1
|
De Francesco MA. Drug-Resistant Aspergillus spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe. Pathogens 2023; 12:1305. [PMID: 38003770 PMCID: PMC10674884 DOI: 10.3390/pathogens12111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Infections due to the Aspergillus species constitute an important challenge for human health. Invasive aspergillosis represents a life-threatening disease, mostly in patients with immune defects. Drugs used for fungal infections comprise amphotericin B, triazoles, and echinocandins. However, in the last decade, an increased emergence of azole-resistant Aspergillus strains has been reported, principally belonging to Aspergillus fumigatus species. Therefore, both the early diagnosis of aspergillosis and its epidemiological surveillance are very important to establish the correct antifungal therapy and to ensure a successful patient outcome. In this paper, a literature review is performed to analyze the prevalence of Aspergillus antifungal resistance in European countries. Amphotericin B resistance is observed in 2.6% and 10.8% of Aspergillus fumigatus isolates in Denmark and Greece, respectively. A prevalence of 84% of amphotericin B-resistant Aspergillus flavus isolates is reported in France, followed by 49.4%, 35.1%, 21.7%, and 20% in Spain, Portugal, Greece, and amphotericin B resistance of Aspergillus niger isolates is observed in Greece and Belgium with a prevalence of 75% and 12.8%, respectively. The prevalence of triazole resistance of Aspergillus fumigatus isolates, the most studied mold obtained from the included studies, is 0.3% in Austria, 1% in Greece, 1.2% in Switzerland, 2.1% in France, 3.9% in Portugal, 4.9% in Italy, 5.3% in Germany, 6.1% in Denmark, 7.4% in Spain, 8.3% in Belgium, 11% in the Netherlands, and 13.2% in the United Kingdom. The mechanism of resistance is mainly driven by the TR34/L98H mutation. In Europe, no in vivo resistance is reported for echinocandins. Future studies are needed to implement the knowledge on the spread of drug-resistant Aspergillus spp. with the aim of defining optimal treatment strategies.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
2
|
Kwon J, Jeon JH, Yang SI, Yang H. Rapid and sensitive detection of
Aspergillus niger
using permeabilization based on tris buffer containing hydrazine. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jungwook Kwon
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan Korea
| | - Jun Hui Jeon
- Department of Applied Chemistry Kyung Hee University Yongin Korea
| | - Sung Ik Yang
- Department of Applied Chemistry Kyung Hee University Yongin Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan Korea
| |
Collapse
|
3
|
Sahu RK, Salem-Bekhit MM, Bhattacharjee B, Almoshari Y, Ikbal AMA, Alshamrani M, Bharali A, Salawi A, Widyowati R, Alshammari A, Elbagory I. Mucormycosis in Indian COVID-19 Patients: Insight into Its Patho-Genesis, Clinical Manifestation, and Management Strategies. Antibiotics (Basel) 2021; 10:1079. [PMID: 34572661 PMCID: PMC8468123 DOI: 10.3390/antibiotics10091079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Mucormycosis in patients who have COVID-19 or who are otherwise immunocompromised has become a global problem, causing significant morbidity and mortality. Infection is debilitating and fatal, leading to loss of organs and emotional trauma. Radiographic manifestations are not specific, but diagnosis can be made through microscopic examination of materials collected from necrotic lesions. Treatment requires multidisciplinary expertise, as the fungus enters through the eyes and nose and may even reach the brain. Use of the many antifungal drugs available is limited by considerations of resistance and toxicity, but nanoparticles can overcome such limitations by reducing toxicity and increasing bioavailability. The lipid formulation of amphotericin-B (liposomal Am-B) is the first-line treatment for mucormycosis in COVID-19 patients, but its high cost and low availability have prompted a shift toward surgery, so that surgical debridement to remove all necrotic lesions remains the hallmark of effective treatment of mucormycosis in COVID-19. This review highlights the pathogenesis, clinical manifestation, and management of mucormycosis in patients who have COVID-19.
Collapse
Affiliation(s)
- Ram Kumar Sahu
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (R.K.S.); (R.W.)
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, India
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, India;
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar 799022, India
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Alakesh Bharali
- Department of Pharmaceutics, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Hatkhowapara, Guwahati 781017, India;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (Y.A.); (M.A.); (A.S.)
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (R.K.S.); (R.W.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ibrahim Elbagory
- College of Pharmacy, Northern Border University, Arar 1321, Saudi Arabia;
| |
Collapse
|
4
|
Walsh TJ, McCarthy MW. The expanding use of matrix-assisted laser desorption/ionization-time of flight mass spectroscopy in the diagnosis of patients with mycotic diseases. Expert Rev Mol Diagn 2019; 19:241-248. [PMID: 30682890 DOI: 10.1080/14737159.2019.1574572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful new tool to identify human fungal pathogens and has radically altered the diagnostic mycology workflow at many medical centers around the world. Areas covered: While most experience is with the identification of yeasts, including species of Candida and Cryptococcus, there is ongoing work investigating the role of MALDI-TOF MS to detect molds, including species of Aspergillus, Fusarium, Scedosporium, and Mucormyctes as well as thermally dimorphic fungi. Expert commentary: In this paper, we review the current knowledge about this important new platform and examine how its expanding use may impact molecular diagnostics and patient care in the years ahead.
Collapse
Affiliation(s)
- Thomas J Walsh
- a Transplantation-Oncology Infectious Diseases Program, Departments of Pediatrics, and Microbiology & Immunology , Weill Cornell Medicine , New York , NY , USA
| | - Matthew W McCarthy
- b Division of General Internal Medicine , Weill Cornell Medicine of Cornell University , New York , NY , USA
| |
Collapse
|
5
|
García J, Pemán J. [Microbiological diagnosis of invasive mycosis]. Rev Iberoam Micol 2018; 35:179-185. [PMID: 30471895 DOI: 10.1016/j.riam.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/11/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
The prognosis of invasive fungal infections (IFI) depends on the speed of diagnosis and treatment. Conventional diagnostic methods are of low sensitivity, laborious and too slow, leading to the need for new, faster, and more efficient diagnostic strategies. There are several techniques for diagnosing a candidemia that are faster than the conventional blood culture (BC). Once yeast growth in BC is detected, species identification can be speeded up by mass spectrometry (30minutes), commercialised molecular techniques (60-80minutes) or fluorescent in situ hybridization (90minutes). The combined detection of biomarkers (antimicellium, mannan and anti-mannan or β-glucan) has shown to be of greater use than their individual use. Commercialised nucleic acid amplification techniques (Septifast®, T2Candida®) are very reliable alternatives to BC. The detection of the capsular antigen of Cryptococcus, by means of latex agglutination or immuno-chromatography, is a valuable technique for cryptococcosis diagnosis. Direct microscopic examination and culture of representative specimens is used for the conventional diagnosis of IFI by filamentous fungi. Detection of galactomannan and β-glucan are considered diagnostic criteria for probable invasive aspergillosis and probable IFI, respectively, despite the lack of specificity of the latter. The detection of fungal volatile organic compounds in breath is an interesting diagnostic strategy in pulmonary infections. Although widely used, nucleic acid detection techniques are not considered diagnostic criteria for IFIs caused by moulds in consensus documents, due to their lack of standardisation. However, they are the only alternative to culture methods in invasive infections by Scedosporium/Lomentospora, Fusarium, zygomycetes, or dematiaceous fungi.
Collapse
Affiliation(s)
- Julio García
- Servicio de Microbiología, Hospital Universitario La Paz, Madrid, España
| | - Javier Pemán
- Servicio de Microbiología, Hospital Universitari i Politècnic La Fe, Valencia, España.
| |
Collapse
|
6
|
Kwon J, Cho EM, Nandhakumar P, Yang SI, Yang H. Rapid and Sensitive Detection of Aspergillus niger Using a Single-Mediator System Combined with Redox Cycling. Anal Chem 2018; 90:13491-13497. [PMID: 30403470 DOI: 10.1021/acs.analchem.8b03417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid and sensitive mold detection is becoming increasingly important, especially in indoor environments. Common mold detection methods based on double-mediated electron transfer between an electrode and molds are not highly sensitive and reproducible, although they are rapid and simple. Here, we report a sensitive and reproducible detection method specific to Aspergillus niger ( A. niger), based on a single-mediator system combined with electrochemical-chemical (EC) redox cycling. Intracellular NAD(P)H-oxidizing enzymes in molds can convert electro-inactive hydroxy-nitro(so)arenes into electro-active hydroxy-aminoarenes. Since the membrane and wall of A. niger is well permeable to both a substrate (4-nitro-1-naphthol) and a reduced product (4-amino-1-naphthol) in tris buffer (pH 7.5) solution, the electrochemical signal is increased in the presence of A. niger due to two reactions: (i) enzymatic reduction of the substrate to the reduced product and (ii) electrochemical oxidation of the reduced product to an oxidized product. When a reducing agent (NADH) is present in the solution, the oxidized product is reduced back to the reduced product and then electrochemically reoxidized. This EC redox cycling significantly amplifies the electrochemical signal. Moreover, the background level is low and highly reproducible because the substrate and the reducing agent are electro-inactive at an applied potential of 0.20 V. The calculated detection limit for A. niger in a common double-mediator system consisting of Fe(CN)63- and menadione is ∼2 × 104 colony-forming unit (CFU)/mL, but the detection limit in the single-mediator system combined with EC redox cycling is ∼2 × 103 CFU/mL, indicating that the newly developed single-mediator system is more sensitive. Importantly, the detection method requires only an incubation period of 10 min and does not require a washing step, an electrode modification step, or a specific probe.
Collapse
Affiliation(s)
- Jungwook Kwon
- Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Eun-Min Cho
- Department of Applied Chemistry , Kyung Hee University , Yongin 17104 , Korea
| | - Ponnusamy Nandhakumar
- Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Sung Ik Yang
- Department of Applied Chemistry , Kyung Hee University , Yongin 17104 , Korea
| | - Haesik Yang
- Department of Applied Chemistry , Kyung Hee University , Yongin 17104 , Korea
| |
Collapse
|
7
|
Hoenigl M, Gangneux JP, Segal E, Alanio A, Chakrabarti A, Chen SCA, Govender N, Hagen F, Klimko N, Meis JF, Pasqualotto AC, Seidel D, Walsh TJ, Lagrou K, Lass-Flörl C, Cornely OA. Global guidelines and initiatives from the European Confederation of Medical Mycology to improve patient care and research worldwide: New leadership is about working together. Mycoses 2018; 61:885-894. [PMID: 30086186 DOI: 10.1111/myc.12836] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/21/2022]
Abstract
Invasive mycoses present a global challenge with expansion into new hosts, emergence of new pathogens, and development of multidrug resistance. In parallel, new antifungal agents and advanced laboratory diagnostic systems are being developed. In response to these evolving challenges, the European Confederation of Medical Mycology (ECMM) is committed to providing international expertise, guidance, and leadership with the key objectives of improving diagnosis, treatment, outcome, and survival of persons with invasive fungal diseases. Representing 25 affiliated National Medical Mycology Societies, the ECMM has developed several major ways to achieving these critical objectives: (a) tasking specific medical mycology working groups; (b) founding the ECMM Academy and Fellow program (FECMM); (c) expanding the goals of ECMM beyond the European region; (d) implementing the ECMM Excellence Centre Initiative in Europe; and (e) the ECMM Global Guidelines and Neglected Orphan Disease Guidance Initiatives focusing on mucormycosis, rare mould diseases, rare yeast diseases, and endemic mycoses. We believe that these important initiatives and other strategies of the ECMM will advance the field of medical mycology and improve the outcome of patients with invasive mycoses worldwide.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Department of Medicine, University of California-San Diego, San Diego, California.,Section of Infectious Diseases and Tropical Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jean-Pierre Gangneux
- CHU de Rennes, Univ Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Institut Pasteur, Molecular Mycology Unit, Département de Mycologie, CNRS UMR2000, Paris, France.,Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Department of Infectious Diseases, Westmead Hospital & School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Nelesh Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses) & Division of the National Health Laboratory Service & School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Center, Utrecht, The Netherlands
| | - Nikolaj Klimko
- Department of Clinical Mycology, Allergy and Immunology, I. Mechnikov North-Western State Medical University, Saint-Petersburg, Russia
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ) and Center of Expertise in Mycology Radboudumc/CWZ (ECMM Diamond Excellence Center), Nijmegen, The Netherlands
| | - Alessandro C Pasqualotto
- Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil.,Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, Brazil
| | - Danila Seidel
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases (ECMM Diamond Excellence Center), University Hospital Cologne, Cologne, Germany.,Clinical Trial Unit Cologne, University Hospital Cologne, Cologne, Germany
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, New York.,Departments of Pediatrics and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York
| | - Katrien Lagrou
- Department of Microbiology and Immunology, ECMM Diamond Excellence Center, KU Leuven, Leuven, Belgium.,Clinical Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, ECMM Diamond Excellence Center, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver A Cornely
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases (ECMM Diamond Excellence Center), University Hospital Cologne, Cologne, Germany.,Clinical Trial Unit Cologne, University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
8
|
Jenks JD, Hoenigl M. Treatment of Aspergillosis. J Fungi (Basel) 2018; 4:jof4030098. [PMID: 30126229 PMCID: PMC6162797 DOI: 10.3390/jof4030098] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Infections caused by Aspergillus spp. remain associated with high morbidity and mortality. While mold-active antifungal prophylaxis has led to a decrease of occurrence of invasive aspergillosis (IA) in those patients most at risk for infection, breakthrough IA does occur and remains difficult to diagnose due to low sensitivities of mycological tests for IA. IA is also increasingly observed in other non-neutropenic patient groups, where clinical presentation is atypical and diagnosis remains challenging. Early and targeted systemic antifungal treatment remains the most important predictive factor for a successful outcome in immunocompromised individuals. Recent guidelines recommend voriconazole and/or isavuconazole for the primary treatment of IA, with liposomal amphotericin B being the first alternative, and posaconazole, as well as echinocandins, primarily recommended for salvage treatment. Few studies have evaluated treatment options for chronic pulmonary aspergillosis (CPA), where long-term oral itraconazole or voriconazole remain the treatment of choice.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Department of Medicine, University of California⁻San Diego, San Diego, CA 92103, USA.
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Medicine, University of California⁻San Diego, San Diego, CA 92103, USA.
- Section of Infectious Diseases and Tropical Medicine and Division of Pulmonology, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
9
|
McCarthy MW, Walsh TJ. Containment strategies to address the expanding threat of multidrug-resistant Candida auris. Expert Rev Anti Infect Ther 2017; 15:1095-1099. [PMID: 29110544 DOI: 10.1080/14787210.2017.1402678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Candida auris is an emerging multidrug resistant human yeast pathogen associated with nosocomial transmission and high mortality. The organism can be a challenge to diagnose, may be even more difficult to treat, and continues to pose an expanding threat to patients. Areas covered: Our medical center and others in the surrounding area have seen a concerning rise in confirmed cases of C. auris infection and substantial resources have been dedicated to containment measures. We draw on our in vitro and in vivo work with this organism to examine the most effective ways to curb the current outbreak. Expert commentary: We explore novel strategies to halt the spread C. auris, including enhanced molecular diagnostics, novel therapeutics, and epidemiologic studies to determine risk factors for infection and transmission.
Collapse
Affiliation(s)
- Matthew William McCarthy
- a Weill Cornell Medical College, Assistant Attending Physician, Division of General Internal Medicine , New York-Presbyterian Hospital , New York , NY , USA.,b Transplantation-Oncology Infectious Diseases Program, Chief, Medical Mycology Research Laboratory, Pediatrics, and Microbiology & Immunology , Weill Cornell Medical Center, Henry Schueler Foundation Scholar, Sharpe Family Foundation Scholar in Pediatric Infectious Diseases , New York , NY , USA
| | - Thomas J Walsh
- a Weill Cornell Medical College, Assistant Attending Physician, Division of General Internal Medicine , New York-Presbyterian Hospital , New York , NY , USA.,b Transplantation-Oncology Infectious Diseases Program, Chief, Medical Mycology Research Laboratory, Pediatrics, and Microbiology & Immunology , Weill Cornell Medical Center, Henry Schueler Foundation Scholar, Sharpe Family Foundation Scholar in Pediatric Infectious Diseases , New York , NY , USA
| |
Collapse
|
10
|
McCarthy MW, Walsh TJ. Special considerations for the diagnosis and treatment of invasive pulmonary aspergillosis. Expert Rev Respir Med 2017; 11:739-748. [PMID: 28595486 DOI: 10.1080/17476348.2017.1340835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The diagnosis and treatment of invasive pulmonary aspergillosis (IPA) are ongoing challenges in clinical practice. While important advances have recently been made, including enhanced diagnostic modalities as well as novel therapeutic and prophylactic options, more effective options are urgently needed as the population of immunocompromised patients continues to expand. Areas covered: In this paper, we review novel approaches to diagnosis of IPA, including multiplex PCR, Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry and provide a detailed review of the extended-spectrum triazole isavuconazole, which was approved in 2015 to treat IPA. Expert commentary: We explore burgeoning approaches to diagnosis, including the lateral flow assay, volatile organic compounds, and artificial olfactory technology, as well as novel antifungal agents to treat IPA such as SCY-078 and F901318.
Collapse
Affiliation(s)
- Matthew William McCarthy
- a Hospital Medicine , Joan and Sanford I Weill Medical College of Cornell University , New York , NY , USA
| | - Thomas J Walsh
- b Transplantation-Oncology Infectious Diseases Program , Weill Cornell Medical Center , New York , NY , USA
| |
Collapse
|