1
|
Luo Y, Shen G, Wang G, Lou C, Cao J, Zhu X, Zhang X, Liu Z, Fang M. Upregulations of high mobility group box 1 and TLR4/NF-κB signaling pathway in hippocampus and serum of rats with febrile seizure. Int J Neurosci 2024; 134:1031-1039. [PMID: 37128910 DOI: 10.1080/00207454.2023.2208278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE The aim of this study was to explore the alternations regarding the HMGB1 and TLR4/NF-κB signaling pathway in juvenile rats with febrile seizure (FS). MATERIALS AND METHODS During the animal modeling of the FS, seizures were triggered every four days by hot water (45 °C), and repeated ten times. After forty days' modeling, rats were divided into different groups according to the degree of seizure (FS (0) - FS (V)). Reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expressions of the HMGB1, TLR4 and NF-κB in the hippocampus, while Western-blot (WB) and immunofluorescence (IF) were employed to assess protein expressions. The enzyme-linked immunosorbent assay (ELISA) was used for analyzing the protein expressions in peripheral blood. RESULTS The mRNA levels of the HMGB1, TLR4 and NF-κB in the hippocampus of both FS (V) and FS (IV) groups were significantly higher than WT, while there was no difference between FS (III) and WT. Concerning protein expressions, increased levels of the HMGB1, TLR4, and NF-κB in FS (V) were observed with a good consistency between the WB and IF, while no significant upregulation was shown in FS (IV). The ELISA results showed that the significance of the augmented proteins between the FS (V) and WT were smaller in the serum than the hippocampus. CONCLUSIONS Our study shows seizure degree-related upregulations of HMGB1 and TLR4/NF-κB signaling pathway both in hippocampus and serum of juvenile rats with FS, suggesting the involvement of TLR/NF-κB pathway in inflammation promoted by HMGB1 during FS.
Collapse
Affiliation(s)
- Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanghong Shen
- The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
| | - Guo Wang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengjian Lou
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jianqing Cao
- The Fourth School of Clinical Medicine, Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuefen Zhu
- Neonatal Intensive Care Unit, Hangzhou First People's Hospital Qianjiang Xincheng, Hangzhou, China
| | - Xinjuan Zhang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhanli Liu
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology, Hangzhou Children's Hospital, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Huang F, Liu Q, Lu Y. Magnolia biondii flower extract attenuates UVB-induced skin damage through high-mobility group box protein B1. Int J Cosmet Sci 2024; 46:775-785. [PMID: 38685711 DOI: 10.1111/ics.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Magnolia biondii, a plant containing many magnolian-like compounds in its flowers or buds, exhibits anti-inflammatory and antiallergic effects; however, no study has addressed its effect on alleviating ultraviolet light (UV)-induced skin damage. We thus aimed at studying the effects of M. biondii flower extract (MB) on UVB-induced skin damage and determine the relationship between cell damage and damage-associated molecular patterns (DAMPs). METHODS Reconstructed epidermal models and foreskin samples were selected to detect cellular reactions after UVB irradiation and MB treatment. MTT, haematoxylin-eosin and immunofluorescence staining were used to examine total viability, sunburned cells and expression and migration of DAMPs at 16 or 48 h. Prostaglandin E2 (PGE-2) and interleukin 8 (IL-8) levels were measured using enzyme-linked immunosorbent assays. A clinical UVB-damaged test was carried out on human arms subjected to MB pre- or post-treatment. Human skin probes were used to measure erythema, melanin, ITA° and transepidermal water loss (TEWL), while skin photos were captured using the VISIA system. RESULTS MB is rich in lignans such as magnolin, pinoresinol dimethyl ether and fargesin, and shows weak UV absorption at 280-320 nm. Coculturing with MB for 16 or 48 h after UVB irradiation improved the tissue viability and structure of Skinovo-Epi, and reduced the expression and migration of high mobility group box protein B1 (HMGB1) as well as the expression of IL-8 and PGE-2. In the excised foreskin treated with MB after UVB irradiation, the generation of 8-hidroxy-2-deoxyguanosine and nuclear transfer of HMGB1 were reduced. When pre-treated with MB for 3 days, UVB-induced skin erythema and ITA° were significantly decreased. When post-treated with MB for 5 days, a decrease in skin erythema, melanin and TEWL values and an increase in skin ITA° were observed. CONCLUSIONS Treatment with MB attenuated UVB-induced skin damage, such as erythema, pigmentation and skin barrier function, by improving the tissue viability and structure and reducing sunburned cells and skin inflammation. This effect may be related to DNA damage, which causes the migration of HMGB1 from the nucleus to the outside of the cell to induce skin inflammation.
Collapse
Affiliation(s)
- Fang Huang
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
| | - Qing Liu
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
| | - Yina Lu
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
| |
Collapse
|
3
|
Abbas A, Almaghrbi H, Giordo R, Zayed H, Pintus G. Pathogenic mechanisms, diagnostic, and therapeutic potential of microvesicles in diabetes and its complications. Arch Biochem Biophys 2024; 761:110168. [PMID: 39349130 DOI: 10.1016/j.abb.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Extracellular vesicles (EVs), particularly microvesicles (MVs), have gained significant attention for their role as mediators of intercellular communication in both physiological and pathological contexts, including diabetes mellitus (DM) and its complications. This review provides a comprehensive analysis of the emerging roles of MVs in the pathogenesis of diabetes and associated complications such as nephropathy, retinopathy, cardiomyopathy, and neuropathy. MVs, through their cargo of proteins, lipids, mRNAs, and miRNAs, regulate critical processes like inflammation, oxidative stress, immune responses, and tissue remodeling, all of which contribute to the progression of diabetes and its complications. We examine the molecular mechanisms underlying MVs' involvement in these pathological processes and discuss their potential as biomarkers and therapeutic tools, particularly for drug delivery. Despite promising evidence, challenges remain in isolating and characterizing MVs, understanding their molecular mechanisms, and validating them for clinical use. Advanced techniques such as single-cell RNA sequencing and proteomics are required to gain deeper insights. Improved isolation and purification methods are essential for translating MVs into clinical applications, with potential to develop novel diagnostic and therapeutic strategies to improve patient outcomes in diabetes.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates; Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
4
|
Gao P, Wu Y, Yan Z. LncRNA ILF3-AS1 mediates oxidative stress and inflammation through miR-504-3p/HMGB1 axis in a cellular model of temporal lobe epilepsy. Brain Behav 2024; 14:e3615. [PMID: 39135276 PMCID: PMC11319232 DOI: 10.1002/brb3.3615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE), a prevalent neurological disorder, is associated with hippocampal oxidative stress and inflammation. A recent study reveals that the long noncoding RNA ILF3 divergent transcript (ILF3-AS1) level is elevated in the hippocampus of TLE patients; however, the functional roles of ILF3-AS1 in TLE and underlying mechanisms deserve further investigation. Hence, this study aimed to elucidate whether ILF3-AS1 is involved in the pathogenesis of TLE by regulating oxidative stress and inflammation and to explore its underlying mechanism in vitro. METHODS Human hippocampal neurons were subjected to a magnesium-free (Mg2+-free) solution to establish an in vitro model of TLE. The potential binding sites between ILF3-AS1 and miRNA were predicted by TargetScan/Starbase and confirmed by dual luciferase reporter assay. Cell viability and damage were assessed by cell counting kit-8 and lactate dehydrogenase assay kits, respectively. Levels of reactive oxygen species, malondialdehyde, and superoxide dismutase were determined by commercial kits. Levels of Interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-alpha were quantified by enzyme-linked immunosorbent assay. The expressions of gene and protein were determined by quantitative real-time polymerase chain reaction and Western blot analysis. RESULTS In Mg2+-free-treated hippocampal neurons, both ILF3-AS1 and HMGB1 were highly up-regulated, whereas miR-504-3p was down-regulated. ILF3-AS1 knockdown ameliorated Mg2+-free-induced cellular damage, oxidative stress, and inflammatory response. Bioinformatics analysis revealed that miR-504-3p was a target of ILF3-AS1 and was negatively regulated by ILF3-AS1. MiR-504-3p inhibitor blocked the protection of ILF3-AS1 knockdown against Mg2+-free-induced neuronal injury. Further analysis presented that ILF3-AS1 regulated HMGB1 expression by sponging miR-504-3p. Moreover, HMGB1 overexpression reversed the protective functions of ILF3-AS1 knockdown. CONCLUSION Our findings indicate that ILF3-AS1 contributes to Mg2+-free-induced hippocampal neuron injuries, oxidative stress, and inflammation by targeting the miR-504-3p/HMGB1 axis. These results provide a novel mechanistic understanding of ILF3-AS1 in TLE and suggest potential therapeutic targets for the treatment of epilepsy.
Collapse
Affiliation(s)
- Peipei Gao
- Department of PediatricsCangzhou Central HospitalCangzhouHebei ProvincePeople's Republic of China
| | - Ying Wu
- Department of PediatricsCangzhou Central HospitalCangzhouHebei ProvincePeople's Republic of China
| | - Zhixin Yan
- Department of PediatricsCangzhou Central HospitalCangzhouHebei ProvincePeople's Republic of China
| |
Collapse
|
5
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
6
|
Soytürk H, Önal C, Kılıç Ü, Türkoğlu ŞA, Ayaz E. The effect of the HMGB1/RAGE/TLR4/NF-κB signalling pathway in patients with idiopathic epilepsy and its relationship with toxoplasmosis. J Cell Mol Med 2024; 28:e18542. [PMID: 39046369 PMCID: PMC11267981 DOI: 10.1111/jcmm.18542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024] Open
Abstract
This study aims to investigate the relationship between toxoplasmosis and this pathway, which may be effective in the formation of epilepsy by acting through the HMGB1/RAGE/TLR4/NF-κB signalling pathway in patients with idiopathic epilepsy. In the study, four different experimental groups were formed by selecting Toxoplasma gondii IgG positive and negative patients with idiopathic epilepsy and healthy controls. Experimental groups were as follows: Group 1: Epilepsy+/Toxo- (E+, T-) (n = 10), Group 2: Epilepsy-/Toxo- (E-, T-) (n = 10), Group 3: Epilepsy-/Toxo+ (E-, T+) (n = 10), Group 4: Epilepsy+/Toxo+ (E+, T+) (n = 10). HMGB1, RAGE, TLR4, TLR1, TLR2, TLR3, IRAK1, IRAK2, IKBKB, IKBKG, BCL3, IL1β, IL10, 1 L8 and TNFα mRNA expression levels in the HMGB/RAGE/TLR4/NF-κB signalling pathway were determined by quantitative simultaneous PCR (qRT-PCR) after collecting blood samples from all patients in the groups. Statistical analysis was performed by one-way ANOVA followed by LSD post-hoc tests, and p < 0.05 was considered to denote statistical significance. The gene expression levels of HMGB1, TLR4, IL10, IL1B, IL8, and TLR2 were significantly higher in the G1 group than in the other groups (p < 0.05). In the G3 group, RAGE and BCL3 gene expression levels were significantly higher than in the other groups (p < 0.05). In the G4 group, however, IRAK2, IKBKB, and IKBKG gene expression levels were significantly higher than in the other groups (p < 0.05). HMGB1, TLR4, IRAK2, IKBKB, IL10, IL1B, IL1B, and IL8 in this signalling pathway are highly expressed in epilepsy patients in G1 and seizures occur with the stimulation of excitatory mechanisms by acting through this pathway. The signalling pathway in epilepsy may be activated by HMGB1, TLR4, and TLR2, which are considered to increase the level of proinflammatory cytokines. In T. gondii, this pathway is activated by RAGE and BCL3.
Collapse
Affiliation(s)
- Hayriye Soytürk
- Bolu Abant Izzet Baysal University, Institute of Graduate Studies Interdisciplinary NeuroscienceBoluTurkey
| | - Cansu Önal
- Zonguldak Bülent Ecevit UniversityDepartment of Molecular Biology and Genetics, Faculty of ScienceZonguldakTurkey
| | - Ümit Kılıç
- Duzce University Vocational School of Health ServicesDuzceTurkey
| | - Şule Aydın Türkoğlu
- Department of Neurology, Faculty of MedicineBolu Abant Izzet Baysal UniversityBoluTurkey
| | - Erol Ayaz
- Department of Parasitology, Faculty of MedicineBolu Abant Izzet Baysal UniversityBoluTurkey
| |
Collapse
|
7
|
Gao T, Huang Z. Effects of Isoflurane on the Cell Pyroptosis in the Lung Cancer Through the HMGB1/RAGE Pathway. Appl Biochem Biotechnol 2024; 196:3786-3799. [PMID: 37782455 DOI: 10.1007/s12010-023-04739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
There are many common malignant tumors in clinic. Among them, lung cancer is caused by the failure of suction system, which seriously threatens the life safety of patients. Recent studies have found that anesthetics have achieved certain efficacy in many cancers. Isoflurane, an inhaled anesthetic, is used in this study to explore whether it can prevent the lung cancer development. The A549 and H1299 were purchased. Cell viability was tested by CCK-8 experiment. Cell death and pyroptosis were analyzed by PI staining as well as flow cytometry. HMGB1 as well as RAGE protein levels were tested by Western blot. The same is true of pyroxin-related proteins. The HMGB1 as well as RAGE levels in the lung cancer tissues were determined by Western blot along with immunohistochemistry. Isoflurane treatment can reduce cell viability and promote cell pyroptosis. Additionally, the protein levels of cleaved caspase-1, IL-1β, GSDMD-N, NLRP3, HMGB1, and RAGE were dramatically up-regulated in the lung cancer after isoflurane treatment. Down-regulated proteins in lung cancer tissues include HMGB1 and RAGE proteins. After HMGB1 knockdown or FPS-ZM1 treatment, the role of isoflurane in the lung cancer was neutralized. This study demonstrated that isoflurane induced the cell pyroptosis in the lung cancer through activating the HMGB1/RAGE pathway.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Zeqing Huang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China.
| |
Collapse
|
8
|
Wang Y, Wang S, Wang Y, Wang C, Tang Y, Zhang C, Hou S, Yu D, Lin N. Glucose regulates the HMGB1 signaling pathway through SIRT1 in glioma. Cell Signal 2024; 118:111137. [PMID: 38467242 DOI: 10.1016/j.cellsig.2024.111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Glucose is a fundamental substance for numerous cancers, including glioma. However, its influence on tumor cells regulatory mechanisms remains uncertain. SIRT1 is a regulator of deacetylation and a key player in the progression of malignant tumors. The objective of this study was to examine the role of glucose and SIRT1 in glioma. METHODS This study investigated the association of SIRT1 expression with clinicopathological features and prognosis in glioma patients using the TCGA database. The Western blotting technique was used to identify the expression of SIRT1 protein in glioma cells. The study also examined the impact of differing glucose concentrations on the biological functions of glioma cells. The study investigated the expression of SIRT1 and HMGB1 signaling pathways in glioma. Additionally, resilience experiments were conducted utilizing SRT1720. RESULTS SIRT1 is a gene that suppresses tumors and is low expressed in gliomas. Low expression of this gene is strongly linked to a poor prognosis in patients with glioma. High concentrations of glucose can promote the proliferation, migration, and invasion of glioma cells, while also inhibiting apoptosis. The findings of this mechanistic study provide evidence that glucose can down-regulate SIRT1 expression, leading to increased levels of acetylated HMGB1. This in turn promotes the ex-nuclear activation of HMGB1 and associated signaling pathways, ultimately driving glioma malignancy. CONCLUSION Glucose has the ability to regulate the HMGB1 associated signaling pathway through SIRT1, thus promoting glioma progression. This holds significant research value.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Shuai Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Yuhao Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Chengcheng Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Yuhang Tang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Chao Zhang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Shiqiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China.
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China.
| |
Collapse
|
9
|
Goto H, Arima T, Takahashi A, Tobita Y, Nakano Y, Toda E, Shimizu A, Okamoto F. Trimebutine prevents corneal inflammation in a rat alkali burn model. Sci Rep 2024; 14:12111. [PMID: 38802470 PMCID: PMC11130283 DOI: 10.1038/s41598-024-61112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Alkaline burns to the cornea lead to loss of corneal transparency, which is essential for normal vision. We used a rat corneal alkaline burn model to investigate the effect of ophthalmic trimebutine solution on healing wounds caused by alkaline burns. Trimebutine, an inhibitor of the high-mobility group box 1-receptor for advanced glycation end products, when topically applied to the burned cornea, suppressed macrophage infiltration in the early phase and neutrophil infiltration in the late phase at the wound site. It also inhibited neovascularization and myofibroblast development in the late phase. Furthermore, trimebutine effectively inhibited interleukin-1β expression in the injured cornea. It reduced scar formation by decreasing the expression of type III collagen. These findings suggest that trimebutine may represent a novel therapeutic strategy for corneal wounds, not only through its anti-inflammatory effects but also by preventing neovascularization.
Collapse
Affiliation(s)
- Hitoshi Goto
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Takeshi Arima
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Akira Takahashi
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Yutaro Tobita
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Yuji Nakano
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Etsuko Toda
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
| | - Fumiki Okamoto
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
| |
Collapse
|
10
|
Wang X, Qu Y, Fan J, Ren H. Serum NfL and EGFR/NfL ratio mRNAs as biomarkers for phenotype and disease severity of myelin oligodendrocyte glycoprotein IgG-associated disease. Front Immunol 2024; 15:1388734. [PMID: 38807603 PMCID: PMC11130348 DOI: 10.3389/fimmu.2024.1388734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
Background and purpose Myelin oligodendrocyte glycoprotein (MOG) IgG is frequently elevated in pediatric patients with acquired demyelinating syndrome (ADS). However, no specific biomarkers exist for phenotype classification, symptom severity, prognosis, and treatment guidance of MOG-IgG-associated disease (MOGAD). This study evaluated neurofilament light chain (NfL) and endothelial growth factor receptor (EGFR) mRNA expression levels in serum and cerebrospinal fluid (CSF) as potential biomarkers for MOGAD in Chinese children. Methods This was a cross-sectional and single-center study. We enrolled 22 consecutive pediatric patients hospitalized with MOGAD and 20 control pediatric patients hospitalized for noninflammatory neurological diseases in Hebei Children's Hospital. Serum and CSF were collected from MOGAD patients within 3 days before immunotherapy. The mRNA levels of NfL and EGFR in serum and CSF were measured by real-time polymerase chain reaction (qPCR), and the EGFR/NfL ratio mRNA was calculated. These measurement values were then compared between disease groups and among MOGAD phenotypes. In addition, the correlations between the mRNAs of three markers (NfL, EGFR, EGFR/NfL ratio), extended disability status scale (EDSS) scores, and clinical phenotypes were analyzed. Results Serum and CSF NfL mRNA levels were significantly higher of acute-stage MOGAD patients than those of control patients (p< 0.05 and p< 0.01, respectively), while the mRNA levels of serum EGFR and EGFR/NfL ratio were significantly lower of MOGAD patients than those of controls (p < 0.05, p < 0.0001). Serum NfL mRNA was significantly correlated with mRNA of serum EGFR (r =0.480, p < 0.05). Serum and CSF NfL mRNA levels in MOGAD patients with the ADEM-like phenotype were also significantly higher than those in control patients (p < 0.01, p < 0.01) and optic neuritis (ON) phenotype (p < 0.05, p < 0.05). Both mRNAs of NfL in CSF and EGFR/NfL ratio in serum were correlated with EDSS scores (p < 0.05, r = 0.424; p < 0.05, r= -0.521). Conclusion The mRNA levels of elevated NfL in serum and CSF as well as lower EGFR and EGFR/NfL ratio in serum could help distinguish acute-phase MOGAD. Higher mRNA levels of NfL in serum and CSF of MOGAD patients help distinguish ADEM-like phenotype. In addition, serum EGFR/NfL mRNA ratio is indicative of disease severity in pediatric patients with MOGAD. Further investigations are warranted to elucidate the pathological mechanisms underlying these associations.
Collapse
Affiliation(s)
- Xin Wang
- Second Department of Neurology, Hebei Children’s Hospital, Shijiazhuang, China
| | - Yi Qu
- Department of Science and Education, Hebei Children’s Hospital, Shijiazhuang, China
| | - Jiayu Fan
- Second Department of Neurology, Hebei Children’s Hospital, Shijiazhuang, China
| | - Huiqiang Ren
- Department of Pathology, Hebei Children’s Hospital, Shijiazhuang, China
| |
Collapse
|
11
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
12
|
Carroll KR, Mizrachi M, Simmons S, Toz B, Kowal C, Wingard J, Tehrani N, Zarfeshani A, Kello N, El Khoury L, Weissman-Tsukamoto R, Levin JZ, Volpe BT, Diamond B. Lupus autoantibodies initiate neuroinflammation sustained by continuous HMGB1:RAGE signaling and reversed by increased LAIR-1 expression. Nat Immunol 2024; 25:671-681. [PMID: 38448779 PMCID: PMC11141703 DOI: 10.1038/s41590-024-01772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Cognitive impairment is a frequent manifestation of neuropsychiatric systemic lupus erythematosus, present in up to 80% of patients and leading to a diminished quality of life. In the present study, we used a model of lupus-like cognitive impairment that is initiated when antibodies that crossreact with excitatory neuronal receptors penetrate the hippocampus, causing immediate, self-limited, excitotoxic death of hippocampal neurons, which is then followed by a significant loss of dendritic complexity in surviving neurons. This injury creates a maladaptive equilibrium that is sustained in mice for at least 1 year. We identified a feedforward loop of microglial activation and microglia-dependent synapse elimination dependent on neuronal secretion of high mobility group box 1 protein (HMGB1) which binds the receptor for advanced glycation end products (RAGE) and leads to microglial secretion of C1q, upregulation of interleukin-10 with consequent downregulation of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), an inhibitory receptor for C1q. Treatment with a centrally acting angiotensin-converting enzyme inhibitor or with an angiotensin-receptor blocker restored a healthy equilibrium, microglial quiescence and intact spatial memory.
Collapse
Affiliation(s)
- Kaitlin R Carroll
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Mark Mizrachi
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Sean Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bahtiyar Toz
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Czeslawa Kowal
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Jeffrey Wingard
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Nazila Tehrani
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Aida Zarfeshani
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | | | | | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruce T Volpe
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Betty Diamond
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
13
|
Morioka N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. High mobility group box-1: A therapeutic target for analgesia and associated symptoms in chronic pain. Biochem Pharmacol 2024; 222:116058. [PMID: 38367818 DOI: 10.1016/j.bcp.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The number of patients with chronic pain continues to increase against the background of an ageing society and a high incidence of various epidemics and disasters. One factor contributing to this situation is the absence of truly effective analgesics. Chronic pain is a persistent stress for the organism and can trigger a variety of neuropsychiatric symptoms. Hence, the search for useful analgesic targets is currently being intensified worldwide, and it is anticipated that the key to success may be molecules involved in emotional as well as sensory systems. High mobility group box-1 (HMGB1) has attracted attention as a therapeutic target for a variety of diseases. It is a very unique molecule having a dual role as a nuclear protein while also functioning as an inflammatory agent outside the cell. In recent years, numerous studies have shown that HMGB1 acts as a pain inducer in primary sensory nerves and the spinal dorsal horn. In addition, HMGB1 can function in the brain, and is involved in the symptoms of depression, anxiety and cognitive dysfunction that accompany chronic pain. In this review, we will summarize recent research and discuss the potential of HMGB1 as a useful drug target for chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
14
|
Li HL, Zhang Y, Zhou JW. Acupuncture for radicular pain: a review of analgesic mechanism. Front Mol Neurosci 2024; 17:1332876. [PMID: 38596777 PMCID: PMC11002172 DOI: 10.3389/fnmol.2024.1332876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Radicular pain, a common and complex form of neuropathic pain, presents significant challenges in treatment. Acupuncture, a therapy originating from ancient traditional Chinese medicine and widely utilized for various pain types, including radicular pain, has shown promising outcomes in the management of lumbar radicular pain, cervical radicular pain, and radicular pain due to spinal stenosis. Despite its efficacy, the exact mechanisms through which acupuncture achieves analgesia are not fully elucidated and are the subject of ongoing research. This review sheds light on the current understanding of the analgesic mechanisms of acupuncture for radicular pain, offering valuable perspectives for both clinical application and basic scientific research. Acupuncture is postulated to relieve radicular pain by several mechanisms: peripherally, it reduces muscle spasms, lessens mechanical pressure on nerve roots, and improves microcirculation; at the molecular level, it inhibits the HMGB1/RAGE and TLR4/NF-κB signaling pathways, thereby decreasing the release of pro-inflammatory cytokines; within the spinal cord, it influences synaptic plasticity; and centrally, it modulates brain function, particularly affecting the medial prefrontal cortex, anterior cingulate cortex, and thalamus within the default mode network. By acting across these diverse biological domains, acupuncture presents an effective treatment modality for radicular pain, and deepening our understanding of the underlying mechanisms regarding analgesia for radicular pain is crucial for enhancing its clinical efficacy and advancement in pain management.
Collapse
Affiliation(s)
- Hong-Lin Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian-Wei Zhou
- Academy of Traditional Chinese Medicine Sciences, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Tang H, Guo Y, Gan S, Chen Z, Dong M, Lin L, Chen H, Ji X, Xian M, Shi X, Tao A, Lv Y, Yao L, Chen R, Li S, Li J. GLUT1 mediates the release of HMGB1 from airway epithelial cells in mixed granulocytic asthma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167040. [PMID: 38281711 DOI: 10.1016/j.bbadis.2024.167040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Asthma is quite heterogenous and can be categorized as eosinophilic, mixed granulocytic (presence of both eosinophils and neutrophils in the airways) and neutrophilic. Clinically, mixed granulocytic asthma (MGA) often tends to be severe and requires large doses of corticosteroids. High mobility group box 1 (HMGB1) is one of the epithelium-derived alarmins that contributes to type 2 inflammation and asthma. This study was aimed to investigate the role of glucose transporter 1 (GLUT1) in modulation of airway epithelial HMGB1 production in MGA. Induced sputum and bronchial biopsy specimens were obtained from healthy subjects and asthma patients. BALB/c mice, the airway epithelial cell line BEAS-2B, or primary human bronchial epithelial cells (HBECs) were immunized with allergens. Intracellular and extracellular HMGB1 were both detected. The role of GLUT1 was assessed by using a pharmacological antagonist BAY876. MGA patients have a significant higher sputum HMGB1 level than the health and subjects with other inflammatory phenotypes. Nuclear-to-cytoplasmic translocation of HMGB1 was also observed in the bronchial epithelia. Allergen exposure markedly induced GLUT1 expression in murine lungs and cultured epithelial cells. Pharmacological antagonism of GLUT1 with BAY876 dramatically decreased airway hyperresponsiveness, neutrophil and eosinophil accumulation, as well as type 2 inflammation in murine models of MGA. Besides, the allergen-induced up-regulation of HMGB1 was also partly recovered by BAY876, accompanied by inhibited secretion into the airway lumen. In vitro, treatment with BAY876 relieved the allergen-induced over-expression and secretion of HMGB1 in airway epithelia. Taken together, our data indicated that GLUT1 mediates bronchial epithelial HMGB1 release in MGA.
Collapse
Affiliation(s)
- Haixiong Tang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yubiao Guo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sudan Gan
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zemin Chen
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meihua Dong
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqin Lin
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huifang Chen
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Ji
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Shi
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanhua Lv
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Gongdong, China
| | - Lihong Yao
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruchong Chen
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Meng X, Na R, Peng X, Li H, Ouyang W, Zhou W, You X, Li Y, Pu X, Zhang K, Xia J, Wang J, Tang H, Zhuang G, Peng Z. Musashi-2 potentiates colorectal cancer immune infiltration by regulating the post-translational modifications of HMGB1 to promote DCs maturation and migration. Cell Commun Signal 2024; 22:117. [PMID: 38347600 PMCID: PMC10863188 DOI: 10.1186/s12964-024-01495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Post-translational modifications (PTMs) of the non-histone protein high-mobility group protein B1 (HMGB1) are involved in modulating inflammation and immune responses. Recent studies have implicated that the RNA-binding protein (RBP) Musashi-2 (MSI2) regulates multiple critical biological metabolic and immunoregulatory functions. However, the precise role of MSI2 in regulating PTMs and tumor immunity in colorectal cancer (CRC) remains unclear. Here, we present data indicating that MSI2 potentiates CRC immunopathology in colitis-associated colon cancer (CAC) mouse models, cell lines and clinical specimens, specifically via HMGB1-mediated dendritic cell (DC) maturation and migration, further contributes to the infiltration of CD4+ and CD8+ T cells and inflammatory responses. Under stress conditions, MSI2 can exacerbate the production, nucleocytoplasmic transport and extracellular release of damage-associated molecular patterns (DAMPs)-HMGB1 in CRC cells. Mechanistically, MSI2 mainly enhances the disulfide HMGB1 production and protein translation via direct binding to nucleotides 1403-1409 in the HMGB1 3' UTR, and interacts with the cytoplasmic acetyltransferase P300 to upregulate its expression, further promoting the acetylation of K29 residue in HMGB1, thus leading to K29-HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, blocking HMGB1 activity with glycyrrhizic acid (Gly) attenuates MSI2-mediated immunopathology and immune infiltration in CRC in vitro and in vivo. Collectively, this study suggests that MSI2 may improve the prognosis of CRC patients by reprogramming the tumor immune microenvironment (TIME) through HMGB1-mediated PTMs, which might be a novel therapeutic option for CRC immunotherapy.
Collapse
Affiliation(s)
- Xiaole Meng
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Clinical Research Center for Cancer Therapy; Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Risi Na
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiao Peng
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hui Li
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wanxin Ouyang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenting Zhou
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xuting You
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuhuan Li
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Pu
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ke Zhang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jie Wang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Huamei Tang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Guohong Zhuang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zhihai Peng
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
17
|
Zhu X, Dou Y, Lin Y, Chu G, Wang J, Ma L. HMGB1 regulates Th17 cell differentiation and function in patients with psoriasis. Immun Inflamm Dis 2024; 12:e1205. [PMID: 38414294 PMCID: PMC10899799 DOI: 10.1002/iid3.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/13/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease, in which T helper 17 (Th17) cells and its effective cytokine interleukin (IL)-17A play a pivotal pathogenic role. High mobility group box 1 (HMGB1) is an important proinflammatory cytokine, which has been confirmed to be highly expressed in the peripheral circulation and epidermis tissues of psoriasis patients. The regulatory effect of HMGB1 on IL-17A expression and function has been reported in some inflammatory and autoimmune diseases by the HMGB1-Toll-like receptor 4 (TLR4)-interleukin (IL)-23-IL-17A pathway. While, in the pathological environment of psoriasis, whether HMGB1 can exert the regulatory effect on IL-17A is not clear. OBJECTIVE We aimed to evaluate the role of HMGB1-TLR4-IL-23-IL-17A pathway in the pathogenesis of psoriasis and explore the possible regulatory mechanism of HMGB1 on Th17 cell differentiation. METHODS Serum levels of HMGB1, TLR4, IL-23, and IL-17A were quantified in 50 patients with moderate-to-severe plaque psoriasis and 30 healthy controls. Peripheral blood mononuclear cells were acquired from 10 severe psoriasis patients and administrated by different concentrations of recombinant-HMGB1 (rHMGB1) to detect the Th17 cell percentage, mRNA and protein levels of TLR4, IL-23, IL-17A and retinoid-related orphan receptor γt (RORγt). RESULTS The serum levels of HMGB1, TLR4, IL-23, and IL-17A in psoriasis patients were significantly higher than healthy controls, especially in severe patients, and positively correlated with the severity index. There were also positive correlations between every two detected indicators of HMGB1, TLR4, IL-23, and IL-17A. In vitro study, rHMGB1 can promote the elevated expression of Th17 cell percentage as well as TLR4, IL-23, IL-17A, and RORγt in a dose-dependent manner. CONCLUSION HMGB1 can contribute to the pathogenesis of psoriasis by regulating Th17 cell differentiation through HMGB1-TLR4-IL-23-RORγt pathway, then promotes IL-17A production and aggravates inflammation process. Targeting HMGB1 may be a possible potential candidate for the immunotherapy of psoriasis.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| | - Yue Dou
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| | - Yawen Lin
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| | - Gaoping Chu
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| | - Jing Wang
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| | - Lei Ma
- Department of DermatologyBinzhou Medical University HospitalBinzhouChina
| |
Collapse
|
18
|
Liao Y, Hu J, Guo C, Wen A, Wen L, Hou Q, Weng Y, Wang J, Ding Y, Yang J. Acteoside alleviates blood-brain barrier damage induced by ischemic stroke through inhibiting microglia HMGB1/TLR4/NLRP3 signaling. Biochem Pharmacol 2024; 220:115968. [PMID: 38104671 DOI: 10.1016/j.bcp.2023.115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Ischemic stroke (IS) can cause severe harm, inducing oxidative stress, inflammation, and pyroptotic death. IS treatment efficacy remains limited, and microglia are important regulators of IS-related blood-brain barrier (BBB) damage. It is thus vital that new therapeutic agents capable of targeting microglia be identified to treat IS-related damage to the BBB. Acteoside (ACT), which is a compound derived from Cistanche tubulosa (Schenk) Wight., offers promising bioactivity, but its ability to protect against central nervous system injury remains to be documented. To clarify the protective benefits and mechanisms through which ACT can protect against damage to the BBB, a rat middle cerebral artery occlusion (MCAO) model system was herein employed. These in vivo analyses demonstrated that ACT was able to significantly reduce cerebral infarct size while improving their neurological scores and altering neurotrophic and inflammatory factor release. RNA sequencing and molecular docking studies highlighted the ability of ACT to exert its protective benefits via the HMGB1/TLR4/NLRP3 axis. Western immunoblotting and immunofluorescent staining for tight junction proteins additionally confirmed the ability of ACT to preserve BBB integrity. The underlying mechanisms were then explored with an oxygen-glucose deprivation (OGD) model in vitro with BV2 cells. This strategy thus confirmed that the ability of ACT to suppress microglial inflammatory and pyroptotic activity was HMGB1/TLR4/NLRP3 pathway-dependent. These data thus offer novel evidence that ACT can protect against IS-related damage to the BBB through the abrogation of inflammatory and pyroptotic activity, underscoring its promise as a novel lead compound for the therapeutic treatment of IS.
Collapse
Affiliation(s)
- Yucheng Liao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Limei Wen
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Qiang Hou
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
19
|
Tian Y, Wang S, Tong W, Wang H, Zhang Y, Teng B. Pseudoginsenoside GQ mitigates chronic intermittent hypoxia-induced cognitive damage by modulating microglia polarization. Int Immunopharmacol 2024; 126:111234. [PMID: 37977071 DOI: 10.1016/j.intimp.2023.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Obstructive sleep apnea (OSA), a state of sleep disruption, is characterized by recurrent apnea, chronic intermittent hypoxia (CIH) and hypercapnia. Previous studies have showed that CIH-induced neuroinflammatory plays a crucial role in cognitive deficits. Pseudoginsenoside GQ (PGQ) is a new oxytetracycline-type saponin formed by the oxidation and cyclization of the 20(S) Rg3 side chain. Rg3 has been found to afford anti-inflammatory effects, while whether PGQ plays a role of anti-neuroinflammatory remains unclear. The purpose of this study was to investigate whether PGQ attenuates CIH-induced neuroinflammatory and cognitive impairment and the possible mechanism it involves. We found that PGQ significantly ameliorated CIH-induced spatial learning deficits, and inhibited microglial activation, pro-inflammatory cytokine release, and neuronal apoptosis in the hippocampus of CIH mice. In addition, PGQ pretreatment promoted microglial M1 to M2 phenotypic transition in IH-induced BV-2 microglial, as well as indirectly inhibited IH-induced neuronal injury via modulation of microglia polarization. Furthermore, we noted that activation of HMGB1/TLR4/NF-κB signaling pathway induced by IH was inhibited by PGQ. Molecular docking results revealed that PGQ could bind to the active sites of HMGB1 and TLR4. Taken together, this work supports that PGQ inhibits M1 microglial polarization via the HMGB1/TLR4/NF-κB signaling pathway, and indirectly exerts neuroprotective effects, suggesting that PGQ may be a potential therapeutic strategy for cognitive impairment accompanied OSA.
Collapse
Affiliation(s)
- Yanhua Tian
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Sanchun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weifang Tong
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yating Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Teng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Wu J, Liu T, Xie W, Zhuo Y, Feng Y. Ox-LDL promotes M1-like polarization of macrophages through the miR-21-5p/SKP2/EP300 pathway. J Biochem Mol Toxicol 2024; 38:e23516. [PMID: 37728154 DOI: 10.1002/jbt.23516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/10/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023]
Abstract
Oxidized low-density lipoprotein (ox-LDL) mediated inflammatory damage, which possibly induces atherosclerosis (AS); however, the role of miRNA in this process has rarely been reported. In this paper, we study the ox-LDL-related endothelial cell damage and changes of macrophages. The bioinformatics method was used to analyze the expression changes of miRNA in AS patients, luciferase assay was used to study the interaction of protein and miRNA, and co-IP and ubiquitination experiments were used to analyze protein interaction. Flow cytometry was used to detect the polarization of macrophages. Database analysis showed that the expression of miR-21-5p was upregulated in AS patients. Luciferase assay showed that miR-21-5p can bind to SKP2 and subsequently influence ubiquitination of EP300. Overexpression of EP300 strengthens the HMGB1-induced acetylation and subsequently mediates the dissociation of HMGB1 from SIRT1, and thus HMGB1 could be secreted outside the cell. The HMGB1 released from endothelial cells can promote macrophage M1 polarization. This study shows that ox-LDL activates the SKP2/EP300 pathway through promoting upregulation of miR-21-5p, thereby acetylating and secreting HMGB1 outside the endothelium, subsequently enhancing macrophage polarization to further stabilize the inflammation situation.
Collapse
Affiliation(s)
- Jinlei Wu
- Department of Cardiology, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Tingting Liu
- Department of Internal Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Wenjie Xie
- Department of Cardiology, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yufeng Zhuo
- Department of Cardiology, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanling Feng
- Department of Cardiology, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Zhang Y, Li J, Deng H, Wan H, Xu P, Wang J, Liu R, Tang T. High mobility group box 1 knockdown inhibits EV71 replication and attenuates cell pyroptosis through TLR4/NF-κB/NLRP3 axis. J Biochem Mol Toxicol 2024; 38:e23620. [PMID: 38229319 DOI: 10.1002/jbt.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD) in children. Nowadays, there are still no effective antiviral drugs for EV71 infection. High mobility group box 1 (HMGB1) is reported to be highly expressed in HFMD patients. However, the role and underlying mechanism of HMGB1 in EV71-associated HFMD are still unclear. HMGB1 expression was detected using RT-qPCR and western blot assays. Loss- and gain-function experiments were performed to evaluate the effects of HMGB1 on EV71-infected cells. The virus titer was examined by TCID50. CCK-8 and flow cytometry assays were applied to detect the cell viability and cell cycle. Oxidative stress was determined by relative commercial kits. HMGB1 level was elevated in the serum of EV71-infected patients with HFMD and EV71-induced RD cells. EV71 infection induced the transfer of HMGB1 from the nucleus into the cytoplasm. HMGB1 knockdown inhibited virus replication, viral protein (VP1) expression and promoted antiviral factor expression. In addition, the inhibition of HMGB1 improved cell viability, protected against S phase arrest, and inhibited EV71-induced cell injury and oxidative stress, whereas HMGB1 overexpression showed the opposite effects. In terms of mechanism, HMGB1 overexpression activated the TLR4/NF-κB/NLRP3 signaling pathway and promoted cell pyroptosis. The inhibition of TLR4 and NF-κB reversed the effects of HMGB1 overexpression on virus replication, oxidative stress, and pyroptosis. In conclusion, HMGB1 knockdown inhibits EV71 replication and attenuates pyroptosis through TLR4/NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Huiling Deng
- Department of Pediatrics, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Han Wan
- Department of General Surgery, Xi'an No. 3 Hospital, Xi'an, Shaanxi, China
| | - Pengfei Xu
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Jun Wang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Ruiqing Liu
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Tiantian Tang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Zeng HH, Ma M, Wang YL, Chen MH, Huang DB. Hyperoside attenuates carbon tetrachloride-induced hepatic fibrosis via the poly(ADP-ribose)polymerase-1-high mobility group protein 1 pathway. Eur J Pharmacol 2023; 960:176178. [PMID: 37923159 DOI: 10.1016/j.ejphar.2023.176178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Oxidative stress and inflammation have been implicated in hepatic fibrosis. Antioxidant and anti-inflammatory activities are among the pharmacological effects of hyperoside. This study aimed to evaluate the impact of hyperoside on hepatic fibrosis and elucidate the underlying processes that perpetuate this relationship. The findings indicated that hyperoside significantly protects mouse livers against damage, inflammation, and fibrosis. Specifically, attenuation of hepatic fibrosis is associated with lower expression of HMGB1 protein and reduced expression of Toll-like receptor 4, PARP-1, and nuclear factor-kB (NF-κB) p65 mRNA and protein. Furthermore, hyperoside inhibited the cytoplasmic translocation of HMGB1 and nuclear localization of NF-κB p65 in the hepatic tissues of mice. The results of this study indicate that hyperoside may impose a blocking or reversing effect on hepatic fibrosis; additionally, the corresponding hyperoside-dependent mechanism may be linked to PARP-1-HMGB1 pathway regulation.
Collapse
Affiliation(s)
- H H Zeng
- Health Science Center, Hubei Minzu University, Enshi, 445000, China.
| | - M Ma
- Health Science Center, Hubei Minzu University, Enshi, 445000, China.
| | - Y L Wang
- Health Science Center, Hubei Minzu University, Enshi, 445000, China.
| | - M H Chen
- Health Science Center, Hubei Minzu University, Enshi, 445000, China.
| | - D B Huang
- Health Science Center, Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
23
|
Chen X, Zheng X, Shen T, He T, Zhao Y, Dong Y. In vitro validation: GLY alleviates UV-induced corneal epithelial damage through the HMGB1-TLR/MyD88-NF-κB signaling pathway. Acta Histochem 2023; 125:152111. [PMID: 37939523 DOI: 10.1016/j.acthis.2023.152111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
UV-induced corneal damage is a common ocular surface injury that usually leads to corneal lesions causing persistent inflammation. High mobility group box 1 (HMGB1) is identified as an inflammatory alarm in various tissue injuries. Here, this study first evaluates the repair effect of the HMGB1-selective inhibitor GLY in UV-induced corneal damage; Secondly, the inhibitory effect of GLY on UV-induced corneal damage induced inflammation and the potential therapeutic mechanism of GLY were studied. GLY effectively attenuates the expression of UV-induced inflammatory factors and HMGB1, TLR/MyD88, NF-κB signaling pathway genes at the mRNA and protein levels. In addition, RT-PCR and Western Blot experiments after knocking down HMGB1 and TLR2/9 genes showed that GLY alleviated corneal inflammation by inhibiting the HMGB1-TLR/MyD88 signaling pathway. The results of this study show that targeting HMGB1-NF-κB by GLY can alleviate the inflammatory response induced by UV induction.
Collapse
Affiliation(s)
- XinYi Chen
- School of Pharmacy, Zhejiang University of Technology, China
| | - XiaoXiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine,China Department of Medical Oncology, Tongde Hospital of Zhejiang Province, China
| | - Ting Shen
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, China.
| | - Ting He
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, China
| | - YangQi Zhao
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, China
| | - Yi Dong
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, China
| |
Collapse
|
24
|
Jiang Z, Wang K, Lin Y, Zhou T, Lin Y, Chen J, Lan Q, Meng Z, Liu X, Lin H, Lin D. Nesfatin-1 regulates the HMGB1-TLR4-NF-κB signaling pathway to inhibit inflammation and its effects on the random skin flap survival in rats. Int Immunopharmacol 2023; 124:110849. [PMID: 37633241 DOI: 10.1016/j.intimp.2023.110849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE Random skin flaps are often placed by plastic surgeons to treat limb deformities and dysfunction. Nesfatin-1 (NES) is a peptide that exerts angiogenic, anti-inflammatory, and anti-oxidant effects. We assessed the impact of NES on flap survival and the underlying mechanism. METHODS We modified the McFarlane random skin flap rat model. Thirty-six male Sprague-Dawley rats were randomly divided into a control group (corn oil solution with DMSO), low-dose group (NES-L at 10 µg/kg/day), and high-dose group (NES-H at 20 µg/kg/day). On day 7 after surgery, average flap survival areas were calculated. Laser Doppler blood flow monitoring and lead oxide/gelatin angiography were used to evaluate blood perfusion and neovascularization, respectively. Flap histopathological status was evaluated by hematoxylin and eosin (H&E) staining. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. Immunohistochemical techniques were used to evaluate the expression of angiogenetic and inflammatory factors. RESULTS In the experimental groups, the mean skin flap survival areas and blood perfusion increased considerably. The SOD activities in the experimental groups increased and the MDA contents decreased. Immunohistochemically, VEGF expression was upregulated in the experimental groups and the expression levels of inflammatory factors decreased markedly. CONCLUSION NES inhibited ischemic skin flap necrosis, promoted angiogenesis, and reduced ischemia-reperfusion injury and inflammation. Inhibition of the inflammatory HMGB1-TLR4-NF-κB signal pathway, which reduced flap inflammation and oxidative stress, may explain the enhanced flap survival.
Collapse
Affiliation(s)
- Zhikai Jiang
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kaitao Wang
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuting Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Taotao Zhou
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi Lin
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianpeng Chen
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qicheng Lan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhefeng Meng
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuao Liu
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hang Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
25
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Wu S, Yu Y, Zheng Z, Cheng Q. High mobility group box-1: a potential therapeutic target for allergic rhinitis. Eur J Med Res 2023; 28:430. [PMID: 37828579 PMCID: PMC10571310 DOI: 10.1186/s40001-023-01412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Allergic rhinitis (AR) is a prevalent chronic inflammatory disease of the nasal mucosa primarily characterized by symptoms, such as nasal itching, sneezing, runny nose, and nasal congestion. It has a high recurrence rate and low cure rate, with a lack of effective drugs for treatment. The current approach to management focuses on symptom control. High mobility group box-1 (HMGB1) is a highly conserved non-histone protein widely present in the nucleus of eukaryotes. It is recognized as a proinflammatory agent, and recent studies have demonstrated its close association with AR. Here, we will elaborate the role and mechanism of HMGB1 in AR, so as to reveal the potential value of HMGB1 in the occurrence and development of AR, and provide a new target for clinical research on the treatment of AR.
Collapse
Affiliation(s)
- Shuhua Wu
- Department of Child Otorhinolaryngology, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, China
| | - Yangyang Yu
- Department of Function Examination Center, Anhui Chest Hospital, Hefei, China
| | - Zhong Zheng
- Department of Child Otorhinolaryngology, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, China
| | - Qi Cheng
- Department of Child Otorhinolaryngology, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, China.
| |
Collapse
|
27
|
Lei Y, Zhu Y, Mallah MA, Lu P, Yang L, He X, Shang P, Chen Y, Zhou X, Feng F, Zhang Q. The activation of SIRT1 ameliorates BPDE-induced inflammatory damage in BEAS-2B cells via HMGB1/TLR4/NF-κB pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2429-2439. [PMID: 37436145 DOI: 10.1002/tox.23878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023]
Abstract
Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the metabolite of environmental pollutant benzo(a)pyrene (B(a)P) could induce pulmonary toxicity and inflammation. SIRT1, an NAD+ -dependent histone deacetylase, is known to regulate inflammation in the occurrence and development of various diseases, but its effects on BPDE-induced acute lung injury are still unknown. The present study aimed to explore the role of SIRT1 in BPDE-induced acute lung injury. Here, human bronchial epithelial (HBE) cells (BEAS-2B) cells were stimulated with BPDE at different concentrations (0.50, 0.75, and 1.00 μmol/L) for 24 h, we found that the levels of cytokines in the supernatant were increased and the expression of SIRT1 in cells was down-regulated, at the same time, BPDE stimulation up-regulated the protein expression of HMGB1, TLR4, and p-NF-κBp65 in BEAS-2B cells. Then the activator and inhibitor of SIRT1 were used before BPDE exposure, it was shown that the activation of SIRT1 significantly attenuated the levels of inflammatory cytokines and HMGB1, and reduced the expression of HMGB1, AC-HMGB1, TLR4, and p-NF-κBp65 protein; while these results were reversed by the inhibition of SIRT1. This study revealed that the SIRT1 activation may protect against BPDE-induced inflammatory damage in BEAS-2B cells by regulating the HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Yanting Lei
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Yonghang Zhu
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Manthar Ali Mallah
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Ping Lu
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Liu Yang
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Xi He
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNC, Zhengzhou, China
| | - Yusong Chen
- Quality Supervision & Test Center, China National Tobacco Corporation Shandong Branch, Jinan, China
| | - Xiaolei Zhou
- Department of Pulmonary Medicine, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Qiao Zhang
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| |
Collapse
|
28
|
Gomchok D, Ge RL, Wuren T. Platelets in Renal Disease. Int J Mol Sci 2023; 24:14724. [PMID: 37834171 PMCID: PMC10572297 DOI: 10.3390/ijms241914724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney disease is a major global health concern, affecting millions of people. Nephrologists have shown interest in platelets because of coagulation disorders caused by renal diseases. With a better understanding of platelets, it has been found that these anucleate and abundant blood cells not only play a role in hemostasis, but also have important functions in inflammation and immunity. Platelets are not only affected by kidney disease, but may also contribute to kidney disease progression by mediating inflammation and immune effects. This review summarizes the current evidence regarding platelet abnormalities in renal disease, and the multiple effects of platelets on kidney disease progression. The relationship between platelets and kidney disease is still being explored, and further research can provide mechanistic insights into the relationship between thrombosis, bleeding, and inflammation related to kidney disease, and elucidate targeted therapies for patients with kidney disease.
Collapse
Affiliation(s)
- Drolma Gomchok
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| |
Collapse
|
29
|
Ren W, Zhao L, Sun Y, Wang X, Shi X. HMGB1 and Toll-like receptors: potential therapeutic targets in autoimmune diseases. Mol Med 2023; 29:117. [PMID: 37667233 PMCID: PMC10478470 DOI: 10.1186/s10020-023-00717-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
HMGB1, a nucleoprotein, is expressed in almost all eukaryotic cells. During cell activation and cell death, HMGB1 can function as an alarm protein (alarmin) or damage-associated molecular pattern (DAMP) and mediate early inflammatory and immune response when it is translocated to the extracellular space. The binding of extracellular HMGB1 to Toll-like receptors (TLRs), such as TLR2 and TLR4 transforms HMGB1 into a pro-inflammatory cytokine, contributing to the occurrence and development of autoimmune diseases. TLRs, which are members of a family of pattern recognition receptors, can bind to endogenous DAMPs and activate the innate immune response. Additionally, TLRs are key signaling molecules mediating the immune response and play a critical role in the host defense against pathogens and the maintenance of immune balance. HMGB1 and TLRs are reported to be upregulated in several autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and autoimmune thyroid disease. The expression levels of HMGB1 and some TLRs are upregulated in tissues of patients with autoimmune diseases and animal models of autoimmune diseases. The suppression of HMGB1 and TLRs inhibits the progression of inflammation in animal models. Thus, HMGB1 and TLRs are indispensable biomarkers and important therapeutic targets for autoimmune diseases. This review provides comprehensive strategies for treating or preventing autoimmune diseases discovered in recent years.
Collapse
Affiliation(s)
- Wenxuan Ren
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Lei Zhao
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Ying Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xichang Wang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
30
|
Nakata K, Okazaki M, Kawana S, Kubo Y, Shimizu D, Tanaka S, Hashimoto K, Suzawa K, Shien K, Miyoshi K, Yamamoto H, Sugimoto S, Toyooka S. S100A8/A9 as a prognostic biomarker in lung transplantation. Clin Transplant 2023; 37:e15006. [PMID: 37115007 DOI: 10.1111/ctr.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES S100A8/A9 is a damage-associated molecule that augments systemic inflammation. However, its role in the acute phase after lung transplantation (LTx) remains elusive. This study aimed to determine S100A8/A9 levels after lung transplantation (LTx) and evaluate their impact on overall survival (OS) and chronic lung allograft dysfunction (CLAD)-free survival. METHODS Sixty patients were enrolled in this study, and their plasma S100A8/A9 levels were measured on days 0, 1, 2, and 3 after LTx. The association of S100A8/A9 levels with OS and CLAD-free survival was assessed using univariate and multivariate Cox regression analyses. RESULTS S100A8/A9 levels were elevated in a time-dependent manner until 3 days after LTx. Ischemic time was significantly longer in the high S100A8/9 group than in the low S100A8/A9 group (p = .017). Patients with high S100A8/A9 levels (> 2844 ng/mL) had worse prognosis (p = .031) and shorter CLAD-free survival (p = .045) in the Kaplan-Meier survival analysis than those with low levels. Furthermore, multivariate Cox regression analysis showed that high S100A8/A9 levels were a determinant of poor OS (hazard ratio [HR]: 3.7; 95% confidence interval [CI]: 1.2-12; p = .028) and poor CLAD-free survival (HR: 4.1; 95% CI: 1.1-15; p = .03). In patients with a low primary graft dysfunction grade (0-2), a high level of S100A8/A9 was also a poor prognostic factor. CONCLUSIONS Our study provided novel insights into the role of S100A8/A9 as a prognostic biomarker and a potential therapeutic target for LTx.
Collapse
Affiliation(s)
- Kentaro Nakata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shinichi Kawana
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yujiro Kubo
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Dai Shimizu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Organ Transplant Center, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Kohei Hashimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Organ Transplant Center, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Organ Transplant Center, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Organ Transplant Center, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| |
Collapse
|
31
|
Zhao Z, Zhao Q, Chen H, Chen F, Wang F, Tang H, Xia H, Zhou Y, Sun Y. Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials. Int J Oral Sci 2023; 15:31. [PMID: 37532700 PMCID: PMC10397189 DOI: 10.1038/s41368-023-00234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Collapse
Affiliation(s)
- Zifan Zhao
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hu Chen
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Fanfan Chen
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Feifei Wang
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hua Tang
- Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yongsheng Zhou
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Yuchun Sun
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
32
|
Palumbo A, Atzeni F, Murdaca G, Gangemi S. The Role of Alarmins in Osteoarthritis Pathogenesis: HMGB1, S100B and IL-33. Int J Mol Sci 2023; 24:12143. [PMID: 37569519 PMCID: PMC10418664 DOI: 10.3390/ijms241512143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial disease in which genetics, aging, obesity, and trauma are well-known risk factors. It is the most prevalent joint disease and the largest disability problem worldwide. Recent findings have described the role of damage-associated molecular patterns (DAMPs) in the course of the disease. In particular, alarmins such as HMGB1, IL-33, and S100B, appear implicated in enhancing articular inflammation and favouring a catabolic switch in OA chondrocytes. The aims of this review are to clarify the molecular signalling of these three molecules in OA pathogenesis, to identify their possible use as staging biomarkers, and, most importantly, to find out whether they could be possible therapeutic targets. Osteoarthritic cartilage expresses increased levels of all three alarmins. HMGB1, in particular, is the most studied alarmin with increased levels in cartilage, synovium, and synovial fluid of OA patients. High levels of HMGB1 in synovial fluid of OA joints are positively correlated with radiological and clinical severity. Counteracting HMGB1 strategies have revealed improving results in articular cells from OA patients and in OA animal models. Therefore, drugs against this alarmin, such as anti-HMGB1 antibodies, could be new treatment possibilities that can modify the disease course since available medications only alleviate symptoms.
Collapse
Affiliation(s)
- Antonino Palumbo
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, 98124 Messina, Italy; (A.P.); (F.A.)
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, 98124 Messina, Italy; (A.P.); (F.A.)
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
33
|
Presto P, Ji G, Ponomareva O, Ponomarev I, Neugebauer V. Hmgb1 Silencing in the Amygdala Inhibits Pain-Related Behaviors in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:11944. [PMID: 37569320 PMCID: PMC10418916 DOI: 10.3390/ijms241511944] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic pain presents a therapeutic challenge due to the highly complex interplay of sensory, emotional-affective and cognitive factors. The mechanisms of the transition from acute to chronic pain are not well understood. We hypothesized that neuroimmune mechanisms in the amygdala, a brain region involved in the emotional-affective component of pain and pain modulation, play an important role through high motility group box 1 (Hmgb1), a pro-inflammatory molecule that has been linked to neuroimmune signaling in spinal nociception. Transcriptomic analysis revealed an upregulation of Hmgb1 mRNA in the right but not left central nucleus of the amygdala (CeA) at the chronic stage of a spinal nerve ligation (SNL) rat model of neuropathic pain. Hmgb1 silencing with a stereotaxic injection of siRNA for Hmgb1 into the right CeA of adult male and female rats 1 week after (post-treatment), but not 2 weeks before (pre-treatment) SNL induction decreased mechanical hypersensitivity and emotional-affective responses, but not anxiety-like behaviors, measured 4 weeks after SNL. Immunohistochemical data suggest that neurons are a major source of Hmgb1 in the CeA. Therefore, Hmgb1 in the amygdala may contribute to the transition from acute to chronic neuropathic pain, and the inhibition of Hmgb1 at a subacute time point can mitigate neuropathic pain.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
34
|
Zhang X, Xie H, Liu Z, Zhang J, Deng L, Wu Q, Duan Y, Wang F, Wu C, Zhu Q. HMGB 1 acetylation mediates trichloroethylene-induced immune kidney injury by facilitating endothelial cell-podocyte communication. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115042. [PMID: 37216866 PMCID: PMC10250816 DOI: 10.1016/j.ecoenv.2023.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
More and more clinical evidence shows that occupational medicamentose-like dermatitis due to trichloroethylene (OMDT) patients often present immune kidney damage. However, the exact mechanisms of cell-to-cell transmission in TCE-induced immune kidney damage remain poorly understood. The present study aimed to explore the role of high mobility group box-1 (HMGB 1) in glomerular endothelial cell-podocyte transmission. 17 OMDT patients and 34 controls were enrolled in this study. We observed that OMDT patients had renal function injury, endothelial cell activation and podocyte injury, and these indicators were associated with serum HMGB 1. To gain mechanistic insight, a TCE-sensitized BALB/c mouse model was established under the interventions of sirtuin 1 (SIRT 1) activator SRT 1720 (0.1 ml, 5 mg/kg) and receptor for advanced glycation end products (RAGE) inhibitor FPS-ZM 1 (0.1 ml, 1.5 mg/kg). We identified HMGB 1 acetylation and its endothelial cytoplasmic translocation following TCE sensitization, but SRT 1720 abolished the process. RAGE was located on podocytes and co-precipitated with extracellular acetylated HMGB 1, promoting podocyte injury, while SRT 1720 and FPS-ZM 1 both alleviated podocyte injury. The results demonstrate that interventions to upstream and downstream pathways of HMGB 1 may weaken glomerular endothelial cell-podocyte transmission, thereby alleviating TCE-induced immune renal injury.
Collapse
Affiliation(s)
- Xuesong Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Haibo Xie
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhibing Liu
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Lihua Deng
- Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen, China
| | - Qifeng Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yuansheng Duan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Feng Wang
- Department of Dermatology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Qixing Zhu
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
35
|
Lu P, Li Y, Dai G, Zhang Y, Shi L, Zhang M, Wang H, Rui Y. HMGB1: a potential new target for tendinopathy treatment. Connect Tissue Res 2023; 64:362-375. [PMID: 37032550 DOI: 10.1080/03008207.2023.2199089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Tendinopathy describes a complex pathology of the tendon characterized by abnormalities in the microstructure, composition, and cellularity of the tendon, leading to pain, limitation of activity and reduced function. Nevertheless, the mechanism of tendinopathy has not been fully elucidated, and the treatment of tendinopathy remains a challenge. High mobility group box 1 (HMGB1), a highly conserved and multifaceted nuclear protein, exerts multiple roles and high functional variability and is involved in many biological and pathological processes. In recent years, several studies have suggested that HMGB1 is associated with tendinopathy and may play a key role in the pathogenesis of tendinopathy. Therefore, this review summarizes the expression and distribution of HMGB1 in tendinopathy, focuses on the roles of HMGB1 and HMGB1-based potential mechanisms involved in tendinopathy, and finally summarizes the findings on HMGB1-based therapeutic approaches in tendinopathy, probably providing new insight into the mechanism and further potential therapeutic targets of tendinopathy.
Collapse
Affiliation(s)
- Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingjuan Li
- School of Medicine, Southeast University, Nanjing, China
- Department of Geriatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
36
|
Hanna DMF, Youshia J, Fahmy SF, George MY. Nose to brain delivery of naringin-loaded chitosan nanoparticles for potential use in oxaliplatin-induced chemobrain in rats: impact on oxidative stress, cGAS/STING and HMGB1/RAGE/TLR2/MYD88 inflammatory axes. Expert Opin Drug Deliv 2023; 20:1859-1873. [PMID: 37357778 DOI: 10.1080/17425247.2023.2228685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES Oxaliplatin induces chemobrain in cancer patients/survivors. Nutraceutical naringin has antioxidant and anti-inflammatory properties with low oral bioavailability. Our aim was to formulate naringin in chitosan nanoparticles for nose to brain delivery and assess its neuroprotective effect against oxaliplatin-induced chemobrain in rats. METHODS Naringin chitosan nanoparticles were prepared by ionic gelation. Rats were administered oral naringin (80 mg/kg), intranasal naringin (0.3 mg/kg) or intranasal naringin-loaded chitosan nanoparticles (0.3 mg/kg). Naringin's neuroprotective efficacy was assessed based on behavioral tests, histopathology, and measuring oxidative stress and inflammatory markers. RESULTS Selected nanoparticles formulation showed drug loading of 5%, size of 150 nm and were cationic. Intranasal naringin administration enhanced memory function, inhibited hippocampal acetylcholinesterase activity, and corrected oxaliplatin-induced histological changes. Moreover, it reduced malondialdehyde and elevated reduced glutathione hippocampal levels. Furthermore, it decreased levels of inflammatory markers: NF-kB and TNF-α by 1.25-fold. Upstream to this inflammatory status, intranasal naringin downregulated the hippocampal protein levels of two pathways: cGAS/STING and HMGB1/RAGE/TLR2/MYD88. CONCLUSION Intranasal naringin-loaded chitosan nanoparticles showed superior amelioration of oxaliplatin-induced chemobrain in rats at a dose 267-fold lower to that administered orally. The potential involvement of cGAS/STING and HMGB1/RAGE/TLR2/MYD88 pathways in the mechanistic process of either oxaliplatin-induced chemobrain or naringin-mediated neuroprotection was evidenced.
Collapse
Affiliation(s)
- Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sarah Farid Fahmy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
37
|
Zhou X, Qiu Y, Mu K, Li Y. Decreased SIRT1 protein may promote HMGB1 translocation in the keratinocytes of patients with cutaneous lupus erythematosus. Indian J Dermatol Venereol Leprol 2023; 0:1-8. [PMID: 37436013 DOI: 10.25259/ijdvl_814_2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/11/2023] [Indexed: 07/13/2023]
Abstract
Background Ultraviolet radiation causes DNA damage in keratinocytes, aggravating cutaneous lupus erythematosus (CLE). High mobility group box 1 (HMGB1) participates in nucleotide excision and may transfer from the nucleus to the cytoplasm in immune active cells and the translocation of HMGB1 may result in DNA repair defects. HMGB1 was observed to transfer from the nucleus to the cytoplasm in the keratinocytes of CLE patients. As a class III histone deacetylases (HDACs), sirtuin-1 (SIRT1) can induce HMGB1 deacetylation. Epigenetic modification of HMGB1 may lead to HMGB1 translocation. Aims We aimed to evaluate the expressions of SIRT1 and HMGB1 in the epidermis of CLE patients and whether decreased SIRT1 leads to HMGB1 translocation through HMGB1 acetylation in keratinocytes. Methods We measured the messenger RNA (mRNA) and protein expressions of SIRT1 and HMGB1 in CLE patients using real-time reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. Keratinocytes were treated with SIRT1 activator resveratrol (Res) and irradiated with ultraviolet B (UVB). We detected the localization expression of HMGB1 by immunofluorescence. The apoptosis level and the cell cycle proportions were measured by flow cytometry. The acetyl-HMGB1 level was detected by immunoprecipitation. Results Compared to healthy controls, the mRNA and protein expressions of SIRT1 in the epidermis of CLE patients were significantly decreased and there was translocation of HMGB1 from the nucleus to the cytoplasm. In keratinocytes, UVB irradiation led to HMGB1 translocation from the nucleus to the cytoplasm. Res treatment inhibited HMGB1 translocation, attenuated the cell apoptosis induced by UVB and decreased the acetyl-HMGB1 level. Limitations We only treated keratinocytes with the SIRT1 activator but did not perform the relevant experiments in keratinocytes with SIRT1 knockdown or overexpression. In addition, the lysine residue site of action of SIRT1 deacetylation of HMGB1 is unclear. The specific mechanism of action of SIRT1 deacetylation of HMGB1 needs to be further investigated. Conclusion SIRT1 may inhibit HMGB1 translocation by HMGB1 deacetylation which inhibited the apoptosis of keratinocytes induced by UVB. Decreased SIRT1 may promote HMGB1 translocation in the keratinocytes of patients with CLE.
Collapse
Affiliation(s)
- Xingyu Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, China
| | - Yueqi Qiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, China
| | - Kui Mu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, China
| | - Yaping Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, China
| |
Collapse
|
38
|
Kwak MS, Choi S, Kim J, Lee H, Park IH, Oh J, Mai DN, Cho NH, Nam KT, Shin JS. SARS-CoV-2 Infection Induces HMGB1 Secretion Through Post-Translational Modification and PANoptosis. Immune Netw 2023; 23:e26. [PMID: 37416931 PMCID: PMC10320423 DOI: 10.4110/in.2023.23.e26] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 07/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces excessive pro-inflammatory cytokine release and cell death, leading to organ damage and mortality. High-mobility group box 1 (HMGB1) is one of the damage-associated molecular patterns that can be secreted by pro-inflammatory stimuli, including viral infections, and its excessive secretion levels are related to a variety of inflammatory diseases. Here, the aim of the study was to show that SARS-CoV-2 infection induced HMGB1 secretion via active and passive release. Active HMGB1 secretion was mediated by post-translational modifications, such as acetylation, phosphorylation, and oxidation in HEK293E/ACE2-C-GFP and Calu-3 cells during SARS-CoV-2 infection. Passive release of HMGB1 has been linked to various types of cell death; however, we demonstrated for the first time that PANoptosis, which integrates other cell death pathways, including pyroptosis, apoptosis, and necroptosis, is related to passive HMGB1 release during SARS-CoV-2 infection. In addition, cytoplasmic translocation and extracellular secretion or release of HMGB1 were confirmed via immunohistochemistry and immunofluorescence in the lung tissues of humans and angiotensin-converting enzyme 2-overexpressing mice infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seoyeon Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jiseon Kim
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hoojung Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In Ho Park
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jooyeon Oh
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Duong Ngoc Mai
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Pediatrics, University of Medicine and Pharmacy, Ho Chi Minh 700000, Vietnam
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ki Taek Nam
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
39
|
Sun T, Li D, Huang L, Zhu X. Inflammatory abrasion of hematopoietic stem cells: a candidate clue for the post-CAR-T hematotoxicity? Front Immunol 2023; 14:1141779. [PMID: 37223096 PMCID: PMC10200893 DOI: 10.3389/fimmu.2023.1141779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has shown remarkable effects in treating various hematological malignancies. However, hematotoxicity, specifically neutropenia, thrombocytopenia, and anemia, poses a serious threat to patient prognosis and remains a less focused adverse effect of CAR-T therapy. The mechanism underlying lasting or recurring late-phase hematotoxicity, long after the influence of lymphodepletion therapy and cytokine release syndrome (CRS), remains elusive. In this review, we summarize the current clinical studies on CAR-T late hematotoxicity to clarify its definition, incidence, characteristics, risk factors, and interventions. Owing to the effectiveness of transfusing hematopoietic stem cells (HSCs) in rescuing severe CAR-T late hematotoxicity and the unignorable role of inflammation in CAR-T therapy, this review also discusses possible mechanisms of the harmful influence of inflammation on HSCs, including inflammatory abrasion of the number and the function of HSCs. We also discuss chronic and acute inflammation. Cytokines, cellular immunity, and niche factors likely to be disturbed in CAR-T therapy are highlighted factors with possible contributions to post-CAR-T hematotoxicity.
Collapse
|
40
|
Liu J, Jin Z, Wang X, Jakoš T, Zhu J, Yuan Y. RAGE pathways play an important role in regulation of organ fibrosis. Life Sci 2023; 323:121713. [PMID: 37088412 DOI: 10.1016/j.lfs.2023.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Organ fibrosis is a pathological process of fibroblast activation and excessive deposition of extracellular matrix after persistent tissue injury and therefore is a common endpoint of many organ pathologies. Multiple cellular types and soluble mediators, including chemokines, cytokines and non-peptidic factors, are implicated in fibrogenesis and the remodeling of tissue architecture. The molecular basis of the fibrotic process is complex and consists of closely intertwined signaling networks. Research has strived for a better understanding of these pathological mechanisms to potentially reveal novel therapeutic targets for fibrotic diseases. In light of new knowledge, the receptor for advanced glycation end products (RAGE) emerged as an important candidate for the regulation of a wide variety of cellular functions related to fibrosis, including inflammation, cell proliferation, apoptosis, and angiogenesis. RAGE is a pattern recognition receptor that binds a broad range of ligands such as advanced glycation end products, high mobility group box-1, S-100 calcium-binding protein and amyloid beta protein. Although the link between RAGE and fibrosis has been established, the exact mechanisms need be investigated in further studies. The aim of this review is to collect all available information about the intricate function of RAGE and its signaling cascades in the pathogenesis of fibrotic diseases within different organs. In addition, to the major ligands and signaling pathways, we discuss potential strategies for targeting RAGE in fibrosis. We emphasize the functional links between RAGE, inflammation and fibrosis that may guide further studies and the development of improved therapeutic drugs.
Collapse
Affiliation(s)
- Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Xiaolong Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| |
Collapse
|
41
|
Wang H, Chen L, Yang B, Du J, Chen L, Li Y, Guo F. Structures, Sources, Identification/Quantification Methods, Health Benefits, Bioaccessibility, and Products of Isorhamnetin Glycosides as Phytonutrients. Nutrients 2023; 15:nu15081947. [PMID: 37111165 PMCID: PMC10143801 DOI: 10.3390/nu15081947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, people have tended to consume phytonutrients and nutrients in their daily diets. Isorhamnetin glycosides (IGs) are an essential class of flavonoids derived from dietary and medicinal plants such as Opuntia ficus-indica, Hippophae rhamnoides, and Ginkgo biloba. This review summarizes the structures, sources, quantitative and qualitative analysis technologies, health benefits, bioaccessibility, and marketed products of IGs. Routine and innovative assay methods, such as IR, TLC, NMR, UV, MS, HPLC, UPLC, and HSCCC, have been widely used for the characterization and quantification of IGs. All of the therapeutic effects of IGs discovered to date are collected and discussed in this study, with an emphasis on the relevant mechanisms of their health-promoting effects. IGs exhibit diverse biological activities against cancer, diabetes, hepatic diseases, obesity, and thrombosis. They exert therapeutic effects through multiple networks of underlying molecular signaling pathways. Owing to these benefits, IGs could be utilized to make foods and functional foods. IGs exhibit higher bioaccessibility and plasma concentrations and longer average residence time in blood than aglycones. Overall, IGs as phytonutrients are very promising and have excellent application potential.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Binrui Yang
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Liang Chen
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
42
|
Lv X, Shi X, Maihemuti M, Yang D, Xiao D. Correlation of HMGB1, TLR2 and TLR4 with left ventricular diastolic dysfunction in sepsis patients. Scand J Immunol 2023; 97:e13260. [PMID: 39008025 DOI: 10.1111/sji.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Left ventricular diastolic dysfunction (LVDD) is a common consequence of sepsis due to dysregulated inflammatory responses. Here we aim to investigate high mobility group box 1 (HMGB1), toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4) as serum biomarkers to assess LVDD risk of patients with sepsis. We recruited 120 patients with sepsis, among which 52 had ultrasonically confirmed LVDD and 68 were without LVDD. Blood samples were collected, and enzyme-linked immunosorbent assay (ELISA) was used to analyse levels of HMGB1, TLR2 and TLR4 in serum. Multivariate analysis was performed to assess the odds ratio of the serum biomarkers. Spearman's correlation analysis was conducted to evaluate the correlation between the serum biomarkers to B-type natriuretic peptide (BNP) and cardiac troponin I (cTnl) levels and the ratios of early diastolic mitral inflow velocity to early diastolic mitral annulus velocity (E/e' ratios) in ultrasound. Receiver operating curve was used to measure the sensitivity and specificity of HMGB1, TLR2 and TLR4 individually and in combination as diagnostic markers. Elevated HMGB1, TLR2 and TLR4 had significant values in predicting LVDD suggested by high odds ratio (all P < .05). A significant correlation was found between these values and cTnl, the current gold standard for LVDD analysis. HMGB1, TLR2 and TLR4 also showed a high diagnostic sensitivity and specificity in ROC analysis. HMGB1, TLR2 and TLR4 are potentially valuable in predicting LVDD risk among patients with sepsis, providing additional tools with the capability of potentially assisting the clinical management of patients with sepsis.
Collapse
Affiliation(s)
- Xinwei Lv
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaohui Shi
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Mutalifu Maihemuti
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Danping Yang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Dong Xiao
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
43
|
Li S, Li G, Li X, Wu F, Li L. Etanercept ameliorates psoriasis progression through regulating high mobility group box 1 pathway. Skin Res Technol 2023; 29:e13329. [PMID: 37113086 PMCID: PMC10234177 DOI: 10.1111/srt.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND As a common skin disease, psoriasis is related to inflammation and immune response. Due to the frequent recurrence of psoriasis, the treatment of psoriasis remains a clinical challenge. As an effective tumor necrosis factor-alpha (TNF-α) inhibitor, etanercept has been used for the treatment of psoriasis. However, some patients with psoriasis have no response to etanercept or discontinue treatment. To improve the therapeutic effect of etanercept, searching the potential biomarkers and investigating the related mechanisms of etanercept in the treatment of psoriasis are vital. MATERIALS AND METHODS We stimulated HaCaT cells with lipopolysaccharide (LPS) to generate cellular psoriatic changes and established an imiquimod (IMQ)-induced psoriasis-like mouse model, and then used an etanercept to treat cell and mouse model. RESULTS Etanercept alleviated IMQ-induced pathological changes and inflammation, and it also decreased the protein expression of high mobility group box 1 (HMGB1), receptor for advanced glycation end-products, and toll-like receptor 4. Moreover, the results of in vitro experiments showed that etanercept inhibited proliferation and inflammation, and promoted cell cycle arrest and apoptosis in LPS-treated HaCaT cells. Knockdown of HMGB1 further enhanced the inhibitory effects of etanercept on LPS-treated HaCaT cell viability and inflammation, while overexpression of HMGB1 notably reversed the inhibitory effects of etanercept on LPS-induced HaCaT cell viability and inflammation. CONCLUSION Etanercept inhibited proliferation and inflammation and promoted cell cycle arrest and apoptosis in LPS-induced HaCaT cells, and etanercept ameliorated inflammation in a psoriasis-like mouse model.
Collapse
Affiliation(s)
- Shu Li
- Department of DermatologyTaizhou People's HospitalTaizhouP. R. China
| | - Guangli Li
- Internal Medicine DepartmentFushun Maternal and Child Health HospitalFushunP. R. China
| | - Xiaoyan Li
- Department of DermatologyLianshui County People's HospitalHuai 'anP. R. China
| | - Fan Wu
- Department of DermatologyLianshui County People's HospitalHuai 'anP. R. China
| | - Ling Li
- Department of DermatologyLianshui County People's HospitalHuai 'anP. R. China
| |
Collapse
|
44
|
Xu P, Li F, Tang H. Pyroptosis and airway homeostasis regulation. Physiol Res 2023; 72:1-13. [PMID: 36545873 PMCID: PMC10069808 DOI: 10.33549/physiolres.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Pyroptosis is a form of cell death associated with inflammation. In the maintenance of airway homeostasis, pyroptosis goes through activation and assembly of Inflammasome. The pyroptosis pathway is mediated by caspase which activates the pore-forming effect of substrate gasdermin family members. It eventually leads to lysis and release of the cell contents and then induces an inflammatory response. In this process, it participates in airway homeostasis regulation by affecting airway immunity, airway epithelial structure and airway microbiota. Therefore, we discussed the correlation between airway immunity, airway epithelial structure, airway microbiota and the mechanism of pyroptosis to describe the role of pyroptosis in airway homeostasis regulation which is of great significance for understanding the occurrence and treatment of airway inflammatory diseases.
Collapse
Affiliation(s)
- P Xu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. and
| | | | | |
Collapse
|
45
|
Chen W, Chen Y, Cheng W, Li P, Shen J, Tong T, Lai L, Yan S, Huang Z, Li J, Huang S, Meng X. Acupuncture exerts preventive effects in rats of chronic unpredictable mild stress: The involvement of inflammation in amygdala and brain-spleen axis. Biochem Biophys Res Commun 2023; 646:86-95. [PMID: 36706710 DOI: 10.1016/j.bbrc.2023.01.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 01/14/2023] [Indexed: 01/17/2023]
Abstract
BACKGROUND Acupuncture has shown the preventive effects on depression in rats with chronic unpredictable mild stress (CUMS). However, the mechanisms of acupuncture for preventing depression still need to be explored. In the study, acupuncture was applied to a rat depression model of CUMS, high-mobility group box 1(HMGB1)/toll-like receptor 4 (TLR4) and brain-spleen axis were assessed. METHODS Male Sprague Dawley (SD) rats were exposed to CUMS with two stressors per day for 28 days. In the meantime, manual acupuncture (at GV16 and GV23 acupoints, once every other day) and fluoxetine gavage (2.1 mg/kg, 0.21 mg/mL) were administered daily post CUMS stressors. Behavioral tests and biological detection methods were conducted in sequence to evaluate depression-like phenotypes in rats. RESULTS The results showed CUMS induced depression-like behaviors, hyper-activation of HMGB1/TLR4 signaling pathway, elevated inflammation in amygdala and peripheral blood, and hyperactivation of hypothalamic-pituitary-adrenal (HPA) axis. These changes could be prevented and reversed by acupuncture to varying extents. CONCLUSION Acupuncture prevented and ameliorated depression-like symptoms induced by CUMS, possibly via regulating inflammation through brain-spleen axis mediated by HMGB1/TLR4 signaling pathway and HPA axis regulation.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, PR China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, PR China
| | - Yiping Chen
- Third Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Wenjing Cheng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, PR China; Department of Rehabilitation Medicine, Ezhou Central Hospital, Ezhou, Hubei, PR China
| | - Peng Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Junliang Shen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, PR China
| | - Tao Tong
- Third Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Longsheng Lai
- Department of Traditional Chinese Medicine, Jinshan Sub District Community Health Service Center, Xiamen, Fujian, PR China
| | - Simin Yan
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, PR China
| | - Zichun Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, PR China
| | - Jiawei Li
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, PR China
| | - Shuqiong Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, PR China
| | - Xianjun Meng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, PR China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, PR China.
| |
Collapse
|
46
|
Maysinger D, Zhang I, Wu PY, Kagelmacher M, Luo HD, Kizhakkedathu JN, Dernedde J, Ballauff M, Haag R, Shobo A, Multhaup G, McKinney RA. Sulfated Hyperbranched and Linear Polyglycerols Modulate HMGB1 and Morphological Plasticity in Neural Cells. ACS Chem Neurosci 2023; 14:677-688. [PMID: 36717083 DOI: 10.1021/acschemneuro.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to establish if polyglycerols with sulfate or sialic acid functional groups interact with high mobility group box 1 (HMGB1), and if so, which polyglycerol could prevent loss of morphological plasticity in excitatory neurons in the hippocampus. Considering that HMGB1 binds to heparan sulfate and that heparan sulfate has structural similarities with dendritic polyglycerol sulfates (dPGS), we performed the experiments to show if polyglycerols can mimic heparin functions by addressing the following questions: (1) do dendritic and linear polyglycerols interact with the alarmin molecule HMGB1? (2) Does dPGS interaction with HMGB1 influence the redox status of HMGB1? (3) Can dPGS prevent the loss of dendritic spines in organotypic cultures challenged with lipopolysaccharide (LPS)? LPS plays a critical role in infections with Gram-negative bacteria and is commonly used to test candidate therapeutic agents for inflammation and endotoxemia. Pathologically high LPS concentrations and other stressful stimuli cause HMGB1 release and post-translational modifications. We hypothesized that (i) electrostatic interactions of hyperbranched and linear polysulfated polyglycerols with HMGB1 will likely involve sites similar to those of heparan sulfate. (ii) dPGS can normalize HMGB1 compartmentalization in microglia exposed to LPS and prevent dendritic spine loss in the excitatory hippocampal neurons. We performed immunocytochemistry and biochemical analyses combined with confocal microscopy to determine cellular and extracellular locations of HMGB1 and morphological plasticity. Our results suggest that dPGS interacts with HMGB1 similarly to heparan sulfate. Hyperbranched dPGS and linear sulfated polymers prevent dendritic spine loss in hippocampal excitatory neurons. MS/MS analyses reveal that dPGS-HMGB1 interactions result in fully oxidized HMGB1 at critical cysteine residues (Cys23, Cys45, and Cys106). Triply oxidized HMGB1 leads to the loss of its pro-inflammatory action and could participate in dPGS-mediated spine loss prevention. LPG-Sia exposure to HMGB1 results in the oxidation of Cys23 and Cys106 but does not normalize spine density.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Marten Kagelmacher
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Haiming Daniel Luo
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Life Science Institute, Department of Chemistry, School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Life Science Institute, Department of Chemistry, School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z3, Canada
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin13353, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Adeola Shobo
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| |
Collapse
|
47
|
Liao YE, Liu J, Arnold K. Heparan sulfates and heparan sulfate binding proteins in sepsis. Front Mol Biosci 2023; 10:1146685. [PMID: 36865384 PMCID: PMC9971734 DOI: 10.3389/fmolb.2023.1146685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy.
Collapse
Affiliation(s)
- Yi-En Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
48
|
Hollan I. Lessons from Cardiac and Vascular Biopsies from Patients with and without Inflammatory Rheumatic Diseases. Rheum Dis Clin North Am 2023; 49:129-150. [PMID: 36424021 DOI: 10.1016/j.rdc.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feiring Heart Biopsy Study enables searching for potential pathogenetic mechanisms, therapeutic targets, and biomarkers through the assessment of clinical data and multiple blood and tissue samples from patients with and without inflammatory rheumatic diseases (IRDs), undergoing coronary artery bypass grafting. Some of our findings, for example, more inflammation (including the presence of immune cells and expression of proinflammatory cytokines) in vessels and the heart, and the presence of certain bacteria and autoantigens in vessels, could contribute to the increased risk of ischemia, aneurysms, and/or cardiac dysfunction in IRDs. Furthermore, some of the detected factors could be involved in the pathomechanisms of these conditions in general.
Collapse
Affiliation(s)
- Ivana Hollan
- Department of Health Sciences, Norwegian University of Science and Technology Teknologivegen 22, 2815 Gjøvik, Norway.
| |
Collapse
|
49
|
Karnaushkina MA, Sviridov PS, Korchagin VI, Salamaikina SA, Vasilyeva IS, Litvinova MM, Vatsik-Gorodetskaya MV. Genetic factors contributing to a severe course of pneumonia: a systematic review. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-160-169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The article presents a systematic review of publications devoted to the study of genetic markers of severe pneumonia.The aim of the study was to compile a list of genetic markers that contribute to a severe course of pneumonia on the basis of the published data.In the current study, we searched for and analyzed articles published between January 2000 and April 2021. Following the search for and subsequent selection of articles, a list of 10 publications was compiled, which demonstrated a clear association of certain gene variants with severe and complicated pneumonia. Finally, we made a list of genetic markers of severe pneumonia consisting of 16 polymorphisms in 12 genes (CD86, IL6, IL10, PAI1, TNFα, HMGB1, ATG16L1, AGTR1, GCLC, CAT, IFNγ, FCGR2A).These genetic markers of severe and complicated pneumonia are responsible for various innate immune responses. The odds ratio for complicated pneumonia with a risk allele in the polymorphisms in the mentioned genes ranges from 1.39 to 4.28. To understand molecular and genetic mechanisms of severe pneumonia, further investigation of the effect of these genetic factors on the outcomes of pneumonia in different groups of patients with a simultaneous assessment of the cumulative effect of genetic variants and genetic interactions is required.
Collapse
Affiliation(s)
| | - P. S. Sviridov
- Peoples' Friendship University of Russia (RUDN University);
Research Centre for Medical Genetics
| | | | | | - I. S. Vasilyeva
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | - M. M. Litvinova
- The Loginov Moscow Clinical Scientific Center;
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | | |
Collapse
|
50
|
Xiao L, Zhang Z, Liu J, Zheng Z, Xiong Y, Li C, Feng Y, Yin S. HMGB1 accumulation in cytoplasm mediates noise-induced cochlear damage. Cell Tissue Res 2023; 391:43-54. [PMID: 36287265 DOI: 10.1007/s00441-022-03696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/05/2022] [Indexed: 01/18/2023]
Abstract
Damage-associated molecular pattern molecules (DAMPs) play a critical role in mediating cochlear cell death, which leads to noise-induced hearing loss (NIHL). High-mobility group box 1 (HMGB1), a prototypical DAMP released from cells, has been extensively studied in the context of various diseases. However, whether extracellular HMGB1 contributes to cochlear pathogenesis in NIHL and the potential signals initiating HMGB1 release from cochlear cells are not well understood. Here, through the transfection of the adeno-associated virus with HMGB1-HA-tag, we first investigated early cytoplasmic accumulation of HMGB1 in cochlear hair cells after noise exposure. We found that the cochlear administration of HMGB1-neutralizing antibody immediately after noise exposure significantly alleviated hearing loss and outer hair cells (OHCs) death induced by noise exposure. In addition, activation of signal transducer and activators of transcription 1 (STAT1) and cellular hyperacetylation were verified as potential canonical initiators of HMGB1 cytoplasmic accumulation. These findings reveal the adverse effects of extracellular HMGB1 on the cochlea and the potential signaling events mediating HMGB1 release in hair cells, indicating multiple potential pharmacotherapeutic targets for NIHL.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Jianju Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhong Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Yuanping Xiong
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Chunyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| |
Collapse
|