1
|
Bourbonne V, Ollivier L, Antoni D, Pradier O, Cailleteau A, Schick U, Noël G, Lucia F. Diagnosis and management of brain radiation necrosis. Cancer Radiother 2024; 28:547-552. [PMID: 39366819 DOI: 10.1016/j.canrad.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 10/06/2024]
Abstract
Brain radiation necrosis (BRN) is a significant and complex side effect of stereotactic radiotherapy (SRT). Differentiating BRN from local tumor recurrence is critical, requiring advanced diagnostic techniques and a multidisciplinary approach. BRN typically manifests months to years post-treatment, presenting with radiological changes on MRI and may produce neurological symptoms. Key risk factors include the volume of irradiated brain tissue, the radiation dose, and prior radiotherapy history. This manuscript reviews the diagnostic process for BRN, emphasizing the importance of assessing baseline risk, clinical evaluation, and advanced imaging modalities. Multimodal imaging enhances diagnostic accuracy and aids in distinguishing BRN from tumor relapse. Therapeutic management varies based on symptoms. Asymptomatic BRN may be monitored with regular imaging, while symptomatic BRN often requires corticosteroids to reduce inflammation. Emerging therapies like bevacizumab have shown promise in clinical trials, with significant radiographic and symptomatic improvement. Surgical intervention may be necessary for histological confirmation and severe, treatment-resistant cases. Ongoing research aims to improve diagnostic accuracy and treatment efficacy, enhancing patient outcomes and quality of life. This review underscores the need for a multidisciplinary approach and continuous advancements to address the challenges posed by BRN in brain tumor patients.
Collapse
Affiliation(s)
- Vincent Bourbonne
- Radiation Oncology Department, CHU de Brest, boulevard Tanguy-Prigent, Brest, France; Inserm, LaTIM UMR 1101, université de Bretagne occidentale, Brest, France.
| | - Luc Ollivier
- Radiation Oncology Department, institut de cancérologie de l'Ouest, site de Nantes, Saint-Herblain, France
| | - Delphine Antoni
- Radiation Oncology Department, institut de cancérologie de Strasbourg Europe (ICANS), Strasbourg, France
| | - Olivier Pradier
- Radiation Oncology Department, CHU de Brest, boulevard Tanguy-Prigent, Brest, France; Inserm, LaTIM UMR 1101, université de Bretagne occidentale, Brest, France
| | - Axel Cailleteau
- Radiation Oncology Department, institut de cancérologie de l'Ouest, site de Nantes, Saint-Herblain, France
| | - Ulrike Schick
- Radiation Oncology Department, CHU de Brest, boulevard Tanguy-Prigent, Brest, France; Inserm, LaTIM UMR 1101, université de Bretagne occidentale, Brest, France
| | - Georges Noël
- Radiation Oncology Department, institut de cancérologie de Strasbourg Europe (ICANS), Strasbourg, France
| | - François Lucia
- Radiation Oncology Department, CHU de Brest, boulevard Tanguy-Prigent, Brest, France; Inserm, LaTIM UMR 1101, université de Bretagne occidentale, Brest, France
| |
Collapse
|
2
|
Pandey S, Kutuk T, Abdalah MA, Stringfield O, Ravi H, Mills MN, Graham JA, Latifi K, Moreno WA, Ahmed KA, Raghunand N. Prediction of radiologic outcome-optimized dose plans and post-treatment magnetic resonance images: A proof-of-concept study in breast cancer brain metastases treated with stereotactic radiosurgery. Phys Imaging Radiat Oncol 2024; 31:100602. [PMID: 39040435 PMCID: PMC11261135 DOI: 10.1016/j.phro.2024.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background and purpose Information in multiparametric Magnetic Resonance (mpMR) images is relatable to voxel-level tumor response to Radiation Treatment (RT). We have investigated a deep learning framework to predict (i) post-treatment mpMR images from pre-treatment mpMR images and the dose map ("forward models"), and, (ii) the RT dose map that will produce prescribed changes within the Gross Tumor Volume (GTV) on post-treatment mpMR images ("inverse model"), in Breast Cancer Metastases to the Brain (BCMB) treated with Stereotactic Radiosurgery (SRS). Materials and methods Local outcomes, planning computed tomography (CT) images, dose maps, and pre-treatment and post-treatment Apparent Diffusion Coefficient of water (ADC) maps, T1-weighted unenhanced (T1w) and contrast-enhanced (T1wCE), T2-weighted (T2w) and Fluid-Attenuated Inversion Recovery (FLAIR) mpMR images were curated from 39 BCMB patients. mpMR images were co-registered to the planning CT and intensity-calibrated. A 2D pix2pix architecture was used to train 5 forward models (ADC, T2w, FLAIR, T1w, T1wCE) and 1 inverse model on 1940 slices from 18 BCMB patients, and tested on 437 slices from another 9 BCMB patients. Results Root Mean Square Percent Error (RMSPE) within the GTV between predicted and ground-truth post-RT images for the 5 forward models, in 136 test slices containing GTV, were (mean ± SD) 0.12 ± 0.044 (ADC), 0.14 ± 0.066 (T2w), 0.08 ± 0.038 (T1w), 0.13 ± 0.058 (T1wCE), and 0.09 ± 0.056 (FLAIR). RMSPE within the GTV on the same 136 test slices, between the predicted and ground-truth dose maps, was 0.37 ± 0.20 for the inverse model. Conclusions A deep learning-based approach for radiologic outcome-optimized dose planning in SRS of BCMB has been demonstrated.
Collapse
Affiliation(s)
- Shraddha Pandey
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Tugce Kutuk
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mahmoud A. Abdalah
- Quantitative Imaging Shared Service, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Olya Stringfield
- Quantitative Imaging Shared Service, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Harshan Ravi
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Matthew N. Mills
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jasmine A. Graham
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Wilfrido A. Moreno
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Kamran A. Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Hajikarimloo B, Kavousi S, Jahromi GG, Mehmandoost M, Oraee-Yazdani S, Fahim F. Hyperbaric Oxygen Therapy as an Alternative Therapeutic Option for Radiation-Induced Necrosis Following Radiotherapy for Intracranial Pathologies. World Neurosurg 2024; 186:51-61. [PMID: 38325705 DOI: 10.1016/j.wneu.2024.01.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Radiotherapy (RT) is a feasible adjuvant therapeutic option for managing intracranial pathologies. One of the late complications of RT that frequently develops within months following RT is radiation necrosis (RN). Corticosteroids are the first-line therapeutic option for RNs; however, in case of unfavorable outcomes or intolerability, several other options, including bevacizumab, laser interstitial thermal therapy, surgery, and hyperbaric oxygen therapy (HBOT). Our goal was to investigate the feasibility and efficacy of the application of HBOT in RNs following RT and help physicians make decisions based on the latest data in the literature. METHODS We provide a comprehensive review of the literature on the current issues of utilization of HBOT in RNs. RESULTS We included 11 studies with a total of 46 patients who underwent HBOT. Most of the cases were diagnosed with brain tumors or arteriovenous malformations. Improvement was achieved in most of the cases. DISCUSSION HBOT is a noninvasive therapeutic intervention that can play a role in adjuvant therapy concurrent with RT and chemotherapy and treating RNs. HBOT resolves the RN through 3 mechanisms, including angiogenesis, anti-inflammatory modulation, and cellular repair. Previous studies demonstrated that HBOT is a feasible and well-tolerated therapeutic option that has shown promising results in improving clinical and radiological outcomes in intracranial RNs. Complications of HBOT are usually mild and reversible. CONCLUSIONS HBOT is a feasible and effective therapeutic option in steroid-refractory RNs and is associated with favorable outcomes and a low rate of side effects.
Collapse
Affiliation(s)
- Bardia Hajikarimloo
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Shohada Tajrish Hospital, Tehran, Iran
| | - Shahin Kavousi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Ghaffaripour Jahromi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Mehmandoost
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Shohada Tajrish Hospital, Tehran, Iran
| | - Farzan Fahim
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Shohada Tajrish Hospital, Tehran, Iran.
| |
Collapse
|
4
|
Lee C, Yoon SY, Hwang JH, Park SH, Kwon M, Yoon C, Lee K, Hahm MH, Park KS. Border Zone Maybe Correlated with Radiation Necrosis After Radiosurgery in Metastatic Brain Tumor. World Neurosurg 2024; 186:e374-e381. [PMID: 38561029 DOI: 10.1016/j.wneu.2024.03.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Radiation necrosis (RN) after stereotactic radiosurgery (SRS) in brain metastases has been extensively evaluated, and RN is correlated with various risk factors. However, no study comprehensively analyzed the correlation between RN and the border zones of the brain that are vulnerable to ischemia. We hypothesized that patients with tumors in the border zone are at high risk of RN. Hence, the current study aimed to assess the correlation between border zone lesions and RN, with consideration of other predetermined factors. METHODS This retrospective study included 117 patients with 290 lesions who underwent Gamma Knife SRS. Radiological and clinical analyses were performed to identify factors possibly correlated with RN. Notably, the lesion location was classified into 2 groups (border zone and nonborder zone) based on the blood supply. RESULTS In total, 22 (18.8%) patients with 22 (7.5%) lesions developed RN. Univariate analysis revealed a significant correlation between RN and external border zone lesions, second course of SRS administered at the same site of the previous SRS, prescribed dose, and tumor volume. Multivariate analysis showed that border zone lesions, second course of SRS at the same site of the previous SRS, and tumor volume were significantly correlated with RN. CONCLUSIONS Patients with tumors in the border zone are at high risk of RN. The potential risks of RN can be attributed hypothetically to hypoperfusion. Hence, the association between RN and border zone lesions seems reasonable.
Collapse
Affiliation(s)
- Chaejin Lee
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang-Youl Yoon
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong-Hyun Hwang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong-Hyun Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Minjae Kwon
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chaemin Yoon
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyungyoung Lee
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Myong Hun Hahm
- Department of Neuroradiology, Daegyeong Healthcare and Imaging Center, Daegu, Korea
| | - Ki-Su Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
5
|
Wu B, Li S, Wang J, Wang J, Qiu W, Gao H. Bibliometric and visualization analysis of radiation brain injury from 2003 to 2023. Front Neurol 2024; 14:1275836. [PMID: 38298563 PMCID: PMC10828967 DOI: 10.3389/fneur.2023.1275836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Background Over the past two decades, the field of radiation brain injury has attracted the attention of an increasing number of brain scientists, particularly in the areas of molecular pathology and therapeutic approaches. Characterizing global collaboration networks and mapping development trends over the past 20 years is essential. Objective The aim of this paper is to examine significant issues and future directions while shedding light on collaboration and research status in the field of radiation brain injury. Methods Bibliometric studies were performed using CiteSpaceR-bibliometrix and VOSviewer software on papers regarding radiation brain injury that were published before November 2023 in the Web of Science Core Collection. Results In the final analysis, we found 4,913 records written in 1,219 publications by 21,529 authors from 5,007 institutions in 75 countries. There was a noticeable increase in publications in 2014 and 2021. The majority of records listed were produced by China, the United States, and other high-income countries. The largest nodes in each cluster of the collaboration network were Sun Yat-sen University, University of California-San Francisco, and the University of Toronto. Galldiks N, Barnett GH, Langen KJ and Kim JH are known to be core authors in the field. The top 3 keywords in that time frame are radiation, radiation necrosis, and radiation-therapy. Conclusions The objective and thorough bibliometric analysis also identifies current research hotspots and potential future paths, providing a retrospective perspective on RBI and offering useful advice to researchers choosing research topics. Future development directions include the integration of multi-omics methodologies and novel imaging techniques to improve RBI's diagnostic effectiveness and the search for new therapeutic targets.
Collapse
Affiliation(s)
- Baofang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Shaojie Li
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Jian Wang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Weizhi Qiu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| |
Collapse
|
6
|
Dobeson CB, Birkbeck M, Bhatnagar P, Hall J, Pearson R, West S, English P, Butteriss D, Perthen J, Lewis J. Perfusion MRI in the evaluation of brain metastases: current practice review and rationale for study of baseline MR perfusion imaging prior to stereotactic radiosurgery (STARBEAM-X). Br J Radiol 2023; 96:20220462. [PMID: 37660364 PMCID: PMC10646666 DOI: 10.1259/bjr.20220462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Stereotactic radiosurgery is an established focal treatment for brain metastases with high local control rates. An important side-effect of stereotactic radiosurgery is the development of radionecrosis. On conventional MR imaging, radionecrosis and tumour progression often have similar appearances, but have contrasting management approaches. Perfusion MR imaging is often used in the post-treatment setting in order to help distinguish between the two, but image interpretation can be fraught with challenges.Perfusion MR plays an established role in the baseline and post-treatment evaluation of primary brain tumours and a number of studies have concentrated on the value of perfusion imaging in brain metastases. Of the parameters generated, relative cerebral blood volume is the most widely used variable in terms of its clinical value in differentiating between radionecrosis and tumour progression. Although it has been suggested that the relative cerebral blood volume tends to be elevated in active metastatic disease following treatment with radiosurgery, but not with treatment-related changes, the literature available on interpretation of the ratios provided in the context of defining tumour progression is not consistent.This article aims to provide an overview of the role perfusion MRI plays in the assessment of brain metastases and introduces the rationale for the STARBEAM-X study (Study of assessment of radionecrosis in brain metastases using MR perfusion extra imaging), which will prospectively evaluate baseline perfusion imaging in brain metastases. We hope this will allow insight into the vascular appearance of metastases from different primary sites, and aid in the interpretation of post-treatment perfusion imaging.
Collapse
Affiliation(s)
| | - Matthew Birkbeck
- Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle upon Tyne, UK
| | - Priya Bhatnagar
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Julie Hall
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Rachel Pearson
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Serena West
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Philip English
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - David Butteriss
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanna Perthen
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanne Lewis
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Liang S, Liu X, Liu J, Na F, Lai J, Du L, Gong Y, Zhu J, Huang M, Zhou X, Xu Y, Zhou L. Optimal timing of hypofractionated stereotactic radiotherapy for epidermal growth factor receptor-mutated non-small-cell lung cancer patients with brain metastases. Asia Pac J Clin Oncol 2023; 19:731-738. [PMID: 37088960 DOI: 10.1111/ajco.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND For epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) patients with limited brain metastases (BMs), who eventually receive both tyrosine kinase inhibitors (TKIs) treatment and brain radiotherapy, the optimal timing of radiotherapy is not clear. The present retrospective analysis aimed to partly solve this problem. METHODS In total 84 EGFR-mutated NSCLC patients with limited BMs, who received both TKI treatment and brain hypofractionated stereotactic radiotherapy (HSRT), were enrolled. Patients were divided into three groups based on whether the HSRT was administrated 2 weeks before or after the beginning of TKI treatment (upfront HSRT), when intracranial lesions stabilized after TKI treatment (consolidative HSRT), or when the intracranial disease progressed after TKI treatment (salvage HSRT). The clinical efficacy and toxicities were evaluated. RESULTS The median intracranial progression-free survival (iPFS) and overall PFS calculated from the initiation of HSRT (iPFS1 and PFS1) of all patients were 17.5 and 13.1 months, respectively. The median iPFS and PFS calculated from the initiation of TKI treatment (iPFS2 and PFS2) of all patients were 24.1 and 18.4 months, respectively. Compared to consolidative and salvage HSRT, upfront HSRT improved iPFS1 (not reached vs. 17.5 months vs. 11.0 months, p < 0.001) and PFS1 (18.4 months vs. 9.1 months vs. 7.9 months, p < 0.001), and reduced the initial intracranial failure rate (12.5% vs. 48.1% vs. 56%, p < 0.001). However, there were no significant differences between the three groups for iPFS2, PFS2, and overall survival. Hepatic metastases and diagnosis-specific Graded Prognostic Assessment (ds-GPA) at 2-3 were poor prognostic factors. CONCLUSION For patients who receive both TKI treatment and brain HSRT, the timing of HSRT does not seem to influence the eventual therapeutic effect. Further validation in prospective clinical studies is needed.
Collapse
Affiliation(s)
- Shimeng Liang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqin Liu
- Department of Oncology, Jintang First People's Hospital, Jintang, China
| | - Jia Liu
- Department of Oncology, Chengdu First People's Hospital, Chengdu, China
| | - Feifei Na
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jialu Lai
- Department of Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Leiya Du
- Department of Oncology, Yibin Second People's Hospital, Yibin, China
| | - Youling Gong
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Zhu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meijuan Huang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Romano A, Moltoni G, Blandino A, Palizzi S, Romano A, de Rosa G, De Blasi Palma L, Monopoli C, Guarnera A, Minniti G, Bozzao A. Radiosurgery for Brain Metastases: Challenges in Imaging Interpretation after Treatment. Cancers (Basel) 2023; 15:5092. [PMID: 37894459 PMCID: PMC10605307 DOI: 10.3390/cancers15205092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Stereotactic radiosurgery (SRS) has transformed the management of brain metastases by achieving local tumor control, reducing toxicity, and minimizing the need for whole-brain radiation therapy (WBRT). This review specifically investigates radiation-induced changes in patients treated for metastasis, highlighting the crucial role of magnetic resonance imaging (MRI) in the evaluation of treatment response, both at very early and late stages. The primary objective of the review is to evaluate the most effective imaging techniques for assessing radiation-induced changes and distinguishing them from tumor growth. The limitations of conventional imaging methods, which rely on size measurements, dimensional criteria, and contrast enhancement patterns, are critically evaluated. In addition, it has been investigated the potential of advanced imaging modalities to offer a more precise and comprehensive evaluation of treatment response. Finally, an overview of the relevant literature concerning the interpretation of brain changes in patients undergoing immunotherapies is provided.
Collapse
Affiliation(s)
- Andrea Romano
- NESMOS Department, U.O.C. Neuroradiology “Sant’Andrea” University Hospital, 00189 Rome, Italy; (A.R.); (G.M.); (A.B.); (S.P.); (A.R.); (G.d.R.); (L.D.B.P.); (C.M.); (A.G.); (A.B.)
| | - Giulia Moltoni
- NESMOS Department, U.O.C. Neuroradiology “Sant’Andrea” University Hospital, 00189 Rome, Italy; (A.R.); (G.M.); (A.B.); (S.P.); (A.R.); (G.d.R.); (L.D.B.P.); (C.M.); (A.G.); (A.B.)
| | - Antonella Blandino
- NESMOS Department, U.O.C. Neuroradiology “Sant’Andrea” University Hospital, 00189 Rome, Italy; (A.R.); (G.M.); (A.B.); (S.P.); (A.R.); (G.d.R.); (L.D.B.P.); (C.M.); (A.G.); (A.B.)
| | - Serena Palizzi
- NESMOS Department, U.O.C. Neuroradiology “Sant’Andrea” University Hospital, 00189 Rome, Italy; (A.R.); (G.M.); (A.B.); (S.P.); (A.R.); (G.d.R.); (L.D.B.P.); (C.M.); (A.G.); (A.B.)
| | - Allegra Romano
- NESMOS Department, U.O.C. Neuroradiology “Sant’Andrea” University Hospital, 00189 Rome, Italy; (A.R.); (G.M.); (A.B.); (S.P.); (A.R.); (G.d.R.); (L.D.B.P.); (C.M.); (A.G.); (A.B.)
| | - Giulia de Rosa
- NESMOS Department, U.O.C. Neuroradiology “Sant’Andrea” University Hospital, 00189 Rome, Italy; (A.R.); (G.M.); (A.B.); (S.P.); (A.R.); (G.d.R.); (L.D.B.P.); (C.M.); (A.G.); (A.B.)
| | - Lara De Blasi Palma
- NESMOS Department, U.O.C. Neuroradiology “Sant’Andrea” University Hospital, 00189 Rome, Italy; (A.R.); (G.M.); (A.B.); (S.P.); (A.R.); (G.d.R.); (L.D.B.P.); (C.M.); (A.G.); (A.B.)
| | - Cristiana Monopoli
- NESMOS Department, U.O.C. Neuroradiology “Sant’Andrea” University Hospital, 00189 Rome, Italy; (A.R.); (G.M.); (A.B.); (S.P.); (A.R.); (G.d.R.); (L.D.B.P.); (C.M.); (A.G.); (A.B.)
| | - Alessia Guarnera
- NESMOS Department, U.O.C. Neuroradiology “Sant’Andrea” University Hospital, 00189 Rome, Italy; (A.R.); (G.M.); (A.B.); (S.P.); (A.R.); (G.d.R.); (L.D.B.P.); (C.M.); (A.G.); (A.B.)
| | - Giuseppe Minniti
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, 00138 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Alessandro Bozzao
- NESMOS Department, U.O.C. Neuroradiology “Sant’Andrea” University Hospital, 00189 Rome, Italy; (A.R.); (G.M.); (A.B.); (S.P.); (A.R.); (G.d.R.); (L.D.B.P.); (C.M.); (A.G.); (A.B.)
| |
Collapse
|
9
|
Demetz M, Mangesius J, Krigers A, Nevinny-Stickel M, Thomé C, Freyschlag CF, Kerschbaumer J. Tumor Location Impacts the Development of Radiation Necrosis in Benign Intracranial Tumors. Cancers (Basel) 2023; 15:4760. [PMID: 37835452 PMCID: PMC10571857 DOI: 10.3390/cancers15194760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Radiation necrosis (RN) is a possible late complication of stereotactic radiosurgery (SRS), but only a few risk factors are known. The aim of this study was to assess tumor location in correlation to the development of radiation necrosis for skull base (SB) and non-skull base tumors. METHODS All patients treated with radiosurgery for benign neoplasms (2004-2020) were retrospectively evaluated. The clinical, imaging and medication data were obtained and the largest axial tumor diameter was determined using MRI scans in T1-weighted imaging with gadolinium. The diagnosis of RN was established using imaging parameters. Patients with tumors located at the skull base were compared to patients with tumors in non-skull base locations. RESULTS 205 patients could be included. Overall, 157 tumors (76.6%) were located at the SB and compared to 48 (23.4%) non-SB tumors. Among SB tumors, the most common were vestibular schwannomas (125 cases) and meningiomas (21 cases). In total, 32 (15.6%) patients developed RN after a median of 10 (IqR 5-12) months. Moreover, 62 patients (30.2%) had already undergone at least one surgical resection. In multivariate Cox regression, SB tumors showed a significantly lower risk of radiation necrosis with a Hazard Ratio (HR) of 0.252, p < 0.001, independently of the applied radiation dose. Furthermore, higher radiation doses had a significant impact on the occurrence of RN (HR 1.372, p = 0.002). CONCLUSIONS The risk for the development of RN for SB tumors appears to be low but should not be underestimated. No difference was found between recurrent tumors and newly diagnosed tumors, which may support the value of radiosurgical treatment for patients with recurrent SB tumors.
Collapse
Affiliation(s)
- Matthias Demetz
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Julian Mangesius
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Aleksandrs Krigers
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | | | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Christian F Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Chambrelant I, Jarnet D, Bou-Gharios J, Le Fèvre C, Kuntz L, Antoni D, Jenny C, Noël G. Stereotactic Radiation Therapy of Single Brain Metastases: A Literature Review of Dosimetric Studies. Cancers (Basel) 2023; 15:3937. [PMID: 37568753 PMCID: PMC10416831 DOI: 10.3390/cancers15153937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Stereotactic radiotherapy (SRT) plays a major role in treating brain metastases (BMs) and can be delivered using various equipment and techniques. This review aims to identify the dosimetric factors of each technique to determine whether one should be preferred over another for single BMs treatment. A systematic literature review on articles published between January 2015 and January 2022 was conducted using the MEDLINE and ScienceDirect databases, following the PRISMA methodology, using the keywords "dosimetric comparison" and "brain metastases". The included articles compared two or more SRT techniques for treating single BM and considered at least two parameters among: conformity (CI), homogeneity (HI) and gradient (GI) indexes, delivery treatment time, and dose-volume of normal brain tissue. Eleven studies were analyzed. The heterogeneous lesions along with the different definitions of dosimetric indexes rendered the studied comparison almost unattainable. Gamma Knife (GK) and volumetric modulated arc therapy (VMAT) provide better CI and GI and ensure the sparing of healthy tissue. To conclude, it is crucial to optimize dosimetric indexes to minimize radiation exposure to healthy tissue, particularly in cases of reirradiation. Consequently, there is a need for future well-designed studies to establish guidelines for selecting the appropriate SRT technique based on the treated BMs' characteristics.
Collapse
Affiliation(s)
- Isabelle Chambrelant
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 67200 Strasbourg, France; (I.C.); (C.L.F.); (L.K.); (D.A.)
| | - Delphine Jarnet
- Department of Medical Physics, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 67200 Strasbourg, France;
| | - Jolie Bou-Gharios
- Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Paul Strauss Comprehensive Cancer Center, 67200 Strasbourg, France;
| | - Clara Le Fèvre
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 67200 Strasbourg, France; (I.C.); (C.L.F.); (L.K.); (D.A.)
| | - Laure Kuntz
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 67200 Strasbourg, France; (I.C.); (C.L.F.); (L.K.); (D.A.)
| | - Delphine Antoni
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 67200 Strasbourg, France; (I.C.); (C.L.F.); (L.K.); (D.A.)
| | - Catherine Jenny
- Department of Medical Physics, AP-HP, Sorbonne Université, CEDEX 13, 75651 Paris, France;
| | - Georges Noël
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), UNICANCER, Paul Strauss Comprehensive Cancer Center, 67200 Strasbourg, France; (I.C.); (C.L.F.); (L.K.); (D.A.)
| |
Collapse
|
11
|
Calderon B, Vazquez L, Belkacemi M, Pourel N. Stereotactic radiotherapy for brain metastases: predictive factors of radionecrosis. Eur J Med Res 2023; 28:233. [PMID: 37443046 DOI: 10.1186/s40001-023-01178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
PURPOSE Stereotactic radiotherapy (SRT) is a highly effective approach and represents the current standard of treatment for patients with limited number of brain metastasis (BM). SRT is generally well tolerated but can sometimes lead to radionecrosis (RN). The aim of this study was to identify predictive factors of radionecrosis related to SRT for brain metastasis. METHODS This retrospective observational cohort study included patients who underwent SRT in the Institut Sainte Catherine between January 1st, 2017 and December 31st, 2020 for the treatment of brain metastasis from any cancer. Individual data and particularly signs of radionecrosis (clinical, imaging, anatomopathological) were collected from electronic medical records. Radionecrosis was defined as the occurrence on MRI of contrast-enhancing necrotic lesions, surrounded by edema, occurring at least 6 months after SRT and localized within fields of irradiation. RESULTS 123 patients were included; median age was 66 years. 17 patients (11.8%) developed radionecrosis after a median follow up of 418.5 days [63;1498]. Predictive factors of radionecrosis in multivariate analysis were age under 66 years with a sensitivity of 77% and a specificity of 56%. No other factor as the presence of comorbidities, the number of irradiated metastases, the PTV volume or the volume of irradiated healthy brain were predictive of radionecrosis. CONCLUSION Age at treatment initiation and tumor location seems to be correlated with radionecrosis in patients with brain metastasis treated with SRT. These elements could be useful to adapted radiation therapy.
Collapse
Affiliation(s)
- Benoît Calderon
- Institut Sainte Catherine, 250 Chemin Des Baigne-Pieds, 84000, Avignon, France
| | - Léa Vazquez
- Institut Sainte Catherine, 250 Chemin Des Baigne-Pieds, 84000, Avignon, France.
| | | | - Nicolas Pourel
- Institut Sainte Catherine, 250 Chemin Des Baigne-Pieds, 84000, Avignon, France
| |
Collapse
|
12
|
Crouzen JA, Petoukhova AL, Broekman MLD, Fiocco M, Fisscher UJ, Franssen JH, Gadellaa-van Hooijdonk CGM, Kerkhof M, Kiderlen M, Mast ME, van Rij CM, Nandoe Tewarie R, van de Sande MAE, van der Toorn PPG, Vlasman R, Vos MJ, van der Voort van Zyp NCMG, Wiggenraad RGJ, Wiltink LM, Zindler JD. SAFESTEREO: phase II randomized trial to compare stereotactic radiosurgery with fractionated stereotactic radiosurgery for brain metastases. BMC Cancer 2023; 23:273. [PMID: 36964529 PMCID: PMC10039548 DOI: 10.1186/s12885-023-10761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is a frequently chosen treatment for patients with brain metastases and the number of long-term survivors is increasing. Brain necrosis (e.g. radionecrosis) is the most important long-term side effect of the treatment. Retrospective studies show a lower risk of radionecrosis and local tumor recurrence after fractionated stereotactic radiosurgery (fSRS, e.g. five fractions) compared with stereotactic radiosurgery in one or three fractions. This is especially true for patients with large brain metastases. As such, the 2022 ASTRO guideline of radiotherapy for brain metastases recommends more research to fSRS to reduce the risk of radionecrosis. This multicenter prospective randomized study aims to determine whether the incidence of adverse local events (either local failure or radionecrosis) can be reduced using fSRS versus SRS in one or three fractions in patients with brain metastases. METHODS Patients are eligible with one or more brain metastases from a solid primary tumor, age of 18 years or older, and a Karnofsky Performance Status ≥ 70. Exclusion criteria include patients with small cell lung cancer, germinoma or lymphoma, leptomeningeal metastases, a contraindication for MRI, prior inclusion in this study, prior surgery for brain metastases, prior radiotherapy for the same brain metastases (in-field re-irradiation). Participants will be randomized between SRS with a dose of 15-24 Gy in 1 or 3 fractions (standard arm) or fSRS 35 Gy in five fractions (experimental arm). The primary endpoint is the incidence of a local adverse event (local tumor failure or radionecrosis identified on MRI scans) at two years after treatment. Secondary endpoints are salvage treatment and the use of corticosteroids, bevacizumab, or antiepileptic drugs, survival, distant brain recurrences, toxicity, and quality of life. DISCUSSION Currently, limiting the risk of adverse events such as radionecrosis is a major challenge in the treatment of brain metastases. fSRS potentially reduces this risk of radionecrosis and local tumor failure. TRIAL REGISTRATION ClincalTrials.gov, trial registration number: NCT05346367 , trial registration date: 26 April 2022.
Collapse
Affiliation(s)
- J A Crouzen
- Haaglanden Medical Center, The Hague, The Netherlands
| | | | | | - M Fiocco
- Mathematical Institute of Leiden University, Leiden, The Netherlands
| | - U J Fisscher
- Haaglanden Medical Center, The Hague, The Netherlands
| | | | | | - M Kerkhof
- Haaglanden Medical Center, The Hague, The Netherlands
| | - M Kiderlen
- Haaglanden Medical Center, The Hague, The Netherlands
| | - M E Mast
- Haaglanden Medical Center, The Hague, The Netherlands
| | | | | | | | | | - R Vlasman
- Radiotherapy Institute Friesland, Leeuwarden, The Netherlands
| | - M J Vos
- Haaglanden Medical Center, The Hague, The Netherlands
| | | | | | - L M Wiltink
- Leiden University Medical Center, Leiden, The Netherlands
| | - J D Zindler
- Haaglanden Medical Center, The Hague, The Netherlands.
- Holland Proton Therapy Center, Delft, The Netherlands.
| |
Collapse
|
13
|
Leu J, Akerman M, Mendez C, Lischalk JW, Carpenter T, Ebling D, Haas JA, Witten M, Barbaro M, Duic P, Tessler L, Repka MC. Time interval from diagnosis to treatment of brain metastases with stereotactic radiosurgery is not associated with radionecrosis or local failure. Front Oncol 2023; 13:1132777. [PMID: 37091181 PMCID: PMC10113671 DOI: 10.3389/fonc.2023.1132777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionBrain metastases are the most common intracranial tumor diagnosed in adults. In patients treated with stereotactic radiosurgery, the incidence of post-treatment radionecrosis appears to be rising, which has been attributed to improved patient survival as well as novel systemic treatments. The impacts of concomitant immunotherapy and the interval between diagnosis and treatment on patient outcomes are unclear.MethodsThis single institution, retrospective study consisted of patients who received single or multi-fraction stereotactic radiosurgery for intact brain metastases. Exclusion criteria included neurosurgical resection prior to treatment and treatment of non-malignant histologies or primary central nervous system malignancies. A univariate screen was implemented to determine which factors were associated with radionecrosis. The chi-square test or Fisher’s exact test was used to compare the two groups for categorical variables, and the two-sample t-test or Mann-Whitney test was used for continuous data. Those factors that appeared to be associated with radionecrosis on univariate analyses were included in a multivariable model. Univariable and multivariable Cox proportional hazards models were used to assess potential predictors of time to local failure and time to regional failure.ResultsA total of 107 evaluable patients with a total of 256 individual brain metastases were identified. The majority of metastases were non-small cell lung cancer (58.98%), followed by breast cancer (16.02%). Multivariable analyses demonstrated increased risk of radionecrosis with increasing MRI maximum axial dimension (OR 1.10, p=0.0123) and a history of previous whole brain radiation therapy (OR 3.48, p=0.0243). Receipt of stereotactic radiosurgery with concurrent immunotherapy was associated with a decreased risk of local failure (HR 0.31, p=0.0159). Time interval between diagnostic MRI and first treatment, time interval between CT simulation and first treatment, and concurrent immunotherapy had no impact on incidence of radionecrosis or regional failure.DiscussionAn optimal time interval between diagnosis and treatment for intact brain metastases that minimizes radionecrosis and maximizes local and regional control could not be identified. Concurrent immunotherapy does not appear to increase the risk of radionecrosis and may improve local control. These data further support the safety and synergistic efficacy of stereotactic radiosurgery with concurrent immunotherapy.
Collapse
Affiliation(s)
- Justin Leu
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Meredith Akerman
- Division of Health Services Research, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Christopher Mendez
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Jonathan W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
- NYCyberKnife at Perlmutter Cancer Center – Manhattan, New York, NY, United States
| | - Todd Carpenter
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - David Ebling
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Jonathan A. Haas
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
- NYCyberKnife at Perlmutter Cancer Center – Manhattan, New York, NY, United States
| | - Matthew Witten
- Department of Medical Physics, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Marissa Barbaro
- Department of Neurology, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Paul Duic
- Department of Neurology, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Lee Tessler
- Department of Neurosurgery, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Michael C. Repka
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Michael C. Repka,
| |
Collapse
|
14
|
Lolli J, Tessari F, Berti F, Fusella M, Fiorentin D, Bimbatti D, Basso U, Busato F. Impressive reduction of brain metastasis radionecrosis after cabozantinib therapy in metastatic renal carcinoma: A case report and review of the literature. Front Oncol 2023; 13:1136300. [PMID: 36959812 PMCID: PMC10028179 DOI: 10.3389/fonc.2023.1136300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Radionecrosis is a consequence of SRS (stereotactic radiosurgery) for brain metastases in 34% of cases, and if symptomatic (8%-16%), it requires therapy with corticosteroids and bevacizumab and, less frequently, surgery. Oncological indications are increasing and appropriate stereotactic adapted LINACs (linear accelerators) are becoming more widely available worldwide. Efforts are being made to treat brain radionecrosis in order to relieve symptoms and spare the use of active therapies. Case presentation Herein, we describe a 65-year-old female patient presenting with brain radionecrosis 6 months after stereotactic radiotherapy for two brain metastatic lesions. Being symptomatic with headache and slow cognitive-motor function, the patient received corticosteroids. Because of later lung progression, the patient took cabozantinib. An impressive reduction of the two brain radionecrosis areas was seen at the brain MRI 2 months after the initiation of the angiogenic drug. Discussion The high incidence of radionecrosis (2/2 treated lesions) can be interpreted by the combination of SRS and previous ipilimumab that is associated with increased risk of radionecrosis. The molecular mechanisms of brain radionecrosis, and its exact duration in time, are poorly understood. We hypothesize that the antiangiogenic effect of cabozantinib may have had a strong effect in reducing brain radionecrosis areas. Conclusion In this clinical case, cabozantinib is associated with a fast and significant volume reduction of brain radionecrosis appearing after SRS and concomitant immunotherapy. This drug seems to show, like bevacizumab, clinical implications not only for its efficacy in systemic disease control but also in reducing brain radionecrosis. More research is needed to evaluate all molecular mechanisms of brain radionecrosis and their interaction with systemic therapies like third-generation TKIs.
Collapse
Affiliation(s)
- Jacopo Lolli
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Francesca Tessari
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Franco Berti
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Marco Fusella
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Radiation Oncology, Abano Terme Hospital, Padua, Italy
| | - Davide Fiorentin
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Radiation Oncology, Abano Terme Hospital, Padua, Italy
| | - Davide Bimbatti
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Umberto Basso
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Fabio Busato
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Radiation Oncology, Abano Terme Hospital, Padua, Italy
| |
Collapse
|
15
|
Sminia P, Guipaud O, Viktorsson K, Ahire V, Baatout S, Boterberg T, Cizkova J, Dostál M, Fernandez-Palomo C, Filipova A, François A, Geiger M, Hunter A, Jassim H, Edin NFJ, Jordan K, Koniarová I, Selvaraj VK, Meade AD, Milliat F, Montoro A, Politis C, Savu D, Sémont A, Tichy A, Válek V, Vogin G. Clinical Radiobiology for Radiation Oncology. RADIOBIOLOGY TEXTBOOK 2023:237-309. [DOI: 10.1007/978-3-031-18810-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
AbstractThis chapter is focused on radiobiological aspects at the molecular, cellular, and tissue level which are relevant for the clinical use of ionizing radiation (IR) in cancer therapy. For radiation oncology, it is critical to find a balance, i.e., the therapeutic window, between the probability of tumor control and the probability of side effects caused by radiation injury to the healthy tissues and organs. An overview is given about modern precision radiotherapy (RT) techniques, which allow optimal sparing of healthy tissues. Biological factors determining the width of the therapeutic window are explained. The role of the six typical radiobiological phenomena determining the response of both malignant and normal tissues in the clinic, the 6R’s, which are Reoxygenation, Redistribution, Repopulation, Repair, Radiosensitivity, and Reactivation of the immune system, is discussed. Information is provided on tumor characteristics, for example, tumor type, growth kinetics, hypoxia, aberrant molecular signaling pathways, cancer stem cells and their impact on the response to RT. The role of the tumor microenvironment and microbiota is described and the effects of radiation on the immune system including the abscopal effect phenomenon are outlined. A summary is given on tumor diagnosis, response prediction via biomarkers, genetics, and radiomics, and ways to selectively enhance the RT response in tumors. Furthermore, we describe acute and late normal tissue reactions following exposure to radiation: cellular aspects, tissue kinetics, latency periods, permanent or transient injury, and histopathology. Details are also given on the differential effect on tumor and late responding healthy tissues following fractionated and low dose rate irradiation as well as the effect of whole-body exposure.
Collapse
|
16
|
Hintelmann K, Petersen C, Borgmann K. Radiotherapeutic Strategies to Overcome Resistance of Breast Cancer Brain Metastases by Considering Immunogenic Aspects of Cancer Stem Cells. Cancers (Basel) 2022; 15:211. [PMID: 36612206 PMCID: PMC9818478 DOI: 10.3390/cancers15010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most diagnosed cancer in women, and symptomatic brain metastases (BCBMs) occur in 15-20% of metastatic breast cancer cases. Despite technological advances in radiation therapy (RT), the prognosis of patients is limited. This has been attributed to radioresistant breast cancer stem cells (BCSCs), among other factors. The aim of this review article is to summarize the evidence of cancer-stem-cell-mediated radioresistance in brain metastases of breast cancer from radiobiologic and radiation oncologic perspectives to allow for the better interpretability of preclinical and clinical evidence and to facilitate its translation into new therapeutic strategies. To this end, the etiology of brain metastasis in breast cancer, its radiotherapeutic treatment options, resistance mechanisms in BCSCs, and effects of molecularly targeted therapies in combination with radiotherapy involving immune checkpoint inhibitors are described and classified. This is considered in the context of the central nervous system (CNS) as a particular metastatic niche involving the blood-brain barrier and the CNS immune system. The compilation of this existing knowledge serves to identify possible synergistic effects between systemic molecularly targeted therapies and ionizing radiation (IR) by considering both BCSCs' relevant resistance mechanisms and effects on normal tissue of the CNS.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
17
|
The Normal, the Radiosensitive, and the Ataxic in the Era of Precision Radiotherapy: A Narrative Review. Cancers (Basel) 2022; 14:cancers14246252. [PMID: 36551737 PMCID: PMC9776433 DOI: 10.3390/cancers14246252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: radiotherapy is a cornerstone of cancer treatment. When delivering a tumoricidal dose, the risk of severe late toxicities is usually kept below 5% using dose-volume constraints. However, individual radiation sensitivity (iRS) is responsible (with other technical factors) for unexpected toxicities after exposure to a dose that induces no toxicity in the general population. Diagnosing iRS before radiotherapy could avoid unnecessary toxicities in patients with a grossly normal phenotype. Thus, we reviewed iRS diagnostic data and their impact on decision-making processes and the RT workflow; (2) Methods: following a description of radiation toxicities, we conducted a critical review of the current state of the knowledge on individual determinants of cellular/tissue radiation; (3) Results: tremendous advances in technology now allow minimally-invasive genomic, epigenetic and functional testing and a better understanding of iRS. Ongoing large translational studies implement various tests and enriched NTCP models designed to improve the prediction of toxicities. iRS testing could better support informed radiotherapy decisions for individuals with a normal phenotype who experience unusual toxicities. Ethics of medical decisions with an accurate prediction of personalized radiotherapy's risk/benefits and its health economics impact are at stake; (4) Conclusions: iRS testing represents a critical unmet need to design personalized radiotherapy protocols relying on extended NTCP models integrating iRS.
Collapse
|
18
|
Yang L, Wang C, Zhang W, Liu S, Xuan T, Jiang H, Hu X, Hu M, Li H. Iodine-125 brachytherapy treatment for newly diagnosed brain metastasis in non-small cell lung cancer: A biocentric analysis. Front Oncol 2022; 12:1005876. [PMID: 36591479 PMCID: PMC9797954 DOI: 10.3389/fonc.2022.1005876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose The aim of the present study is to evaluate the safety and efficacy of iodine-125 brachytherapy for newly diagnosed brain metastasis in patients with non-small cell lung cancer (NSCLC). Materials and methods The study included 158 NSCLC patients diagnosed with brain metastasis from December 2003 to August 2017. Ninety-nine patients underwent external beam radiotherapy (EBRT group), and 59 patients received iodine-125 brachytherapy (125I group). In addition, the 6- and 12-month progression-free survival (PFS) rates and the 12- and 24-month overall survival (OS) rates were compared between the EBRT group and the 125I group. Median OS and PFS were analyzed using the Kaplan-Meier method with a log-rank test. Results The 6-month PFS rate was significantly higher in the 125I group (p = 0.002) than in the EBRT group, while no differences were found in the 12-month PFS rate (p = 0.184). Additionally, the 12- (p = 0.839) and 24-month (p = 0.284) OS rates were not significantly different between the two groups. No significant differences in median OS (p = 0.525) or PFS (p = 0.425) were found between the two groups. Conclusions Iodine-125 brachytherapy is an alternative therapy for patients unable to undergo surgical resection.
Collapse
Affiliation(s)
- Lili Yang
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Congxiao Wang
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Zhang
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shifeng Liu
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tiantian Xuan
- Department of Oncology, Qilu Hospital, Qingdao, Shandong, China
| | - Han Jiang
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaokun Hu
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China,*Correspondence: Xiaokun Hu, ; Man Hu, ; Huanting Li,
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China,*Correspondence: Xiaokun Hu, ; Man Hu, ; Huanting Li,
| | - Huanting Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China,*Correspondence: Xiaokun Hu, ; Man Hu, ; Huanting Li,
| |
Collapse
|
19
|
Focal cavity radiotherapy after neurosurgical resection of brain metastases: sparing neurotoxicity without compromising locoregional control. Strahlenther Onkol 2022; 198:1105-1111. [PMID: 36149437 DOI: 10.1007/s00066-022-02003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Does focal cavity radiotherapy after resection of brain metastasis "spare" whole-brain radiotherapy, which is associated with toxicity for patients, through the complete course of their disease without compromising long-term local control of the brain? METHODS We retrospectively analyzed outcomes of patients who underwent adjuvant focal cavity radiotherapy between 2014 and 2021 at our center. RESULTS A total of 83 patients with 86 resected brain metastases were analyzed. 64% had singular, 36% two to four brain metastases. In cases with multiple metastases, omitted lesions were treated with radiosurgery. Median follow-up was 7.3 months (range 0-71.2 months), 1‑year overall survival rate was 57.8% (95% CI 44.9-68.8%). Radiotherapy was administered with a median biologically effective dose (α/β 10) surrounding the planning target volume of 48 Gy (range 23.4-60 Gy). Estimated 1‑year local control rate was 82.7% (95% CI 67.7-91.2%), estimated 1‑year distant brain control rate was 55.7% (95% CI 40.5-68.4%), estimated 1‑year leptomeningeal disease rate was 16.0% (95% CI 7.3-32.9%). Eleven distant brain recurrences could be salvaged with radiosurgery. In the further course of disease, 14 patients (17%) developed disseminated metastatic disease in the brain. Estimated 1‑year free of whole-brain radiotherapy rate was 72.3% (95% CI 57.1-82.9%). All applied treatments led to an estimated 1‑year neuro-control rate of 79.1% (95% CI 65.0-88.0%), estimated 1‑year radionecrosis rate was 23% (95% CI 12.4-40.5%). CONCLUSION In our single-center study, focal cavity radiotherapy was associated with high local control. In three out of four patients, whole-brain radiotherapy could be avoided in the complete course of disease, using radiosurgery as salvage approach without compromising neuro-control.
Collapse
|
20
|
Leyrat B, Khalill T, Lemaire JJ, Casile M, Molnar I, Dedieu V, Chassin V, Dupic G, Bellière A, Durando X, Lapeyre M, Verrelle P, Biau J. Local control and radionecrosis of brain metastases from non– small-cell lung cancer treated by hypofractionated stereotactic radiotherapy: Evaluation of predictive factors. Clin Transl Radiat Oncol 2022; 36:1-8. [PMID: 35733828 PMCID: PMC9207219 DOI: 10.1016/j.ctro.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
First study on brain metastases 3-fraction SRT from a homogeneous population of NSCLC, according to French MF-SRT recommendations. MF-SRT with 3x7.7 Gy on the 70% isodose line and PTV = GTV + 2 mm leads to high local control rates in this population, with acceptable rates of radionecrosis. GTV Dmin ≥ 27.4 Gy leads to higher local control. Dyslipidemia could be involved in radionecrosis appearance.
Background The objective of our study was to report predictive factors of local control (LC) and radionecrosis (RN) of brain metastases (BM) of non-small cell lung carcinoma (NSCLC) treated by multifractionated stereotactic radiotherapy (MF-SRT) according to French recommendations. Method From 2012 to 2020, 87 patients with 101 BM were retrospectively included. The median age was 63 years (37–85). GTV was defined using contrast-enhanced T1w MRI and was isotropically extended by 2 mm to form PTV. Mean maximum BM diameter was 24.5 mm (10–46). Patients were treated with dynamic arctherapy from May 2012 to February 2016 and then with VMAT. The total prescribed dose was 23.1 Gy prescribed to the encompassing 70% isodose, in 3 fractions. Results LC rates at 6 months, 1 year and 2 years was 95.7%, 90.7% and 87.9% respectively. In multivariate analysis, high GTV Dmin (HR = 0.822, p = 0.012) was in favor of better LC whereas a large maximum diameter was predictive of poor LC (HR = 1.124, p = 0.02). GTV Dmin of 27.4 Gy was identified as a discriminant threshold of LC. In case of GTV Dmin ≥ 27.4 Gy, LC at 1 year was 95.3% versus 75.1% with GTV Dmin < 27.4 Gy. Cumulative incidence of RN at 6 months, 1 year and 2 years was 6.3%, 15.4% and 18.1%, respectively. In multivariate analysis, only dyslipidemia was predictive of RN (HR = 2.69, p = 0.03). No dosimetric predictive factor of RN was found in our study. Conclusion MF-SRT (3x7.7 Gy on 70% isodose line, with PTV = GTV + 2 mm; according to French recommendations) of BM from NSCLC gives high LC rates with acceptable RN rate. A GTV Dmin of at least 27.4 Gy could be proposed to optimize dosimetric objectives. No dosimetric predictive factors of RN were found in this study. However, dyslipidemia was identified as a potential predictive factor of RN.
Collapse
|
21
|
Mederos N, Jankovic J, Gomez RGH, Dunet V, Cristina V. Intracranial response to a combination of bevacizumab and epirubicin for an adenoid cystic carcinoma of the external auditory canal: A case report and review of the literature. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2021. [DOI: 10.1016/j.cpccr.2021.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Ahmed KA, Kim Y, Arrington JA, Kim S, DeJesus M, Soyano AE, Armaghani AJ, Costa RL, Khong HT, Loftus LS, Rosa M, Caudell JJ, Diaz R, Robinson TJ, Etame AB, Tran ND, Sahebjam S, Soliman HH, Czerniecki BJ, Forsyth PA, Yu HM, Han HS. Nivolumab and Stereotactic Radiosurgery for Patients With Breast Cancer Brain Metastases: A Nonrandomized, Open-Label Phase 1b Study. Adv Radiat Oncol 2021; 6:100798. [PMID: 34934864 PMCID: PMC8655428 DOI: 10.1016/j.adro.2021.100798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose Methods and Materials Results Conclusions
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This review aims to cover current MRI techniques for assessing treatment response in brain tumors, with a focus on radio-induced lesions. RECENT FINDINGS Pseudoprogression and radionecrosis are common radiological entities after brain tumor irradiation and are difficult to distinguish from real progression, with major consequences on daily patient care. To date, shortcomings of conventional MRI have been largely recognized but morphological sequences are still used in official response assessment criteria. Several complementary advanced techniques have been proposed but none of them have been validated, hampering their clinical use. Among advanced MRI, brain perfusion measures increase diagnostic accuracy, especially when added with spectroscopy and susceptibility-weighted imaging. However, lack of reproducibility, because of several hard-to-control variables, is still a major limitation for their standardization in routine protocols. Amide Proton Transfer is an emerging molecular imaging technique that promises to offer new metrics by indirectly quantifying intracellular mobile proteins and peptide concentration. Preliminary studies suggest that this noncontrast sequence may add key biomarkers in tumor evaluation, especially in posttherapeutic settings. SUMMARY Benefits and pitfalls of conventional and advanced imaging on posttreatment assessment are discussed and the potential added value of APT in this clinicoradiological evolving scenario is introduced.
Collapse
Affiliation(s)
- Lucia Nichelli
- Department of Neuroradiology, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix
- Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, boulevard de l’Hôpital, Paris
| | - Stefano Casagranda
- Department of Research & Innovation, Olea Medical, avenue des Sorbiers, La Ciotat, France
| |
Collapse
|
24
|
Abstract
Modeling of metastatic disease in animal models is a critical resource to study the complexity of this multi-step process in a relevant system. Available models of metastatic disease to the brain are still far from ideal but they allow to address specific aspects of the biology or mimic clinically relevant scenarios. We not only review experimental models and their potential improvements but also discuss specific answers that could be obtained from them on unsolved aspects of clinical management.
Collapse
Affiliation(s)
- Lauritz Miarka
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
25
|
Risk Factors for Radiation Necrosis in Patients Undergoing Cranial Stereotactic Radiosurgery. Cancers (Basel) 2021; 13:cancers13194736. [PMID: 34638223 PMCID: PMC8507553 DOI: 10.3390/cancers13194736] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Radiation necrosis is a known complication after stereotactic radiosurgery of intracranial tumors. We evaluated 388 patients who underwent stereotactic radiosurgery at our institution. The most common tumors were metastases (47.2%), followed by vestibular schwannomas (32.2%) and meningiomas (13.4%). 15.7% developed radiation necrosis after a median of 8 months. According to our data, larger tumor diameter (HR 1.065) and higher radiation dose (HR 1.302) were associated with an increased risk of radiation necrosis independently of tumor type. Advanced age was shown to be a risk factor for radiation necrosis only in cases with metastasis (HR 1.066). The data from this study suggest that the development of radiation necrosis is dependent on size and dose, not on the type of the neoplasm. Abstract Purpose: single-staged stereotactic radiosurgery (SRS) is an established part of the multimodal treatment in neuro-oncology. Radiation necrosis after high-dose irradiation is a known complication, but there is a lack of evidence about the risk factors. The aim of this study was to evaluate possible risk factors for radiation necrosis in patients undergoing radiosurgery. Methods: patients treated with radiosurgery between January 2004 and November 2020 were retrospectively analyzed. The clinical data, imaging and medication were gathered from electronic patient records. The largest diameter of the tumors was measured using MRI scans in T1 weighted imaging with gadolinium and the edema in T2 weighted sequences. The diagnosis of a radiation necrosis was established analyzing imaging criteria combined with clinical course or pathologically confirmed by subsequent surgical intervention. Patients developing radiation necrosis detected after SRS were compared to patients without evidence of an overshooting irradiation reaction. Results: 388 patients were included retrospectively, 61 (15.7%) of whom developed a radiation necrosis. Median follow-up was 24 (6–62) months with a radiation necrosis after 8 (6–12) months. The most frequent tumors were metastases in 47.2% of the cases, followed by acoustic neuromas in 32.2% and meningiomas in 13.4%. Seventy-three (18.9%) patients already underwent one or more previous radiosurgical procedures for different lesions. The mean largest diameter of the tumors amounted to 16.3 mm (±6.1 mm). The median—80%—isodose administered was 16 (14–25) Gy. Of the radiation necroses, 25 (43.1%) required treatment, in 23 (39.7%) thereof, medical treatment was applied and in 2 (3.4%) cases, debulking surgery was performed. In this study, significantly more radiation necroses arose in patients with higher doses (HR 1.3 [CI 1.2; 1.5], p < 0.001) leading to a risk increment of over 180% between a radiation isodose of 14 and 20 Gy. The maximum diameter was a second significant risk factor (p = 0.028) with an HR of 1065 for every 1 mm increase in multivariate analysis. Conclusion: large diameter and high doses were reliable independent risk factors leading to more frequent radiation necroses, regardless of tumor type in patients undergoing radiosurgery. Alternative therapeutic procedures may be considered in lesions with large volume and an expected high radiation doses due to the increased risk of developing radiation necrosis.
Collapse
|
26
|
Weng Y, Shen J, Zhang L, Fang Z, Xiao F, Zhang C, Fan Z, Huang K, Wang L, Huang B, Wu F, Zhang T, Xu Q. Low-Dosage Bevacizumab Treatment: Effect on Radiation Necrosis After Gamma Knife Radiosurgery for Brain Metastases. Front Surg 2021; 8:720506. [PMID: 34540887 PMCID: PMC8447901 DOI: 10.3389/fsurg.2021.720506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Cerebral radiation necrosis (RN), a complication of Gamma Knife radiosurgery, is difficult to treat, although bevacizumab seems to be effective. However, clinical data pertaining to bevacizumab treatment for RN are scarce, and its high price is problematic. This study explored the effectiveness of low-dose bevacizumab for RN caused by Gamma Knife. We retrospectively analyzed 22 patients who suffered cerebral RN post-Gamma Knife, and received bevacizumab treatment because of the poor efficacy of glucocorticoids. Low-dose bevacizumab (3 mg/kg) was administered for two cycles at 2-week intervals. T1- and T2-enhanced magnetic resonance imaging (MRI) images were examined for changes in RN status. We also monitored the dose of glucocorticoid, Karnofsky Performance Status (KPS) score, and adverse drug reactions. The mean volume of RN lesions decreased by 45% on T1-weighted images with contrast enhancement, and by 74% on T2-weighted images. All patients discontinued the use of glucocorticoids. According to the KPS scores, all patients showed an improvement in their symptoms and neurological function. No side effects were observed. Low-dosage bevacizumab at a dose of 3 mg/kg every 2 weeks is effective for treating cerebral RN after Gamma knife for brain metastases.
Collapse
Affiliation(s)
- Yuxiang Weng
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jie Shen
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Luyuan Zhang
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zebin Fang
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Feng Xiao
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chao Zhang
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zuoxu Fan
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital, Shaoxing, China
| | - Bin Huang
- Department of Neurosurgery, Xinchang Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Fan Wu
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Tiesong Zhang
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qingsheng Xu
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
van Grinsven EE, Nagtegaal SH, Verhoeff JJ, van Zandvoort MJ. The Impact of Stereotactic or Whole Brain Radiotherapy on Neurocognitive Functioning in Adult Patients with Brain Metastases: A Systematic Review and Meta-Analysis. Oncol Res Treat 2021; 44:622-636. [PMID: 34482312 PMCID: PMC8686730 DOI: 10.1159/000518848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022]
Abstract
Background & Objectives: Radiotherapy is standard treatment for patients with brain metastases (BMs), although it may lead to radiation-induced cognitive impairment. This review explores the impact of whole-brain radiotherapy (WBRT) or stereotactic radiosurgery (SRS) on cognition. METHODS The PRISMA guidelines were used to identify articles on PubMed and EmBase reporting on objective assessment of cognition before, and at least once after radiotherapy, in adult patients with nonresected BMs. RESULTS Of the 867 records screened, twenty articles (14 unique studies) were included. WBRT lead to decline in cognitive performance, which stabilized or returned to baseline in patients with survival of at least 9-15 months. For SRS, a decline in cognitive performance was sometimes observed shortly after treatment, but the majority of patients returned to or remained at baseline until a year after treatment. CONCLUSIONS These findings suggest that after WBRT, patients can experience deterioration over a longer period of time. The cognitive side effects of SRS are transient. Therefore, this review advices to choose SRS as this will result in lowest risks for cognitive adverse side effects, irrespective of predicted survival. In an already cognitively vulnerable patient population with limited survival, this information can be used in communicating risks and aid in making educated decisions.
Collapse
Affiliation(s)
- Eva Elisabeth van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Steven H.J. Nagtegaal
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost J.C. Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martine J.E. van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Experimental Psychology and Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Toxicity of combined targeted therapy and concurrent radiotherapy in metastatic melanoma patients: a single-center retrospective analysis. Melanoma Res 2021; 30:552-561. [PMID: 32658050 PMCID: PMC7643789 DOI: 10.1097/cmr.0000000000000682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supplemental Digital Content is available in the text. The Eastern Cooperative Oncology Group consensus guidelines from 2016 recommend interruption of targeted therapy with BRAF- and MEK-inhibitors during radiotherapy with data being based mostly on BRAF monotherapy. The aim of this study is to provide data on the safety of concurrent radiotherapy and combination targeted therapy with BRAF- and MEK-inhibitors. A total of 32 patients with 51 sessions of radiotherapy from one center receiving concurrent radiotherapy and BRAF- and MEK- inhibitors were included. Radiotherapy-associated toxicities were retrospectively collected. Incidence was compared between three groups: (A) targeted therapy during radiotherapy with and, (B) without interruption, and (C) radiotherapy before the start of targeted therapy. Survival and local disease control were examined. Targeted therapy was interrupted during radiotherapy in 16, not interrupted in 14, and only started after radiotherapy in 21 sessions. Stereotactic radiotherapy was applied in 28 sessions, conventionally fractionated radiotherapy in 23. The brain was the most common site of irradiation (n = 36). Radiotherapy-associated toxicities occurred in 41.2% (n = 21) of sessions and did not differ significantly among the groups. Overall survival was 11.7 months and progression-free survival was 8.4 months. No increase in radiotherapy-associated toxicity was seen where combination targeted therapy was not interrupted during radiotherapy. Prospective clinical trials are warranted to support our findings.
Collapse
|
29
|
Pathak R, Amini A, Hill A, Massarelli E, Salgia R. Immunotherapy in Non-Small Cell Lung Cancer Patients with Brain Metastases: Clinical Challenges and Future Directions. Cancers (Basel) 2021; 13:3407. [PMID: 34298620 PMCID: PMC8303291 DOI: 10.3390/cancers13143407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized the treatment landscape for patients with non-small cell lung cancers. Existing treatment paradigms for brain metastases in lung cancer patients leave patients with adverse neurocognitive function, poor quality of life, and dismal prognosis, thus highlighting the need to develop more effective systemic therapies. Although data are limited, emerging knowledge suggests promising activity and safety of immune checkpoint inhibitors in brain metastases in non-small cell lung cancer patients. This review aims to summarize the current data, highlight the challenges of incorporating immune checkpoint inhibitors in treating these patients, and identify areas for future research.
Collapse
Affiliation(s)
- Ranjan Pathak
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (A.H.); (E.M.); (R.S.)
| | - Arya Amini
- Department of Radiation Oncology, City of Hope, Duarte, CA 91010, USA;
| | - Addie Hill
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (A.H.); (E.M.); (R.S.)
| | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (A.H.); (E.M.); (R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (A.H.); (E.M.); (R.S.)
| |
Collapse
|
30
|
Moore A, Yust-Katz S, Icht O, Eliyahou R, Gordon N, Cohen AY, Goldstein IM, Peled N, Seigal T, Amiel A, Dudnik E. Bevacizumab for stereotactic radiosurgery-induced radiation necrosis in patients with non-small cell lung cancer treated with immune check-point inhibitors. J Neurol Sci 2021; 427:117556. [PMID: 34186494 DOI: 10.1016/j.jns.2021.117556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bevacizumab was shown to be effective in the treatment of brain radiation necrosis (RN) attributed to the use of stereotactic radiosurgery (SRS). Data on its efficacy and safety in non-small cell lung cancer (NSCLC) patients treated with immune check-point inhibitors (ICI) is lacking. METHODS A multi-center retrospective analysis of all consecutive patients with NSCLC treated with ICI, who received bevacizumab for post-SRS RN between April 2017 and June 2020. Improvement in RN-associated symptoms, RN radiological improvement, and decrease in corticosteroid dose following bevacizumab initiation were assessed. RESULTS Thirteen patients were identified. The median time from diagnosis of RN to initiation of bevacizumab was 3 months (range 1.1-7.8 months), and the median number of bevacizumab cycles before assessment was 2 (range, 1-5). Patients continued ICI during treatment with bevacizumab. Improvement in RN-associated symptoms was observed in 11 patients (85%). In ten patients (77%) the daily dose of dexamethasone was decreased. Radiological improvement of RN occurred in all 11 cases available for radiological assessment (100%). Treatment was withheld in two patients for grade 3-4 toxicity. At a median follow up of 11.9 months (range 2.0-35.4 months), one patient experienced a recurrent episode of RN; the estimated median survival since RN diagnosis was 21.9 months (95% CI 3.8-40.2 months). CONCLUSION Treatment with bevacizumab appears to be safe and effective for the treatment of SRS-induced RN in patients with NSCLC treated with ICI. This is the first series to report on the use of bevacizumab in this clinical scenario.
Collapse
Affiliation(s)
- Assaf Moore
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel; Sackler Faculty of Medicine, Tel Aviv University, POB 39040 Ramat Aviv, Tel Aviv 69978, Israel.
| | - Shlomit Yust-Katz
- Sackler Faculty of Medicine, Tel Aviv University, POB 39040 Ramat Aviv, Tel Aviv 69978, Israel; Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
| | - Oded Icht
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
| | - Ruth Eliyahou
- Sackler Faculty of Medicine, Tel Aviv University, POB 39040 Ramat Aviv, Tel Aviv 69978, Israel; Department of Imaging, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
| | - Noa Gordon
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
| | - Aharon Yehonatan Cohen
- Oncology Division, The Legacy Heritage Oncology Center, Soroka Medical Center, Beer-Sheva 84101, Israel
| | - Iris Magdalena Goldstein
- Oncology Division, The Legacy Heritage Oncology Center, Soroka Medical Center, Beer-Sheva 84101, Israel
| | - Nir Peled
- Oncology Division, The Legacy Heritage Oncology Center, Soroka Medical Center, Beer-Sheva 84101, Israel
| | - Tali Seigal
- Sackler Faculty of Medicine, Tel Aviv University, POB 39040 Ramat Aviv, Tel Aviv 69978, Israel; Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
| | - Alexandra Amiel
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
| | - Elizabeth Dudnik
- Sackler Faculty of Medicine, Tel Aviv University, POB 39040 Ramat Aviv, Tel Aviv 69978, Israel; Thoracic Cancer Service, Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
| |
Collapse
|
31
|
Cicone F, Carideo L, Scaringi C, Romano A, Mamede M, Papa A, Tofani A, Cascini GL, Bozzao A, Scopinaro F, Minniti G. Long-term metabolic evolution of brain metastases with suspected radiation necrosis following stereotactic radiosurgery: longitudinal assessment by F-DOPA PET. Neuro Oncol 2021; 23:1024-1034. [PMID: 33095884 DOI: 10.1093/neuonc/noaa239] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The evolution of radiation necrosis (RN) varies depending on the combination of radionecrotic tissue and active tumor cells. In this study, we characterized the long-term metabolic evolution of RN by sequential PET/CT imaging with 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine (F-DOPA) in patients with brain metastases following stereotactic radiosurgery (SRS). METHODS Thirty consecutive patients with 34 suspected radionecrotic brain metastases following SRS repeated F-DOPA PET/CT every 6 months or yearly in addition to standard MRI monitoring. Diagnoses of local progression (LP) or RN were confirmed histologically or by clinical follow-up. Semi-quantitative parameters of F-DOPA uptake were extracted at different time points, and their diagnostic performances were compared with those of corresponding contrast-enhanced MRI. RESULTS Ninety-nine F-DOPA PET scans were acquired over a median period of 18 (range: 12-66) months. Median follow-up from the baseline F-DOPA PET/CT was 48 (range 21-95) months. Overall, 24 (70.6%) and 10 (29.4%) lesions were classified as RN and LP, respectively. LP occurred after a median of 18 (range: 12-30) months from baseline PET. F-DOPA tumor-to-brain ratio (TBR) and relative standardized uptake value (rSUV) increased significantly over time in LP lesions, while remaining stable in RN lesions. The parameter showing the best diagnostic performance was rSUV (accuracy = 94.1% for the optimal threshold of 1.92). In contrast, variations of the longest tumor dimension measured on contrast-enhancing MRI did not distinguish between RN and LP. CONCLUSION F-DOPA PET has a high diagnostic accuracy for assessing the long-term evolution of brain metastases following SRS.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Luciano Carideo
- Nuclear Medicine Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Claudia Scaringi
- Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS) Sapienza University of Rome, Rome, Italy
| | - Marcelo Mamede
- Department of Anatomy and Imaging, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Annalisa Papa
- Nuclear Medicine Unit, University Hospital "Mater Domini," Catanzaro, Italy
| | - Anna Tofani
- Nuclear Medicine Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lucio Cascini
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Nuclear Medicine Unit, University Hospital "Mater Domini," Catanzaro, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS) Sapienza University of Rome, Rome, Italy
| | - Francesco Scopinaro
- Nuclear Medicine Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
32
|
Williamson CW, Sherer MV, Zamarin D, Sharabi AB, Dyer BA, Mell LK, Mayadev J. Immunotherapy and radiation therapy sequencing: State of the data on timing, efficacy, and safety. Cancer 2021; 127:1553-1567. [PMID: 33620731 PMCID: PMC9376883 DOI: 10.1002/cncr.33424] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/14/2023]
Abstract
Radiation therapy exerts a tumoricidal local effect as well as both local and systemic immunomodulation. Immune checkpoint blockade has become a widely used treatment modality across cancer types with a rapidly growing list of agents and US Food and Drug Administration-approved indications. Moreover, there may be synergy between radiation therapy and immune checkpoint blockade. Various strategies have been used, but the optimal sequencing of these therapies is unclear. In this review, the authors discuss the major mechanisms of available immune checkpoint inhibitors and explore the available preclinical and clinical evidence regarding treatment sequencing. They also review safety considerations and conclude with possible future directions.
Collapse
Affiliation(s)
- Casey W Williamson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA
| | - Michael V Sherer
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA
| | - Brandon A Dyer
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA
| | - Loren K Mell
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA
| | - Jyoti Mayadev
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA
| |
Collapse
|
33
|
Mills MN, Walker C, Thawani C, Naz A, Figura NB, Kushchayev S, Etame A, Yu HHM, Robinson TJ, Liu J, Vogelbaum MA, Forsyth PA, Czerniecki BJ, Soliman HH, Han HS, Ahmed KA. Trastuzumab Emtansine (T-DM1) and stereotactic radiation in the management of HER2+ breast cancer brain metastases. BMC Cancer 2021; 21:223. [PMID: 33663447 PMCID: PMC7934378 DOI: 10.1186/s12885-021-07971-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background Due to recent concerns about the toxicity of trastuzumab emtansine (T-DM1) with stereotactic radiation, we assessed our institutional outcomes treating HER2-positive breast cancer brain metastases (BCBM) with T-DM1 and stereotactic radiation. Methods This is a single institution series of 16 patients with HER2-positive breast cancer who underwent 18 stereotactic sessions to 40 BCBM from 2013 to 2019 with T-DM1 delivered within 6 months. The Kaplan-Meier method was used to calculate overall survival (OS), local control (LC), distant intracranial control (DIC), and systemic progression-free survival (sPFS) from the date of SRS. A neuro-radiologist independently reviewed follow-up imaging. Results One patient had invasive lobular carcinoma, and 15 patients had invasive ductal carcinoma. All cases were HER2-positive, while 10 were hormone receptor (HR) positive. Twenty-four lesions were treated with stereotactic radiosurgery (SRS) to a median dose of 21 Gy (14–24 Gy). Sixteen lesions were treated with fractionated stereotactic radiation (FSRT) with a median dose of 25 Gy (20-30Gy) delivered in 3 to 5 fractions. Stereotactic radiation was delivered concurrently with T-DM1 in 19 lesions (48%). Median follow up time was 13.2 months from stereotactic radiation. The 1-year LC, DIC, sPFS, and OS were 75, 50, 30, and 67%, respectively. There was 1 case of leptomeningeal progression and 1 case (3%) of symptomatic radionecrosis. Conclusions We demonstrate that stereotactic radiation and T-DM1 is well-tolerated and effective for patients with HER2-positive BCBM. An increased risk for symptomatic radiation necrosis was not noted in our series.
Collapse
Affiliation(s)
- Matthew N Mills
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA.
| | - Chelsea Walker
- University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Chetna Thawani
- University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Afrin Naz
- University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Nicholas B Figura
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Sergiy Kushchayev
- Departments of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Arnold Etame
- Departments of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hsiang-Hsuan Michael Yu
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Timothy J Robinson
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - James Liu
- Departments of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Michael A Vogelbaum
- Departments of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Peter A Forsyth
- Departments of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Brian J Czerniecki
- Departments of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hatem H Soliman
- Departments of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hyo S Han
- Departments of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kamran A Ahmed
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| |
Collapse
|
34
|
Schoenmaekers JJAO, Paats MS, Dingemans AMC, Hendriks LEL. Central nervous system metastases and oligoprogression during treatment with tyrosine kinase inhibitors in oncogene-addicted non-small cell lung cancer: how to treat and when? Transl Lung Cancer Res 2020; 9:2599-2617. [PMID: 33489821 PMCID: PMC7815343 DOI: 10.21037/tlcr-20-459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Up to 70% of non-small cell lung cancer (NSCLC) patients develop central nervous system (CNS) metastases during the course of their disease, especially those with oncogenic drivers treated with a first-generation tyrosine kinase inhibitor (TKI), because of the relatively poor CNS penetration. CNS metastases are associated with a negative impact on quality of life and survival. As, with the introduction of newer generation TKIs, the survival rates are increasing in this particular population, treatment and/or prevention of CNS metastases becomes even more relevant and the TKI with the best CNS efficacy should be selected. Unfortunately, CNS efficacy data in clinical trials are not fully comparable. Furthermore, oligoprogression to the brain without extracranial progression regularly occurs in the oncogenic driver population and both local therapy and switch of systemic therapy are possible treatment options. However, the best order of systemic and local therapy is still not precisely known. In this narrative review, we will summarize incidence and treatment of CNS metastases in oncogene driven NSCLC, including the optimal treatment of CNS oligometastatic disease (synchronous as well as oligoprogressive).
Collapse
Affiliation(s)
- Janna Josephus Anna Oda Schoenmaekers
- Department of Pulmonary Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands;,Department of Pulmonary Diseases GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marthe Sentijna Paats
- Department of Pulmonary Diseases, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Anne-Marie Clasina Dingemans
- Department of Pulmonary Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands;,Department of Pulmonary Diseases GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands;,Department of Pulmonary Diseases, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Lizza Elisabeth Lucia Hendriks
- Department of Pulmonary Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands;,Department of Pulmonary Diseases GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
35
|
Brun L, Dupic G, Chassin V, Chautard E, Moreau J, Dedieu V, Khalil T, Verrelle P, Lapeyre M, Biau J. Hypofractionated stereotactic radiotherapy for large brain metastases: Optimizing the dosimetric parameters. Cancer Radiother 2020; 25:1-7. [PMID: 33257109 DOI: 10.1016/j.canrad.2020.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE Stereotactic radiotherapy plays a major role in the treatment of brain metastases (BM). We aimed to compare the dosimetric results of four plans for hypofractionated stereotactic radiotherapy (HFSRT) for large brain metastases. MATERIAL AND METHODS Ten patients treated with upfront NovalisTx® non-coplanar multiple dynamic conformal arcs (DCA) HFSRT for≥25mm diameter single BM were included. Three other volumetric modulated arc therapy (VMAT) treatment plans were evaluated: with coplanar arcs (Eclipse®, Varian, VMATcEclipse®), with coplanar and non-coplanar arcs (VMATncEclipse®), and with non-coplanar arcs (Elements Cranial SRS®, Brainlab, VMATncElements®). The marginal dose prescribed for the PTV was 23.1Gy (isodose 70%) in three fractions. The mean GTV was 27mm3. RESULTS Better conformity indices were found with all VMAT techniques compared to DCA (1.05 vs 1.28, P<0.05). Better gradient indices were found with VMATncElements® and DCA (2.43 vs 3.02, P<0.001). High-dose delivery in healthy brain was lower with all VMAT techniques compared to DCA (5.6 to 6.3 cc vs 9.4 cc, P<0.001). Low-dose delivery (V5Gy) was lower with VMATncEclipse® or VMATncElements® than with DCA (81 or 94 cc vs 110 cc, P=0.02). CONCLUSIONS NovalisTx® VMAT HFSRT for≥25mm diameter brain metastases provides the best dosimetric compromise in terms of target coverage, sparing of healthy brain tissue and low-dose delivery compared to DCA.
Collapse
Affiliation(s)
- L Brun
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France
| | - G Dupic
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France.
| | - V Chassin
- Department of medical physics, Jean-Perrin center, Clermont-Ferrand, France
| | - E Chautard
- Clermont Auvergne university, INSERM, U1240 IMoST, 63000 Clermont-Ferrand, France; Department of pathology, Clermont Auvergne university, Jean-Perrin center, 63011 Clermont-Ferrand, France
| | - J Moreau
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France
| | - V Dedieu
- Department of medical physics, Jean-Perrin center, Clermont-Ferrand, France
| | - T Khalil
- Department of neurosurgery, Clermont-Ferrand hospital, 63003 Clermont-Ferrand, France
| | - P Verrelle
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France
| | - M Lapeyre
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France
| | - J Biau
- Department of radiation oncology, Jean-Perrin center, 63011 Clermont-Ferrand, France; Clermont Auvergne university, INSERM, U1240 IMoST, 63000 Clermont-Ferrand, France
| |
Collapse
|
36
|
Erpolat OP, Demircan NV, Sarıbas GS, Kuzucu P, Senturk E, Elmas C, Borcek A, Kurt G. A Comparison of Ramipril and Bevacizumab to Mitigate Radiation-Induced Brain Necrosis: An Experimental Study. World Neurosurg 2020; 144:e210-e220. [PMID: 32822951 DOI: 10.1016/j.wneu.2020.08.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, is a new treatment approach for radionecrosis. In our study, we compared the prophylactic and therapeutic usage of a promising agent, ramipril (an angiotensin-converting enzyme inhibitor), with that of bevacizumab for reducing radiation-induced brain injury after high-dose stereotactic radiosurgery (SRS). METHODS A total of 60 Wistar rats were used. The rats were irradiated with a single dose of 50 Gy using a Leksell Gamma Knife device. Bevacizumab and ramipril were administered in the prophylactic protocol (starting the first day of SRS) and in the therapeutic protocol (starting the fourth week of SRS). Their usage was continued until 12 weeks, and the right frontal lobes of the rats were examined histologically (hematoxylin and eosin stain) and immunohistochemically (hypoxia-inducible factor [HIF]-1α, VEGF, and CD31 antibody expression). RESULTS The expression of VEGF, HIF-1α, and CD31 had significantly increased at 12 weeks after SRS compared with the control group. The addition of bevacizumab or ramipril to SRS significantly mitigated the histological severity of radiation injury and the expression of VEGF, HIF-1α, and CD31. However, the prophylactic use of bevacizumab and ramipril seemed to be more effective than therapeutic administration. Our results also revealed that the greatest benefit was achieved with the use of prophylactic administration of bevacizumab compared with other treatment protocols. CONCLUSIONS Ramipril might be a promising agent for patients with radionecrosis. Clinical studies are required to investigate the effective and safe doses of ramipril, which is an inexpensive, well-tolerated drug that can cross the blood-brain barrier.
Collapse
Affiliation(s)
- Ozge Petek Erpolat
- Department of Radiation Oncology, Gazi University Medical Faculty, Ankara, Turkey
| | | | | | - Pelin Kuzucu
- Department of Neurosurgery, Gazi University Medical Faculty, Ankara, Turkey
| | - Ertugrul Senturk
- Department of Radiation Oncology, Gazi University Medical Faculty, Ankara, Turkey
| | - Cigdem Elmas
- Department of Histology, Gazi University Medical Faculty, Ankara, Turkey
| | - Alp Borcek
- Department of Neurosurgery, Gazi University Medical Faculty, Ankara, Turkey
| | - Gokhan Kurt
- Department of Neurosurgery, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
37
|
Gutzmer R, Vordermark D, Hassel JC, Krex D, Wendl C, Schadendorf D, Sickmann T, Rieken S, Pukrop T, Höller C, Eigentler TK, Meier F. Melanoma brain metastases - Interdisciplinary management recommendations 2020. Cancer Treat Rev 2020; 89:102083. [PMID: 32736188 DOI: 10.1016/j.ctrv.2020.102083] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Melanoma brain metastases (MBM) are common and associated with a particularly poor prognosis; they directly cause death in 60-70% of melanoma patients. In the past, systemic treatments have shown response rates around 5%, whole brain radiation as standard of care has achieved a median overall survival of approximately three months. Recently, the combination of immune checkpoint inhibitors and combinations of MAP-kinase inhibitors both have shown very promising response rates of up to 55% and 58%, respectively, and improved survival. However, current clinical evidence is based on multi-cohort studies only, as prospectively randomized trials have been carried out rarely in MBM, independently whether investigating systemic therapy, radiotherapy or surgical techniques. Here, an interdisciplinary expert team reviewed the outcome of prospectively conducted clinical studies in MBM, identified evidence gaps and provided recommendations for the diagnosis, treatment, outcome evaluation and monitoring of MBM patients. The recommendations refer to four distinct scenarios: patients (i) with 'brain-only' disease, (ii) with oligometastatic asymptomatic intra- and extracranial disease, (iii) with multiple asymptomatic metastases, and (iv) with multiple symptomatic MBM or leptomeningeal disease. Changes in current management recommendations comprise the use of immunotherapy - preferably combined anti-CTLA-4/PD-1-immunotherapy - in asymptomatic MBM minus/plus stereotactic radiosurgery which remains the mainstay of local brain therapy being safe and effective. Adjuvant whole-brain radiotherapy provides no clinical benefit in oligometastatic MBM. Among the systemic therapies, combined MAPK-kinase inhibition provides, in BRAFV600-mutated patients with rapidly progressing or/and symptomatic MBM, an alternative to combined immunotherapy.
Collapse
Affiliation(s)
- Ralf Gutzmer
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, Germany.
| | - Dirk Vordermark
- Department for Radiation Oncology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Christina Wendl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | - Stefan Rieken
- Policlinic for Radiation Therapy and Radiation Oncology, University Hospital Göttingen, Göttingen, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Höller
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Thomas K Eigentler
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
38
|
Stereotactic Radiotherapy for Brain Metastases: Imaging Tools and Dosimetric Predictive Factors for Radionecrosis. J Pers Med 2020; 10:jpm10030059. [PMID: 32635476 PMCID: PMC7565332 DOI: 10.3390/jpm10030059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022] Open
Abstract
Radionecrosis (RN) is the most important side effect after stereotactic radiotherapy (SRT) for brain metastases, with a reported incidence ranging from 3% to 24%. To date, there are no unanimously accepted criteria for iconographic diagnosis of RN, as well as no definitive dose-constraints correlated with the onset of this late effect. We reviewed the current literature and gave an overview report on imaging options for the diagnosis of RN and on dosimetric parameters correlated with the onset of RN. We performed a PubMed literature search according to the preferred reporting items and meta-analysis (PRISMA) guidelines, and identified articles published within the last ten years, up to 31 December 2019. When analyzing data on diagnostic tools, perfusion magnetic resonance imaging (MRI) seems to be very useful allowing evaluation of the blood flow in the lesion using the relative cerebral blood volume (rCBV) and blood vessel integrity using relative peak weight (rPH). It is necessary to combine morphological with functional imaging in order to match information about lesion morphology, metabolism and blood-flow. Eventually, serial imaging follow-up is needed. Regarding dosimetric parameters, in radiosurgery (SRS) V12 < 8 cm3 and V10 < 10.5 cm3 of normal brain are the most reliable prognostic factors, whereas in hypo-fractionated stereotactic radiotherapy (HSRT) V18 and V21 are considered the main predictive independent risk factors of RN.
Collapse
|
39
|
Bergman D, Modh A, Schultz L, Snyder J, Mikkelsen T, Shah M, Ryu S, Siddiqui MS, Walbert T. Randomized prospective trial of fractionated stereotactic radiosurgery with chemotherapy versus chemotherapy alone for bevacizumab-resistant high-grade glioma. J Neurooncol 2020; 148:353-361. [PMID: 32444980 DOI: 10.1007/s11060-020-03526-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Outcomes for patients with recurrent high-grade glioma (HGG) progressing on bevacizumab (BEV) are dismal. Fractionated stereotactic radiosurgery (FSRS) has been shown to be feasible and safe when delivered in this setting, but prospective evidence is lacking. This single-institution randomized trial compared FSRS plus BEV-based chemotherapy versus BEV-based chemotherapy alone for BEV-resistant recurrent malignant glioma. MATERIALS AND METHODS HGG patients on BEV with tumor progression after 2 previous treatments were randomized to 1) FSRS plus BEV-based chemotherapy or 2) BEV-based chemotherapy with irinotecan, etoposide, temozolomide, or carboplatin. FSRS was delivered as 32 Gy (8 Gy × 4 fractions within 2 weeks) to the gross target volume and 24 Gy (6 Gy × 4 fractions) to the clinical target volume (fluid-attenuated inversion recovery abnormality). The primary endpoints were local control (LC) at 2 months and progression-free survival (PFS). RESULTS Of the 35 patients enrolled, 29 had glioblastoma (WHO IV) and 6 had anaplastic glioma (WHO III). The median number of prior recurrences was 3. Patients treated with FSRS had significantly improved PFS (5.1 vs 1.8 months, P < .001) and improved LC at 2 months (82% [14/17] vs 27% [4/15], P = .002). The overall median survival was 6.6 months (7.2 months with FSRS vs 4.8 months with chemotherapy alone, P = .11). CONCLUSIONS FSRS combined with BEV-based chemotherapy in recurrent HGG patients progressing on BEV is feasible and improves LC and PFS when compared to treatment with BEV-based chemotherapy alone.
Collapse
Affiliation(s)
- David Bergman
- Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Ankit Modh
- Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Lonni Schultz
- Department of Neurosurgery, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
- Department of Public Health Sciences, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - James Snyder
- Department of Neurosurgery, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Mira Shah
- Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Samuel Ryu
- Department of Radiation Oncology, Stony Brook University Hospital, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - M Salim Siddiqui
- Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Tobias Walbert
- Department of Neurosurgery, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
40
|
Mengue L, Bertaut A, Ngo Mbus L, Doré M, Ayadi M, Clément-Colmou K, Claude L, Carrie C, Laude C, Tanguy R, Blanc J, Sunyach MP. Brain metastases treated with hypofractionated stereotactic radiotherapy: 8 years experience after Cyberknife installation. Radiat Oncol 2020; 15:82. [PMID: 32303236 PMCID: PMC7164358 DOI: 10.1186/s13014-020-01517-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/19/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hypofractionated stereotactic radiotherapy (HFSRT) is indicated for large brain metastases (BM) or proximity to critical organs (brainstem, chiasm, optic nerves, hippocampus). The primary aim of this study was to assess factors influencing BM local control after HFSRT. Then the effect of surgery plus HFSRT was compared with exclusive HFSRT on oncologic outcomes, including overall survival. MATERIALS AND METHODS Retrospective study conducted in Léon Bérard Cancer Center, included patients over 18 years-old with BM, secondary to a tumor proven by histology and treated by HFSRT alone or after surgery. Three different dose-fractionation schedules were compared: 27 Gy (3 × 9 Gy), 30 Gy (5 × 6 Gy) and 35 Gy (5 × 7 Gy), prescribed on isodose 80%. Primary endpoint were local control (LC). Secondary endpoints were overall survival (OS) and radionecrosis (RN) rate. RESULTS A total of 389 patients and 400 BM with regular MRI follow-up were analyzed. There was no statistical difference between the different dose-fractionations. On multivariate analysis, surgery (p = 0.049) and size (< 2.5 cm) (p = 0.01) were independent factors improving LC. The 12 months LC was 87.02% in the group Surgery plus HFSRT group vs 73.53% at 12 months in the group HFSRT. OS was 61.43% at 12 months in the group Surgery plus HFSRT group vs 50.13% at 12 months in the group HFSRT (p < 0.0085). Prior surgery (OR = 1.86; p = 0.0028) and sex (OR = 1.4; p = 0.0139) control of primary tumor (OR = 0.671, p = 0.0069) and KPS < 70 (OR = 0.769, p = 0.0094) were independently predictive of OS. The RN rate was 5% and all patients concerned were symptomatic. CONCLUSIONS This study suggests that HFSRT is an efficient and well-tolerated treatment. The optimal dose-fractionation remains difficult to determine. Smaller size and surgery are correlated to LC. These results evidence the importance of surgery for larger BM (> 2.5 cm) with a poorer prognosis. Multidisciplinary committees and prospective studies are necessary to validate these observations.
Collapse
Affiliation(s)
- Laurence Mengue
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France.
| | - Aurélie Bertaut
- Methodology and Biostatistics Unit, Centre Georges François Leclerc, Dijon, France
| | - Louise Ngo Mbus
- Department of Medecine, Hôpital d'Aurillac, Aurillac, France
| | - Mélanie Doré
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes, France
| | - Myriam Ayadi
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | - Karen Clément-Colmou
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes, France
| | - Line Claude
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | - Christian Carrie
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | - Cécile Laude
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | - Ronan Tanguy
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | - Julie Blanc
- Methodology and Biostatistics Unit, Centre Georges François Leclerc, Dijon, France
| | | |
Collapse
|
41
|
Mendel JT, Jaster AW, Yu FF, Morris LC, Lynch PT, Shah BR, Agarwal A, Timmerman RD, Nedzi LA, Raj KM. Fundamentals of Radiation Oncology for Neurologic Imaging. Radiographics 2020; 40:827-858. [PMID: 32216705 DOI: 10.1148/rg.2020190138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the physical and biologic principles of radiation therapy have remained relatively unchanged, a technologic renaissance has led to continuous and ever-changing growth in the field of radiation oncology. As a result, medical devices, techniques, and indications have changed considerably during the past 20-30 years. For example, advances in CT and MRI have revolutionized the treatment planning process for a variety of central nervous system diseases, including primary and metastatic tumors, vascular malformations, and inflammatory diseases. The resultant improved ability to delineate normal from abnormal tissue has enabled radiation oncologists to achieve more precise targeting and helped to mitigate treatment-related complications. Nevertheless, posttreatment complications still occur and can pose a diagnostic challenge for radiologists. These complications can be divided into acute, early-delayed, and late-delayed complications on the basis of the time that they manifest after radiation therapy and include leukoencephalopathy, vascular complications, and secondary neoplasms. The different irradiation technologies and applications of these technologies in the brain, current concepts used in treatment planning, and essential roles of the radiation oncologist in the setting of brain disease are reviewed. In addition, relevant imaging findings that can be used to delineate the extent of disease before treatment, and the expected posttreatment imaging changes are described. Common and uncommon complications related to radiation therapy and the associated imaging manifestations also are discussed. Familiarity with these entities may aid the radiologist in making the diagnosis and help guide appropriate management. ©RSNA, 2020.
Collapse
Affiliation(s)
- J Travis Mendel
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Adam W Jaster
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Fang F Yu
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Lee C Morris
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Patrick T Lynch
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Bhavya R Shah
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Amit Agarwal
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Robert D Timmerman
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Lucien A Nedzi
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Karuna M Raj
- From the Departments of Radiation Oncology (J.T.M., P.T.L., R.D.T., L.A.N.) and Radiology (A.W.J., F.F.Y., L.C.M., B.R.S., A.A., K.M.R.), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| |
Collapse
|
42
|
Hettal L, Stefani A, Salleron J, Courrech F, Behm-Ansmant I, Constans JM, Gauchotte G, Vogin G. Radiomics Method for the Differential Diagnosis of Radionecrosis Versus Progression after Fractionated Stereotactic Body Radiotherapy for Brain Oligometastasis. Radiat Res 2020; 193:471-480. [PMID: 32160109 DOI: 10.1667/rr15517.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stereotactic radiotherapy (SRT) is recommended for treatment of brain oligometastasis (BoM) in patients with controlled primary disease. Where contrast enhancement enlargement occurs during follow-up, distinguishing between radionecrosis and progression presents a critical challenge. Without pathological confirmation, decision-making may be inappropriate and delayed. Quantitative imaging features extracted from routinely performed examinations are of interest in potentially addressing this problem. We explored the added value of the radiomics method for the differential diagnosis of these two entities. Twenty patients who received SRT for BoM, from any primary location, were included (8 radionecrosis, 12 progressions, pathologically confirmed). We assessed the clinical relevance of 1,766 radiomics features, extracted using IBEX software, from the first T1-weighted postcontrast magnetic resonance imaging (MRI) after SRT showing a lesion modification. We evaluated seven feature-selection methods and 12 classification methods in terms of respective predictive performance. The classification accuracy was measured using Cohen's kappa after leave-one-out cross-validation. In this work, the best predictive power reached was a Cohen's kappa of 0.68 (overall accuracy of 85%), expressing a strong agreement between the algorithm prediction and the histological gold standard. Prediction accuracy was 75% for radionecrosis, and 91% for progression. The area under a curve reached 0.83 using a bagging algorithm trained with the chi-square score features set. These findings indicated that the radiomics method is able to discriminate radionecrosis from progression in an accurate, early and noninvasive way. This promising study is a proof of concept, preceding a larger prospective study for defining a robust model to support decision-making in BoM. In summary, distinguishing between radionecrosis and progression is challenging without pathology. We built a classification model based on imaging data and machine learning. Using this model, we were able predict progression and radionecrosis in, respectively, 91% and 75% of cases.
Collapse
Affiliation(s)
- Liza Hettal
- CNRS UMR 7365 IMoPA, Université de Lorraine, Biopôle, Vandoeuvre-Lès-Nancy, France
| | - Anais Stefani
- Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Les-Nancy, France
| | - Julia Salleron
- Département de Cellule Data-biostatistiques, Institut de Cancérologie de Lorraine, Université de Lorraine, Vandoeuvrelès-Nancy, France
| | - Florent Courrech
- Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Les-Nancy, France
| | | | | | - Guillaume Gauchotte
- Département d' Anatomie et Cytologie Pathologiques, CHRU Nancy, France.,Département d' INSERM U1256, Université de Lorraine, Nancy, France
| | - Guillaume Vogin
- CNRS UMR 7365 IMoPA, Université de Lorraine, Biopôle, Vandoeuvre-Lès-Nancy, France.,Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Les-Nancy, France
| |
Collapse
|
43
|
Kuntz L, Matthis R, Wegner N, Lutz S. Dosimetric comparison of mono-isocentric and multi-isocentric plans for oligobrain metastases: A single institutional experience. Cancer Radiother 2020; 24:53-59. [DOI: 10.1016/j.canrad.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
|
44
|
Eroglu Z, Holmen SL, Chen Q, Khushalani NI, Amaravadi R, Thomas R, Ahmed KA, Tawbi H, Chandra S, Markowitz J, Smalley I, Liu JK, Chen YA, Najjar YG, Karreth FA, Abate-Daga D, Glitza IC, Sosman JA, Sondak VK, Bosenberg M, Herlyn M, Atkins MB, Kluger H, Margolin K, Forsyth PA, Davies MA, Smalley KSM. Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2019; 32:458-469. [PMID: 30712316 PMCID: PMC7771318 DOI: 10.1111/pcmr.12771] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 02/06/2023]
Abstract
In February 2018, the Melanoma Research Foundation and the Moffitt Cancer Center hosted the Second Summit on Melanoma Central Nervous System (CNS) Metastases in Tampa, Florida. In this white paper, we outline the current status of basic science, translational, and clinical research into melanoma brain metastasis development and therapeutic management. We further outline the important challenges that remain for the field and the critical barriers that need to be overcome for continued progress to be made in this clinically difficult area.
Collapse
Affiliation(s)
| | - Sheri L. Holmen
- University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Qing Chen
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Ravi Amaravadi
- The University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | - Yana G. Najjar
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | - Michael B. Atkins
- Georgetown University Cancer Center, Washington, District of Columbia
| | | | | | | | | | | |
Collapse
|
45
|
Stumpf PK, Cittelly DM, Robin TP, Carlson JA, Stuhr KA, Contreras-Zarate MJ, Lai S, Ormond DR, Rusthoven CG, Gaspar LE, Rabinovitch R, Kavanagh BD, Liu A, Diamond JR, Kabos P, Fisher CM. Combination of Trastuzumab Emtansine and Stereotactic Radiosurgery Results in High Rates of Clinically Significant Radionecrosis and Dysregulation of Aquaporin-4. Clin Cancer Res 2019; 25:3946-3953. [PMID: 30940654 DOI: 10.1158/1078-0432.ccr-18-2851] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/09/2019] [Accepted: 03/27/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE Patients with human EGFR2-positive (HER2+) breast cancer have a high incidence of brain metastases, and trastuzumab emtansine (T-DM1) is often employed. Stereotactic radiosurgery (SRS) is frequently utilized, and case series report increased toxicity with combination SRS and T-DM1. We provide an update of our experience of T-DM1 and SRS evaluating risk of clinically significant radionecrosis (CSRN) and propose a mechanism for this toxicity. EXPERIMENTAL DESIGN Patients with breast cancer who were ≤45 years regardless of HER2 status or had HER2+ disease regardless of age and underwent SRS for brain metastases were included. Rates of CSRN, SRS data, and details of T-DM1 administration were recorded. Proliferation and astrocytic swelling studies were performed to elucidate mechanisms of toxicity. RESULTS A total of 45 patients were identified; 66.7% were HER2+, and 60.0% were ≤ 45 years old. Of the entire cohort, 10 patients (22.2%) developed CSRN, 9 of whom received T-DM1. CSRN was observed in 39.1% of patients who received T-DM1 versus 4.5% of patients who did not. Receipt of T-DM1 was associated with a 13.5-fold (P = 0.02) increase in CSRN. Mechanistically, T-DM1 targeted reactive astrocytes and increased radiation-induced cytotoxicity and astrocytic swelling via upregulation of Aquaporin-4 (Aqp4). CONCLUSIONS The strong correlation between development of CSRN after SRS and T-DM1 warrants prospective studies controlling for variations in timing of T-DM1 and radiation dosing to further stratify risk of CSRN and mitigate toxicity. Until such studies are completed, we advise caution in the combination of SRS and T-DM1.
Collapse
Affiliation(s)
- Priscilla K Stumpf
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Diana M Cittelly
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Tyler P Robin
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Julie A Carlson
- Department of Radiation Oncology, St. Mary's Oncology Group, Grand Junction, Colorado
| | - Kelly A Stuhr
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Steven Lai
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Laurie E Gaspar
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Rachel Rabinovitch
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brian D Kavanagh
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Arthur Liu
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jennifer R Diamond
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Christine M Fisher
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
46
|
Izard MA, Moutrie V, Rogers JM, Beath K, Grace M, Karle B, Ho A, Fuller JW. Volume not number of metastases: Gamma Knife radiosurgery management of intracranial lesions from an Australian perspective. Radiother Oncol 2019; 133:43-49. [DOI: 10.1016/j.radonc.2018.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
47
|
Rauschenberg R, Bruns J, Brütting J, Daubner D, Lohaus F, Zimmer L, Forschner A, Zips D, Hassel JC, Berking C, Kaehler KC, Utikal J, Gutzmer R, Terheyden P, Meiss F, Rafei-Shamsabadi D, Kiecker F, Debus D, Dabrowski E, Arnold A, Garzarolli M, Kuske M, Beissert S, Löck S, Linn J, Troost EGC, Meier F. Impact of radiation, systemic therapy and treatment sequencing on survival of patients with melanoma brain metastases. Eur J Cancer 2019; 110:11-20. [PMID: 30739835 DOI: 10.1016/j.ejca.2018.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/01/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Combining stereotactic radiosurgery (SRS) and active systemic therapies (STs) achieved favourable survival outcomes in patients with melanoma brain metastases (MBMs) in retrospective analyses. However, several aspects of this treatment strategy remain poorly understood. We report on the overall survival (OS) of patients with MBM treated with a combination of radiotherapy (RT) and ST as well as the impact of the v-Raf murine sarcoma viral oncogene homolog B (BRAF)-V600 mutation (BRAFmut) status, types of RT and ST and their sequence. PATIENTS AND METHODS Data of 208 patients treated with SRS or whole brain radiation therapy (WBRT) and either immunotherapy (IT) or targeted therapy (TT) within a 6-week interval to RT were analysed retrospectively. OS was calculated from RT to death or last follow-up. Univariate and multivariate Cox proportional hazard analyses were performed to determine prognostic features associated with OS. RESULTS The median follow-up was 7.3 months. 139 patients received IT, 67 received TT and 2 received IT and TT within 6 weeks to RT (WBRT 45%; SRS 55%). One-year Kaplan-Meier OS rates were 69%, 65%, 33% and 18% (P < .001) for SRS with IT, SRS with TT, WBRT with IT and WBRT with TT, respectively. Patients with a BRAFmut receiving IT combined with RT experienced higher OS rates (88%, 65%, 50% and 18%). TT following RT or started before and continued thereafter was associated with improved median OS compared with TT solely before RT (12.2 [95% confidence interval {CI} 9.3-15.1]; 9.8 [95% CI 6.9-12.6] versus 5.1 [95% CI 2.7-7.5]; P = .03). CONCLUSION SRS and IT achieved the highest OS rates. A BRAFmut appears to be a favourable prognostic factor for OS. For the combination of RT and TT, the sequence appears to be crucial. Combinations of WBRT and ST achieved unprecedentedly high OS rates and warrant further studies.
Collapse
Affiliation(s)
- Ricarda Rauschenberg
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Bruns
- Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Brütting
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Dirk Daubner
- Institute of Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Fabian Lohaus
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital, University Duisburg-Essen, Germany & German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrea Forschner
- Skin Cancer Center, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Skin Cancer Center, CCC Tübingen-Stuttgart, University of Tübingen, Germany
| | - Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Carola Berking
- Skin Cancer Center, Department of Dermatology and Allergy, University Hospital Munich, Munich, Germany
| | - Katharina C Kaehler
- Skin Cancer Center, Department of Dermatology, University Hospital Kiel, Kiel, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Ralf Gutzmer
- Skin Cancer Center Hannover, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Patrik Terheyden
- Skin Cancer Center, Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Frank Meiss
- Skin Cancer Center, Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Rafei-Shamsabadi
- Skin Cancer Center, Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Kiecker
- Skin Cancer Center, Department of Dermatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dirk Debus
- Skin Cancer Center, Department of Dermatology, Paracelsus Medical University, General Hospital Nuremberg, Germany
| | - Evelyn Dabrowski
- Skin Cancer Center, Department of Dermatology, Ludwigshafen Medical Center, Ludwigshafen, Germany
| | - Andreas Arnold
- Skin Cancer Center, Department of Dermatology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Marlene Garzarolli
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marvin Kuske
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Beissert
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Jennifer Linn
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Esther G C Troost
- National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
48
|
Lehrer EJ, Peterson JL, Zaorsky NG, Brown PD, Sahgal A, Chiang VL, Chao ST, Sheehan JP, Trifiletti DM. Single versus Multifraction Stereotactic Radiosurgery for Large Brain Metastases: An International Meta-analysis of 24 Trials. Int J Radiat Oncol Biol Phys 2018; 103:618-630. [PMID: 30395902 DOI: 10.1016/j.ijrobp.2018.10.038] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 02/03/2023]
Abstract
PURPOSE Multifraction (MF) stereotactic radiosurgery (SRS) purportedly reduces radionecrosis risk over single-fraction (SF) SRS in the treatment of large brain metastases. The purpose of the current work is to compare local control (LC) and radionecrosis rates of SF-SRS and MF-SRS in the definitive (SF-SRSD and MF-SRSD) and postoperative (SF-SRSP and MF-SRSP) settings. METHODS AND MATERIALS Population, Intervention, Control, Outcomes, Study Design/Preferred Reporting Items for Systematic Reviews and Meta-analyses and Meta-analysis of Observational Studies in Epidemiology guidelines were used to select articles in which patients had "large" brain metastases (Group A: 4-14 cm3, or about 2-3 cm in diameter; Group B: >14 cm3, or about >3 cm in diameter); 1-year LC and/or rates of radionecrosis were reported; radiosurgery was administered definitively or postoperatively. Random effects meta-analyses using fractionation scheme and size as covariates were conducted. Meta-regression and Wald-type tests were used to determine the effect of increasing tumor size and fractionation on the summary estimate, where the null hypothesis was rejected for P < .05. RESULTS Twenty-four studies were included, published between 2008 and 2017, with 1887 brain metastases. LC random effects estimate at 1 year was 77.6% for Group A/SF-SRSD and 92.9% for Group A/MF-SRSD (P = .18). LC random effects estimate at 1 year was 77.1% for Group B/SF-SRSD and 79.2% for Group B/MF-SRSD (P = .76). LC random effects estimate at 1 year was 62.4% for Group B/SF-SRSP and 85.7% for Group B/MF-SRSP (P = .13). Radionecrosis incidence random effects estimate was 23.1% for Group A/SF-SRSD and 7.3% for Group A/MF-SRSD (P = .003). Radionecrosis incidence random effects estimate was 11.7% for Group B/SF-SRSD and 6.5% for Group B/MF-SRSD (P = .29). Radionecrosis incidence random effects estimate was 7.3% for Group B/SF-SRSP and 7.5% for Group B/MF-SRSP (P = .85). Metaregression assessing 1-year LC and radionecrosis as a continuous function of increasing tumor volume was not statistically significant. CONCLUSIONS Treatment for large brain metastases with MF-SRS regimens may offer a relative reduction of radionecrosis while maintaining or improving relative rates of 1-year LC compared with SF-SRS. These findings are hypothesis-generating and require validation by ongoing and planned prospective clinical trials.
Collapse
Affiliation(s)
- Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jennifer L Peterson
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida; Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, Pennsylvania
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Arjun Sahgal
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Veronica L Chiang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida; Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
49
|
Loganadane G, Dhermain F, Louvel G, Kauv P, Deutsch E, Le Péchoux C, Levy A. Brain Radiation Necrosis: Current Management With a Focus on Non-small Cell Lung Cancer Patients. Front Oncol 2018; 8:336. [PMID: 30234011 PMCID: PMC6134016 DOI: 10.3389/fonc.2018.00336] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
As the prognosis of metastatic non-small cell lung cancer (NSCLC) patients is constantly improving with advances in systemic therapies (immune checkpoint blockers and new generation of targeted molecular compounds), more attention should be paid to the diagnosis and management of treatments-related long-term secondary effects. Brain metastases (BM) occur frequently in the natural history of NSCLC and stereotactic radiation therapy (SRT) is one of the main efficient local non-invasive therapeutic methods. However, SRT may have some disabling side effects. Brain radiation necrosis (RN) represents one of the main limiting toxicities, generally occurring from 6 months to several years after treatment. The diagnosis of RN itself may be quite challenging, as conventional imaging is frequently not able to differentiate RN from BM recurrence. Retrospective studies have suggested increased incidence rates of RN in NSCLC patients with oncogenic driver mutations [epidermal growth factor receptor (EGFR) mutated or anaplastic lymphoma kinase (ALK) positive] or receiving tyrosine kinase inhibitors. The risk of immune checkpoint inhibitors in contributing to RN remains controversial. Treatment modalities for RN have not been prospectively compared. Those include surveillance, corticosteroids, bevacizumab and local interventions (minimally invasive laser interstitial thermal ablation or surgery). The aim of this review is to describe and discuss possible RN management options in the light of the newly available literature, with a particular focus on NSCLC patients.
Collapse
Affiliation(s)
| | - Frédéric Dhermain
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Guillaume Louvel
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Paul Kauv
- Department of Neuroradiology, AP-HP, CHU Henri Mondor, University of Paris-Est, Créteil, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Cécile Le Péchoux
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
50
|
Kuske M, Rauschenberg R, Garzarolli M, Meredyth-Stewart M, Beissert S, Troost EGC, Glitza OIC, Meier F. Melanoma Brain Metastases: Local Therapies, Targeted Therapies, Immune Checkpoint Inhibitors and Their Combinations-Chances and Challenges. Am J Clin Dermatol 2018; 19:529-541. [PMID: 29417399 PMCID: PMC6061393 DOI: 10.1007/s40257-018-0346-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent phase II trials have shown that BRAF/MEK inhibitors and immune checkpoint inhibitors are active in patients with melanoma brain metastases (MBM), reporting intracranial disease control rates of 50-75%. Furthermore, retrospective analyses suggest that combining stereotactic radiosurgery with immune checkpoint inhibitors or BRAF/MEK inhibitors prolongs overall survival. These data stress the need for inter- and multidisciplinary cooperation that takes into account the individual prognostic factors in order to establish the best treatment for each patient. Although the management of MBM has dramatically improved, a substantial number of patients still progress and die from brain metastases. Therefore, there is an urgent need for prospective studies in patients with MBM that focus on treatment combinations and sequences, new treatment strategies, and biomarkers of treatment response. Moreover, further research is needed to decipher brain-specific mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Marvin Kuske
- Department of Dermatology, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Ricarda Rauschenberg
- Department of Dermatology, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Marlene Garzarolli
- Department of Dermatology, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Michelle Meredyth-Stewart
- Department of Internal Medicine, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Esther G C Troost
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Radiation Oncology, Medical Faculty Carl Gustav Carus, University Hospital, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Dresden, Germany
- Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Friedegund Meier
- Department of Dermatology, Medical Faculty of Technische Universität Dresden, University Hospital Carl Gustav Carus, University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Skin Cancer Center at the University Cancer Centre Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|