genes, leading to the identification of 23 candidate genes. Utilizing three algorithms (RandomForest, SVM-REF, and LASSO) for analyzing the candidate genes and identifying the intersection, we identified five core targets (CXCL2, DUOX2, LYZ, MMP9, and AGT) and 243 associated herbs. Hedysarum Multijugum Maxim. (Huangqi), Sophorae Flavescentis Radix (Kushen), Cotyledon Fimbriata Turcz. (Wasong), and Granati Pericarpium (Shiliupi) were found to be capable of relieving abdominal pain and hematochezia during active UC. Molecular docking demonstrated that the compounds of the four aforementioned herbs showed positive docking activity with their core targets. The results of molecular dynamic simulations indicated that well-docked active molecules had a more stable structure when bound to their target complexes. The study has shed light on the potential of TCMs in treating active UC from an immunomodulatory perspective, consequently, 5 core targets and 4 key herbs has been identified. These findings can provide a theoretical basis for subsequent management and treatment of active UC with TCM, as well as offer original ideas for further research and development of innovative drugs for alleviating UC.
Collapse
Affiliation(s)
- Haiya Ou
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaopeng Ye
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongshu Huang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Honghui Cheng
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
16
|
Yu W, Li B, Chen L, Chen Q, Song Q, Jin X, Yin Y, Tong H, Xue L. Gigantol ameliorates DSS-induced colitis via suppressing β2 integrin mediated adhesion and chemotaxis of macrophage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118123. [PMID: 38554854 DOI: 10.1016/j.jep.2024.118123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium, recognized as "Shihu" in traditional Chinese medicine, holds a rich history of medicinal utilization documented in the Chinese Pharmacopoeia. Ancient texts like "Shen Nong Ben Cao Jing" extol Dendrobium's virtues as a superior herbal medicine fortifying "Yin" and invigorating the five viscera. Dendrobium is extensively employed for the treatment of gastrointestinal inflammatory disorders, showcasing significant therapeutic efficacy, particularly against ulcerative colitis (UC), within the realm of Chinese ethnopharmacology. Dendrobium plays crucial pharmacological roles due to its rich content of polysaccharides, alkaloids, phenanthrenes, and bibenzyls. Gigantol, a prominent bibenzyl compound, stands out as one of the most vital active constituents within Dendrobium, the gigantol content of Dendrobium leaves can reach approximately 4.79 μg/g. Its significance lies in being recognized as a noteworthy anti-inflammatory compound derived from Dendrobium. AIM OF THE STUDY Given the pivotal role of gigantol as a primary active substance in Dendrobium, the therapeutic potential of gigantol for gastrointestinal diseases remains enigmatic. Our present investigation aimed to evaluate the therapeutic effects of gigantol on dextran sulfate sodium (DSS)-induced colitis and reveal its potential mechanism in countering UC activity. MATERIALS AND METHODS The protective efficacy of gigantol against colitis was assessed by examining the histopathological changes and conducting biochemical analyses of colon from DSS-challenged mice. Assessments focused on gigantol's impact on improving the intestinal epithelial barrier and its anti-inflammatory effects in colonic tissues of colitis mice. Investigative techniques included the exploration of the macrophage inflammatory signaling pathway via qPCR and Western blot analyses. In vitro studies scrutinized macrophage adhesion, migration, and chemotaxis utilizing transwell and Zigmond chambers. Furthermore, F-actin and Rac1 activation assays detailed cellular cytoskeletal remodeling. The potential therapeutic target of gigantol was identified and validated through protein binding analysis, competitive enzyme-linked immunosorbent assay (ELISA), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay. The binding sites between gigantol and its target were predicted via molecular docking. RESULTS Gigantol ameliorated symptoms of DSS-induced colitis, rectified damage to the intestinal barrier, and suppressed the production of pro-inflammatory cytokines in colonic tissues. Intriguingly, gigantol significantly curtailed NF-κB signaling activation in the colons of DSS-induced colitis mice. Notably, gigantol impaired the β2 integrin-dependent adhesion and migratory capacity of RAW264.7 cells. Moreover, gigantol notably influenced the cytoskeleton remodeling of RAW264.7 cells by suppressing Vav1 phosphorylation and Rac1 activation. Mechanistically, gigantol interacted with β2 integrin, subsequently diminishing binding affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS In conclusion, these findings elucidate that gigantol ameliorates DSS-induced colitis by antagonizing β2 integrin-mediated macrophage adhesion, migration, and chemotaxis, thus it may impede macrophage recruitment and infiltration into colonic tissues. This study suggests that gigantol shows promise as a viable candidate for clinical colitis therapy.
Collapse
Affiliation(s)
- Weilai Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, PR China
| | - Luxi Chen
- Pediatric Emergency Observation Department, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China
| | - Qiu Chen
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China
| | - QingQing Song
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China
| | - Yandan Yin
- Department of Pediatric Medicine, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, 325200, PR China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China.
| | - Liwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China.
| |
Collapse
|
17
|
Zou Y, Wang Y, Zhou W, Pei J. Banxia Xiexin decoction combined with 5-ASA protects against CPT-11-induced intestinal dysfunction in rats via inhibiting TLR4/NF-κB signaling pathway. Immun Inflamm Dis 2024; 12:e1208. [PMID: 38860759 PMCID: PMC11165681 DOI: 10.1002/iid3.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/24/2023] [Accepted: 02/17/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Banxia Xiexin decoction (BXD) can control irinotecan (CPT-11)-caused delayed diarrhea, but the corresponding mechanism remains undefined. AIMS This paper aimed to uncover the mechanism of BXD in regulating CPT-11-caused delayed diarrhea. MATERIALS & METHODS Sprague-Dawley (SD) rats were assigned into the control, model, BXD low-dose (BXD-L, 5 g/kg), BXD medium-dose (BXD-M, 10 g/kg), BXD high-dose (BXD-H, 15 g/kg), 5-aminosalicylic acid (5-ASA, 10 mL/kg), and BXD-M + 5-ASA groups. Rats were injected intraperitoneally with 150 mg/kg CPT-11 at Day 4 and Day 5 to induce delayed diarrhea, and later treated with various doses (low, medium, and high) of BXD and 5-ASA for 9 days, except for rats in control group. The body weight of rats was measured. The rat colon tissue injury, inflammatory cytokine levels, and the activation of toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signaling pathway were detected. RESULTS BXD (5, 10, or 15 g/kg) or 5-ASA (10 mL/kg) alleviated body weight loss and colon tissue injury, decreased levels of inflammatory cytokines, and inactivated TLR4/NF-κB signaling pathway in CPT-11-induced model rats. BXD at 10 g/kg (the optimal concentration) could better treat CPT-11-induced intestinal dysfunction, as evidenced by the resulting approximately 50% reduction on injury score of model rats. Moreover, BXD-M (10 g/kg) synergistic with 5-ASA (10 mL/kg) further strengthened the inhibition on rat body weight loss, colon tissue injury, inflammatory cytokine levels, and TLR4/NF-κB signaling pathway. CONCLUSION To sum up, BXD has a protective effect against CPT-11-induced intestinal dysfunction by inhibiting inflammation through inactivation TLR4/NF-κB signaling pathway. In particular, the combined use of BXD and 5-ASA holds great promise for treating CPT-11-induced delayed diarrhea.
Collapse
Affiliation(s)
- Yuanyuan Zou
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| | - Yakun Wang
- Department of Critical Care MedicineHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
| | - Wenying Zhou
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| | - Jingbo Pei
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| |
Collapse
|
18
|
He L, Deng T, Huang Y, Yang W, Yang J, Song G. Association between 23 drugs and inflammatory bowel disease: a two-sample Mendelian randomization study. Front Med (Lausanne) 2024; 11:1371362. [PMID: 38835788 PMCID: PMC11149542 DOI: 10.3389/fmed.2024.1371362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a group of diseases characterized by chronic and recurrent inflammation of the gastrointestinal tract. The etiology of IBD remains multifaceted and poorly understood, resulting in limited treatment options that primarily target disease induction and remission maintenance. Thus, the exploration of novel therapeutic options for IBD among existing medications is advantageous. Mendelian randomization analysis (MR) serves as a valuable tool in investigating the relationship between drugs and diseases. In this study, MR analysis was employed to investigate the potential causal relationship between 23 approved drugs for the treatment of various diseases and IBD. Method We performed a two-sample MR analysis using publicly available genome-wide association study (GWAS) statistics. The inverse variance weighting (IVW) method was used as the main analysis method, supplemented by the remaining four methods (weighted median, MR Egger regression, simple and weighted models), and Meta-analysis was performed to expand the sample size to obtain a more reliable composite causal effect. Finally, Cochran's Q statistic and the MR-Egger test for directed pleiotropy were applied to determine whether significant heterogeneity or directed pleiotropy existed. Results In the main MR analysis (IVW), drugs with a negative causal association with the risk of IBD were immunosuppressant {OR (95% CI) = 0.7389 [0.6311-0.8651], p = 0.0046} and diabetes drugs {OR (95% CI) = 0.9266 [0.8876-0.9674], p = 0.0058}. A positive causal association with the risk of IBD was found for salicylic acid and derivatives {OR (95% CI) = 1.2737 [1.0778-1.5053], p = 0.0345}. Negative causal associations with UC risk were identified for immunosuppressants {OR (95% CI) = 0.6660 [0.5133-0.8640], p = 0.0169} and diabetes medications {OR (95% CI) = 0.9020 [0.8508-0.9551], p = 0.0046}; positive causal associations with UC risk were found for β-receptor blockers {OR (95% CI) = 1.1893 [1.0823-1.3070], p = 0.0046}. A negative causal association with the risk of CD was found for immunosuppressants {OR (95% CI) = 0.6957 [0.5803-0.8341], p = 0.0023}. There was no statistically significant association between the remaining 19 drugs and IBD and subtypes. Conclusion This MR study provides evidence suggesting that immunosuppressants have a mitigating effect on the risk of IBD and demonstrate consistent efficacy in subtypes of ulcerative colitis (UC) and Crohn's disease (CD). Additionally, diabetes medications show potential in reducing the risk of IBD, particularly in cases of UC, while β-blockers may elevate the risk of UC. Conversely, salicylic acid and its derivatives may increase the risk of IBD, although this effect is not consistently observed in the subtypes of the disease. These findings offer new insights into the prevention and management of IBD.
Collapse
Affiliation(s)
- Lei He
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tuo Deng
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yurong Huang
- Department of Gastroenterology, Liupanshui People's Hospital, Liupanshui, Guizhou, China
| | - Wangliu Yang
- Department of Gastroenterology, Liupanshui People's Hospital, Liupanshui, Guizhou, China
| | - Jie Yang
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Uthaman S, Parvinroo S, Mathew AP, Jia X, Hernandez B, Proctor A, Sajeevan KA, Nenninger A, Long MJ, Park IK, Chowdhury R, Phillips GJ, Wannemuehler MJ, Bardhan R. Inhibiting the cGAS-STING Pathway in Ulcerative Colitis with Programmable Micelles. ACS NANO 2024; 18:12117-12133. [PMID: 38648373 DOI: 10.1021/acsnano.3c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Shadi Parvinroo
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Ansuja Pulickal Mathew
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Xinglin Jia
- Department of Mathematics, Iowa State University, Ames, Iowa 50011, United States
| | - Belen Hernandez
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Alexandra Proctor
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Karuna Anna Sajeevan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Ariel Nenninger
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Mary-Jane Long
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Gregory J Phillips
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| |
Collapse
|
20
|
Jin JJ, Ko IG, Hwang L, Kim SH, Jee YS, Jeon H, Park SB, Jeon JW. Simultaneous Treatment of 5-Aminosalicylic Acid and Treadmill Exercise More Effectively Improves Ulcerative Colitis in Mice. Int J Mol Sci 2024; 25:5076. [PMID: 38791116 PMCID: PMC11120947 DOI: 10.3390/ijms25105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by continuous mucosal ulceration of the colon, starting in the rectum. 5-Aminosalicylic acid (5-ASA) is the main therapy for ulcerative colitis; however, it has side effects. Physical exercise effectively increases the number of anti-inflammatory and anti-immune cells in the body. In the current study, the effects of simultaneous treatment of treadmill exercise and 5-ASA were compared with monotherapy with physical exercise or 5-ASA in UC mice. To induce the UC animal model, the mice consumed 2% dextran sulfate sodium dissolved in drinking water for 7 days. The mice in the exercise groups exercised on a treadmill for 1 h once a day for 14 days after UC induction. The 5-ASA-treated groups received 5-ASA by enema injection using a 200 μL polyethylene catheter once a day for 14 days. Simultaneous treatment improved histological damage and increased body weight, colon weight, and colon length, whereas the disease activity index score and collagen deposition were decreased. Simultaneous treatment with treadmill exercise and 5-ASA suppressed pro-inflammatory cytokines and apoptosis following UC. The benefits of this simultaneous treatment may be due to inhibition on nuclear factor-κB/mitogen-activated protein kinase signaling activation. Based on this study, simultaneous treatment of treadmill exercise and 5-ASA can be considered as a new therapy of UC.
Collapse
Affiliation(s)
- Jun-Jang Jin
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (J.-J.J.); (L.H.)
| | - Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu 42601, Republic of Korea;
| | - Lakkyong Hwang
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (J.-J.J.); (L.H.)
| | - Sang-Hoon Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The Stat University of New Jersey, Piscataway, NJ 08854, USA;
| | - Yong-Seok Jee
- Research Institute of Sports and Industry Science, Hanseo University, Seosan 31962, Republic of Korea;
| | - Hyeon Jeon
- Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Su Bee Park
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Jung Won Jeon
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| |
Collapse
|
21
|
Song X, Wang W, Liu L, Zhao Z, Shen X, Zhou L, Zhang Y, Peng D, Nian S. Poria cocos Attenuated DSS-Induced Ulcerative Colitis via NF-κB Signaling Pathway and Regulating Gut Microbiota. Molecules 2024; 29:2154. [PMID: 38731645 PMCID: PMC11085930 DOI: 10.3390/molecules29092154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1β, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.
Collapse
Affiliation(s)
- Xiaojun Song
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Wei Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Li Liu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Zitong Zhao
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Xuebin Shen
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Lingyun Zhou
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Yuanxiang Zhang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
- Xin’an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Sihui Nian
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
- Institute of Modern Chinese Medicine, Wannan Medical College, Wuhu 241002, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
22
|
Tang YF, Xie WY, Wu HY, Guo HX, Wei FH, Ren WZ, Gao W, Yuan B. Huaier Polysaccharide Alleviates Dextran Sulphate Sodium Salt-Induced Colitis by Inhibiting Inflammation and Oxidative Stress, Maintaining the Intestinal Barrier, and Modulating Gut Microbiota. Nutrients 2024; 16:1368. [PMID: 38732614 PMCID: PMC11085394 DOI: 10.3390/nu16091368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The incidence of ulcerative colitis (UC) is increasing annually, and UC has a serious impact on patients' lives. Polysaccharides have gained attention as potential drug candidates for treating ulcerative colitis (UC) in recent years. Huaier (Trametes robiniophila Murr) is a fungus that has been used clinically for more than 1000 years, and its bioactive polysaccharide components have been reported to possess immunomodulatory effects, antitumour potential, and renoprotective effects. In this study, we aimed to examine the protective effects and mechanisms of Huaier polysaccharide (HP) against UC. Based on the H2O2-induced oxidative stress model in HT-29 cells and the dextran sulphate sodium salt (DSS)-induced UC model, we demonstrated that Huaier polysaccharides significantly alleviated DSS-induced colitis (weight loss, elevated disease activity index (DAI) scores, and colonic shortening). In addition, HP inhibited oxidative stress and inflammation and alleviated DSS-induced intestinal barrier damage. It also significantly promoted the expression of the mucin Muc2. Furthermore, HP reduced the abundance of harmful bacteria Escherichia-Shigella and promoted the abundance of beneficial bacteria Muribaculaceae_unclassified, Anaerotruncus, and Ruminococcaceae_unclassified to regulate the intestinal flora disturbance caused by DSS. Nontargeted metabolomics revealed that HP intervention would modulate metabolism by promoting levels of 3-hydroxybutyric acid, phosphatidylcholine (PC), and phosphatidylethanolamine (PE). These results demonstrated that HP had the ability to mitigate DSS-induced UC by suppressing oxidative stress and inflammation, maintaining the intestinal barrier, and modulating the intestinal flora. These findings will expand our knowledge of how HP functions and offer a theoretical foundation for using HP as a potential prebiotic to prevent UC.
Collapse
Affiliation(s)
- Yi-Fei Tang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Wei Gao
- Changchun National Experimental Animal Center, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| |
Collapse
|
23
|
Li H, Pu X, Lin Y, Yu X, Li J, Bo L, Wang H, Xu Y, Li X, Zheng D. Sijunzi decoction alleviates inflammation and intestinal epithelial barrier damage and modulates the gut microbiota in ulcerative colitis mice. Front Pharmacol 2024; 15:1360972. [PMID: 38650625 PMCID: PMC11033371 DOI: 10.3389/fphar.2024.1360972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Ethnopharmacological relevance As a representative classical prescription, Sijunzi decoction has powerful therapeutic effects on spleen-stomach qi insufficiency. Ulcerative colitis (UC) is a chronic, diffuse, and non-specifically inflammatory disorder, the etiology of which still remains unclear. In the traditional Chinese medicine (TCM) perspective, splenic asthenia is the primary cause of UC. Based on this, Sijunzi decoction has been extensively used in TCM clinical practice to alleviate UC in recent years. However, the pharmacological mechanism of Sijunzi decoction in modern medicine is still not completely clear, which limits its clinical application. Aim of the study The purpose of this study was to investigate the Sijunzi decoction's curative effect on acute UC mice and probe into its potential pharmacological mechanism. Materials and methods The UC mouse model was set up by freely ingesting a 3% dextran sulfate sodium (DSS) solution. The relieving role of Sijunzi decoction on UC in mice was analyzed by evaluating the changes in clinical parameters, colon morphology, histopathology, inflammatory factor content, intestinal epithelial barrier protein expression level, and gut microbiota balance state. Finally, multivariate statistical analysis was conducted to elucidate the relationship between inflammatory factors, intestinal epithelial barrier proteins, and gut microbiota. Results First, the research findings revealed that Sijunzi decoction could visibly ease the clinical manifestation of UC, lower the DAI score, and attenuate colonic damage. Moreover, Sijunzi decoction could also significantly inhibit IL-6, IL-1β, and TNF-α while increasing occludin and ZO-1 expression levels. Subsequently, further studies showed that Sijunzi decoction could remodel gut microbiota homeostasis. Sijunzi decoction was beneficial in regulating the levels of Alistipes, Akkermansia, Lachnospiraceae_NK4A136_group, and other bacteria. Finally, multivariate statistical analysis demonstrated that key gut microbes were closely associated with inflammatory factors and intestinal epithelial barrier proteins. Conclusion Sijunzi decoction can significantly prevent and treat UC. Its mechanism is strongly associated with the improvement of inflammation and intestinal epithelial barrier damage by regulating the gut microbiota.
Collapse
Affiliation(s)
- Hailun Li
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Xing Pu
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Yongtao Lin
- School of Nursing and Midwifery, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Xinxin Yu
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Jing Li
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Lin Bo
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Hongwu Wang
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Yong Xu
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Xiang Li
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Donghui Zheng
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
24
|
Zhao C, Yang X, Fan M, Tian L, Sun T, Sun C, Jiang T. The investigation on sialic acid-modified pectin nanoparticles loaded with oxymatrine for orally targeting and inhibiting the of ulcerative colitis. Colloids Surf B Biointerfaces 2024; 236:113809. [PMID: 38447446 DOI: 10.1016/j.colsurfb.2024.113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
The aim of the study was to develop an oral targeting drug delivery system (OTDDS) of oxymatrine (OMT) to effectively treat ulcerative colitis (UC). The OTDDS of OMT (OMT/SA-NPs) was constructed with OMT, pectin, Ca2+, chitosan (CS) and sialic acid (SA). The obtained particles were characterized in terms of particle size, zeta potential, morphology, drug loading, encapsulation efficiency, drug release and stability. The average size of OMT/SA-NPs was 255.0 nm with a zeta potential of -12.4 mV. The loading content and encapsulation efficiency of OMT/SA-NPs were 14.65% and 84.83%, respectively. The particle size of OMT/SA-NPs changed slightly in the gastrointestinal tract. The nanoparticles can delivery most of the drug to the colon region. In vitro cell experiments showed that the SA-NPs had excellent biocompatibility and anti-inflammation, and the uptake of SA-NPs by RAW 264.7 cells was time and concentration-dependent. The conjugated SA can help the internalization of NPs into target cells. In vivo experiments showed that OMT/SA-NPs had a superior anti-inflammation effect and the effect of reducing UC, which was attributed to the delivery most of OMT to the colonic lumen, the specific targeting and retention in colitis site and the combined anti-inflammation of OMT and NPs.
Collapse
Affiliation(s)
- Chunying Zhao
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China
| | - Xin Yang
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China
| | - Mengyao Fan
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China
| | - Linan Tian
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China
| | - Tongtong Sun
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China
| | - Changshan Sun
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China.
| | - Tongying Jiang
- Shenyang Pharmaceutical University, Benxi, Liaoning 110016, PR China.
| |
Collapse
|
25
|
Huang JJ, Feng YM, Zheng SM, Yu CL, Zhou RG, Liu MJ, Bo RN, Yu J, Li JG. Eugenol Possesses Colitis Protective Effects: Impacts on the TLR4/MyD88/NF-[Formula: see text]B Pathway, Intestinal Epithelial Barrier, and Macrophage Polarization. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:493-512. [PMID: 38480500 DOI: 10.1142/s0192415x24500216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Eugenol (EU) has been shown to ameliorate experimental colitis due to its anti-oxidant and anti-inflammatory bioactivities. In this study, DSS-induced acute colitis was established and applied to clarify the regulation efficacy of EU on intestinal barrier impairment and macrophage polarization imbalance along with the inflammatory response. Besides, the adjusting effect of EU on macrophages was further investigated in vitro. The results confirmed that EU intervention alleviated DSS-induced colitis through methods such as restraining weight loss and colonic shortening and decreasing DAI scores. Microscopic observation manifested that EU maintained the intestinal barrier integrity in line with the mucus barrier and tight junction protection. Furthermore, EU intervention significantly suppressed the activation of TLR4/MyD88/NF-[Formula: see text]B signaling pathways and pro-inflammatory cytokines gene expressions, while enhancing the expressions of anti-inflammatory cytokines. Simultaneously, WB and FCM analyses of the CD86 and CD206 showed that EU could regulate the DSS-induced macrophage polarization imbalance. Overall, our data further elucidated the mechanism of EU's defensive effect on experimental colitis, which is relevant to the protective efficacy of intestinal barriers, inhibition of oxidative stress and excessive inflammatory response, and reprogramming of macrophage polarization. Hence, this study may facilitate a better understanding of the protective action of the EU against UC.
Collapse
Affiliation(s)
- Jun-Jie Huang
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Yue-Min Feng
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Shu-Mei Zheng
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Cheng-Long Yu
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Rui-Gang Zhou
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Ming-Jiang Liu
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China
| | - Ruo-Nan Bo
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China
| | - Jie Yu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suzhi Road 120, Suqian 223800, P. R. China
| | - Jin-Gui Li
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China
| |
Collapse
|
26
|
D'Amico F, Fasulo E, Jairath V, Paridaens K, Peyrin-Biroulet L, Danese S. Management and treatment optimization of patients with mild to moderate ulcerative colitis. Expert Rev Clin Immunol 2024; 20:277-290. [PMID: 38059454 DOI: 10.1080/1744666x.2023.2292768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic inflammatory bowel disease with a significant health-care burden worldwide. While medical therapy aims to induce and maintain remission, optimal management of mild to moderate UC remains challenging due to heterogeneity in severity classifications and non-standardized approaches. This comprehensive review summarizes current evidence and knowledge gaps to optimize clinical decision-making in patients with mild to moderate UC. AREAS COVERED After an extensive literature search of PubMed, Medline, and Embase through August 2023, we provide an overview of definitions utilized to characterize mild to moderate UC severity and established therapeutic targets. Current medical treatments including mesalazine formulations, corticosteroids, and their combinations are surveyed. The role of emerging intestinal ultrasound, telemedicine, and home testing is explored. Individualized, patient-centered paradigms aiming to streamline care delivery through proactive identification of relapses are also examined. EXPERT OPINION Addressing inconsistencies in disease activity stratification will better align tailored regimens with each patient's profile. Advancing noninvasive technologies like ultrasound criteria and home testing could improve UC management by enabling personalized models. Realizing individualized plans through informed shared-decision making between health-care providers and fully engaged patients holds promise to maximize quality of life outcomes. Continuous improvement relies on innovation bridging different domains to overcome current limitations and push the field toward more predictive and tailored care.
Collapse
Affiliation(s)
- Ferdinando D'Amico
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Ernesto Fasulo
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Vipul Jairath
- Division of Gastroenterology, Department of Medicine, Western University, London, Ontario, Canada
| | | | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- INFINY Institute, Nancy University Hospital, Nancy, France
- FHU-CURE, Nancy University Hospital, Nancy, France
- Groupe Hospitalier privé Ambroise Paré - Hartmann, Paris IBD center, Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
27
|
Tang E, Hu T, Jiang Z, Shen X, Lin H, Xian H, Wu X. Isoquercitrin alleviates lipopolysaccharide-induced intestinal mucosal barrier damage in mice by regulating TLR4/MyD88/NF-κB signaling pathway and intestinal flora. Food Funct 2024; 15:295-309. [PMID: 38084034 DOI: 10.1039/d3fo03319h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Intestinal mucosal barrier damage is closely associated with the development of several intestinal inflammatory diseases. Isoquercitrin (IQ) is a natural flavonoid compound derived from plants, which exhibits high antioxidant and anti-inflammatory activity with minimal side effects in humans. Therefore, it shows great potential for preventing and treating intestinal mucosal barrier damage. This study aims to investigate the ameliorative effect and mechanism of IQ on lipopolysaccharide (LPS)-induced intestinal mucosal barrier damage in mice. The mice were treated with IQ for 7 days and then injected with LPS to induce intestinal mucosal barrier damage. The results revealed that IQ treatment alleviated LPS-induced intestinal mucosal barrier damage in mice, which can be evidenced by the improvements in intestinal morphology and the promotion of expression in intestinal tight junctions (ZO-1, Claudin-1, and Occludin), as well as MUC2 mucin. IQ also attenuated intestinal inflammatory responses by inhibiting the TLR4/MyD88/NF-κB signaling pathway and reducing the expression and plasma levels of IL-6, IL-1β, and TNF-α. Furthermore, IQ significantly increased the relative abundance of beneficial bacteria, including Dubosiella, Akkermansia muciniphila and Faecalibaculum rodentium, while suppressing the growth of harmful bacteria such as Mucispirillum schaedleri in the intestinal flora of mice. Consequently, IQ can alleviate the LPS-induced intestinal mucosal barrier damage in mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway and modulating the intestinal flora.
Collapse
Affiliation(s)
- Enhui Tang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tong Hu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Zhaokang Jiang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xiaojun Shen
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Huan Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Haiyan Xian
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xinlan Wu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
28
|
Huang Y, Liu J, Liang D. Comprehensive analysis reveals key genes and environmental toxin exposures underlying treatment response in ulcerative colitis based on in-silico analysis and Mendelian randomization. Aging (Albany NY) 2023; 15:14141-14171. [PMID: 38059894 PMCID: PMC10756092 DOI: 10.18632/aging.205294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND UC is increasingly prevalent worldwide and represents a significant global disease burden. Although medical therapeutics are employed, they often fall short of being optimal, leaving patients struggling with treatment non-responsiveness and many related complications. MATERIALS AND METHODS The study utilized gene microarray data and clinical information from GEO. Gene enrichment and differential expression analyses were conducted using Metascape and Limma, respectively. Lasso Regression Algorithm was constructed using glmnet and heat maps were generated using pheatmap. ROC curves were used to assess diagnostic parameter capability, while XSum was employed to screen for small-molecule drugs exacerbating UC. Molecular docking was carried out using Autodock Vina. The study also performed Mendelian randomization analysis based on TwoSampleMR and used CTD to investigate the relationship between exposure to environmental chemical toxicants and UC therapy responsiveness. RESULTS Six genes (ELL2, DAPP1, SAMD9L, CD38, IGSF6, and LYN) were found to be significantly overexpressed in UC patient samples that did not respond to multiple therapies. Lasso analysis identified ELL2 and DAPP1 as key genes influencing UC treatment response. Both genes accurately predicted intestinal inflammation in UC and impacted the immunological infiltration status. Clofibrate showed therapeutic potential for UC by binding to ELL2 and DAPP1 proteins. The study also reviews environmental toxins and drug exposures that could impact UC progression. CONCLUSIONS We used microarray technology to identify DAPP1 and ELL2 as key genes that impact UC treatment response and inflammatory progression. Clofibrate was identified as a promising UC treatment. Our review also highlights the impact of environmental toxins on UC treatment response, providing valuable insights for personalized clinical management.
Collapse
Affiliation(s)
- Yizhou Huang
- Department of Gastroenterology, The PLA Navy Anqing Hospital, Anqing 246000, Anhui Province, China
| | - Jie Liu
- Department of Gastroenterology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Dingbao Liang
- Department of Gastroenterology, The PLA Navy Anqing Hospital, Anqing 246000, Anhui Province, China
| |
Collapse
|
29
|
Bai J, Wang B, Tan X, Huang L, Xiong S. Regulatory effect of lactulose on intestinal flora and serum metabolites in colitis mice: In vitro and in vivo evaluation. Food Chem X 2023; 19:100821. [PMID: 37780294 PMCID: PMC10534180 DOI: 10.1016/j.fochx.2023.100821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 10/03/2023] Open
Abstract
Lactulose is a common component in foods. However, the effect of lactulose on intestinal flora and overall metabolic levels remains unclear. Therefore, this study aims to explore the regulative role of lactulose on intestinal flora and serum metabolites via in vitro simulated colonic fermentation model and in vivo colitis mouse model. The results showed that lactulose significantly enriched beneficial bacteria including Dubosiella and Bifidobacterium, and reduced pathogenic bacteria such as Fusobacterium. Moreover, lactulose significantly inhibited dextran sodium sulfate-induced body weight loss, colon shortening, colonic inflammatory infiltration, and pro-inflammatory cytokines IL-6, TNF-α, IL-17, and IL-1β. Lactulose significantly affected serum metabolome in colitis mice and total 24 metabolites representing a high inter-group difference were obtained. Correlation analysis revealed that the changes in serum metabolites were closely associated with the role of intestinal flora, and thus affected phenotypic indicators. Our study provides a reference for nutritional characteristics and application scenarios of dietary lactulose.
Collapse
Affiliation(s)
- Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Botao Wang
- Bloomage Biotechnology Co., Ltd., Jinan 250000, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Shuangli Xiong
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
30
|
D’Haens G, Safroneeva E, Thorne H, Laoun R. Assessing the Clinical and Endoscopic Efficacy of Extended Treatment Duration with Different Doses of Mesalazine for Mild-to-Moderate Ulcerative Colitis beyond 8 Weeks of Induction. Inflamm Intest Dis 2023; 8:51-59. [PMID: 37901343 PMCID: PMC10601940 DOI: 10.1159/000531372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/17/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction High-strength mesalazine formulations play an important role in providing a convenient option to increase the dose in ulcerative colitis (UC) patients and therefore avoiding the switch to another therapeutic class. Higher doses of mesalazine may be required during periods of remission in order to prevent relapse. Aim The aim of the study was to investigate clinical outcomes of three mesalazine maintenance doses adapted for post induction response. Methods In this post hoc analysis, 675 UC patients entered an open-label extension study for a total of 38 weeks (including 8-12 week induction period with 3.2 g/day mesalazine). After the induction period, they were separated into three groups: remitters (in clinical and endoscopic remission), responders (decrease in Partial Mayo Clinic Score of ≥2 points and ≥30% from week 0), and nonresponders (failed to achieve endoscopic or clinical response at week 8) and received 1.6 g/day, 3.2 g/day, or 4.8 g/day of mesalazine (using a new 1,600 mg mesalazine tablet), respectively. Results 133/202 (65.8%), 108/274 (39.4%), and 59/199 (29.6%) patients achieved clinical and endoscopic remission at week 38 with 1.6 g/day, 3.2 g/day, and 4.8 g/day, respectively. At week 38, 142/202 (70.3%), 93/274 (33.9%), and 61/199 (30.7%) patients achieved clinical remission (stool score of 0 and rectal bleeding score of 0) with 1.6 g/day, 3.2 g/day, and 4.8 g/day, respectively. Conclusions Patients partially responding or not responding to an initial induction dose of 3.2 g/day mesalazine could benefit from an extended treatment period at the same dose, or an increase to 4.8 g/day in an attempt to achieve combined clinical and endoscopic remission.
Collapse
Affiliation(s)
- Geert D’Haens
- Inflammatory Bowel Disease Centre, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Helen Thorne
- Medical Affairs, Tillotts Pharma AG, Rheinfelden, Switzerland
| | - Raphaël Laoun
- Medical Affairs, Tillotts Pharma AG, Rheinfelden, Switzerland
| |
Collapse
|
31
|
Lei P, Yu H, Ma J, Du J, Fang Y, Yang Q, Zhang K, Luo L, Jin L, Wu W, Sun D. Cell membrane nanomaterials composed of phospholipids and glycoproteins for drug delivery in inflammatory bowel disease: A review. Int J Biol Macromol 2023; 249:126000. [PMID: 37532186 DOI: 10.1016/j.ijbiomac.2023.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a serious chronic intestinal disorder with an increasing global incidence. However, current treatment strategies, such as anti-inflammatory drugs and probiotics, have limitations in terms of safety, stability, and effectiveness. The emergence of targeted nanoparticles has revolutionized IBD treatment by enhancing the biological properties of drugs and promoting efficiency and safety. Unlike synthetic nanoparticles, cell membrane nanomaterials (CMNs) consist primarily of biological macromolecules, including phospholipids, proteins, and sugars. CMNs include red blood cell membranes, macrophage membranes, and leukocyte membranes, which possess abundant glycoprotein receptors and ligands on their surfaces, allowing for the formation of cell-to-cell connections with other biological macromolecules. Consequently, they exhibit superior cell affinity, evade immune responses, and target inflammation effectively, making them ideal material for targeted delivery of IBD therapies. This review explores various CMNs delivery systems for IBD treatment. However, due to the complexity and harsh nature of the intestinal microenvironment, the lack of flexibility or loss of selectivity poses challenges in designing single CMNs delivery strategies. Therefore, we propose a hierarchically programmed delivery modality that combines CMNs with pH, charge, ROS and ligand-modified responsive nanoparticles. This approach significantly improves delivery efficiency and points the way for future research in this area.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Li Luo
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
32
|
Abaidullah M, La S, Liu M, Liu B, Cui Y, Wang Z, Sun H, Ma S, Shi Y. Polysaccharide from Smilax glabra Roxb Mitigates Intestinal Mucosal Damage by Therapeutically Restoring the Interactions between Gut Microbiota and Innate Immune Functions. Nutrients 2023; 15:4102. [PMID: 37836386 PMCID: PMC10574425 DOI: 10.3390/nu15194102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Smilax glabra Roxb (S. glabra) is a conventional Chinese medicine that is mainly used for the reliability of inflammation. However, bioactive polysaccharides from S. glabra (SGPs) have not been thoroughly investigated. Here, we demonstrate for the first time that SGPs preserve the integrity of the gut epithelial layer and protect against intestinal mucosal injury induced by dextran sulfate sodium. Mechanistically, SGPs mitigated colonic mucosal injury by restoring the association between the gut flora and innate immune functions. In particular, SGPs increased the number of goblet cells, reduced the proportion of apoptotic cells, improved the differentiation of gut tight junction proteins, and enhanced mucin production in the gut epithelial layer. Moreover, SGPs endorsed the propagation of probiotic bacteria, including Lachnospiraceae bacterium, which strongly correlated with decreased pro-inflammatory cytokines via the blocking of the TLR-4 NF-κB and MyD88 pathways. Overall, our study establishes a novel use of SGPs for the treatment of inflammatory bowel disease (IBD)-associated mucosal injury and provides a basis for understanding the therapeutic effects of natural polysaccharides from the perspective of symbiotic associations between host innate immune mechanisms and the gut microbiome.
Collapse
Affiliation(s)
- Muhammad Abaidullah
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Shaokai La
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
33
|
Chen B, Wang Y, Niu Y, Li S. Acalypha australis L. Extract Attenuates DSS-Induced Ulcerative Colitis in Mice by Regulating Inflammatory Factor Release and Blocking NF- κB Activation. J Med Food 2023; 26:663-671. [PMID: 37530576 DOI: 10.1089/jmf.2023.k.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic gastroenteric inflammatory disease that may cause life-threatening complications. Currently available therapeutic drugs are not as effective as expected, necessitating the development of new targets and drugs. The etiology and pathogenetic mechanisms of UC are largely unclear; thus, the treatment effects are limited. The aqueous extract of Acalypha australis L. (AAL) has shown good therapeutic efficacy in treating UC. AAL is used in traditional Chinese medicine owing to its hemostasis, detoxification, and heat clearance effects. Although astragalus has such broad-spectrum biological activities closely related to inflammation, its therapeutic efficacy for UC treatment has not been reported, the underlying mechanism remains unknown. We studied the therapeutic effect of AAL on UC in mice and explored its potential mechanism. Mice were treated with AAL aqueous extract for 7 days (20 mg/kg), after which the colon tissue was assessed for damage (colon mucosal damage index [CMDI]), apoptosis (immunohistochemistry), and release of cytokines (enzyme-linked immunosorbent assay). The concentration of AAL aqueous extract at 20 mg/kg significantly improved the CMDI score and colon injury of UC model. It also reduced the serum levels of IL-2, IL-8, IL-17A, IL-22, IFN-γ, and TNF-α, and decreased apoptosis in the colon. AAL water extract also significantly reduced the expression level of NF-κB pathway-related proteins. In conclusion, AAL can protect against UC mainly by inhibiting the expression level of NF-κB pathway-related proteins and reducing the release of inflammatory factors.
Collapse
Affiliation(s)
- Bo Chen
- College of Biology and Food Engineering, Huaihua University, Huaihua, China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Yiqing Wang
- Hunan Yao Tea Engineering Research Center, Xupu, China
| | - YouYa Niu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Shenghua Li
- College of Biology and Food Engineering, Huaihua University, Huaihua, China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| |
Collapse
|
34
|
Wu W, Liu L, Zhu Y, Ni J, Lu J, Wang X, Ma L, Jiang Y. Zinc-Rutin Particles Ameliorate DSS-Induced Acute and Chronic Colitis via Anti-inflammatory and Antioxidant Protection of the Intestinal Epithelial Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12715-12729. [PMID: 37581468 DOI: 10.1021/acs.jafc.3c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In patients suffering from inflammatory bowel diseases (IBDs), the immune system is disrupted and the intestinal barrier function is compromised. Here, six zinc-flavonoid particles were produced by one-step reaction via changing flavonoids (myricetin, quercetin, and rutin) and solvent (water and ethanol), and then their cytocompatibility and ability to scavenge H2O2, free radicals, and LPS-induced ROS were compared. Zinc-rutin particles (W-ZnRT) composed of rutin (78.92 wt %), Na12[ZnPO4]12·12H2O (6.76 wt %), and crystal water were screened out because W-ZnRT exhibited 80.8 ± 15% cell viability against RAW264.7, could rapidly scavenge 78.1 ± 1% of H2O2 and 71.6 ± 2% of DPPH within 30 min, and reduced LPS-increased intracellular ROS to normal levels. In addition, the therapeutic effects of rutin and W-ZnRT were also compared in dextran sulfate sodium (DSS)-induced acute and chronic colitis in mice. W-ZnRT was superior to rutin alone in chronic colitis (n = 9), although they were equally effective in acute colitis (n = 7). Compared to rutin, 11 oral doses of W-ZnRT (40 mg kg-1) significantly improved intestinal permeability (p = 0.0299) and colon length (p = 0.0025), reduced intestinal proinflammatory factors (IL-6, IL-1β, and TNF-α), and upregulated tight junction proteins to maintain intestinal barrier function. Taken together, these results identified W-ZnRT as an efficient and safe therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Weisong Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Limei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yingwei Zhu
- Department of Gastroenterology, Wuxi No. 2 People's Hospital (Jiangnan University Medical Center), Wuxi 214002, China
| | - Jingbin Ni
- Department of Gastroenterology, Wuxi No. 2 People's Hospital (Jiangnan University Medical Center), Wuxi 214002, China
| | - Jian Lu
- Department of Gastroenterology, Wuxi No. 2 People's Hospital (Jiangnan University Medical Center), Wuxi 214002, China
| | - Xiaoli Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
35
|
KASAPOĞLU B, ERTAN A. Oral small molecule agents in management of ulcerative colitis: fact or fancy? Turk J Med Sci 2023; 53:1526-1536. [PMID: 38813493 PMCID: PMC10762860 DOI: 10.55730/1300-0144.5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/12/2023] [Accepted: 08/11/2023] [Indexed: 05/31/2024] Open
Abstract
Ulcerative colitis is a chronic, immune-mediated disease characterized by recurring episodes of mucosal inflammation in the colon and rectum. The primary pathogenic mechanism of ulcerative colitis is the dysregulation of the mucosal immune response. The disease follows a relapsing-remitting course, and the goal of management is to successfully induce and then maintain remission. Effectively managing this chronic disease requires addressing all aspects of it. Currently, we have various antitumor necrosis factor agents and novel biologics available for treating ulcerative colitis patients with moderate-to-severe disease. However, none of the existing treatments are considered entirely satisfactory or ideal in these cases. After extensive progressive research, oral small molecule therapies targeting mediators of ongoing inflammation represent an exciting and revolutionary change in the treatment of ulcerative colitis, especially for patients with moderate-to-severe disease. In this review, we aimed to summarize the available experience and ongoing research on oral small molecule agents in the management of ulcerative colitis. The available experience and ongoing research with promising outcomes provide convincing evidence that the value of oral small molecule agents is fact not fancy.
Collapse
Affiliation(s)
- Benan KASAPOĞLU
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Lokman Hekim University, Ankara,
Turkiye
| | - Atilla ERTAN
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University Texas McGovern Medical School, Houston, TX,
USA
| |
Collapse
|
36
|
Swastha D, Varsha N, Aravind S, Samyuktha KB, Yokesh MM, Balde A, Ayilya BL, Benjakul S, Kim SK, Nazeer RA. Alginate-based drug carrier systems to target inflammatory bowel disease: A review. Int J Biol Macromol 2023:125472. [PMID: 37336375 DOI: 10.1016/j.ijbiomac.2023.125472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder that affects the gastrointestinal tract. IBD has become an increasingly common condition in both developed and developing nations over the last few decades, owing to a variety of factors like a rising population and diets packed with processed and junk foods. While the root pathophysiology of IBD is unknown, treatments are focused on medications aimed to mitigate symptoms. Alginate (AG), a marine-derived polysaccharide, is extensively studied for its biocompatibility, pH sensitivity, and crosslinking nature. This polymer is thoroughly researched in drug delivery systems for IBD treatment, as it is naturally available, non-toxic, cost effective, and can be easily and safely cross-linked with other polymers to form an interconnected network, which helps in controlling the release of drugs over an extended period. There are various types of drug delivery systems developed from AG to deliver therapeutic agents; among them, nanotechnology-based systems and hydrogels are popular due to their ability to facilitate targeted drug delivery, reduce dosage, and increase the therapeutic efficiency. AG-based carrier systems are not only used for the sustained release of drug, but also used in the delivery of siRNA, interleukins, and stem cells for site directed drug delivery and tissue regenerating ability respectively. This review is focussed on pathogenesis and currently studied medications for IBD, AG-based drug delivery systems and their properties for the alleviation of IBD. Moreover, future challenges are also be discoursed to improve the research of AG in the field of biopharmaceuticals and drug delivery.
Collapse
Affiliation(s)
- Dinakar Swastha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Nambolan Varsha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Suresh Aravind
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Kavassery Balasubramanian Samyuktha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Muruganandam Mohaneswari Yokesh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Bakthavatchalam Loganathan Ayilya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India.
| |
Collapse
|
37
|
Miao T, Song G, Yang J. Protective Effect of Apple Polyphenols on H<sub>2</sub>O<sub>2</sub>-Induced Oxidative Stress Damage in Human Colon Adenocarcinoma Caco-2 Cells. Chem Pharm Bull (Tokyo) 2023; 71:262-268. [PMID: 37005250 DOI: 10.1248/cpb.c22-00348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Apple is an important dietary agent for human and apple polyphenols (AP) are the main secondary metabolites of apples. In this study, the protective effects of AP on hydrogen peroxide (H2O2)-induced oxidative stress damage in human colon adenocarcinoma Caco-2 cells were investigated by cell viability, oxidative stress change as well as cell apoptosis. Pre-adding AP could significantly increase the survival rate of H2O2-treated Caco-2 cells. Besides, the activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) were elevated. While the malondialdehyde (MDA) content which is the major oxidant products of polyunsaturated fatty acids (PUFA) reduced after AP treatment. In addition, AP also suppressed the emergence of DNA fragment and decreased the expression of apoptosis-related protein Caspase-3. These results demonstrated that AP could ameliorate H2O2-induced oxidative stress damage in Caco-2 cells, which could serve as a reference for further studies of apple natural active products and deep study of the anti-oxidative stress mechanism.
Collapse
Affiliation(s)
- Tianyi Miao
- Department of Pharmacy, Northwest Women’s and Children’s Hospital
| | - Guangming Song
- Center for Drug Evaluation, National Medical Products Administration
| | - Jing Yang
- School of Chemical Engineering, Northwest University
| |
Collapse
|
38
|
Kimura Y, Taniguchi M, Okuda T. Acertannin Prevented Dextran Sulfate Sodium-induced Colitis by Inhibiting the Colonic Expression of IL-23 and TNF-α in C57BL/6J Mice. PLANTA MEDICA 2023. [PMID: 36796450 DOI: 10.1055/a-2037-2995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The present study investigates the effects of acertannin on colitis induced by dextran sulfate sodium (DSS) and changes in the colonic levels of the cytokines interleukin (IL)-1β, IL-6, IL-10, IL-23, tumor necrosis factor (TNF)-α, the chemokine monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF).We examine the following: inflammatory colitis was induced in mice by 2% DSS drinking water given ad libitum for 7 days. Red blood cell, platelets, and leukocyte counts and hematocrit (Ht), hemoglobin (Hb), and colonic cytokine and chemokine levels were measured. The disease activity index (DAI) was lower in DSS-treated mice orally administered acertannin (30 and 100 mg/kg) than in DSS-treated mice. Acertannin (100 mg/kg) inhibited reductions in the red blood cell count and Hb and Ht levels in DSS-treated mice. Acertannin prevented DDS-induced mucosal membrane ulceration of the colon and significantly inhibited the increased colonic levels of IL-23 and TNF-α. Our findings suggest that acertannin has potential as a treatment for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Yoshiyuki Kimura
- Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Nasahara, Takatsuki, Osaka, Japan
- Previous affiliation: Department of Functional Biomedicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masahiko Taniguchi
- Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Nasahara, Takatsuki, Osaka, Japan
| | - Takuo Okuda
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| |
Collapse
|
39
|
Nardone OM, Marasco G, Lopetuso LR, Mocci G, Pastorelli L, Petruzzellis C, Scaldaferri F. Insights into Mesalazine Use in Clinical Practice of Young Gastroenterologists. J Clin Med 2023; 12:jcm12052005. [PMID: 36902792 PMCID: PMC10004260 DOI: 10.3390/jcm12052005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Mesalazine is among the medications most prescribed by gastroenterologists, with variable and controversial use in different settings. We aimed to explore the use of mesalazine in the clinical practice of young gastroenterologists. METHODS A web-based electronic survey was distributed to all participants of the National Meeting of the Italian Young Gastroenterologist and Endoscopist Association. RESULTS A total of 101 participants took part in the survey, with a majority (54.4%) being aged >30 years, 63.4% of whom were trainees in academic hospitals, and 69.3% of whom were involved in the clinical management of inflammatory bowel disease (IBD). While both non-dedicated and IBD physicians generally agreed on the appropriate dose of mesalazine for mild ulcerative colitis (UC), significant differences were observed between the two groups for moderate-severe ulcerative colitis (UC). Additionally, in IBD patients who were starting immuno-modulators and/or biologics, 80% of IBD-dedicated physicians continued to prescribe mesalazine, compared to 45.2% of non-dedicated physicians (p = 0.002). Indeed, 48.4% of non-dedicated IBD physicians did not acknowledge mesalazine for colorectal cancer chemoprevention. With regards to Crohn's disease, it is mainly used by 30.1% of IBD physicians for preventing postoperative recurrence of Crohn's disease. Finally, 57.4% used mesalazine for symptomatic uncomplicated diverticular disease, and 84.2% did not recommend its use for irritable bowel syndrome. CONCLUSIONS This survey showed heterogeneous behaviors in the daily use of mesalazine, mainly in the management of IBD. Educational programs and novel studies are needed to clarify its use.
Collapse
Affiliation(s)
- Olga Maria Nardone
- Gastroenterology, Department of Public Health, University Federico II of Naples, 80131 Naples, Italy
| | - Giovanni Marasco
- Division of Internal Medicine and Digestive Physiopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel./Fax: +39-0512145265
| | - Loris Riccardo Lopetuso
- CEMAD—IBD UNIT—Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Giammarco Mocci
- Division of Gastroenterology, “Brotzu” Hospital, 09124 Cagliari, Italy
| | - Luca Pastorelli
- Gastroenterology and Hepatology Unit, ASST Santi Paolo e Carlo, 20142 Milan, Italy
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Carlo Petruzzellis
- Gastroenterology Unit, Azienda Ospedaliera di Rilievo Nazionale e di Alta Specializzazione Garibaldi, 95123 Catania, Italy
| | - Franco Scaldaferri
- CEMAD—IBD UNIT—Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | | |
Collapse
|
40
|
González-Lama Y, Ricart E, Cábez A, Fortes P, Gómez S, Casellas F. Medical consultation in ulcerative colitis: Key elements for improvement. World J Gastroenterol 2023; 29:917-925. [PMID: 36844134 PMCID: PMC9950864 DOI: 10.3748/wjg.v29.i6.917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease with a high impact. In order to improve patient outcomes, the clinician-patient relationship in daily practice is critical. Clinical guidelines provide a framework for UC diagnosis and treatment. However, standard procedures and the medical content focused upon medical consultations in UC patients has not yet been defined. Moreover, UC is a complex disease, given that patient characteristics and patient needs have been proven to vary during clinical consultation since establishing the diagnosis and upon the course of the disease. In this article, we have discussed the key elements and specific objectives to consider in medical consultation, such as diagnosis, first visits, follow-up visits, active disease patients, patients on topical therapies, new treatment initiation, refractory patients, extra-intestinal manifestations, as well as challenging situations. The key elements have been mentioned to comprise effective communication techniques, motivational interviewing (MI), as well as information and educational aspects, or organizational issues. The key elements to be implemented in daily practice were reported to comprise several general principles like duly prepared consultations, in addition to honesty and empathy with patients, as well as effective communication techniques, MI, information and educational points, or organizational issues. The role of other healthcare professionals such as specialized nurses, psychologists, or the use of checklists was also discussed and commented on.
Collapse
Affiliation(s)
- Yago González-Lama
- Inflammatory Bowel Disease Unit, Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid 28222, Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic, Barcelona 08036, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Barcelona 08036, Spain
| | - Ana Cábez
- Department of Medical, Pfizer Spain, Madrid 28108, Spain
| | - Pilar Fortes
- Department of Medical, Pfizer Spain, Madrid 28108, Spain
| | - Susana Gómez
- Servicio de Reumatología, Hospital Universitario de Salamanca, Salamanca 37007, Spain
| | - Francesc Casellas
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Barcelona 08036, Spain
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona 08035, Spain
| |
Collapse
|
41
|
Tkach S, Dorofeyev A, Kuzenko I, Falalyeyeva T, Tsyryuk O, Kovalchuk O, Kobyliak N, Abenavoli L, Boccuto L. Efficacy and safety of fecal microbiota transplantation via colonoscopy as add-on therapy in patients with mild-to-moderate ulcerative colitis: A randomized clinical trial. Front Med (Lausanne) 2023; 9:1049849. [PMID: 36714101 PMCID: PMC9877446 DOI: 10.3389/fmed.2022.1049849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Growing evidence supports the effectiveness of fecal microbiota transplantation (FMT) in treating ulcerative colitis (UC), although its effects seem to depend on the method of introduction, the number of procedures, the donor material, and the severity of UC. Aim This study aimed to assess FMT's clinical and microbiological efficacy, tolerability, and safety in patients with mild-to-moderate UC. Material and methods Patients with mild-to-moderate UC were randomized into two groups. The first group (standard-care, n = 27) was treated with basic therapy-mesalazine-at a daily dose of 3 g (2 g orally + 1 g rectally). In the second group (FMT group, n = 26), while taking mesalazine at the indicated dose, each patient with UC as add-on therapy underwent a single FMT procedure with fresh material delivered by colonoscopy from a healthy donor. The clinical efficacy of treatment in both groups was evaluated after 4 and 8 weeks. The primary outcome was remission of UC, defined as a partial Mayo score ≤2, and decreased fecal calprotectin. All patients underwent bacteriological examination of feces for quantitative microbiota composition changes. Results Clinical response in the form of a significant decrease in stool frequency and a tendency to normalize its consistency after 4 weeks was detected in 14 (51.9%) patients of the standard care group and 16 patients (61.5%) of the FMT group (p = 0.583). The Mayo score in the standard care group was 3.59 ± 1.21 and in the FMT group-3.15±1.04 (p=0.166). After 8 weeks, the main primary endpoint was achieved in 70.4% of the standard-care group patients as compared to 84.6% of participants who received FMT as add-on therapy (p = 0.215). A more pronounced decrease in Mayo score was observed in the FMT group compared to the standard-care group (1.34 ± 1.44 vs. 2.14 ± 1.4; p = 0.045). All patients also showed a significant decrease in fecal calprotectin levels, which correlated with clinical data, stool frequency, and clinical remission. An improvement in gut microbiota composition was noted in both groups, albeit it was significantly more pronounced in the FMT group. Conclusions FTM in patients with mild-to-moderate UC is a well-tolerated, effective, and safe method of treatment in comparison to basic therapy. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT05538026?term=kobyliak&draw=2&rank=4, identifier: NCT05538026.
Collapse
Affiliation(s)
- Sergii Tkach
- Ukrainian Research and Practical Centre of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Andrii Dorofeyev
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Iurii Kuzenko
- Ukrainian Research and Practical Centre of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine,Educational-Scientific Center, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olena Tsyryuk
- Educational-Scientific Center, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oleksandr Kovalchuk
- Educational-Scientific Center, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine,Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Kyiv, Ukraine,Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Catanzaro, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, United States,Clemson University School of Health Research, Clemson, SC, United States,*Correspondence: Luigi Boccuto ✉
| |
Collapse
|
42
|
Simpson JB, Sekela JJ, Carry BS, Beaty V, Patel S, Redinbo MR. Diverse but desolate landscape of gut microbial azoreductases: A rationale for idiopathic IBD drug response. Gut Microbes 2023; 15:2203963. [PMID: 37122075 PMCID: PMC10132220 DOI: 10.1080/19490976.2023.2203963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Prodrugs reliant on microbial activation are widely used but exhibit a range of efficacies that remain poorly understood. The anti-inflammatory compound 5-aminosalicylic acid (5-ASA), which is packaged in a variety of azo-linked prodrugs provided to most Ulcerative Colitis (UC) patients, shows confounding inter-individual variabilities in response. Such prodrugs must be activated by azo-bond reduction to form 5-ASA, a process that has been attributed to both enzymatic and non-enzymatic catalysis. Gut microbial azoreductases (AzoRs) are the first catalysts shown to activate azo-linked drugs and to metabolize toxic azo-chemicals. Here, we chart the scope of the structural and functional diversity of AzoRs in health and in patients with the inflammatory bowel diseases (IBDs) UC and Crohn's Disease (CD). Using structural metagenomics, we define the landscape of gut microbial AzoRs in 413 healthy donor and 1059 IBD patient fecal samples. Firmicutes encode a significantly higher number of unique AzoRs compared to other phyla. However, structural and biochemical analyses of distinct AzoRs from the human microbiome reveal significant differences between prevalent orthologs in the processing of toxic azo-dyes, and their generally poor activation of IBD prodrugs. Furthermore, while individuals with IBD show higher abundances of AzoR-encoding gut microbial taxa than healthy controls, the overall abundance of AzoR-encoding microbes is markedly low in both disease and health. Together, these results establish that gut microbial AzoRs are functionally diverse but sparse in both health and disease, factors that may contribute to non-optimal processing of azo-linked prodrugs and idiopathic IBD drug responses.
Collapse
Affiliation(s)
- Joshua B. Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh J. Sekela
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin S. Carry
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Violet Beaty
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shakshi Patel
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew. R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, Department of Microbiology and Immunology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Zhao C, Jiang Y, Yin H, Jin Z, Yuan J, Shang H, Song H. Hericium caput-medusae (Bull.: Fr.) Pers. Fermentation concentrate polysaccharide ameliorate diarrhea in DSS-induced early colitis by modulating ion channel. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
44
|
Li K, Zhu Y, Zhang P, Alini M, Grad S, Li Z. Anti-inflammatory and pro-anabolic effects of 5-aminosalicylic acid on human inflammatory osteoarthritis models. J Orthop Translat 2023; 38:106-116. [PMID: 36381242 PMCID: PMC9633873 DOI: 10.1016/j.jot.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Background Osteoarthritis (OA) is the most common degenerative joint disease, mainly affecting the elderly worldwide, for which the drug treatment remains a major challenge. Low-grade inflammation plays a pivotal role in OA onset and progression. Exploration of notable anti-inflammatory and disease-modifying drugs on human samples could facilitate the evaluation of therapeutic strategies for OA. Methods The anti-inflammatory drug 5-aminosalicylic acid (5-ASA) is a first-line drug for ulcerative colitis (UC), however no study has explored the effects of 5-ASA on articular chondrocytes. In this work, both in vitro (chondrocyte pellets) and ex vivo (osteochondral explants) human inflammatory OA models were applied to evaluate the effects of 5-ASA. Results In the inflammatory pellet model, 5-ASA remarkably downregulated the gene expression of interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2) while upregulating proteoglycan 4 (PRG4) and cartilage oligomeric matrix protein (COMP) gene expression. Total glycosaminoglycan (GAG) synthesis by pellets was markedly increased in 5-ASA-treated groups compared with the inflammatory group. In conditioned medium, inflammatory mediators (IL-8, nitric oxide) were markedly inhibited upon 5-ASA treatment. Moreover, histological staining showed 5-ASA retained proteoglycan content and inhibited degradation of extracellular matrix (ECM) core components, aggrecan (ACAN) and collagen type II (COL2). In the inflammatory explant model, 5-ASA mitigated signs of OA development by reducing inflammatory mediators and GAG loss. Conclusions These findings suggest that 5-ASA has anti-inflammatory and pro-anabolic effects on human chondrocyte pellet and osteochondral explant inflammatory OA models. The translational potential of this article Disease-modifying OA drugs are an unmet clinical need for the treatment of OA. Our study explored and demonstrated the anti-inflammatory and protective effects of 5-ASA on in vitro and ex vivo human inflammatory OA models, showing its translational potential for OA treatment.
Collapse
Affiliation(s)
- Kaihu Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- AO Research Institute Davos, Davos, Switzerland
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Penghui Zhang
- AO Research Institute Davos, Davos, Switzerland
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
- Corresponding author.
| |
Collapse
|
45
|
Li H, Wang Y, Shao S, Yu H, Wang D, Li C, Yuan Q, Liu W, Cao J, Wang X, Guo H, Wu X, Wang S. Rabdosia serra alleviates dextran sulfate sodium salt-induced colitis in mice through anti-inflammation, regulating Th17/Treg balance, maintaining intestinal barrier integrity, and modulating gut microbiota. J Pharm Anal 2022; 12:824-838. [PMID: 36605573 PMCID: PMC9805946 DOI: 10.1016/j.jpha.2022.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Rabdosia serra (R. serra), an important component of Chinese herbal tea, has traditionally been used to treat hepatitis, jaundice, cholecystitis, and colitis. However, the chemical composition of R. serra and its effect against colitis remain unclear. In this study, the chemical composition of the water extract of R. serra was analyzed using ultra performance liquid chromatography coupled with a hybrid linear ion trap quadrupole-orbitrap mass spectrometer (UPLC-LTQ-Orbitrap-MS). A total of 46 compounds, comprising ent-kaurane diterpenoids, flavonoids, phenolic acids, and steroids, were identified in the water extract of R. serra, and the extract could significantly alleviate dextran sulfate sodium salt-induced colitis by improving colon length, upregulating anti-inflammatory factors, downregulating proinflammatory factors, and restoring the balance of T helper 17/T regulatory cells. R. serra also preserved intestinal barrier function by increasing the level of tight junction proteins (zonula occludens 1 and occludin) in mouse colonic tissue. In addition, R. serra modulated the gut microbiota composition by increasing bacterial richness and diversity, increasing the abundance of beneficial bacteria (Muribaculaceae, Bacteroides, Lactobacillus, and Prevotellaceae_UCG-001), and decreasing the abundance of pathogenic bacteria (Turicibacter, Eubacterium_fissicatena_group, and Eubacterium_xylanophilum_group). Gut microbiota depletion by antibiotics further confirmed that R. serra alleviated colitis in a microbiota-dependent manner. Overall, our findings provide chemical and biological evidence for the potential application of R. serra in the management of colitis.
Collapse
Affiliation(s)
- Hongyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Yi Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shumin Shao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Hui Yu
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, 510000, China
| | - Deqin Wang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, 510000, China
| | - Chuyuan Li
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, 510000, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jiliang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Haibiao Guo
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, 510000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Corresponding author.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macao, 999078, China
- Corresponding author. State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| |
Collapse
|
46
|
Yang M, Zhang Q, Taha R, Abdelmotalab MI, Wen Q, Yuan Y, Zhao Y, Li Q, Liao C, Huang X, Jiang Z, Chu C, Jiao C, Sun L. Polysaccharide from Atractylodes macrocephala Koidz. ameliorates DSS-induced colitis in mice by regulating the Th17/Treg cell balance. Front Immunol 2022; 13:1021695. [PMID: 36341374 PMCID: PMC9630481 DOI: 10.3389/fimmu.2022.1021695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Atractylodes macrocephala Koidz. is one of the most frequently used traditional Chinese medicines for the treatment of ulcerative colitis (UC). The beneficial effect of polysaccharide from Atractylodes macrocephala Koidz. (PAMK) on UC has been reported, while the underlying mechanism and target remain unclear. In this study, we systematically investigated the therapeutic effect and the underlying mechanism of PAMK in UC based on a mouse model of dextran sodium sulfate (DSS)-induced colitis. PAMK treatment (100 mg/kg, 200 mg/kg and 400 mg/kg) significantly ameliorated DSS-induced colitis, manifested as a reduction in weight loss, disease activity index (DAI), colon shortening, spleen index and histological score. Moreover, PAMK treatment inhibited inflammation and improved the integrity of the intestinal barrier in colitis mice. Mechanistically, microarray analysis determined the critical role of the immunoregulatory effect of PAMK in alleviating UC. Flow cytometry analysis further demonstrated that PAMK treatment regulated the balance between T helper (Th) 17 and regulatory T (Treg) cells in the mesenteric lymph nodes (MLN) and spleen in mice with colitis. In addition, PAMK treatment downregulated the expression of IL-6 and suppressed the phosphorylation of STAT3. Together, these data revealed that PAMK treatment alleviated DSS-induced colitis by regulating the Th17/Treg cell balance, which may be dependent on the inhibition of the IL-6/STAT3 signaling pathway. Our study is the first to elucidate that the underlying mechanism by which PAMK treatment alleviates DSS-induced colitis is associated with an improved the Th17/Treg cell balance. Collectively, the study provides evidence for the potential of PAMK to treat UC.
Collapse
|
47
|
Chen K, Shang S, Yu S, Cui L, Li S, He N. Identification and exploration of pharmacological pyroptosis-related biomarkers of ulcerative colitis. Front Immunol 2022; 13:998470. [PMID: 36311726 PMCID: PMC9606687 DOI: 10.3389/fimmu.2022.998470] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD). Its etiology is unclear. Much evidence suggests that the death of abnormal intestinal epithelial cells (IECs) leads to intestinal barrier disruption, and the subsequent inflammatory response plays a vital role in UC. Pyroptosis is a form of programmed inflammatory cell death, and the role of pyroptosis in UC etiology remains to be explored. This study identified 10 hub genes in pyroptosis by gene expression profiles obtained from the GSE87466 dataset. Meanwhile, the biomarkers were screened based on gene significance (GS) and module membership (MM) through the Weighted Gene Co-Expression Network Analysis (WGCNA). The following analysis indicated that hub genes were closely associated with the UC progression and therapeutic drug response. The single-cell RNA (scRNA) sequencing data from UC patients within the GSE162335 dataset indicated that macrophages were most related to pyroptosis. Finally, the expression of hub genes and response to the therapeutic drug [5-aminosalicylic acid (5-ASA)] were verified in dextran sulfate sodium (DSS)-induced colitis mice. Our study identified IL1B as the critical pyroptosis-related biomarker in UC. The crosstalk between macrophage pyroptosis and IEC pyroptosis may play an essential role in UC, deserving further exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningning He
- *Correspondence: Shangyong Li, ; Ningning He,
| |
Collapse
|
48
|
Xie F, Li S, Fan Y, Li W, Lv Q, Sun X, Chen Y, Yang X. Efficacy and Safety of Bifidobacterium Quadruple Viable Bacteria Combined with Mesalamine against UC Management: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8272371. [PMID: 36238645 PMCID: PMC9553352 DOI: 10.1155/2022/8272371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/30/2023]
Abstract
Objective To systematically assess effectiveness and safety of Bifidobacterium quadruple viable bacteria combined with mesalamine against ulcerative colitis (UC) in the Asian population. Methods An electronic search was conducted in PubMed, Embase, Cochrane Library, CNKI, VIP, and Wanfang databases for a random collection of controlled trials of Bifidobacterium quadruple viable bacteria combined with mesalamine against UC. Following data screening and extraction, a Cochrane risk assessment tool was adopted to evaluate the quality of the included studies, and RevMan 5.3 and Stata/SE 15.1 software were used for meta-analysis. Results Nineteen articles which enrolled 1,707 subjects were included ultimately in this study. The experimental group performed better than the control group in improving the Mayo score (MD = -1.94, 95% CI = (-2.69, -1.19), P < 0.00001), increasing the total clinical efficiency (OR = 5.10, 95% CI (3.53, 7.38), P < 0.00001), reducing the levels of IL-8 (SMD = -1.79, 95% CI (-2.36, -1.12), P < 0.00001), increasing the levels of IL-4 (SMD = 1.00, 95% CI (0.60, 1.41), P < 0.00001), and reducing the levels of hsCRP (MD = -3.26, 95% CI (-4.28, -2.25), P < 0.00001), TNF-α (MD = -7.11, 95% CI (-9.23, -5.00), P < 0.00001), ox-LDL (MD = -14.46, 95% CI (-17.20, -11.72), P < 0.00001), and LPO (MD = -3.55, 95% CI (-4.70, -2.39), P < 0.0001) as well as increasing SOD level (SMD = 1.68, 95% CI (1.02, 2.35), P < 0.00001), and adverse reactions were substantially less than that of control (OR = 0.43, 95% CI = (0.28, 0.66), P = 0.0001). Conclusion In conclusion, the current meta-analysis shows that Bifidobacterium quadruple viable bacterium combined with mesalamine has a satisfactory effect in the treatment of UC in China, and its safety is better than that of mesalamine or Bifidobacterium quadruple viable bacteria alone. However, randomized controlled trials with standardized designs and large sample sizes are still needed for further validation.
Collapse
Affiliation(s)
- Fei Xie
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, China
| | - Shichao Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, China
| | - Yao Fan
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, China
| | - Wusheng Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, China
| | - Qijun Lv
- Southwest Medical University, China
| | - Xin Sun
- Southwest Medical University, China
| | | | - Xiangdong Yang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, China
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Chengdu Anorectal Hospital, Colorectal and Anal Surgery, China
| |
Collapse
|
49
|
Zhong Y, Xiao Q, Kang Z, Huang J, Ge W, Wan Q, Wang H, Zhou W, Zhao H, Liu D. Astragalus polysaccharide alleviates ulcerative colitis by regulating the balance of Tfh/Treg cells. Int Immunopharmacol 2022; 111:109108. [PMID: 35926271 DOI: 10.1016/j.intimp.2022.109108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
The immunomodulatory function of natural active ingredients has long been a focus of scientific research, with recent hotspots reporting targeted modulation of the follicular helper T cells (Tfh)/regulatory T cells (Treg) balance as an emerging strategy for the treatment of ulcerative colitis (UC). Here, dextran sodium sulfate induced mice UC and Astragalus polysaccharide (APS, 200 mg/kg/day) was administered simultaneously. In this study, APS effectively alleviated colitis in mice by improving survival rate, disease activity index (DAI), the change rate of body weight, colonic length and weight, and histopathological injury of the colon. Moreover, APS regulated the expression of inflammatory cytokines interleukin (IL)-2, IL-6, IL-12p70, IL-23, Tumour necrosis factor (TNF)-ɑ, and transforming growth factor (TGF)-β1 in colonic tissues of colitis mice. Importantly, APS significantly downregulated Tfh cell and the expression of its related nuclear transcription factors Blimp-1 and Bcl-6, and cytokine IL-21. Meanwhile, APS regulated the differentiation of Tfh subpopulations in colitis mice, with Tfh10 and Tfr significantly upregulated while Tfh1, Tfh17, and Tfh21 significantly downregulated. In addition, APS significantly upregulated Treg cells and the levels of its associated nuclear transcription factor Foxp3, and cytokine IL-10 in colitis mice. In conclusion, APS effectively alleviated UC by reshaping the balance of Tfh/Treg cells.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, Jiangxi Province, China
| | - Zengping Kang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wei Ge
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Qi Wan
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Haiyan Wang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wen Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Nanchang Medical College, Nanchang 330004, Jiangxi Province, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
50
|
Zhong Y, Liu W, Xiong Y, Li Y, Wan Q, Zhou W, Zhao H, Xiao Q, Liu D. Astragaloside Ⅳ alleviates ulcerative colitis by regulating the balance of Th17/Treg cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154287. [PMID: 35752072 DOI: 10.1016/j.phymed.2022.154287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Restoring immune homeostasis by targeting the Th17/Treg response is a potentially valuable therapeutic strategy for ulcerative colitis (UC). Astragaloside IV (AS-Ⅳ) is a phytochemical naturally occurring in Astragalus membranaceus that has good anti-inflammatory, anti-oxidant and anti-stress properties. However, the effects of AS-IV on the homeostasis of Th17/Treg cells in colitis mice remains unknown. PURPOSE To investigate the protective effects and potential immunomodulatory mechanisms of AS-IV on UC. METHODS This study was constructed for DSS-induced acute colitis and recurrent colitis, with AS-IV administered prophylactically and therapeutically, respectively. The balance of Th17/Treg cells was analyzed by flow cytometry, their specific nuclear transcription factors were detected by RT-PCR as well as their secreted inflammatory cytokines were detected by ELISA and RT-PCR. Notch signaling-related proteins were detected by RT-PCR and Western blotting. Oxidative stress indicators were measured by biochemical technology. RESULTS In this study, AS-IV treatment not only effectively prevented and alleviated the clinical symptoms of DSS-induced colitis mice, including weight loss, DAI soaring, colon length shortening and colon weight gain, but also significantly improved ulcer formation, inflammatory cell infiltration and index, and regulated the expression of inflammatory cytokines in colon tissues. Importantly, the efficacy of high-dose AS-IV (100 mg/kg/day) in mice with recurrent colitis in this study was comparable to that of 5-ASA. AS-IV early administration was able to reshape the homeostasis of Th17/Treg cells in mice with acute colitis; meanwhile, AS-IV inhibited Th17 cell responses and promoted Treg cell responses in mice with recurrent colitis. Moreover, AS-IV not only inhibited the activation of Notch signaling pathway in colitis mice, but also prevented and ameliorated DSS-induced oxidative stress injury. CONCLUSION In conclusion, AS-IV effectively prevented and alleviated UC by reshaping Th17/Treg cell homeostasis and anti-oxidative stress.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Yanxia Xiong
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Yingmeng Li
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Qi Wan
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Wen Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; Nanchang Medical college, Nanchang, Jiangxi 330004, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China.
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China.
| |
Collapse
|