1
|
Awuah WA, Ben-Jaafar A, Kong JSH, Sanker V, Shah MH, Poornaselvan J, Frimpong M, Imran S, Alocious T, Abdul-Rahman T, Atallah O. Novel insights into the role of TREM2 in cerebrovascular diseases. Brain Res 2025; 1846:149245. [PMID: 39305972 DOI: 10.1016/j.brainres.2024.149245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 12/10/2024]
Abstract
Cerebrovascular diseases (CVDs) include conditions such as stroke, cerebral amyloid angiopathy (CAA) and cerebral small vessel disease (CSVD), which contribute significantly to global morbidity and healthcare burden. The pathophysiology of CVD is complex, involving inflammatory, cellular and vascular mechanisms. Recently, research has focused on triggering receptor expressed on myeloid cells 2 (TREM2), an immune receptor predominantly found on microglia. TREM2 interacts with multiple signalling pathways, particularly toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB), inhibiting patients' inflammatory response. This receptor plays an essential role in both immune regulation and neuroprotection. TREM2 deficiency or dysfunction is associated with impaired microglial responses, exacerbated neurodegeneration and neuroinflammation. Up until recently, TREM2 related studies have focused on neurodegenerative diseases (NDs), however a shift in focus towards CVDs is beginning to take place. Advancements in CVD research have focused on developing therapeutic strategies targeting TREM2 to enhance recovery and reduce long-term deficits. These include the exploration of TREM2 agonists and combination therapies with other anti-inflammatory agents, which may synergistically reduce neuroinflammation and promote neuroprotection. The modulation of TREM2 activity holds potential for innovative treatment approaches aimed at improving patient outcomes following cerebrovascular insults. This review compiles current research on TREM2, emphasising its molecular mechanisms, therapeutic potential, and advancements in CNS disease research.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- University College Dublin, School of Medicine, Belfield, Dublin 4, Ireland.
| | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, United Kingdom
| | - Vivek Sanker
- Department of Neurosurgery, Stanford University, CA, USA.
| | - Muhammad Hamza Shah
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.
| | | | - Mabel Frimpong
- Faculty of Biochemistry and Molecular Biology, Bryn Mawr College 101 N Merion Avenue, Bryn Mawr, PA, USA
| | - Shahzeb Imran
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.
| | - Tony Alocious
- Faculty of Medicine, Imperial College London, London, United Kingdom.
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
2
|
Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci 2024; 16:1347987. [PMID: 38681666 PMCID: PMC11045904 DOI: 10.3389/fnagi.2024.1347987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Neuroinflammation refers to a highly complicated reaction of the central nervous system (CNS) to certain stimuli such as trauma, infection, and neurodegenerative diseases. This is a cellular immune response whereby glial cells are activated, inflammatory mediators are liberated and reactive oxygen and nitrogen species are synthesized. Neuroinflammation is a key process that helps protect the brain from pathogens, but inappropriate, or protracted inflammation yields pathological states such as Parkinson's disease, Alzheimer's, Multiple Sclerosis, and other neurodegenerative disorders that showcase various pathways of neurodegeneration distributed in various parts of the CNS. This review reveals the major neuroinflammatory signaling pathways associated with neurodegeneration. Additionally, it explores promising therapeutic avenues, such as stem cell therapy, genetic intervention, and nanoparticles, aiming to regulate neuroinflammation and potentially impede or decelerate the advancement of these conditions. A comprehensive understanding of the intricate connection between neuroinflammation and these diseases is pivotal for the development of future treatment strategies that can alleviate the burden imposed by these devastating disorders.
Collapse
Affiliation(s)
| | | | | | - Guofang Xue
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Besteher B, Rocktäschel T, Garza AP, Machnik M, Ballez J, Helbing DL, Finke K, Reuken P, Güllmar D, Gaser C, Walter M, Opel N, Rita Dunay I. Cortical thickness alterations and systemic inflammation define long-COVID patients with cognitive impairment. Brain Behav Immun 2024; 116:175-184. [PMID: 38036270 DOI: 10.1016/j.bbi.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
As the heterogeneity of symptoms is increasingly recognized among long-COVID patients, it appears highly relevant to study potential pathophysiological differences along the different subtypes. Preliminary evidence suggests distinct alterations in brain structure and systemic inflammatory patterns in specific groups of long-COVID patients. To this end, we analyzed differences in cortical thickness and peripheral immune signature between clinical subgroups based on 3 T-MRI scans and signature inflammatory markers in n = 120 participants comprising healthy never-infected controls (n = 30), healthy COVID-19 survivors (n = 29), and subgroups of long-COVID patients with (n = 26) and without (n = 35) cognitive impairment according to screening with Montreal Cognitive Assessment. Whole-brain comparison of cortical thickness between the 4 groups was conducted by surface-based morphometry. We identified distinct cortical areas showing a progressive increase in cortical thickness across different groups, starting from healthy individuals who had never been infected with COVID-19, followed by healthy COVID-19 survivors, long-COVID patients without cognitive deficits (MoCA ≥ 26), and finally, long-COVID patients exhibiting significant cognitive deficits (MoCA < 26). These findings highlight the continuum of cortical thickness alterations associated with COVID-19, with more pronounced changes observed in individuals experiencing cognitive impairment (p < 0.05, FWE-corrected). Affected cortical regions covered prefrontal and temporal gyri, insula, posterior cingulate, parahippocampal gyrus, and parietal areas. Additionally, we discovered a distinct immunophenotype, with elevated levels of IL-10, IFNγ, and sTREM2 in long-COVID patients, especially in the group suffering from cognitive impairment. We demonstrate lingering cortical and immunological alterations in healthy and impaired subgroups of COVID-19 survivors. This implies a complex underlying pathomechanism in long-COVID and emphasizes the necessity to investigate the whole spectrum of post-COVID biology to determine targeted treatment strategies targeting specific sub-groups.
Collapse
Affiliation(s)
- Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; German Center for Mental Health (DZPG), Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
| | - Tonia Rocktäschel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; German Center for Mental Health (DZPG), Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Alejandra P Garza
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marlene Machnik
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany
| | - Johanna Ballez
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany
| | - Dario-Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; German Center for Mental Health (DZPG), Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Germany
| | - Philipp Reuken
- Department of Internal Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; German Center for Mental Health (DZPG), Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany; Department of Neurology, Jena University Hospital, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; German Center for Mental Health (DZPG), Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; German Center for Mental Health (DZPG), Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Ildiko Rita Dunay
- German Center for Mental Health (DZPG), Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany; Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
4
|
Rathod SS, Agrawal YO. Phytocannabinoids as Potential Multitargeting Neuroprotectants in Alzheimer's Disease. Curr Drug Res Rev 2024; 16:94-110. [PMID: 37132109 DOI: 10.2174/2589977515666230502104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
The Endocannabinoid System (ECS) is a well-studied system that influences a variety of physiological activities. It is evident that the ECS plays a significant role in metabolic activities and also has some neuroprotective properties. In this review, we emphasize several plant-derived cannabinoids such as β-caryophyllene (BCP), Cannabichromene (CBC), Cannabigerol (CBG), Cannabidiol (CBD), and Cannabinol (CBN), which are known to have distinctive modulation abilities of ECS. In Alzheimer's disease (AD), the activation of ECS may provide neuroprotection by modulating certain neuronal circuitry pathways through complex molecular cascades. The present article also discusses the implications of cannabinoid receptors (CB1 and CB2) as well as cannabinoid enzymes (FAAH and MAGL) modulators in AD. Specifically, CBR1 or CB2R modulations result in reduced inflammatory cytokines such as IL-2 and IL-6, as well as a reduction in microglial activation, which contribute to an inflammatory response in neurons. Furthermore, naturally occurring cannabinoid metabolic enzymes (FAAH and MAGL) inhibit the NLRP3 inflammasome complex, which may offer significant neuroprotection. In this review, we explored the multi-targeted neuroprotective properties of phytocannabinoids and their possible modulations, which could offer significant benefits in limiting AD.
Collapse
Affiliation(s)
- Sumit S Rathod
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
- Shri Vile Parle Kelavani Mandal's, Institute of Pharmacy, Dhule, Dist. Dhule, 424001, Maharashtra, India
| | - Yogeeta O Agrawal
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
| |
Collapse
|
5
|
Novoa C, Salazar P, Cisternas P, Gherardelli C, Vera-Salazar R, Zolezzi JM, Inestrosa NC. Inflammation context in Alzheimer's disease, a relationship intricate to define. Biol Res 2022; 55:39. [PMID: 36550479 PMCID: PMC9784299 DOI: 10.1186/s40659-022-00404-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by the accumulation of amyloid β (Aβ) and hyperphosphorylated tau protein aggregates. Importantly, Aβ and tau species are able to activate astrocytes and microglia, which release several proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), together with reactive oxygen (ROS) and nitrogen species (RNS), triggering neuroinflammation. However, this inflammatory response has a dual function: it can play a protective role by increasing Aβ degradation and clearance, but it can also contribute to Aβ and tau overproduction and induce neurodegeneration and synaptic loss. Due to the significant role of inflammation in the pathogenesis of AD, several inflammatory mediators have been proposed as AD markers, such as TNF-α, IL-1β, Iba-1, GFAP, NF-κB, TLR2, and MHCII. Importantly, the use of anti-inflammatory drugs such as NSAIDs has emerged as a potential treatment against AD. Moreover, diseases related to systemic or local inflammation, including infections, cerebrovascular accidents, and obesity, have been proposed as risk factors for the development of AD. In the following review, we focus on key inflammatory processes associated with AD pathogenesis.
Collapse
Affiliation(s)
- Catalina Novoa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Roberto Vera-Salazar
- Facultad de Ciencias Médicas, Escuela de Kinesiología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
6
|
Valiukas Z, Ephraim R, Tangalakis K, Davidson M, Apostolopoulos V, Feehan J. Immunotherapies for Alzheimer’s Disease—A Review. Vaccines (Basel) 2022; 10:vaccines10091527. [PMID: 36146605 PMCID: PMC9503401 DOI: 10.3390/vaccines10091527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that falls under the umbrella of dementia and is characterised by the presence of highly neurotoxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein within the brain. Historically, treatments for AD have consisted of medications that can slow the progression of symptoms but not halt or reverse them. The shortcomings of conventional drugs have led to a growing need for novel, effective approaches to the treatment of AD. In recent years, immunotherapies have been at the forefront of these efforts. Briefly, immunotherapies utilise the immune system of the patient to treat a condition, with common immunotherapies for AD consisting of the use of monoclonal antibodies or vaccines. Most of these treatments target the production and deposition of Aβ due to its neurotoxicity, but treatments specifically targeting tau protein are being researched as well. These treatments have had great variance in their efficacy and safety, leading to a constant need for the research and development of new safe and effective treatments.
Collapse
Affiliation(s)
- Zachary Valiukas
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
| | - Kathy Tangalakis
- First Year College, Victoria University, Melbourne, VIC 3011, Australia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 3011, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
7
|
Role of Microglia and Astrocytes in Alzheimer’s Disease: From Neuroinflammation to Ca2+ Homeostasis Dysregulation. Cells 2022; 11:cells11172728. [PMID: 36078138 PMCID: PMC9454513 DOI: 10.3390/cells11172728] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia worldwide, with a complex, poorly understood pathogenesis. Cerebral atrophy, amyloid-β (Aβ) plaques, and neurofibrillary tangles represent the main pathological hallmarks of the AD brain. Recently, neuroinflammation has been recognized as a prominent feature of the AD brain and substantial evidence suggests that the inflammatory response modulates disease progression. Additionally, dysregulation of calcium (Ca2+) homeostasis represents another early factor involved in the AD pathogenesis, as intracellular Ca2+ concentration is essential to ensure proper cellular and neuronal functions. Although growing evidence supports the involvement of Ca2+ in the mechanisms of neurodegeneration-related inflammatory processes, scant data are available on its contribution in microglia and astrocytes functioning, both in health and throughout the AD continuum. Nevertheless, AD-related aberrant Ca2+ signalling in astrocytes and microglia is crucially involved in the mechanisms underpinning neuroinflammatory processes that, in turn, impact neuronal Ca2+ homeostasis and brain function. In this light, we attempted to provide an overview of the current understanding of the interactions between the glia cells-mediated inflammatory responses and the molecular mechanisms involved in Ca2+ homeostasis dysregulation in AD.
Collapse
|
8
|
Yousefizadeh A, Piccioni G, Saidi A, Triaca V, Mango D, Nisticò R. Pharmacological targeting of microglia dynamics in Alzheimer's disease: Preclinical and clinical evidence. Pharmacol Res 2022; 184:106404. [PMID: 35988869 DOI: 10.1016/j.phrs.2022.106404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Numerous clinical trials of anti-amyloid agents for Alzheimer's disease (AD) were so far unsuccessful thereby challenging the validity of the amyloid hypothesis. This lack of progress has encouraged researchers to investigate alternative mechanisms in non-neuronal cells, among which microglia represent nowadays an attractive target. Microglia play a key role in the developing brain and contribute to synaptic remodeling in the mature brain. On the other hand, the intimate relationship between microglia and synapses led to the so-called synaptic stripping hypothesis, a process in which microglia selectively remove synapses from injured neurons. Synaptic stripping, along with the induction of a microglia-mediated chronic neuroinflammatory environment, promote the progressive synaptic degeneration in AD. Therefore, targeting microglia may pave the way for a new disease modifying approach. This review provides an overview of the pathophysiological roles of the microglia cells in AD and describes putative targets for pharmacological intervention. It also provides evidence for microglia-targeted strategies in preclinical AD studies and in early clinical trials.
Collapse
Affiliation(s)
- Atrin Yousefizadeh
- School of Pharmacy, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gaia Piccioni
- Department of Physiology and Pharmacology "V.Erspamer", Sapienza University of Rome, Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy
| | - Amira Saidi
- Department of Physiology and Pharmacology "V.Erspamer", Sapienza University of Rome, Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Dalila Mango
- School of Pharmacy, Department of Biology, University of Rome "Tor Vergata", Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy
| | - Robert Nisticò
- School of Pharmacy, Department of Biology, University of Rome "Tor Vergata", Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy.
| |
Collapse
|
9
|
Li T, Lu L, Pember E, Li X, Zhang B, Zhu Z. New Insights into Neuroinflammation Involved in Pathogenic Mechanism of Alzheimer's Disease and Its Potential for Therapeutic Intervention. Cells 2022; 11:cells11121925. [PMID: 35741054 PMCID: PMC9221885 DOI: 10.3390/cells11121925] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting more than 50 million people worldwide with an estimated increase to 139 million people by 2050. The exact pathogenic mechanisms of AD remain elusive, resulting in the fact that the current therapeutics solely focus on symptomatic management instead of preventative or curative strategies. The two most widely accepted pathogenic mechanisms of AD include the amyloid and tau hypotheses. However, it is evident that these hypotheses cannot fully explain neuronal degeneration shown in AD. Substantial evidence is growing for the vital role of neuroinflammation in AD pathology. The neuroinflammatory hypothesis provides a new, exciting lead in uncovering the underlying mechanisms contributing to AD. This review aims to highlight new insights into the role of neuroinflammation in the pathogenesis of AD, mainly including the involvement of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3)/caspase-1 axis, triggering receptor expressed on myeloid cells 2 (TREM2) and cGAS-STING as key influencers in augmenting AD development. The inflammasomes related to the pathways of NF-κB, NLRP3, TREM2, and cGAS-STING as biomarkers of the neuroinflammation associated with AD, as well as an overview of novel AD treatments based on these biomarkers as potential drug targets reported in the literature or under clinical trials, are explored.
Collapse
Affiliation(s)
- Tiantian Li
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Li Lu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Eloise Pember
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Xinuo Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211112, China;
| | - Bocheng Zhang
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
- Correspondence:
| |
Collapse
|
10
|
Okuzono Y, Sakuma H, Miyakawa S, Ifuku M, Lee J, Das D, Banerjee A, Zhao Y, Yamamoto K, Ando T, Sato S. Reduced TREM2 activation in microglia of patients with Alzheimer's disease. FEBS Open Bio 2021; 11:3063-3080. [PMID: 34523252 PMCID: PMC8564098 DOI: 10.1002/2211-5463.13300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Loss-of-function variants of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of developing Alzheimer's disease (AD). The mechanism through which TREM2 contributes to the disease (TREM2 activation vs inactivation) is largely unknown. Here, we analyzed changes in a gene set downstream of TREM2 to determine whether TREM2 signaling is modified by AD progression. We generated an anti-human TREM2 agonistic antibody and defined TREM2 activation in terms of the downstream expression changes induced by this antibody in microglia developed from human induced pluripotent stem cells (iPSC). Differentially expressed genes (DEGs) following TREM2 activation were compared with the gene set extracted from microglial single nuclear RNA sequencing data of patients with AD, using gene set enrichment analysis. We isolated an anti-TREM2-specific agonistic antibody, Hyb87, from anti-human TREM2 antibodies generated using binding and agonism assays, which helped us identify 300 upregulated and 251 downregulated DEGs. Pathway enrichment analysis suggested that TREM2 activation may be associated with Th2-related pathways. TREM2 activation was lower in AD microglia than in microglia from healthy subjects or patients with mild cognitive impairment. TREM2 activation also showed a significant negative correlation with disease progression. Pathway enrichment analysis of DEGs controlled by TREM2 activity indicated that TREM2 activation in AD may lead to anti-apoptotic signaling, immune response, and cytoskeletal changes in the microglia. We showed that TREM2 activation decreases with AD progression, in support of a protective role of TREM2 activation in AD. In addition, the agonistic anti-TREM2 antibody can be used to identify TREM2 activation state in AD microglia.
Collapse
Affiliation(s)
- Yuumi Okuzono
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Hiroyuki Sakuma
- Neuroscience Drug Discovery UnitResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Shuuichi Miyakawa
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Masataka Ifuku
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Jonghun Lee
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Debashree Das
- Early Target DiscoveryResearch, Takeda California, Inc.San DiegoCAUSA
| | - Antara Banerjee
- GI ImmunologyResearch, Takeda California, Inc.San DiegoCAUSA
| | - Yang Zhao
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Koji Yamamoto
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Tatsuya Ando
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Shuji Sato
- Neuroscience Drug Discovery UnitResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| |
Collapse
|
11
|
Yu T, Fu H, Sun JJ, Ding DR, Wang H. miR-106b-5p upregulation is associated with microglial activation and inflammation in the mouse hippocampus following status epilepticus. Exp Brain Res 2021; 239:3315-3325. [PMID: 34476536 DOI: 10.1007/s00221-021-06208-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
To investigate the association of miR-106b-5p with neuroinflammation and microglial activation in a status epilepticus (SE) mouse model. We examined changes in the expression of microRNA-106b-5p (miRNA-106b-5p), repulsive guidance molecule A (RGMa), triggering receptor expressed on myeloid cells 2 (TREM2), and the microglia-related markers interleukin (IL)-1β, IL-4, IL-6, IL-10, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1) in the mouse hippocampus of the lithium-pilocarpine-induced SE mouse model. Eighty-four female C57BL/6 mice were randomly divided into a normal control group (n = 12), and six SE groups (n = 12/group), which were monitored at 6 h and at 1, 3, 7, 14, and 21 days (d) post-SE induction. Unlike in the dentate gyrus, immunohistochemical staining revealed prominent neuronal swelling at 6 h, significant neuronal loss and apoptosis on day 3, and recovery by day 14 in the hippocampal cornu ammonis (CA)1 and CA3 pyramidal cells in SE mice. We noted elevated levels of miRNA-106b-5p and all microglia-related markers, which peaked at 3 days post-SE, except IL-4, which peaked at 7 days post-SE, indicating inflammation and microglial activation. RGMa and TREM2 levels decreased at 6 h post-SE. All markers but miRNA-106b-5p, RGMa, and TREM2 returned to baseline levels at 21 days post-SE. Dual luciferase reporter gene assay showed that microRNA-106b-5p can interact with RGMa. We observed that miR-106b-5p level increased while both RGMa and TREM2 levels decreased post-SE and showed associations with microglial activation and inflammation in the mouse hippocampus, suggesting their potential as SE therapeutic targets.
Collapse
Affiliation(s)
- Tao Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China
| | - Hui Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China.,Department of Pediatrics, Tangshan Maternal and Child Health Care Hospital, Tangshan City, 063000, Hebei Province, China
| | - Jing-Jing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China
| | - Dan-Rui Ding
- Department of Pediatrics, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, 110004, Liaoning Province, China.
| |
Collapse
|
12
|
Ibanez L, Cruchaga C, Fernández MV. Advances in Genetic and Molecular Understanding of Alzheimer's Disease. Genes (Basel) 2021; 12:1247. [PMID: 34440421 PMCID: PMC8394321 DOI: 10.3390/genes12081247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) has become a common disease of the elderly for which no cure currently exists. After over 30 years of intensive research, we have gained extensive knowledge of the genetic and molecular factors involved and their interplay in disease. These findings suggest that different subgroups of AD may exist. Not only are we starting to treat autosomal dominant cases differently from sporadic cases, but we could be observing different underlying pathological mechanisms related to the amyloid cascade hypothesis, immune dysfunction, and a tau-dependent pathology. Genetic, molecular, and, more recently, multi-omic evidence support each of these scenarios, which are highly interconnected but can also point to the different subgroups of AD. The identification of the pathologic triggers and order of events in the disease processes are key to the design of treatments and therapies. Prevention and treatment of AD cannot be attempted using a single approach; different therapeutic strategies at specific disease stages may be appropriate. For successful prevention and treatment, biomarker assays must be designed so that patients can be more accurately monitored at specific points during the course of the disease and potential treatment. In addition, to advance the development of therapeutic drugs, models that better mimic the complexity of the human brain are needed; there have been several advances in this arena. Here, we review significant, recent developments in genetics, omics, and molecular studies that have contributed to the understanding of this disease. We also discuss the implications that these contributions have on medicine.
Collapse
Affiliation(s)
- Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA; (L.I.); (C.C.)
- Neurogenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Piccioni G, Mango D, Saidi A, Corbo M, Nisticò R. Targeting Microglia-Synapse Interactions in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052342. [PMID: 33652870 PMCID: PMC7956551 DOI: 10.3390/ijms22052342] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
In this review, we focus on the emerging roles of microglia in the brain, with particular attention to synaptic plasticity in health and disease. We present evidence that ramified microglia, classically believed to be "resting" (i.e., inactive), are instead strongly implicated in dynamic and plastic processes. Indeed, there is an intimate relationship between microglia and neurons at synapses which modulates activity-dependent functional and structural plasticity through the release of cytokines and growth factors. These roles are indispensable to brain development and cognitive function. Therefore, approaches aimed at maintaining the ramified state of microglia might be critical to ensure normal synaptic plasticity and cognition. On the other hand, inflammatory signals associated with Alzheimer's disease are able to modify the ramified morphology of microglia, thus leading to synapse loss and dysfunction, as well as cognitive impairment. In this context, we highlight microglial TREM2 and CSF1R as emerging targets for disease-modifying therapy in Alzheimer's disease (AD) and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Gaia Piccioni
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (G.P.); (R.N.)
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Amira Saidi
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milan, Italy;
| | - Robert Nisticò
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: (G.P.); (R.N.)
| |
Collapse
|
14
|
Manich G, Gómez-López AR, Almolda B, Villacampa N, Recasens M, Shrivastava K, González B, Castellano B. Differential Roles of TREM2+ Microglia in Anterograde and Retrograde Axonal Injury Models. Front Cell Neurosci 2020; 14:567404. [PMID: 33328887 PMCID: PMC7715005 DOI: 10.3389/fncel.2020.567404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Microglia are the main immune cells of the central nervous system (CNS), and they are devoted to the active surveillance of the CNS during homeostasis and disease. In the last years, the microglial receptor Triggering Receptor Expressed on Myeloid cells-2 (TREM2) has been defined to mediate several microglial functions, including phagocytosis, survival, proliferation, and migration, and to be a key regulator of a new common microglial signature induced under neurodegenerative conditions and aging, also known as disease-associated microglia (DAM). Although microglial TREM2 has been mainly studied in chronic neurodegenerative diseases, few studies address its regulation and functions in acute inflammatory injuries. In this context, the present work aims to study the regulation of TREM2 and its functions after reparative axonal injuries, using two-well established animal models of anterograde and retrograde neuronal degeneration: the perforant pathway transection (PPT) and the facial nerve axotomy (FNA). Our results indicate the appearance of a subpopulation of microglia expressing TREM2 after both anterograde and retrograde axonal injury. TREM2+ microglia were not directly related to proliferation, instead, they were associated with specific recognition and/or phagocytosis of myelin and degenerating neurons, as assessed by immunohistochemistry and flow cytometry. Characterization of TREM2+ microglia showed expression of CD16/32, CD68, and occasional Galectin-3. However, specific singularities within each model were observed in P2RY12 expression, which was only downregulated after PPT, and in ApoE, where de novo expression was detected only in TREM2+ microglia after FNA. Finally, we report that the pro-inflammatory or anti-inflammatory cytokine microenvironment, which may affect phagocytosis, did not directly modify the induction of TREM2+ subpopulation in any injury model, although it changed TREM2 levels due to modification of the microglial activation pattern. In conclusion, we describe a unique TREM2+ microglial subpopulation induced after axonal injury, which is directly associated with phagocytosis of specific cell remnants and show different phenotypes, depending on the microglial activation status and the degree of tissue injury.
Collapse
Affiliation(s)
- Gemma Manich
- Department of Cell Biology, Physiology, and Immunology, Institute of Neuroscience, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Ariadna Regina Gómez-López
- Department of Cell Biology, Physiology, and Immunology, Institute of Neuroscience, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Beatriz Almolda
- Department of Cell Biology, Physiology, and Immunology, Institute of Neuroscience, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Nàdia Villacampa
- Department of Cell Biology, Physiology, and Immunology, Institute of Neuroscience, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Mireia Recasens
- Department of Cell Biology, Physiology, and Immunology, Institute of Neuroscience, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Kalpana Shrivastava
- Department of Cell Biology, Physiology, and Immunology, Institute of Neuroscience, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Berta González
- Department of Cell Biology, Physiology, and Immunology, Institute of Neuroscience, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology, and Immunology, Institute of Neuroscience, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Cui X, Qiao J, Liu S, Wu M, Gu W. Mechanism of TREM2/DAP12 complex affecting β-amyloid plaque deposition in Alzheimer's disease modeled mice through mediating inflammatory response. Brain Res Bull 2020; 166:21-28. [PMID: 33053435 DOI: 10.1016/j.brainresbull.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
To investigate the mechanism of TREM2/DAP12 complex in mediating inflammatory responses that affect β-amyloid plaque deposition in Alzheimer's disease (AD) modeled mice. We measured escape latency and platform crossing time using the Morris water maze image automatic acquisition and software analysis system in TREM2 and DAP12 microglia knockout AD model mouse. We monitored the deposition of Aβ plaques in the mouse hippocampus using Congo red staining and measured levels. of inflammatory factors IL-6 and TNF-α by ELISA. Newborn mice with TREM2 knockout were selected for primary microglia isolation and culture, and Aged oligomer Aβ1-42 was added to the microglial culture medium to simulate the AD environment in vivo. Co-immunoprecipitation assay was used to detect the interaction between DAP12 and TREM2, and measured the inflammatory response induced by lipopolysaccharide (LPS) in mice with TREM2 and DAP12 knockdown through adeno-associated virus in BV2 microglia. The escape latency of the AD model mice with TREM2 and DAP12 knockout was higher and the number of crossing platforms lower than in the control group, whereas Aβ deposition and levels of inflammatory factors were higher. In TREM2 knockout microglial cultured with Aβ1-42, levels of IL-6 and TNF-α increased. Immunoprecipation pull-down assays showed that TREM2 binds to the membrane receptor DAP12 to form a complex. Knockout of TREM2 or DAP12 can inhibit LPS-induced microglial inflammatory responses. The TREM2/DAP12 complex inhibits the microglial inflammatory response through the JNK signaling pathway, thereby reducing the deposition of Aβ plaques and attenuation the behavioral manifestation in a mouse AD model.
Collapse
Affiliation(s)
- Xin Cui
- Yanjing Medical College of Capital Medical University, Beijing 101300, PR China
| | - Jun Qiao
- Department of Mental Health, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China
| | - Sha Liu
- Department of Pharmacy, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, PR China
| | - Ming Wu
- Department of Pharmacy, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, PR China
| | - Weiwei Gu
- Experimental Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
16
|
Gadhave K, Gehi BR, Kumar P, Xue B, Uversky VN, Giri R. The dark side of Alzheimer's disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cell Mol Life Sci 2020; 77:4163-4208. [PMID: 31894361 PMCID: PMC11104979 DOI: 10.1007/s00018-019-03414-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/17/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a leading cause of age-related dementia worldwide. Despite more than a century of intensive research, we are not anywhere near the discovery of a cure for this disease or a way to prevent its progression. Among the various molecular mechanisms proposed for the description of the pathogenesis and progression of AD, the amyloid cascade hypothesis, according to which accumulation of a product of amyloid precursor protein (APP) cleavage, amyloid β (Aβ) peptide, induces pathological changes in the brain observed in AD, occupies a unique niche. Although multiple proteins have been implicated in this amyloid cascade signaling pathway, their structure-function relationships are mostly unexplored. However, it is known that two major proteins related to AD pathology, Aβ peptide, and microtubule-associated protein tau belong to the category of intrinsically disordered proteins (IDPs), which are the functionally important proteins characterized by a lack of fixed, ordered three-dimensional structure. IDPs and intrinsically disordered protein regions (IDPRs) play numerous vital roles in various cellular processes, such as signaling, cell cycle regulation, macromolecular recognition, and promiscuous binding. However, the deregulation and misfolding of IDPs may lead to disturbed signaling, interactions, and disease pathogenesis. Often, molecular recognition-related IDPs/IDPRs undergo disorder-to-order transition upon binding to their biological partners and contain specific disorder-based binding motifs, known as molecular recognition features (MoRFs). Knowing the intrinsic disorder status and disorder-based functionality of proteins associated with amyloid cascade signaling pathway may help to untangle the mechanisms of AD pathogenesis and help identify therapeutic targets. In this paper, we have used multiple computational tools to evaluate the presence of intrinsic disorder and MoRFs in 27 proteins potentially relevant to the amyloid cascade signaling pathway. Among these, BIN1, APP, APOE, PICALM, PSEN1 and CD33 were found to be highly disordered. Furthermore, their disorder-based binding regions and associated short linear motifs have also been identified. These findings represent important foundation for the future research, and experimental characterization of disordered regions in these proteins is required to better understand their roles in AD pathogenesis.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | | | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India.
| |
Collapse
|
17
|
Schwartz M, Peralta Ramos JM, Ben-Yehuda H. A 20-Year Journey from Axonal Injury to Neurodegenerative Diseases and the Prospect of Immunotherapy for Combating Alzheimer's Disease. THE JOURNAL OF IMMUNOLOGY 2020; 204:243-250. [PMID: 31907265 DOI: 10.4049/jimmunol.1900844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The understanding of the dialogue between the brain and the immune system has undergone dramatic changes over the last two decades, with immense impact on the perception of neurodegenerative diseases, mental dysfunction, and many other brain pathologic conditions. Accumulated results have suggested that optimal function of the brain is dependent on support from the immune system, provided that this immune response is tightly controlled. Moreover, in contrast to the previous prevailing dogma, it is now widely accepted that circulating immune cells are needed for coping with brain pathologies and that their optimal effect is dependent on their type, location, and activity. In this perspective, we describe our own scientific journey, reviewing the milestones in attaining this understanding of the brain-immune axis integrated with numerous related studies by others. We then explain their significance in demonstrating the possibility of harnessing the immune system in a well-controlled manner for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Schwartz
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142; and .,Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
18
|
Kwon HS, Lee EH, Park HH, Jin JH, Choi H, Lee KY, Lee YJ, Lee JH, de Oliveira FMS, Kim HY, Seo Kim Y, Kim BJ, Heo SH, Chang DI, Kamali-Moghaddam M, Koh SH. Early increment of soluble triggering receptor expressed on myeloid cells 2 in plasma might be a predictor of poor outcome after ischemic stroke. J Clin Neurosci 2020; 73:215-218. [PMID: 32067825 DOI: 10.1016/j.jocn.2020.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/08/2020] [Indexed: 01/02/2023]
Abstract
Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) is derived from cleavage of TREM2, which is expressed on the cell surface of microlgia and other tissue-specific macrophages. In the present study, the changes in the sTREM2 levels after ischemic stroke (IS) and their association with clinical outcomes were evaluated. A total of 43 patients diagnosed with non-cardioembolic IS between June 2011 and May 2014 were consecutively included in this study. Patients treated with intravenous thrombolysis or intra-arterial thrombectomy were excluded. Plasma samples were collected three times (days 1, 7, and 90) after ictus. The sTREM2 level was measured in the samples using the highly sensitive solid-phase proximity ligation assay (SP-PLA). Among the 43 subjects, higher initial NIH stroke scale (NIHSS) score (P = 0.005), early increment of sTREM2 (P < 0.001), and late decrement of sTREM2 (P = 0.002), were more common in patients with poor outcome. Based on multivariate analysis, initial NIHSS score (P = 0.015) and early increment of sTREM2 (P = 0.032) were independently associated with poor outcome. The results from the present study indicate that increment of sTREM2 level at the early phase was a predictor of poor outcome. Serial follow-up of sTREM2 may aid prognosis after stroke.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Eun-Hye Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hwa Jin
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Hyun Young Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young Seo Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Bum Joon Kim
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Sung Hyuk Heo
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Dae-Il Chang
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Olive C, Ibanez L, Farias FHG, Wang F, Budde JP, Norton JB, Gentsch J, Morris JC, Li Z, Dube U, Del-Aguila J, Bergmann K, Bradley J, Benitez BA, Harari O, Fagan A, Ances B, Cruchaga C, Fernandez MV. Examination of the Effect of Rare Variants in TREM2, ABI3, and PLCG2 in LOAD Through Multiple Phenotypes. J Alzheimers Dis 2020; 77:1469-1482. [PMID: 32894242 PMCID: PMC7927150 DOI: 10.3233/jad-200019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Rare variants in PLCG2 (p.P522R), ABI3 (p.S209F), and TREM2 (p.R47H, p.R62H) have been associated with late onset Alzheimer's disease (LOAD) risk in Caucasians. After the initial report, several studies have found positive results in cohorts of different ethnic background and with different phenotype. OBJECTIVE In this study, we aim to evaluate the association of rare coding variants in PLCG2, ABI3, and TREM2 with LOAD risk and their effect at different time points of the disease. METHODS We used a European American cohort to assess the association of the variants prior onset (using CSF Aβ42, tau, and pTau levels, and amyloid imaging as endophenotypes) and after onset (measured as rate of memory decline). RESULTS We confirm the association with LOAD risk of TREM2 p.R47H, p.R62H and ABI3 p.S209F variants, and the protective effect of PLCG2 p.P522R. In addition, ABI3 and TREM2 gene-sets showed significant association with LOAD risk. TREM2 p.R47H and PLCG2 p.P522R variants were also statistically associated with increase of amyloid imaging and AD progression, respectively. We did not observe any association of ABI3 p.S209F with any of the other AD endophenotypes. CONCLUSION The results of this study highlight the importance of including biomarkers and alternative phenotypes to better understand the role of novel candidate genes with the disease.
Collapse
Affiliation(s)
- Claudia Olive
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura Ibanez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabiana H. Geraldo Farias
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fengxian Wang
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John P. Budde
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Joanne B. Norton
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jen Gentsch
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C. Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Zeran Li
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Umber Dube
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge Del-Aguila
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristy Bergmann
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Bradley
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno A. Benitez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Harari
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Beau Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Câmara AB. Receptores neurais e a doença de Alzheimer: uma revisão sistemática da literatura sobre as famílias de receptores mais associadas a doença, suas funções e áreas de expressão. JORNAL BRASILEIRO DE PSIQUIATRIA 2019. [DOI: 10.1590/0047-2085000000242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RESUMO Objetivo O artigo tem como objetivo determinar as famílias de receptores mais estudadas, envolvidas com a doença de Alzheimer, assim como determinar a região do sistema nervoso na qual mais tipos de receptores são expressos e quais funções dos receptores estão predominantemente associadas com a patologia em questão. O artigo busca mostrar os modelos e métodos mais utilizados nessas pesquisas, resumindo alguns achados e discutindo o impacto desses estudos no conhecimento científico. Métodos Esta revisão utilizou-se de uma metodologia sistemática (Prospero; ID 141957). Resultados Pode-se constatar que os receptores de transcrição nuclear foram os mais estudados. A maior parte desses receptores se expressa no córtex cerebral e hipocampo. Adicionalmente, a maioria das pesquisas avaliou os receptores relacionados com os efeitos benéficos na doença. A eliminação da proteína amiloide ou o bloqueio de vias relacionadas à síntese dessa proteína foram as principais funções desempenhadas por esses receptores. Por fim, as técnicas de imunoistoquímica e reação em cadeia de polimerase em tempo real (RT-PCR), respectivamente, foram as mais utilizadas, e os roedores consistiram no principal modelo de estudo. Conclusões Os receptores de transcrição nuclear, o córtex cerebral, o hipocampo, a micróglia e a proteína beta-amiloide mostraram importância na patogênese da doença de Alzheimer neste estudo.
Collapse
|
21
|
Churchward MA, Michaud ER, Todd KG. Supporting microglial niches for therapeutic benefit in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109648. [PMID: 31078613 DOI: 10.1016/j.pnpbp.2019.109648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
Inflammation is an essential tissue response to injury, stress, or infection resulting in debris and/or pathogen clearance intended to promote healing and recovery. Due to the status as an immune 'privileged' tissue, microglia serve as endogenous regulators of inflammation in the central nervous system, but maintain communication with peripheral immune system to enable recruitment of peripheral immune cells in case of injury or infection. While microglia retain the functional capacity for a full range of inflammatory functions - microglia express a range of pattern-recognition receptors and function as innate immune cells, carry out phagocytosis of pathogens, and act as antigen presenting cells - in the healthy central nervous system (CNS) these functions are rarely engaged. Subsequently microglia are being recognized to occupy an increasing number of homeostatic niches, and in many cases have adopted immune or inflammatory mechanisms to carry out these niche functions absent immune activation. These sterile inflammatory functions are challenging long-held views of the role of inflammation in the central nervous system while simultaneously expanding the potential for the development of truly novel therapeutic interventions for a range of neuroinflammatory, neurodegenerative, and neuropsychiatric disorders. In the present review we discuss recent preclinical evidence for conserved niche functions for microglia whose disruption may causally contribute to various psychiatric disorders, and prospective targets for restoring disrupted niches.
Collapse
Affiliation(s)
- M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada.
| | - E R Michaud
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G2R3, Canada
| |
Collapse
|
22
|
Deming Y, Filipello F, Cignarella F, Cantoni C, Hsu S, Mikesell R, Li Z, Del-Aguila JL, Dube U, Farias FG, Bradley J, Budde J, Ibanez L, Fernandez MV, Blennow K, Zetterberg H, Heslegrave A, Johansson PM, Svensson J, Nellgård B, Lleo A, Alcolea D, Clarimon J, Rami L, Molinuevo JL, Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G, Ewers M, Harari O, Haass C, Brett TJ, Benitez BA, Karch CM, Piccio L, Cruchaga C. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer's disease risk. Sci Transl Med 2019; 11:eaau2291. [PMID: 31413141 PMCID: PMC6697053 DOI: 10.1126/scitranslmed.aau2291] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) has been associated with Alzheimer's disease (AD). TREM2 plays a critical role in microglial activation, survival, and phagocytosis; however, the pathophysiological role of sTREM2 in AD is not well understood. Understanding the role of sTREM2 in AD may reveal new pathological mechanisms and lead to the identification of therapeutic targets. We performed a genome-wide association study (GWAS) to identify genetic modifiers of CSF sTREM2 obtained from the Alzheimer's Disease Neuroimaging Initiative. Common variants in the membrane-spanning 4-domains subfamily A (MS4A) gene region were associated with CSF sTREM2 concentrations (rs1582763; P = 1.15 × 10-15); this was replicated in independent datasets. The variants associated with increased CSF sTREM2 concentrations were associated with reduced AD risk and delayed age at onset of disease. The single-nucleotide polymorphism rs1582763 modified expression of the MS4A4A and MS4A6A genes in multiple tissues, suggesting that one or both of these genes are important for modulating sTREM2 production. Using human macrophages as a proxy for microglia, we found that MS4A4A and TREM2 colocalized on lipid rafts at the plasma membrane, that sTREM2 increased with MS4A4A overexpression, and that silencing of MS4A4A reduced sTREM2 production. These genetic, molecular, and cellular findings suggest that MS4A4A modulates sTREM2. These findings also provide a mechanistic explanation for the original GWAS signal in the MS4A locus for AD risk and indicate that TREM2 may be involved in AD pathogenesis not only in TREM2 risk-variant carriers but also in those with sporadic disease.
Collapse
Affiliation(s)
- Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Fabia Filipello
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Francesca Cignarella
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simon Hsu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert Mikesell
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zeran Li
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jorge L Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fabiana Geraldo Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph Bradley
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Per M Johansson
- Department of Clinical Sciences Helsingborg, Lund University, Lund, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Bengt Nellgård
- Department of Anesthesiology, Sahlgrenska University Hospital, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Alberto Lleo
- Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jordi Clarimon
- Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Lorena Rami
- IDIBAPS, Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, ICN Hospital Clinic, Barcelona, Spain
| | - José Luis Molinuevo
- IDIBAPS, Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, ICN Hospital Clinic, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Estrella Morenas-Rodríguez
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gernot Kleinberger
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- ISAR Bioscience GmbH, 2152 Planegg, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, LMU, Munich, Germany
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas J Brett
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruno A Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Trained Innate Immunity Not Always Amicable. Int J Mol Sci 2019; 20:ijms20102565. [PMID: 31137759 PMCID: PMC6567865 DOI: 10.3390/ijms20102565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
The concept of „trained innate immunity" is understood as the ability of innate immune cells to remember invading agents and to respond nonspecifically to reinfection with increased strength. Trained immunity is orchestrated by epigenetic modifications leading to changes in gene expression and cell physiology. Although this phenomenon was originally seen mainly as a beneficial effect, since it confers broad immunological protection, enhanced immune response of reprogrammed innate immune cells might result in the development or persistence of chronic metabolic, autoimmune or neuroinfalmmatory disorders. This paper overviews several examples where the induction of trained immunity may be essential in the development of diseases characterized by flawed innate immune response.
Collapse
|
24
|
Del-Aguila JL, Benitez BA, Li Z, Dube U, Mihindukulasuriya KA, Budde JP, Farias FHG, Fernández MV, Ibanez L, Jiang S, Perrin RJ, Cairns NJ, Morris JC, Harari O, Cruchaga C. TREM2 brain transcript-specific studies in AD and TREM2 mutation carriers. Mol Neurodegener 2019; 14:18. [PMID: 31068200 PMCID: PMC6505298 DOI: 10.1186/s13024-019-0319-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Low frequency coding variants in TREM2 are associated with Alzheimer disease (AD) risk and cerebrospinal fluid (CSF) TREM2 protein levels are different between AD cases and controls. Similarly, TREM2 risk variant carriers also exhibit differential CSF TREM2 levels. TREM2 has three different alternative transcripts, but most of the functional studies only model the longest transcript. No studies have analyzed TREM2 expression levels or alternative splicing in brains from AD and cognitively normal individuals. We wanted to determine whether there was differential expression of TREM2 in sporadic-AD cases versus AD-TREM2 carriers vs sex- and aged-matched normal controls; and if this differential expression was due to a particular TREM2 transcript. METHODS We analyzed RNA-Seq data from parietal lobe brain tissue from AD cases with TREM2 variants (n = 33), AD cases (n = 195) and healthy controls (n = 118), from three independent datasets using Kallisto and the R package tximport to determine the read count for each transcript and quantified transcript abundance as transcripts per million. RESULTS The three TREM2 transcripts were expressed in brain cortex in the three datasets. We demonstrate for the first time that the transcript that lacks the transmembrane domain and encodes a soluble form of TREM2 (sTREM2) has an expression level around 60% of the canonical transcript, suggesting that around 25% of the sTREM2 protein levels could be explained by this transcript. We did not observe a difference in the overall TREM2 expression level between cases and controls. However, the isoform which lacks the 5' exon, but includes the transmembrane domain, was significantly lower in TREM2- p.R62H carriers than in AD cases (p = 0.007). CONCLUSION Using bulk RNA-Seq data from three different cohorts, we were able to quantify the expression level of the three TREM2 transcripts, demonstrating: (1) all three transcripts of them are highly expressed in the human cortex, (2) that up to 25% of the sTREM2 may be due to the expression of a specific isoform and not TREM2 cleavage; and (3) that TREM2 risk variants do not affect expression levels, suggesting that the effect of the TREM2 variants on CSF levels occurs at post-transcriptional level.
Collapse
Affiliation(s)
- Jorge L. Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Bruno A. Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Zeran Li
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Kathie A. Mihindukulasuriya
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - John P. Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Fabiana H. G. Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Shan Jiang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Richard J. Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Nigel J. Cairns
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - John C. Morris
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|